CN101536191A - 在绝缘体上提供纳米级、高电子迁移率晶体管(hemt)的方法 - Google Patents

在绝缘体上提供纳米级、高电子迁移率晶体管(hemt)的方法 Download PDF

Info

Publication number
CN101536191A
CN101536191A CNA2007800407088A CN200780040708A CN101536191A CN 101536191 A CN101536191 A CN 101536191A CN A2007800407088 A CNA2007800407088 A CN A2007800407088A CN 200780040708 A CN200780040708 A CN 200780040708A CN 101536191 A CN101536191 A CN 101536191A
Authority
CN
China
Prior art keywords
layer
silicon
germanium
implant
decrystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800407088A
Other languages
English (en)
Inventor
达尔文·G·伊尼克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atmel Corp
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of CN101536191A publication Critical patent/CN101536191A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种方法和所得的包含衬底(801)和形成在所述衬底(801)上的松弛的硅-锗层(805)的高电子迁移率晶体管。掺杂剂层形成在所述松弛的硅-锗层(805)内。所述掺杂剂层含有碳和/或硼且具有小于约70纳米的半高全宽(FWHM)厚度值。应变的硅层(807)形成在所述松弛的硅-锗层(805)上且构造为用以充当量子阱装置。

Description

在绝缘体上提供纳米级、高电子迁移率晶体管(HEMT)的方法
技术领域
本发明大体上涉及集成电路(IC)的制造方法。更特定来说,本发明为在绝缘体上半导体衬底上制造高电子迁移率晶体管的方法。
背景技术
已出现若干种材料系统作为将摩尔定律(Moore′s law)广泛推进未来十年的关键推动因素。所述关键推动因素包括(1)绝缘体上硅(SOI);(2)硅-锗(SiGe);以及(3)应变的硅。就SOI和相关技术来说,存在很多与绝缘衬底相关联的优点。这些优点包括寄生电容减少、电隔离改进和短沟道效应减少。可将SOI的优点与由Si1-xGex和应变硅装置所提供的能带隙和载流子迁移率改进组合。
SOI衬底一般包括位于绝缘体上的硅薄层。集成电路组件形成在所述硅薄层中和上。绝缘体可包含例如二氧化硅(SiO2)、蓝宝石或其它各种绝缘材料的绝缘体。
目前,可采用若干技术来制造SOI衬底。一种用于制造SOI衬底的技术是植入氧分离(SIMOX)技术。在SIMOX工艺中,将氧植入在硅晶片表面下方。随后的退火步骤产生使用硅上覆层埋入的二氧化硅层。然而,由于SIMOX工艺中植入所需的时间很长,且因此成本极高。而且,通过SIMOX形成的SOI衬底可能易遭受表面损坏和污染。
另一种技术是结合和回蚀SOI(BESOI)技术,其中首先将经氧化的晶片扩散结合到未氧化晶片。参考图1A,硅装置晶片100和硅处置晶片150构成用于形成BESOI晶片的主要组件。硅装置晶片100包括:第一硅层101,其将充当装置层;蚀刻终止层103;以及第二硅层105。蚀刻终止层103通常包含碳。硅处置晶片150包括下部二氧化硅层107A、硅衬底层109和上部二氧化硅层107B。下部二氧化硅层107A和上部二氧化硅层107B通常由热生长氧化物同时形成。
在图1B中,使硅装置晶片100与硅处置晶片150实现物理接触且彼此结合。初始结合工艺之后是热退火,因此加强结合。结合对中的硅装置晶片100经薄化。起初,通过机械研磨和抛光将第二硅层105的大部分移除,直到仅剩余数十微米(即“microns”或μm)为止。高选择性湿式或干式化学蚀刻移除第二硅层105的剩余部分,从而终止于蚀刻终止层103。(下文中详细论述选择性)。第二硅层105蚀刻过程的最后结果描绘于图1C中。
在蚀刻过程期间,硅处置晶片150由所涂布的掩模层(未图示)保护。在图1D中,已使用另一种高选择性蚀刻剂移除蚀刻终止层103。作为这些过程的结果,将充当装置层的第一硅层101转移到硅处置晶片150。硅衬底层109的背面经研磨、抛光和蚀刻以实现所要总厚度。
为确保BESOI衬底对于后续制造步骤来说足够薄且满足当今对不断减小的物理尺寸和重量限制的要求,在层转移期间,BESOI需要蚀刻终止层103的存在。目前,存在两种主要的层转移技术:1)将植入氢的层从装置层剥离(氢植入和分离工艺)和2)选择性化学蚀刻。两种技术均已证明其满足高级半导体处理的要求。
