CN101544488A - Conductive cement with nano-graphite - Google Patents

Conductive cement with nano-graphite Download PDF

Info

Publication number
CN101544488A
CN101544488A CN200910103613A CN200910103613A CN101544488A CN 101544488 A CN101544488 A CN 101544488A CN 200910103613 A CN200910103613 A CN 200910103613A CN 200910103613 A CN200910103613 A CN 200910103613A CN 101544488 A CN101544488 A CN 101544488A
Authority
CN
China
Prior art keywords
cement
nano
graphite
conductive
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910103613A
Other languages
Chinese (zh)
Inventor
孙继川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN200910103613A priority Critical patent/CN101544488A/en
Publication of CN101544488A publication Critical patent/CN101544488A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Abstract

The invention belongs to the technical fields of building material industrial technology and overvoltage and grounding technology, and relates to conductive cement added with nano-graphite, which comprises the following compositions by weight percentage: 40 to 48 percent of cement, 5 to 30 percent of nano-graphite, 6 to 15 percent of carbon element, 1 to 8 percent of activated bentonite, 1 to 6 percent of copper sulphate, 1 to 6 percent of acrylamide, 1 to 6 percent of conductive pearl powder and 1 to 8 percent of asbestos. The conductive cement reduces corrosion on metal conductors, can also strengthen water absorption, moisture retention, and stability under the action of heavy current, further reduces the corrosivity of the conductive cement, and improves the performance of conductive cement products.

