CN101627463B - 半导体装置和半导体装置的制造方法 - Google Patents

半导体装置和半导体装置的制造方法 Download PDF

Info

Publication number
CN101627463B
CN101627463B CN2007800521327A CN200780052132A CN101627463B CN 101627463 B CN101627463 B CN 101627463B CN 2007800521327 A CN2007800521327 A CN 2007800521327A CN 200780052132 A CN200780052132 A CN 200780052132A CN 101627463 B CN101627463 B CN 101627463B
Authority
CN
China
Prior art keywords
semiconductor device
composition
dielectric film
silicon
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800521327A
Other languages
English (en)
Other versions
CN101627463A (zh
Inventor
尾崎史朗
中田义弘
小林靖志
矢野映
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN101627463A publication Critical patent/CN101627463A/zh
Application granted granted Critical
Publication of CN101627463B publication Critical patent/CN101627463B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3125Layers comprising organo-silicon compounds layers comprising silazane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]

Abstract

本发明的半导体装置,具有铜布线层,其中,在该铜布线层上具有:涂布含有从由氨和有机碱所组成的组中选出的至少一种物质的组合物而成的层;位于该层上的含有硅的绝缘膜。从而能够得到具有与作为布线材料的铜的密接性优异的绝缘膜的半导体装置。

Description

半导体装置和半导体装置的制造方法
技术领域
本发明涉及一种半导体集成电路、多层布线装置等的半导体装置和其制造方法。
背景技术
随着半导体集成电路、多层布线装置等的半导体装置的集成度的增加和元件密度的提高,布线间隔变得狭小,出现由于布线间的电容增大而引起的布线迟延的问题。
从以往以来,已知布线层绝缘膜中的漏电电流引起的消耗电能在增加,在半导体器件的布线间隔超过1μm的一代中,漏电引起的对器件全体的影响较少。但是,布线间隔在1μm以下时,则由于布线间隔的狭小和布线规模的增大,对消耗电能的影响变大,特别是,在今后,以0.1μm以下的布线间隔形成电路,布线间的漏电电流会对器件的特性、寿命会产生大的影响。
布线迟延T,受到布线电阻和布线间电容的影响,将布线电阻设为R,布线间电容设为C,则表示用TμCR表示的性质。
该式中,布线间隔表示为D、电极面积(相对向的布线面的面积)表示为S、真空介电常数表示为ε0、布线间设置的绝缘材料的比介电常数表示为εr,则布线间的电容C,表示为C=ε0εr S/D。
因此,降低绝缘膜的介电常数,是使布线迟延变小的有效的手段。