在氢植入和分离工艺中,将氢(H2)植入具有热生长的二氧化硅层的硅中。所植入的H2使下伏于二氧化硅层的硅衬底脆化。植入H2的晶片可与具有二氧化硅上覆层的第二硅晶片结合。可通过适当退火在氢植入的峰值位置横跨所述晶片切除所结合的晶片。
相对来说,所述BESOI工艺没有SIMOX工艺中所固有的离子植入损害。然而,BESOI工艺需要研磨、抛光和化学蚀刻的耗时序列。
当今的蚀刻终止
如上所述,BESOI工艺是在绝缘体衬底上建置硅的面向制造的技术且部分依赖于化学蚀刻。
由平均蚀刻选择性S描述蚀刻终止性能,平均蚀刻选择性S定义硅与蚀刻终止层的蚀刻速率比:
S = R Si R es
其中Rsi为硅的蚀刻速率且Res为蚀刻终止的蚀刻速率。因此,S=1的选择性值涉和无蚀刻选择性的情形。
一种评价蚀刻终止效率的方法是测量横跨蚀刻终止与非蚀刻终止边界的最大蚀刻台阶高度。在图2A中,通过将离子植入硅衬底201A的一部分内而形成蚀刻终止203A。蚀刻终止203A在t=0时刻(即在施加任何蚀刻剂之前)具有厚度d1。在t=t1时刻(图2B),经部分蚀刻的硅衬底201B被蚀刻到深度为h1。蚀刻终止203A现为经部分蚀刻的蚀刻终止203B。经部分蚀刻的蚀刻终止203B被蚀刻到厚度d2。在t=t2时刻(图2C),经部分蚀刻的蚀刻终止203B(见图2A和图2B)已被完全蚀刻,且经完全蚀刻的硅衬底201C实现h2的最大蚀刻台阶高度。蚀刻终止203A的蚀刻速率(图2A)部分依赖于所植入的掺杂剂材料以及所使用的掺杂剂的植入分布曲线。从实践观点来看,最大蚀刻台阶是关键量,因为在BESOI工艺中,在回蚀之前进行研磨和抛光之后,最大蚀刻台阶决定装置晶片的可接受的厚度变化。
举例来说,如果最大蚀刻台阶为3个单位,则普通机械薄化程序之后,可容许的装置晶片的厚度非均一性应小于1.5个单位。可从有效蚀刻终止层厚度d1和最大蚀刻台阶h2导出平均蚀刻选择性S,如
S = d 1 + h 2 t d 1 t ⇓ S = 1 + h 2 d 1
其中t为实现最大蚀刻台阶高度h2所需的蚀刻时间。在先前实例中,t2为实现最大蚀刻台阶高度h2所需的蚀刻时间。
除降低的选择性所产生的问题外,使用碳或硼作为蚀刻终止可出现其它问题。所属领域的技术人员认识到,碳易于扩散到纯硅中,且因此蚀刻终止层厚度易于增加。硼也易于扩散到硅中且后续退火步骤后厚度增加。现有技术的碳和硼蚀刻终止的层宽度(半高全宽(FWHM))通常为数百纳米。因此,需要与硅相比具有较高蚀刻剂选择性的极薄和稳固的蚀刻终止层。
发明内容
在一个实施例中,本发明为包含衬底的高电子迁移率晶体管,所述衬底具有形成在所述衬底上的松弛的硅-锗层。硅-锗层具有包含小于约70%的锗的蚀刻终止层且含有掺杂剂元素碳和/或硼。应变的硅层形成在所述松弛的硅-锗层上且被构造为用以充当量子阱的装置。
在另一示范性实施例中,本发明为包含衬底和形成在所述衬底上的松弛的硅-锗层的高电子迁移率晶体管。在所述松弛的硅-锗层内形成掺杂剂层。所述掺杂剂层含有碳和/或硼且具有小于约70纳米的半高全宽(FWHM)厚度值。应变的硅层形成在所述松弛的硅-锗层上且被构造为用以充当量子阱的装置。
在另一示范性实施例中,本发明为制造高电子迁移率晶体管的方法。所述方法包括:在沉积腔室中使载气流过衬底,在所述沉积腔室中使硅前驱气体流过所述衬底,使锗前驱气体流过所述衬底,以及形成松弛的硅-锗层以使得硅-锗层含有小于约70%的锗。在沉积腔室中使含有碳和/或硼的掺杂剂前驱气体流过衬底且形成掺杂剂层以充当蚀刻终止层的至少一部分。在所述松弛的硅-锗层上形成应变的硅层以充当量子阱区。使衬底退火到900℃或更大的温度。当测量为半高全宽(FWHM)值时,将掺杂剂层的厚度维持到小于70纳米。
在另一示范性实施例中,本发明为包含衬底、在所述衬底上形成的松弛的硅-锗层和在所述松弛硅-锗层内形成的硼层的高电子迁移率晶体管。硼层具有小于约70纳米的半高全宽(FWHM)厚度值。应变的硅层形成在所述松弛的硅-锗层上且被构造为用以充当量子阱的装置。
在另一示范性实施例中,本发明为包含衬底、在所述衬底上形成的松弛的硅-锗层和在所述松弛的硅-锗层内形成的碳层的高电子迁移率晶体管。所述碳层具有小于约70纳米的半高全宽(FWHM)厚度值。应变的硅层形成在所述松弛的硅-锗层上且被构造为用以充当量子阱的装置。
附图说明
图1A-1D为现有技术结合和回蚀绝缘体上硅(BESOI)制造技术的横截面图。
图2A-2C为硅衬底上形成的蚀刻终止的横截面图,其指示确定蚀刻终止效率的方法。
图3为指示在各种退火温度下锗扩散的曲线图。
图4为指示根据本发明所产生且在热退火步骤后测量的硼分布曲线的半高全宽(FWHM)深度的曲线图。
图5为指示在各种退火温度下应变的SiGe:C:B中的碳扩散深度的曲线图。
图6为指示在各种退火温度下具有碳的SiGe中的硼扩散深度的曲线图。
图7A-7B为高电子迁移率晶体管(HEMT)装置层的横截面图。
图8为量子阱HEMT装置的横截面图。
图9为指示Si/SiGe MOS晶体管装置的电子迁移率增强的曲线图。
具体实施方式
本文中揭示在例如绝缘体上硅(SOI)上形成的含有硅(Si)、锗(Ge)和/或硅-锗(SiGe)纳米级蚀刻终止的高电子迁移率晶体管(HEMT)的制造方法和由其所得的结构。考虑例如硼(B)、碳(C)和锗的各种掺杂剂类型来制造纳米级蚀刻终止。本文中所描述的纳米级蚀刻终止在BESOI处理中具有特定应用。然而,所揭示的蚀刻终止不仅限于BESOI应用。