Description

A kind of conductive cement with nano-graphite
Technical field
The present invention relates to electroconductive cement, belong to building material industrial technology, superpotential and grounding technology field, be specifically related to a kind of electroconductive cement that adds nano-graphite.
Background technology
Along with human society and science and technology development, modern architecture requires cement material except keeping original characteristic, also need some special functional performances, to adapt to multi-functional and needs intelligent construction, but because present traditional cement function singleness of using, can not satisfy the needs of modern construction engineering and the demand of new technology, particularly on control grounding resistance performance, need carry out certain improvement the material of traditional cement of present use.
In present existing technology, the method that solves control grounding resistance performance technologies problem all is to adopt by adding certain electro-conductive material at traditional cement, patent documentation as Chinese patent application 200710024795.X discloses a kind of electroconductive cement machine its preparation method, the electroconductive cement of this disclosure of the Invention, include the body of cement, electro-conductive material and material modified, in the content of electroconductive cement, ak quench steel slag is 20%~50%; The levigated natural dihydrate gypsum is 2%~7%; Remaining all is a silicate cement.And for example, Korea Institute of Energy Research; It is the patent of CN1226526 at China's application notification number that Bi Shan builds Co., Ltd., this patent documentation discloses a kind of electrically conductive graphite cement boards and preparation method thereof, wherein, the slurry of electrically conductive graphite cement boards is to mix with 20%~45% graphite, 5%~20% silica powder, 5%~15% paper pulp or asbestos by cement to form the electroconductive cement composition and excessive buck is uniformly mixed to form.In these above-mentioned technical schemes, though solved conductivity, but can better not reach the corrosion that had both reduced metallic conductor, can strengthen suction and water-retentivity again; Stability under big galvanic action and the further characteristic that reduces the corrosive nature of electroconductive cement.
Summary of the invention
The technical problem to be solved in the present invention provides a kind of conducting electricity very well, and has both reduced the corrosion to metallic conductor, can strengthen suction and water-retentivity again; Stability under big galvanic action and the further electroconductive cement that reduces the corrosive nature of electroconductive cement.
In order to solve the problems of the technologies described above, the invention provides a kind of conductive cement with nano-graphite, component includes cement, nano-graphite, asbestos, carbon element, active bentonite, copper sulfate, acrylamide, conductive pearl essence, wherein; Each moiety according to the weight part proportioning is cement 40%~48%, nano-graphite 5%~30%, carbon element 6%~15%, active bentonite 1%~8%, copper sulfate 1%~6%, acrylamide 1%~6%, conductive pearl essence 1%~6%, asbestos 1%~8%.
Adopt the conductive cement with nano-graphite of technique scheme prescription, because what technical scheme of the present invention adopted is a certain proportion of nano-graphite, nano-graphite can be according to document [Guo chen, etal.Preparation and characterization of graphite nanosheets fromultrasonic powdering technique[J] .Carbon, 2004,42 (4): 753-759] Ji Zai making method, expanded graphite was soaked 12 hours in the aqueous ethanolic solution of volume ratio 65:35, in ultrasonic cleaner, pulverize some hrs then, make nano-graphite, good dispersity when using this nano-graphite and cementitious composite, be difficult for reuniting, than being easier to form conductive network, strengthened conductivity; Simultaneously, a certain proportion of carbon element, active bentonite, copper sulfate, acrylamide, conductive pearl essence, asbestos have also been adopted, these composition material compositions shrinkability that combination can increase cement intensity, cohesiveness, water-retentivity and reduce cement products through proper proportion, problems such as the intensity of conductive cement product is low have been solved, strengthened the physical strength of cement, and improved cohesiveness, the water-retentivity of cement and shrinkability and the pH value that reduces cement products simultaneously, improved the performance of conductive cement product.
Use the conductive nano cement of the technical program, it has the performance of cement on the one hand, can satisfy the requirement of strength on bases such as hydroelectric power plant, electric power line pole tower, and is with tower grounding body surrounding tightly, stolen to prevent; The performance that also has conduction is on the other hand effectively gone into system ground short circuit electric current or lightning current and is introduced the earth; Require its stable performance simultaneously, work-ing life is longer, and ground connector is not had corrosion, is embedded in non-environmental-pollution in the ground, easy construction etc.
Further, the weight part proportioning of the nano-graphite composition in the qualification conductive cement with nano-graphite is 5%~15%; The qualification of this scope is in order well to utilize the conductivity that adds nano-graphite on the one hand, to avoid adding too much graphite on the other hand again and cause cement intensity not to be guaranteed, and is the further qualification in nano-graphite 5%~30% scope.
Guarantee cement intensity after further guaranteeing to add graphite, further, limiting nano-graphite is the nano-graphite microplate, and its thickness is 11~75nm, and the microplate diameter is 0.2~20um;
Also can further limit, described nano-graphite size indicator: D100<1000nm, D50<400nm, carbon content 98-99-99.9-99.99% adds such nano-graphite, makes electroconductive cement have more high conduction performance, high absorbability and catalytic performance.
For the cement that uses, can be further, the cement that limits in the conductive cement with nano-graphite is silicate cement.
In above-mentioned technical scheme, described silicate cement, nano-graphite microplate all are the materials that can get access on the market, are enough to guarantee that by above-mentioned explanation those skilled in the art implement the technical scheme of this patent.
Embodiment
This product is the same with Portland cement, can directly electroconductive cement be smeared installation on the cement flooring, also can be made into the cement products assembling construction of any specification according to the needs of concrete construction.The present invention, a kind of conductive cement with nano-graphite, each moiety are cement, nano-graphite, carbon element, active bentonite, copper sulfate, acrylamide, conductive pearl essence, asbestos, its moiety is joined specific configuration as required according to weight part, below is several embodiment commonly used.
Embodiment one:
A kind of conductive cement with nano-graphite, each moiety according to the weight part proportioning are silicate cement 45%, nano-graphite 25%, carbon element 11%, active bentonite 5%, copper sulfate 3%, acrylamide 3%, conductive pearl essence 3%, asbestos 5%.
Embodiment two:
A kind of conductive cement with nano-graphite, each moiety according to the weight part proportioning are silicate cement 48%, nano-graphite 15%, carbon element 15%, active bentonite 8%, copper sulfate 3%, acrylamide 3%, conductive pearl essence 3%, asbestos 5%.
Embodiment three:
A kind of conductive cement with nano-graphite, each moiety according to the weight part proportioning are silicate cement 48%, nano-graphite 10%, carbon element 8%, active bentonite 8%, copper sulfate 6%, acrylamide 6%, conductive pearl essence 6%, asbestos 8%.
Embodiment four:
A kind of conductive cement with nano-graphite, each moiety according to the weight part proportioning are silicate cement 40%, nano-graphite 11%, carbon element 15%, active bentonite 8%, copper sulfate 6%, acrylamide 6%, conductive pearl essence 6%, asbestos 8%.
Embodiment five:
A kind of conductive cement with nano-graphite, each moiety according to the weight part proportioning are silicate cement 48%, nano-graphite 5%, carbon element 13%, active bentonite 8%, copper sulfate 6%, acrylamide 6%, conductive pearl essence 6%, asbestos 8%.
Following table one is to use the conductive nano cement of the technical program and the performance comparison explanation of Portland cement at present:
Figure A200910103613D00061
Table one
Wherein, the conductive nano cement of the technical program to the measurement of the corrosion rate of ground connector commonly used shown in following table two:
Metal objects Corrosion rate mm/
Round steel 0.0172
Band steel 0.0107
Zinc-plated round steel 0.0031
Galvanized flat steel 0.0024
Table two
Burying when ground, the conductive nano cement of the technical program to the measurement of the corrosion rate of ground connector shown in following table three:
Metal objects Corrosion rate mm/
Round steel 0.0095
Band steel 0.0052
Zinc-plated round steel 0.0041
Galvanized flat steel 0.0038
Table three
Following table four is to use the impact and the power current tolerance experiment of the conductive nano cement of the technical program:
The variation of conductive nano cement test product resistance before and after big galvanic action
Figure A200910103613D00071
Table four
Be to use the physicochemical property examination experiment of the conductive nano cement of the technical program below
1) dehydration experiment: after the dehydration experiment, the average resistivity of test product is 132 Ω .m
2) thermocycling experiment: the average resistivity of test product is 1.27 Ω .m behind thermocycling experiment
3) water logging bubble experiment: after the experiment of water logging bubble, the average resistivity of test product is 1.21 Ω .m
By above-mentioned contrast as can be seen, the conductive nano cement of use the technical program had both reduced the corrosion to metallic conductor, can strengthen suction and water-retentivity again, the corrosive nature of stability under big galvanic action and further reduction electroconductive cement.
The resistivity of the conductive nano cement of the technical program has certain variation along with variation of temperature, and concrete experimental data is as follows:
T℃ -15 -10 -5 0 5 10 15 20 25 30 35 40
ρ.Ω.m 6.81 5.55 4.75 4.01 3.78 3.54 3.42 3.37 3.31 3.22 3.10 2.98
Should be pointed out that above-described only is five kinds of embodiments of moiety of the present invention, does not limit protection scope of the present invention.