为了降低绝缘膜的介电常数,现今,半导体装置的多层布线结构,多数通过由电解电镀形成的铜布线和由SOG(旋涂玻璃(Spin-On Glass))或等离子体CVD  (化学气相生长法)形成的根据情形也称为抗蚀刻膜(etchstopper)、扩散防止膜或扩散防止层、层间绝缘膜或扩散防止层等的低介电常数的绝缘膜(或绝缘层)形成。
但是,该绝缘膜与作为布线材料的铜的密接性弱,有在界面之间发生膜剥离的问题。人们认为,其原因是受到了暴露在大气中在铜表面上形成的氧化铜的影响。现今,采取了在绝缘膜形成前通过H2退火(在含氢气环境下进行的加热处理)或H2等离子体处理来除去氧化铜的方法,但是仍然能够观察到膜的剥离,没有充分地解决该课题(参照专利文献1)。
专利文献1:JP特开2006-303179号公报(权利要求书)
发明内容
发明要解决的课题
本发明的目的是提供一种能够解决上述课题的具有与作为布线材料的铜的密接性优异的绝缘膜的半导体装置和其制造方法。
解决课题的方法
根据本发明的一实施方式,是提供一种半导体装置,其具有铜布线层,其中,在铜布线层上具有:涂布含有从由氨和有机碱所组成的组中选出的至少一种物质的组合物而成的层;位于该层上的含有硅的绝缘膜。
根据本实施方式,能够得到具有与作为布线材料的铜的密接性优异的绝缘膜的半导体装置。由此,能够实现具有低介电常数的可靠性高的绝缘膜的半导体装置,特别是能够有助于半导体装置的应答速度的高速化。另外,通过提高密接性,也能够有助于绝缘膜的机械特性(强度等)的改善。
本实施方式优选:上述至少一种物质是具有氨基的物质;上述绝缘膜是铜的扩散防止层;上述绝缘膜的比介电常数是4.5以下;上述绝缘膜的密度是1.0~3.0之间;上述绝缘膜含有Si-OH基;上述铜布线层的铜表面上形成有Cu-O-Si键;上述绝缘膜具有以硅和氧作为主成分的组成,或以硅和氧和碳作为主成分的组成,或以硅和氧和氮作为主成分的组成;上述绝缘膜是由以下化合物生成,所述化合物在主链上含有硅并且含有碳和氮中的至少一种并且任意地含有氧,而且,与主链结合的基团是用羟基取代或未用羟基取代的烃基;上述化合物是从由下述式(1)表示的聚碳硅烷、下述式(2)表示的聚硅氮烷和这些硅化合物中的R1~R3全部或部分被OH基取代的化合物所组成的组中选出的化合物;在涂布上述组合物后进行赋予能量的处理;上述赋予能量的处理是从由加热处理、电子射线照射处理、紫外线照射处理、X射线照射处理和这些处理的任意的组合所组成的组中选出的处理;上述组合物含有硅烷偶联剂;以及,在涂布上述组合物前或涂布上述组合物后,在上述铜布线层上涂布硅烷偶联剂。
Figure G2007800521327D00031
(在式(1)、(2)中,R1、R2和R3相互独立并且在式(1)、(2)之间也相互独立地分别表示氢原子、取代或未取代的烷基、取代或未取代的烯基、取代或未取代的环烷基、或取代或未取代的芳基。n是10~1000的整数。)
根据本发明的另一实施方式,是提供一种半导体装置的制造方法,其制造具有铜布线层的半导体装置,其中,包括下述工序:形成铜布线层,在该铜布线层上涂布含有从由氨和有机碱所组成的组中选出的至少一种物质的组合物,然后,形成含有硅的绝缘膜。
本实施方式,也存在与上述实施方式中的优选实施方式同样的优选实施方式。进一步地,本实施方式优选:在涂布上述组合物前,上述铜布线层的铜表面已被氧化;在上述铜布线层的铜表面上形成有Cu-O-Si键;在涂布上述组合物后进行赋予能量的处理;该赋予能量的处理是从由加热处理、电子射线照射处理、紫外线照射处理、X射线照射处理和这些处理的任意的组合所组成的组中选出的处理;以及,在涂布上述组合物前或涂布上述组合物后,在上述铜布线层上涂布硅烷偶联剂。
通过本实施方式制造的半导体装置,是具有低介电常数的可靠性高的绝缘膜的特别是能够对应于应答速度的高速化的半导体装置,能够适宜用于多层布线装置。
发明的效果