掺杂硼的硅
如果硅掺杂有浓度超过2×1019cm-3的硼,则所有含水碱性蚀刻剂的硅蚀刻速率显著降低。然而,依据离子植入物能量和剂量的所选量,离子植入分布曲线中硼的宽度可大于200nm到300nm。通常,高剂量需求也导致大量浓度相依型向外扩散。因此,由于蚀刻过程本身将具有在掺杂硼的层上终止的宽分布范围,因而转移的硅装置层厚度可展现非常宽的厚度范围。较宽的层范围造成显著的工艺整合问题。通过添加碳和/或锗,在约1000℃的温度下并持续10秒或更长时间的硼扩散可有效地被减轻。
依据装置要求,与碳和/或Ge相比,装置或衬底设计者可能更青睐硼作为蚀刻终止。例如,可由优选多数载流子类型和浓度或少数载流子类型和浓度推动设计决策。所属领域的技术人员将认识到,向掺杂硼的层添加碳将减弱载流子迁移率。因此,需要更多的硼来补偿减弱的载流子效应。所属领域的技术人员将进一步认识到,添加锗以在元素或化合物半导体中形成应变晶格增强了平面内多数载流子空穴的迁移率,但减弱了平面内多数载流子电子的迁移率。因此,如果将硼添加到掺杂碳和/或锗的晶格,则必须完全将制造过程表征。所述过程将为气流、温度和压力的函数。
可将硼掺杂入到硅衬底或膜或化合物半导体衬底或膜中。化合物半导体膜可选自第III-V族半导体化合物,例如SiGe、GaAs或InGaAs。或者,可选择第II-VI族半导体化合物,例如ZnSe、CdSe或CdTe。
掺杂碳和/或掺杂锗的硅
传统的锗植入和后续热退火形成通常深度为数百纳米的锗分布。当后续退火温度超过1000℃时所述分布范围尤其如此。可将以FWHM测量的“植入时”的分布曲线宽度的近似值确定如下:
Figure A200780040708D00091
Si1-x-y-zGexCyBz蚀刻终止
当使用特定的元素组合时,使用组合的SiGe:C:B方法限制碳与硼两者在硅中的扩散。在一示范性实施例中,Si1-x-y-zGexCyBz层的成分范围为:
·x(Ge):0%高达约70%(3.5×1022cm-3)
·y(C):0cm-3高达约5×1021cm-3
·Z(B):0cm-3高达约5×1021cm-3
图3到图6中的二次离子质谱(SIMS)数据显示在从900℃到1200℃的各种退火温度(或在BESOI情况下的结合温度)下并持续10秒的情况下硼、锗和碳在硅中的扩散。特定来说,图3指示各种温度下锗在硅中的扩散。甚至在1200℃退火温度下,实现约70nm的锗扩散的FWHM值(即约30nm到100nm的范围)。在小于1050℃的温度下,指示锗扩散的FWHM值小于40nm。
参看图4,SIMS分布曲线图400表示硼在碳和掺杂Ge的硅(SiGe:C:B)中的扩散曲线的数据。Ge掺杂剂的位置分别由位于50nm和85nm深度的下部401和上部403垂直线来说明。在高达1000℃的温度下,硼维持相对固定,接着在更高温度下迅速扩散(在各温度下的退火时间为10秒)。然而,如在本发明的实施例中所述,碳与锗两者的存在减少了硼向外扩散。依据所涉及的浓度和温度,碳与Ge的存在将总体硼扩散减少10倍或10倍以上。在一特定示范性实施例中,SiGe:C:B的特定合金为Si0.975Ge0.02C0.002B0.003。因此,Si与Ge的比为约50:1且B与C的比为约1.5:1。
在另一实施例中,图5指示Si与Ge的比显著较低的SIMS分布曲线。图中指示生长时及随后在900℃到1200℃的退火温度下应变的SiGe:C:B中的碳扩散水平。数据展示碳扩散主要来自未掺杂间隔物区,其中间隔物区无B掺杂(未图示)。然而,SIMS分布曲线的中心区(即在约60nm到80nm的深度处)指示碳扩散由于B在SiGe膜中的存在而显著减少。在此示范性实施例中,在热退火前SiGe:C:B膜含79.5%的Si、20%的Ge、0.2%的C和0.3%的硼(Si0.795Ge0.2C0.002B0.003)。因此,Si与Ge的比为约4:1且B与C的比为约1.5:1。
图6为指示在各种退火温度下具有碳的SiGe中的硼扩散深度的SIMS分布曲线600。此实施例中所采用的SiGe膜也为Si0.795Ge0.2C0.002B0.003,类似于得到图5曲线图所用的膜。应注意,SIMS分布曲线600指示在1200℃下退火10秒后,锗扩散从20%(即约1.0×1022个原子/立方厘米)的峰值变为7.7%(即约3.85×1021个原子/立方厘米)的峰值浓度。硼扩散从1.5×1020个原子/立方厘米的峰值变为1.0×1019个原子/立方厘米的峰值。另外,碳也发生了扩散,但所涉及的扩散机制主要归因于SiGe间隔物(在初始生长期间仅含有Ge和C的外侧边缘)。碳扩散峰值从1.0×1020个原子/立方厘米降到7.0×1019个原子/立方厘米(指示峰值降低约30%)。碳的最终扩散分布曲线比生长时的分布曲线窄。因此,即使在1200℃退火后最终扩散的碳分布曲线的FWHM宽度也小于20nm。
蚀刻终止层的制造工艺
依据所制造的特定装置、所采用的特定设备类型和起始材料的各种组合,总体工艺条件可广泛不同。然而,在特定示范性实施例中,一般来说,工艺条件需要以下工艺条件:通常在从小于1托到约100托的压力和从450℃到950℃的温度下。
 