Claims (5)

1. conductive cement with nano-graphite, its component includes cement, nano-graphite, asbestos, it is characterized in that: also include carbon element, active bentonite, copper sulfate, acrylamide, conductive pearl essence, wherein, each moiety according to the weight part proportioning is cement 40%~48%, nano-graphite 5%~30%, carbon element 6%~15%, active bentonite 1%~8%, copper sulfate 1%~6%, acrylamide 1%~6%, conductive pearl essence 1%~6%, asbestos 1%~8%.
2. conductive cement with nano-graphite according to claim 1 is characterized in that: the weight part proportioning of described nano-graphite composition is 5%~15%.
3. conductive cement with nano-graphite according to claim 1 is characterized in that: described cement is silicate cement.
4. conductive cement with nano-graphite according to claim 1 and 2 is characterized in that: described nano-graphite is the nano-graphite microplate, and its thickness is 11~75nm, and the microplate diameter is 0.2~20um.
5. conductive cement with nano-graphite according to claim 1 and 2 is characterized in that: described nano-graphite size indicator: D100<1000nm, D50<400nm, carbon content 98-99-99.9-99.99%.
CN200910103613A 2009-04-16 2009-04-16 Conductive cement with nano-graphite Pending CN101544488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910103613A CN101544488A (en) 2009-04-16 2009-04-16 Conductive cement with nano-graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910103613A CN101544488A (en) 2009-04-16 2009-04-16 Conductive cement with nano-graphite

Publications (1)

Publication Number Publication Date
CN101544488A true CN101544488A (en) 2009-09-30