根据本发明,能够得到具有与作为布线材料的铜的密接性优异的绝缘膜的半导体装置。由此,能够实现具有低介电常数的可靠性高的绝缘膜的半导体装置,特别是能够有助于半导体装置的应答速度的高速化。另外,通过提高密接性,也能够有助于绝缘膜的机械特性(强度等)的改善。
附图说明
图1是表示通过溅射法在Si晶片上形成铜膜,然后,在该铜膜上面,通过旋转涂布法涂布本发明的组合物和绝缘膜而得到的结构的剖面图。
附图标记的说明
1铜布线层
2铜布线
3本发明的组合物层
4绝缘膜
具体实施方式
下面,说明本发明的实施的实例。但是,本发明的技术范围,不受下面的实施方式的限制,其范围包括与权利要求书中记载的发明等同的发明。
本发明发现,通过使用特定的组合物处理用于布线的铜的表面,能够提高与在其上面设置的含有硅的绝缘膜的密接性。
即,本发明的半导体装置,在铜布线层上,具有:涂布含有从由氨和有机碱所组成的组中选出的至少一种物质的组合物而成的层、和位于该层上的含有硅的绝缘膜。
由此,能够提高铜布线层的铜与绝缘膜之间的密接性,减少在界面处发生的膜的剥离。因此,即使采用在界面处有膜的剥离的问题的低介电常数材料,也能实现具有可靠性高的绝缘膜的半导体装置,特别是能够有助于半导体装置的应答速度的高速化。另外,通过提高密接性,也能够有助于绝缘膜的机械特性(强度等)的改善。
本发明的半导体装置技术能够适用的半导体装置,能够包括半导体集成电路、多层布线装置等任意的半导体装置。
对于本发明的铜布线也没有特别限制,可以是任意的形状、厚度、宽度、长度并可以是通过任意的制备方法制备。通常,优选为电解电镀。另外,只要能够在铜表面上涂布上述特定组合物,该铜布线也可是与其他的导体的组合。例如,可以是在其他的金属上有铜并且在铜上面进行有上述特定组合物的涂布的情形。
本发明的物质,选自由氨和有机碱所组成的组。即,本发明的物质,可以是氨、单一的有机碱、有机碱的混合物、或者氨与单一有机碱或复数有机碱的混合物。该情形下的碱,是指电子对供体物质(路易斯碱)。
本发明的物质的作用是提高铜与绝缘膜之间的密接性,其机理可能是铜与本发明的物质相互作用,生成Cu-OH键,该Cu-OH键与绝缘膜中的Si-OH基反应,生成Cu-O-Si键。Cu-OH键的存在,可通过FT-IR(傅里叶变换红外分光法)确认。
上述有机碱,可从公知的有机碱进行适宜地选择。可优选例示具有伯胺、仲胺、叔胺等的氨基的物质。这些有机碱,可含有:可含有脂环的脂肪族烃基、芳香族基、杂环基。具体地,可例示:乙基胺、苯基胺、苄基胺、乙二胺、戊烷-1,2,5-三胺(triyltriamine)、苯-1,2,4,5-四胺(tetrayltetraamine),二乙基胺、三甲基胺、丁基(乙基)甲基胺等的烷基胺;1-苯并呋喃-2-胺、4-喹啉基胺、双(2-氯乙基)胺、(2-氯乙基)(丙基)胺、(1-氯乙基)(2-氯乙基)胺、甲基(甲基甲硅烷基)胺、邻甲基羟基胺、邻乙酰基羟基胺、邻羧基羟基胺、邻磺基羟基胺、N-苯基羟基胺、邻乙酰基-N-甲基羟基胺。另外,这些有机碱也可为离子状态。例如,也可为铵离子或季铵离子。
本发明的组合物可以是仅由上述物质构成。该情形下,本发明的组合物中,也包括是单一化合物。
本发明的组合物在上述物质以外也可含有其他物质。作为该其他物质,只要不损害上述物质的功能即可,可从水;含有羧基、酯基、羰基、羟基、醚键等极性基团或极性键的有机物质;以硅烷偶联剂为代表的含硅化合物等中选择。该水或有机物质可以是作为溶剂或分散剂起作用的物质。作为溶剂,可例示有水、乙醇/水、二甲苯等。
使硅烷偶联剂共存在本发明的组合物中,有时能够进一步提高与铜的密接性。代替使硅烷偶联剂共存在本发明的组合物中或与使硅烷偶联剂共存在本发明的组合物中同时,也可在涂布本发明的组合物前或涂布本发明的组合物后,在上述铜布线层上涂布硅烷偶联剂。其中,在涂布本发明的组合物前涂布硅烷偶联剂,有时妨碍本发明的组合物与铜的相互作用,因此,通常更优选在涂布本发明的组合物后涂布硅烷偶联剂。