前驱气体或载气 流动速率 注释
GeH4 0sccm到500sccm Si而非Ge 0 sccm
SiH4 5sccm到500sccm Ge而非Si 0 sccm0
B2H6 0sccm到500sccm 0sccm=Si或SiGe中无B
CH3SiH3 0sccm到500sccm 0sccm=Si或SiGe中无C
He 0sccm到500sccm 任选地用于较低温度生长(例如<500℃)
H2 1slpm到50slpm
除四氢化锗(GeH4)外,可采用另一锗前驱气体。另外,可使用二硅烷(Si2H6)或另一硅前驱气体来取代硅烷(SiH4)。二硅烷以比硅烷快的速率且在比硅烷低的温度下沉积硅。
另外,三氯化硼(BCl3)或任何其它硼前驱气体可用于取代二硼烷(B2H6)。除甲基硅烷(CH3SiH3)外的碳前驱气体可用作碳前驱体。例如氮(N2)、氩(Ar)、氦(He)、氙(Xe)和氟(F2)的惰性气体也全部为替换H2的合适载气。
所有气体流动速率可为工艺、设备和/或装置相依的。因此,所给出的示范性范围外的气体流动速率可为可完全接受的。而且,所属领域的技术人员将认识到,依据所需电特性,也可以各种分布曲线沉积Si1-x-y-zGexCyBz层。
非晶化增强型蚀刻终止
如图3中所述,植入的Ge分布曲线比CVD Ge分布曲线对向外扩散更具弹性。因此,可添加额外的工艺步骤。例如,在SiGe:C:B纳米级膜堆叠的CVD沉积后,可执行非晶化植入。植入引起沿Si/SiGe异质结的膜应变减少(与当前文献的测定相反)。因此,使假晶SiGe:C:B层非晶化,选择性将进一步得以增强。已发现此步骤可接受的物质尤其包括硼、锗、硅、氩、氮、氧(单质)、碳和第III-V族和第II-VI族半导体。
制造HEMT装置
图7A和7B描述可转移为BESOI装置层的HEMT装置的示范性形成。图7A包括具有装置层701的衬底和用作蚀刻终止层且也含有HEMT沟道区(未图示)的松弛的半导体层703。在一特定示范性实施例中,具有装置层701的衬底可包含硅。松弛的半导体层703可包含SiGeC、SiGeB和/或SiGe:C:B且根据上述方法和元素比而形成。
参看图7B,在松弛的半导体层703上形成拉伸应变型半导体盖层705。在一特定示范性实施例中,拉伸应变型盖层包含硅。拉伸中的半导体具有若干有利性质。例如,将硅置于拉伸状态增加电子平行于衬底701的表面移动的迁移率,因此增加装置的操作频率。而且,松弛的SiGe与拉伸的Si之间的带偏移将电子限制在Si层中。因此,在电子沟道装置(n-沟道)中,可从表面移除通道或将其埋入。
在一示范性制造方法中,通过提供衬底701的表面的氢氟酸净化,接着实行异丙醇干燥步骤来形成松弛的半导体层703。在950℃下将衬底701预先烘焙60秒,以移除吸附的水分且剥除任何弱氧化物。通过在900℃温度下使H2以30slpm且使SiH4以50sccm流动,使硅的种子层生长到约300
Figure A200780040708D0011093628QIETU
的厚度。将SiH4流量维持在50sccm,同时将温度降低到600℃。最初以50sccm的流动速率引入GeH4,且沿斜线上升到400sccm以形成2500
Figure A200780040708D0011093628QIETU
厚的SiGe层。由流动速率斜线变化所得的分布曲线为例如从5%浓度到25%浓度的梯形形状。因此,超过临界厚度,且薄膜将松弛到其天然晶格尺寸。在实现最终2500
Figure A200780040708D0011093628QIETU
的厚度前不久,通过经由例如B2H6和CH3SiH3引入B和/或C来产生蚀刻终止层。各气体的流动速率通常在200sccm到500sccm的范围内。接着通过停止GeH4流动,而将SiH4维持在50sccm来形成应变盖层705。通过设计要求确定盖层705的总厚度,但对于现行装置其一般在50
Figure A200780040708D0011093628QIETU
到200
Figure A200780040708D0011093628QIETU
的范围内。如所属领域的技术人员将了解,所有时间、温度、流动速率和浓度仅为示范性的且可依据确切装置和设备选择而变化。
图8为示范性量子阱膜堆叠800的基本结构。如上文参看图7B所描述,应变的Si(例如处于拉伸状态的Si)变成量子阱区。因此,存在电子将流入量子阱区中的更大倾向。示范性量子阱堆叠800包括硅衬底801、分级SiGe层803、松弛的SiGe层805和应变的硅量子阱807。另外,松弛的SiGe层805含有如上所述的蚀刻终止层。纳米级蚀刻终止层比可能的其它当代SOI制造技术提供更紧密的薄膜一致性,因此导致降低的离子植入物蔓延和植入物质的过度扩散两者。因此,如本文中所描述而制造的电子装置具有伴随的性能上的增加。例如,在图9中量化由于应变的硅量子阱807而引起的电子迁移率的总效应。
图9为指示迁移率增强倍数随下伏松弛SiGe层805(图8)中的锗分数而变化的电子迁移率增强曲线图。电子迁移率增强曲线图进一步将仿真数据与实验结果进行比较。随着衬底(此处为松弛SiGe层805)中锗分数增加,产生较大的SiGe晶格参数。较大的晶格参数耦合于硅量子阱807中的拉伸应变中。拉伸硅应变引起声子散射减少以及有效电子质量减小,从而进一步改进装置性能。如所指示,使用本文中所描述的技术和方法所获得的迁移率增强倍数超过1.8倍。
在上述说明书中,已参看本发明的具体实施例描述了本发明。然而,所属领域的技术人员将明白,在不脱离随附权利要求书中所陈述的本发明的更广精神和范围的情况下可对本发明作出各种修改和改变。例如,尽管详细地展示且描述了工艺步骤和技术,但所属领域的技术人员将认识到,可使用其它技术和方法,此依然包括在随附权利要求书的范围内。举例来说,通常存在若干种用于沉积膜层的技术(例如化学气相沉积、等离子体增强型气相沉积、外延、原子层沉积等)。尽管并非所有技术均适用于本文中所描述的所有膜类型,但所属领域的技术人员将认识到,可使用多种用于沉积给定层和/或膜类型的方法。
另外,很多与半导体产业相关的产业可利用本文中所揭示的HEMT装置。举例来说,数据存储产业中的薄膜磁头(TFH)工艺或平板显示器产业中的有源矩阵液晶显示器(AMLCD)可容易地利用本文中所描述的工艺和技术。应认为术语“半导体”包括上述和相关产业。因此应将本说明书和图式视为具有说明性意义而非限制性意义。