Family

ID=41191896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910103613A Pending CN101544488A (en) 2009-04-16 2009-04-16 Conductive cement with nano-graphite

Country Status (1)

Country Link
CN (1) CN101544488A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036463A1 (en) * 2009-09-27 2011-03-31 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US8476203B2 (en) 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
CN103199349A (en) * 2013-04-01 2013-07-10 何迎春 Grounding module
US8598093B2 (en) 2007-05-10 2013-12-03 Halliburton Energy Services, Inc. Cement compositions comprising latex and a nano-particle
US8741818B2 (en) 2007-05-10 2014-06-03 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
CN106186944A (en) * 2016-07-13 2016-12-07 西安建筑科技大学 A kind of method improving cement-base composite material thermoelectricity capability
CN108776053A (en) * 2018-04-04 2018-11-09 北京矿冶科技集团有限公司 A kind of preparation method of microfine powder sample mating plate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US8598093B2 (en) 2007-05-10 2013-12-03 Halliburton Energy Services, Inc. Cement compositions comprising latex and a nano-particle
US8741818B2 (en) 2007-05-10 2014-06-03 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US8940670B2 (en) 2007-05-10 2015-01-27 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US9765252B2 (en) 2007-05-10 2017-09-19 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US8476203B2 (en) 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
WO2011036463A1 (en) * 2009-09-27 2011-03-31 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
CN103199349B (en) * 2013-04-01 2016-08-17 宁波高新区远创科技有限公司 Earthing module
CN103199349A (en) * 2013-04-01 2013-07-10 何迎春 Grounding module
CN106186944A (en) * 2016-07-13 2016-12-07 西安建筑科技大学 A kind of method improving cement-base composite material thermoelectricity capability
CN106186944B (en) * 2016-07-13 2018-11-13 西安建筑科技大学 A method of improving cement-base composite material thermoelectricity capability
CN108776053A (en) * 2018-04-04 2018-11-09 北京矿冶科技集团有限公司 A kind of preparation method of microfine powder sample mating plate

Similar Documents

Publication Publication Date Title
CN101544488A (en) Conductive cement with nano-graphite
CN106064907B (en) A kind of sulfonated polyaniline is modified Na-bentonite soil matrix friction reducer
CN102140186B (en) Natural rubber composite with electromagnetic shielding property and preparation method thereof
CN105907402A (en) Pole tower and transformer substation grounding calcium bentonite base resistance reducing agent
CN105957577B (en) A kind of earthy calcium-base bentonite base friction reducer
CN104103334A (en) Novel high-efficiency anti-corrosive physical resistance reducing agent for galvanized steel grounding grid
CN101719393B (en) Biological bacteria grounded resistance-reducing agent
CN100498978C (en) Modified grounding anti-corrosion resistance reduction agent
CN104556856B (en) Anti-corrosion resistance-reducing conductive concrete for acid soil area
CN108409229B (en) Modified resistance-lowering material of a kind of graphene and preparation method thereof
CN203103523U (en) Lightning protection grounding body
CN105130302A (en) Conductive porous lightweight aggregate loaded with modified agar gel, and preparation method and application of conductive porous lightweight aggregate
CN103641362B (en) Concrete modifying agent
CN106205769A (en) A kind of novel high polymer skeleton friction reducer
CN103553498A (en) Non-corrosive conductive material, conductive concrete and concrete foundation grounding device
CN1472750A (en) Physical grounding resistance reducing agent
CN201937022U (en) Lightning protection grounding body
CN102226089B (en) Soil improvement agent suitable for grounding works in high soil resistivity environments
CN201717380U (en) Alkali corrosion resistance and resistance reducing ground connector
CN208674401U (en) A kind of zero Europe earthed system
CN104263119B (en) A kind of ground net corrosion-resistant conductive coating and preparation method thereof
CN109004386A (en) A kind of zero Europe earthed system
CN1218899C (en) Electrically conductive slag concrete
CN116553880A (en) Crack-resistant and antifreezing cement-based material, and preparation method and application thereof
CN105225769A (en) A kind of preparation method of basic soil ground network physics resistance reducing agent

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090930