本发明的组合物中,优选不含有大量金属离子、卤离子、硫酸离子、硝酸离子等的无机阴离子。特别是,不优选Na、K、CI。存在这些离子,则容易破坏绝缘。具体地,优选这些离子是1000重量ppm以下。
对于本发明的组合物的涂布方法,没有特别限制,可采用公知的方法。最通常地,可举出旋转涂布法。对于该涂布膜的厚度,没有特别限制,多数情形下优选制成能够满足本发明的目的的必要的最小限度的厚度。涂布膜的厚度,通常是15-300nm的范围。
涂布本发明的组合物而成的层,可通过在铜布线层上涂布本组合物而得到。但是其结果并不要求能够确认实际上存在层状物,而是只要在铜布线层的铜上产生Cu-OH键或者只要能够产生Cu-OH键,即可认为生成了涂布本发明的组合物而成的层。例如,即使在涂布后本发明的组合物中的全部成分发生挥发,只要在铜布线层的铜上产生Cu-OH键,即生成了涂布本发明的组合物而成的层。
对于本发明的含有硅的绝缘膜的用途,没有特别限制,可以是任何用途。即使不称为绝缘膜,只要是具有绝缘功能,即属于本发明的绝缘膜的范畴。采用最通常的名称进行称谓时,可以是扩散防止膜、扩散防止层、盖层(cap)、抗蚀刻层、层间绝缘膜、层间绝缘层、ILD层、布线绝缘层等。本发明的绝缘膜,可优选作为铜的扩散防止层使用。对于膜的厚度,没有特别限制,可根据用途进行适宜地限定,作为铜扩散防止层使用时,多数适合使用15~80nm的范围。
对于本发明的绝缘膜的比介电常数,没有特别限制,比介电常数在4.5以下的低介电常数膜时,特别是本发明的效果优异。对于比介电常数的下限,没有特别限制。
为了使介电常数降低,作为绝缘膜多选择机械强度低的材料,进一步地,多数情形下使其具有多孔结构而进一步降低绝缘膜的机械强度,因此,在对其进行补充的意义上,本发明的绝缘膜的使用是优选的。
本发明的半导体装置中,优选在铜布线层的铜表面上形成有Cu-O-Si键。该键是通过本发明的绝缘膜与铜表面反应而生成。形成Cu-O-Si键,可通过FT-IR(傅里叶变换红外分光法)进行检测。
从上述方面考虑,优选本发明的绝缘膜含有Si-OH基。Si-OH基的存在可通过FT-IR(傅里叶变换红外分光法)进行检测。另外,Si-OH基,也可在本发明的组合物中不存在。即,也可是通过本发明的组合物的水解等生成Si-OH基,从而在本发明的绝缘膜中含有Si-OH基。上述Cu-O-Si键,是通过Si-OH基与Cu-OH的反应生成的,但是,由于不是存在的Si-OH基的全部与Cu-OH反应而被消耗,所以本发明的绝缘膜形成后,在受到后述的赋予能量的处理后,能检测出残存的Si-OH基。
作为本发明的绝缘膜的组成,可从含有硅的公知的绝缘膜形成用材料进行适宜地选择。为了实现低介电常数,作为其组成,优选是以硅和氧作为主成分的组成、或以硅和氧和碳作为主成分的组成、或以硅和氧和氮作为主成分的组成。该主成分,是指在绝缘膜中该成分占10原子%以上。
以硅和氧作为主成分的绝缘膜,也可称为SiO2系绝缘膜,可例示接近SiO2的原子组成比例的绝缘膜。
在该组成中含有氢。在OH基中含有氢,但是也可是通过上述以外的键而获得的形式存在。该组成,可进一步含有碳和氮中的任何一种或两者。碳或氮,多数情形下合计是20原子%左右,但也可以是该数值以上。
作为该组成,具体地,已知例如CVD-SiOC(通过CVD制得的掺杂碳的SiO2:比介电常数是约3.3~3.5左右)、纳米簇硅(NCS:Nanoclustering Silica:比介电常数是2.25)等。这些绝缘膜的密度通常是1.0~3.0左右。
以硅和氧和碳作为主成分的组成,例如,多数是作为原料使用主链上含硅和碳的聚碳硅烷或主链上也含有氧的聚羧基硅烷进行制备,也可通过其他的任意的原料进行制备。