Claims (19)

1.一种高电子迁移率晶体管,其包含:
衬底;
松弛的硅-锗层,其形成在所述衬底上,所述硅-锗层具有包含小于约70%的锗且含有选自由硼和碳组成的群组的一种或一种以上掺杂剂元素的蚀刻终止层;以及
应变的硅层,其形成在所述松弛的硅-锗层上且构造为用以充当量子阱装置。
2.根据权利要求1所述的高电子迁移率晶体管,其中所述掺杂剂层的半高全宽(FWHM)厚度测量值小于70纳米。
3.根据权利要求1所述的高电子迁移率晶体管,其中所述掺杂剂层的半高全宽(FWHM)厚度测量值小于20纳米。
4.根据权利要求1所述的高电子迁移率晶体管,其进一步包含非晶化植入物,所述非晶化植入物选自由硼、锗、硅、氩、氮、氧和碳组成的群组。
5.根据权利要求1所述的高电子迁移率晶体管,其进一步包含添加非晶化植入物,所述非晶化植入物选自由第III族和第V族半导体组成的群组。
6.根据权利要求1所述的高电子迁移率晶体管,其进一步包含非晶化植入物,所述非晶化植入物选自由第II族和第VI族半导体组成的群组。
7.一种高电子迁移率晶体管,其包含:
衬底;
松弛的硅-锗层,其形成在所述衬底上;
掺杂剂层,其形成在所述松弛的硅-锗层内,所述掺杂剂层具有选自由硼和碳组成的群组的掺杂剂元素中的一种或一种以上且具有小于约70纳米的半高全宽(FWHM)厚度值;以及
应变的硅层,其形成在所述松弛的硅-锗层上且构造为用以充当量子阱装置。
8.根据权利要求7所述的高电子迁移率晶体管,其中所述掺杂剂层包含小于约70%的锗,所述掺杂剂层进一步形成蚀刻终止层。
9.根据权利要求7所述的高电子迁移率晶体管,其中所述掺杂剂层的半高全宽(FWHM)厚度测量值小于20纳米。
10.根据权利要求7所述的高电子迁移率晶体管,其进一步包含非晶化植入物,所述非晶化植入物选自由硼、锗、硅、氩、氮、氧和碳组成的群组。
11.根据权利要求7所述的高电子迁移率晶体管,其进一步包含添加非晶化植入物,所述非晶化植入物选自由第III族和第V族半导体组成的群组。
12.根据权利要求7所述的高电子迁移率晶体管,其进一步包含非晶化植入物,所述非晶化植入物选自由第II族和第VI族半导体组成的群组。
13.一种制造高电子迁移率晶体管的方法,所述方法包含:
在沉积腔室中使载气流过衬底;
在所述沉积腔室中使硅前驱气体流过所述衬底;
使锗前驱气体流过所述衬底;
形成松弛的硅-锗层,使得所述硅-锗层含有小于约70%的锗;
在所述沉积腔室中使掺杂剂前驱气体流过所述衬底,所述掺杂剂前驱气体选自由硼和碳组成的群组,所述掺杂剂前驱气体形成掺杂剂层以充当蚀刻终止层的至少一部分;
在所述松弛的硅-锗层上形成应变的硅层以充当量子阱区;
使所述衬底退火到900℃或更高的温度;以及
当测量为半高全宽(FWHM)值时,将所述掺杂剂层的厚度维持到小于70纳米。
14.根据权利要求13所述的方法,其中当测量为FWHM值时,将所述掺杂剂层的厚度维持在小于约20纳米的厚度。
15.根据权利要求13所述的方法,其进一步包含添加非晶化植入物,所述非晶化植入物选自由硼、锗、硅、氩、氮、氧和碳组成的群组。
16.根据权利要求13所述的方法,其进一步包含添加非晶化植入物,所述非晶化植入物选自由第III族和第V族半导体组成的群组。
17.根据权利要求13所述的方法,其进一步包含添加非晶化植入物,所述非晶化植入物选自由第II族和第VI族半导体组成的群组。
18.一种高电子迁移率晶体管,其包含:
衬底;
松弛的硅-锗层,其形成在所述衬底上;
硼层,其形成在所述松弛的硅-锗层内,所述硼层具有小于约70纳米的半高全宽(FWHM)厚度值;以及
应变的硅层,其形成在所述松弛的硅-锗层上且构造为用以充当量子阱装置。
19.根据权利要求18所述的高电子迁移率晶体管,其中所述硼层包含小于约70%的锗,所述硼层进一步形成蚀刻终止层。
CNA2007800407088A 2006-10-31 2007-10-10 在绝缘体上提供纳米级、高电子迁移率晶体管(hemt)的方法 Pending CN101536191A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/554,796 US7550758B2 (en) 2006-10-31 2006-10-31 Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator
US11/554,796 2006-10-31

Publications (1)

Publication Number Publication Date
CN101536191A true CN101536191A (zh) 2009-09-16

Family

ID=39329042

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800407088A Pending CN101536191A (zh) 2006-10-31 2007-10-10 在绝缘体上提供纳米级、高电子迁移率晶体管(hemt)的方法

Country Status (4)

Country Link
US (2) US7550758B2 (zh)
CN (1) CN101536191A (zh)
TW (1) TW200830551A (zh)
WO (1) WO2008054967A2 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006859A1 (zh) * 2010-07-13 2012-01-19 清华大学 具有双缓变结的Si-Ge-Si半导体结构及其形成方法
TWI547997B (zh) * 2009-12-04 2016-09-01 諾菲勒斯系統公司 硬遮罩材料
US9837270B1 (en) 2016-12-16 2017-12-05 Lam Research Corporation Densification of silicon carbide film using remote plasma treatment
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US9997405B2 (en) 2014-09-30 2018-06-12 Lam Research Corporation Feature fill with nucleation inhibition
US10002787B2 (en) 2016-11-23 2018-06-19 Lam Research Corporation Staircase encapsulation in 3D NAND fabrication
US10211310B2 (en) 2012-06-12 2019-02-19 Novellus Systems, Inc. Remote plasma based deposition of SiOC class of films
US10297442B2 (en) 2013-05-31 2019-05-21 Lam Research Corporation Remote plasma based deposition of graded or multi-layered silicon carbide film
US10325773B2 (en) 2012-06-12 2019-06-18 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US10472714B2 (en) 2013-05-31 2019-11-12 Novellus Systems, Inc. Method to obtain SiC class of films of desired composition and film properties
US10832904B2 (en) 2012-06-12 2020-11-10 Lam Research Corporation Remote plasma based deposition of oxygen doped silicon carbide films
US11049716B2 (en) 2015-04-21 2021-06-29 Lam Research Corporation Gap fill using carbon-based films

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050883A1 (en) * 2006-08-25 2008-02-28 Atmel Corporation Hetrojunction bipolar transistor (hbt) with periodic multilayer base
US8530934B2 (en) 2005-11-07 2013-09-10 Atmel Corporation Integrated circuit structures containing a strain-compensated compound semiconductor layer and methods and systems related thereto
US7550758B2 (en) 2006-10-31 2009-06-23 Atmel Corporation Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator
JP2013084695A (ja) * 2011-10-06 2013-05-09 Tokyo Electron Ltd 半導体装置の製造方法
US10276663B2 (en) * 2016-07-18 2019-04-30 United Microelectronics Corp. Tunneling transistor and method of fabricating the same
US11222950B2 (en) * 2019-04-24 2022-01-11 National Technology & Engineering Solutions Of Sandia, Llc Method for fabricating embedded nanostructures with arbitrary shape

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652183A (en) 1979-02-16 1987-03-24 United Technologies Corporation Amorphous boron-carbon alloy tool bits and methods of making the same
US4459739A (en) 1981-05-26 1984-07-17 Northern Telecom Limited Thin film transistors
US4908325A (en) 1985-09-15 1990-03-13 Trw Inc. Method of making heterojunction transistors with wide band-gap stop etch layer
US4701423A (en) 1985-12-20 1987-10-20 Ncr Corporation Totally self-aligned CMOS process
US5155571A (en) 1990-08-06 1992-10-13 The Regents Of The University Of California Complementary field effect transistors having strained superlattice structure
US5241214A (en) 1991-04-29 1993-08-31 Massachusetts Institute Of Technology Oxides and nitrides of metastabale group iv alloys and nitrides of group iv elements and semiconductor devices formed thereof
US5137838A (en) 1991-06-05 1992-08-11 National Semiconductor Corporation Method of fabricating P-buried layers for PNP devices
JPH05175216A (ja) 1991-12-24 1993-07-13 Rohm Co Ltd ヘテロ接合バイポーラトランジスタおよびその製法
US5331659A (en) 1992-03-13 1994-07-19 Sony Corporation Optical semiconductor device
US5965931A (en) 1993-04-19 1999-10-12 The Board Of Regents Of The University Of California Bipolar transistor having base region with coupled delta layers
US5453399A (en) 1993-10-06 1995-09-26 Texas Instruments Incorporated Method of making semiconductor-on-insulator structure
US5466949A (en) 1994-08-04 1995-11-14 Texas Instruments Incorporated Silicon oxide germanium resonant tunneling
US5804834A (en) 1994-10-28 1998-09-08 Mitsubishi Chemical Corporation Semiconductor device having contact resistance reducing layer
WO1996015550A1 (en) 1994-11-10 1996-05-23 Lawrence Semiconductor Research Laboratory, Inc. Silicon-germanium-carbon compositions and processes thereof
KR0148599B1 (ko) 1994-11-15 1998-12-01 양승택 유전체 박막상의 무결함 화합물 반도체 박막의 제조방법
US5856685A (en) 1995-02-22 1999-01-05 Nec Corporation Heterojunction field effect transistor
US5620907A (en) * 1995-04-10 1997-04-15 Lucent Technologies Inc. Method for making a heterojunction bipolar transistor
US5661059A (en) 1995-04-18 1997-08-26 Advanced Micro Devices Boron penetration to suppress short channel effect in P-channel device
US6720627B1 (en) 1995-10-04 2004-04-13 Sharp Kabushiki Kaisha Semiconductor device having junction depths for reducing short channel effect
US6399970B2 (en) 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
US6800881B2 (en) 1996-12-09 2004-10-05 Ihp Gmbh-Innovations For High Performance Microelectronics/Institut Fur Innovative Mikroelektronik Silicon-germanium hetero bipolar transistor with T-shaped implantation layer between emitter and emitter contact area
US5906951A (en) 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
US6107647A (en) 1997-05-15 2000-08-22 Rohm Co. Ltd. Semiconductor AlGaInP light emitting device
KR100400808B1 (ko) 1997-06-24 2003-10-08 매사츄세츠 인스티튜트 오브 테크놀러지 그레이드된 GeSi층 및 평탄화를 사용한 Si상의 Ge의 쓰레딩 전위 밀도 제어
US6521041B2 (en) * 1998-04-10 2003-02-18 Massachusetts Institute Of Technology Etch stop layer system
US7227176B2 (en) * 1998-04-10 2007-06-05 Massachusetts Institute Of Technology Etch stop layer system
US6087683A (en) 1998-07-31 2000-07-11 Lucent Technologies Silicon germanium heterostructure bipolar transistor with indium doped base
US6462371B1 (en) 1998-11-24 2002-10-08 Micron Technology Inc. Films doped with carbon for use in integrated circuit technology
JP2000349264A (ja) 1998-12-04 2000-12-15 Canon Inc 半導体ウエハの製造方法、使用方法および利用方法
FR2795871B1 (fr) 1999-07-01 2001-09-14 Picogiga Sa Transistor iii-v a heterojonction, notamment transistor a effet de champ hemt ou transistor bipolaire a heterojonction
US6323108B1 (en) * 1999-07-27 2001-11-27 The United States Of America As Represented By The Secretary Of The Navy Fabrication ultra-thin bonded semiconductor layers
US6744079B2 (en) 2002-03-08 2004-06-01 International Business Machines Corporation Optimized blocking impurity placement for SiGe HBTs
DE60036594T2 (de) 1999-11-15 2008-01-31 Matsushita Electric Industrial Co., Ltd., Kadoma Feldeffekt-Halbleiterbauelement
US6165891A (en) 1999-11-22 2000-12-26 Chartered Semiconductor Manufacturing Ltd. Damascene structure with reduced capacitance using a carbon nitride, boron nitride, or boron carbon nitride passivation layer, etch stop layer, and/or cap layer
JP2001189478A (ja) 1999-12-28 2001-07-10 Sanyo Electric Co Ltd 半導体素子及びその製造方法
US6531369B1 (en) 2000-03-01 2003-03-11 Applied Micro Circuits Corporation Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe)
US7419903B2 (en) 2000-03-07 2008-09-02 Asm International N.V. Thin films
TW483171B (en) 2000-03-16 2002-04-11 Trw Inc Ultra high speed heterojunction bipolar transistor having a cantilevered base.
WO2003092047A2 (en) 2002-04-26 2003-11-06 The University Of Connecticut Center Of Science & Technology Commercialization THz DETECTION EMPLOYING MODULATION DOPED QUANTUM WELL DEVICE STRUCTURES
US6362065B1 (en) 2001-02-26 2002-03-26 Texas Instruments Incorporated Blocking of boron diffusion through the emitter-emitter poly interface in PNP HBTs through use of a SiC layer at the top of the emitter epi layer
KR101050377B1 (ko) 2001-02-12 2011-07-20 에이에스엠 아메리카, 인코포레이티드 반도체 박막 증착을 위한 개선된 공정
US6593625B2 (en) 2001-06-12 2003-07-15 International Business Machines Corporation Relaxed SiGe layers on Si or silicon-on-insulator substrates by ion implantation and thermal annealing
US6855649B2 (en) 2001-06-12 2005-02-15 International Business Machines Corporation Relaxed SiGe layers on Si or silicon-on-insulator substrates by ion implantation and thermal annealing
KR100710513B1 (ko) 2001-08-06 2007-04-23 가부시키가이샤 섬코 반도체 기판 및 전계 효과형 트랜지스터 및 그 제조 방법
US20030040130A1 (en) 2001-08-09 2003-02-27 Mayur Abhilash J. Method for selection of parameters for implant anneal of patterned semiconductor substrates and specification of a laser system
US20030082882A1 (en) 2001-10-31 2003-05-01 Babcock Jeffrey A. Control of dopant diffusion from buried layers in bipolar integrated circuits
US20030080394A1 (en) 2001-10-31 2003-05-01 Babcock Jeffrey A. Control of dopant diffusion from polysilicon emitters in bipolar integrated circuits
US20050250289A1 (en) 2002-10-30 2005-11-10 Babcock Jeffrey A Control of dopant diffusion from buried layers in bipolar integrated circuits
JP4060580B2 (ja) 2001-11-29 2008-03-12 株式会社ルネサステクノロジ ヘテロ接合バイポーラトランジスタ
US6670654B2 (en) 2002-01-09 2003-12-30 International Business Machines Corporation Silicon germanium heterojunction bipolar transistor with carbon incorporation
US6656809B2 (en) 2002-01-15 2003-12-02 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics
US7226504B2 (en) 2002-01-31 2007-06-05 Sharp Laboratories Of America, Inc. Method to form thick relaxed SiGe layer with trench structure
US6746902B2 (en) 2002-01-31 2004-06-08 Sharp Laboratories Of America, Inc. Method to form relaxed sige layer with high ge content
US6759674B2 (en) 2002-02-04 2004-07-06 Newport Fab, Llc Band gap compensated HBT
JP3746246B2 (ja) 2002-04-16 2006-02-15 株式会社東芝 半導体装置の製造方法
US6586297B1 (en) 2002-06-01 2003-07-01 Newport Fab, Llc Method for integrating a metastable base into a high-performance HBT and related structure
US7074623B2 (en) 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
US6995430B2 (en) 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
JP2004047691A (ja) 2002-07-11 2004-02-12 Seiko Epson Corp 半導体装置の製造方法、電気光学装置、及び電子機器
US7535100B2 (en) 2002-07-12 2009-05-19 The United States Of America As Represented By The Secretary Of The Navy Wafer bonding of thinned electronic materials and circuits to high performance substrates
US6841457B2 (en) 2002-07-16 2005-01-11 International Business Machines Corporation Use of hydrogen implantation to improve material properties of silicon-germanium-on-insulator material made by thermal diffusion
US6992004B1 (en) 2002-07-31 2006-01-31 Advanced Micro Devices, Inc. Implanted barrier layer to improve line reliability and method of forming same
US6858541B2 (en) 2002-08-05 2005-02-22 Honeywell International, Inc. Etch stop control for MEMS device formation
US6927140B2 (en) 2002-08-21 2005-08-09 Intel Corporation Method for fabricating a bipolar transistor base
US7217950B2 (en) 2002-10-11 2007-05-15 Nissan Motor Co., Ltd. Insulated gate tunnel-injection device having heterojunction and method for manufacturing the same
TWI223446B (en) * 2002-11-05 2004-11-01 Ind Tech Res Inst Method of ultra thin base fabrication for Si/SiGe hetro bipolar transistor
EP1439570A1 (en) * 2003-01-14 2004-07-21 Interuniversitair Microelektronica Centrum ( Imec) SiGe strain relaxed buffer for high mobility devices and a method of fabricating it
US7238595B2 (en) 2003-03-13 2007-07-03 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
WO2004093199A1 (ja) 2003-04-15 2004-10-28 Matsushita Electric Industrial Co., Ltd. バリスティック半導体素子
US6936910B2 (en) 2003-05-09 2005-08-30 International Business Machines Corporation BiCMOS technology on SOI substrates
US6982433B2 (en) 2003-06-12 2006-01-03 Intel Corporation Gate-induced strain for MOS performance improvement
WO2005004198A2 (en) 2003-06-13 2005-01-13 North Carolina State University Complex oxides for use in semiconductor devices and related methods
JP4322255B2 (ja) 2003-08-05 2009-08-26 富士通マイクロエレクトロニクス株式会社 半導体装置及びその製造方法
US6855963B1 (en) 2003-08-29 2005-02-15 International Business Machines Corporation Ultra high-speed Si/SiGe modulation-doped field effect transistors on ultra thin SOI/SGOI substrate
TWI228320B (en) 2003-09-09 2005-02-21 Ind Tech Res Inst An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product
TWI222219B (en) 2003-09-10 2004-10-11 Ind Tech Res Inst Semiconductor optical transistor
US6989322B2 (en) 2003-11-25 2006-01-24 International Business Machines Corporation Method of forming ultra-thin silicidation-stop extensions in mosfet devices
US7075126B2 (en) 2004-02-27 2006-07-11 International Business Machines Corporation Transistor structure with minimized parasitics and method of fabricating the same
WO2005094254A2 (en) 2004-03-17 2005-10-13 The Board Of Trustees Of The Leland Stanford Junior University Crystalline-type device and approach therefor
US20060011906A1 (en) 2004-07-14 2006-01-19 International Business Machines Corporation Ion implantation for suppression of defects in annealed SiGe layers
US20060030093A1 (en) 2004-08-06 2006-02-09 Da Zhang Strained semiconductor devices and method for forming at least a portion thereof
JP4720164B2 (ja) 2004-12-02 2011-07-13 株式会社Sumco Soiウェーハの製造方法
US20060151787A1 (en) 2005-01-12 2006-07-13 International Business Machines Corporation LOW CONCENTRATION SiGe BUFFER DURING STRAINED Si GROWTH OF SSGOI MATERIAL FOR DOPANT DIFFUSION CONTROL AND DEFECT REDUCTION
US7361943B2 (en) 2005-04-19 2008-04-22 The Ohio State University Silicon-based backward diodes for zero-biased square law detection and detector arrays of same
US20080050883A1 (en) 2006-08-25 2008-02-28 Atmel Corporation Hetrojunction bipolar transistor (hbt) with periodic multilayer base
US20060292809A1 (en) 2005-06-23 2006-12-28 Enicks Darwin G Method for growth and optimization of heterojunction bipolar transistor film stacks by remote injection
US20070054460A1 (en) 2005-06-23 2007-03-08 Atmel Corporation System and method for providing a nanoscale, highly selective, and thermally resilient silicon, germanium, or silicon-germanium etch-stop
US7432184B2 (en) 2005-08-26 2008-10-07 Applied Materials, Inc. Integrated PVD system using designated PVD chambers
JP2007066981A (ja) 2005-08-29 2007-03-15 Toshiba Corp 半導体装置
US8120060B2 (en) 2005-11-01 2012-02-21 Massachusetts Institute Of Technology Monolithically integrated silicon and III-V electronics
US20070102834A1 (en) 2005-11-07 2007-05-10 Enicks Darwin G Strain-compensated metastable compound base heterojunction bipolar transistor
US20070148890A1 (en) 2005-12-27 2007-06-28 Enicks Darwin G Oxygen enhanced metastable silicon germanium film layer
US20070290193A1 (en) 2006-01-18 2007-12-20 The Board Of Trustees Of The University Of Illinois Field effect transistor devices and methods
US20070262295A1 (en) 2006-05-11 2007-11-15 Atmel Corporation A method for manipulation of oxygen within semiconductor materials
US7495250B2 (en) 2006-10-26 2009-02-24 Atmel Corporation Integrated circuit structures having a boron- and carbon-doped etch-stop and methods, devices and systems related thereto
US7569913B2 (en) 2006-10-26 2009-08-04 Atmel Corporation Boron etch-stop layer and methods related thereto
US7550758B2 (en) 2006-10-31 2009-06-23 Atmel Corporation Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI547997B (zh) * 2009-12-04 2016-09-01 諾菲勒斯系統公司 硬遮罩材料
WO2012006859A1 (zh) * 2010-07-13 2012-01-19 清华大学 具有双缓变结的Si-Ge-Si半导体结构及其形成方法
US10211310B2 (en) 2012-06-12 2019-02-19 Novellus Systems, Inc. Remote plasma based deposition of SiOC class of films
US11264234B2 (en) 2012-06-12 2022-03-01 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US10832904B2 (en) 2012-06-12 2020-11-10 Lam Research Corporation Remote plasma based deposition of oxygen doped silicon carbide films
US10325773B2 (en) 2012-06-12 2019-06-18 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US10472714B2 (en) 2013-05-31 2019-11-12 Novellus Systems, Inc. Method to obtain SiC class of films of desired composition and film properties
US10297442B2 (en) 2013-05-31 2019-05-21 Lam Research Corporation Remote plasma based deposition of graded or multi-layered silicon carbide film
US9997405B2 (en) 2014-09-30 2018-06-12 Lam Research Corporation Feature fill with nucleation inhibition
US11049716B2 (en) 2015-04-21 2021-06-29 Lam Research Corporation Gap fill using carbon-based films
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US10002787B2 (en) 2016-11-23 2018-06-19 Lam Research Corporation Staircase encapsulation in 3D NAND fabrication
US10580690B2 (en) 2016-11-23 2020-03-03 Lam Research Corporation Staircase encapsulation in 3D NAND fabrication
US9837270B1 (en) 2016-12-16 2017-12-05 Lam Research Corporation Densification of silicon carbide film using remote plasma treatment

Also Published As

Publication number Publication date
US20090258478A1 (en) 2009-10-15
TW200830551A (en) 2008-07-16
US20080099754A1 (en) 2008-05-01
WO2008054967A3 (en) 2008-08-14
US8173526B2 (en) 2012-05-08
US7550758B2 (en) 2009-06-23
WO2008054967A2 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
CN101536191A (zh) 在绝缘体上提供纳米级、高电子迁移率晶体管(hemt)的方法
CN101536156A (zh) 提供纳米级、高度选择性和热弹性硅、锗或硅-锗蚀刻终止层的系统和方法
US7569913B2 (en) Boron etch-stop layer and methods related thereto
CN101529569A (zh) 用于提供纳米级、高度选择性和热弹性碳蚀刻终止的系统和方法
TWI540728B (zh) 積體電路結構及其形成方法
US9184290B2 (en) Method of forming well-controlled extension profile in MOSFET by silicon germanium based sacrificial layer
US20140048765A1 (en) Semiconductor device and method for manufacturing the same
US10134897B2 (en) Semiconductor device and fabrication method thereof
CN100365766C (zh) 厚应变硅层及含有厚应变硅层的半导体结构的形成方法
WO2009098548A1 (en) Intermediate product for a multichannel fet and process for obtaining an intermediate product
CN106611739B (zh) 衬底及其制造方法
US20140252501A1 (en) Sacrificial replacement extension layer to obtain abrupt doping profile
US20100167505A1 (en) Methods for reducing loading effects during film formation
CN103972059A (zh) 用于在沟槽中形成半导体区的方法
US20140070277A1 (en) Epitaxial growth of smooth and highly strained germanium
CN106611740B (zh) 衬底及其制造方法
CN105514158A (zh) 半导体结构和测试结构的形成方法、测试方法
CN101393869A (zh) 氮化硅薄膜及接触刻蚀停止层的形成方法
CN101916770B (zh) 具有双缓变结的Si-Ge-Si半导体结构及其形成方法
US9331073B2 (en) Epitaxially grown quantum well finFETs for enhanced pFET performance
US11121254B2 (en) Transistor with strained superlattice as source/drain region
Xu et al. 300 mm Wafer-scale In-situ CVD Growth Achieving 5.1× 10-10 Ω-cm 2 P-Type Contact Resistivity: Record 2.5× 10 21 cm-3 Active Doping and Demonstration on Highly-Scaled 3D Structures
US10269900B2 (en) Semiconductor film with adhesion layer and method for forming the same
JP2001156079A (ja) SiGeベースバイポーラトランジスタ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090916