在该组成中含有氢。在OH基中含有氢,但是也可是通过上述以外的键而获得的形式存在。也有含有氟的情形。该情形下的氟,多数合计为10原子%左右,但也可为该数值以上。本组成中也可含有氮,但如果原料中没有含有,则非常少。
作为本组成的具体实例,可举出硅为30原子%、氧为25原子%、碳为45原子%左右。这些绝缘膜的密度,通常是1.0~3.0左右,比介电常数通常是2.0~4.5左右。
以硅和氧和氮作为主成分的组成,例如,多数是作为原料使用在主链上含有硅和氮的聚硅氮烷进行制备,另外,也可使用其他的任意的原料进行制备。
在该组成中含有氢。在OH基中含有氢,但是也可是通过上述以外的键而获得的形式存在。该组成可进一步含有碳。该情形下,多数合计为50原子%左右,但也可为该数值以上。
作为具体的组成,可例示硅为30原子%、氧为20原子%、氮为50原子%左右。这些绝缘膜的密度,通常为1.0~3.0左右,比介电常数,通常为4~8左右。
另一方面,从原料的方面来考虑,对于以硅和氧作为主成分的组成,例如,在CVD-SiOC的情形,以单甲基硅烷、二甲基硅烷、三甲基硅烷、四甲基硅烷、四乙氧基硅烷、硅烷、氧、二酸化碳等作为原料气体通过等离子体CVD形成本发明的绝缘膜;在纳米簇硅的情形,例如,在四烷氧基硅烷、三烷氧基硅烷、甲基三烷氧基硅烷、乙基三烷氧基硅烷、丙基三烷氧基硅烷、苯基三烷氧基硅烷、乙烯基三烷氧基硅烷、烯丙基三烷氧基硅烷、缩水甘油基三烷氧基硅烷、二烷氧基硅烷、二甲基二烷氧基硅烷、二乙基二烷氧基硅烷、二丙基二烷氧基硅烷、二苯基二烷氧基硅烷、二乙烯基二烷氧基硅烷、二烯丙基二烷氧基硅烷、二缩水甘油基二烷氧基硅烷、苯基甲基二烷氧基硅烷、苯基乙基二烷氧基硅烷、苯基丙基三烷氧基硅烷、苯基乙烯基二烷氧基硅烷、苯基烯丙基二烷氧基硅烷、苯基缩水甘油基二烷氧基硅烷、甲基乙烯基二烷氧基硅烷、乙基乙烯基二烷氧基硅烷、丙基乙烯基二烷氧基硅烷等水解/缩聚形成的聚合物中添加热分解性的有机化合物等通过加热形成细孔的绝缘膜。更优选的是,可使用通过季烷基胺形成的簇状多孔二氧化硅前驱体。这是由于其具有尺寸小且均匀的空孔。
对于以硅和氧和碳作为主成分的组成或以硅和氧和氮作为主成分的组成,优选是由以下化合物生成,所述化合物在主链上含有硅并且含有碳和氮中的至少一种并且任意地含有氧,而且,与主链结合的基团是用羟基取代或未用羟基取代的烃基。该化合物,通常易于固化,因此,容易制作低介电常数的膜。进一步地,通过水解易于生成Si-OH基。从该化合物生成的绝缘膜,多数情形下优选是符合上述组成,但这并不是必需条件。
作为该化合物,具体地,可例示下述式(1)表示的聚碳硅烷、下述式(2)表示的聚硅氮烷和这些硅化合物中的R1~R3全部或部分被OH基取代的化合物,这些化合物既可是单独化合物也可是混合物。
Figure G2007800521327D00091
在式(1)、(2)中,R1、R2和R3相互独立并且在式(1)、(2)之间也相互独立地分别表示氢原子、取代或未取代的烷基、取代或未取代的烯基、取代或未取代的环烷基、或取代或未取代的芳基。n没有特别限制,太小则挥发性变大,太大则粘度变大,均多在实用上出现问题。因此,优选为10~1000的整数。
R1、R2和R3,可例示为氢原子、甲基、乙基、苄基、苯基等。
本发明的绝缘膜,可分为多孔的绝缘膜和非多孔的绝缘膜。多孔的绝缘膜有利于进一步降低比介电常数,但是具有机械强度降低而易于产生与铜的剥离、降低铜的扩散防止性能的缺点。与此相对,非多孔的绝缘膜,也能够降低比介电常数,在机械强度、与铜的剥离的防止性和铜的扩散防止性能方面具有优势,特别是,与本发明的提高与铜的密接性相结合,能够实现具有低介电常数的可靠性高的绝缘膜的半导体装置,因而优选。该意义下的非多孔的程度,可在绝缘膜的密度上进行控制。作为绝缘膜的密度,优选为1.0以上。上限没有特别限制,在实用上3为上限。
作为本发明的另一实施方式的半导体装置的制造方法,包括下述工序:首先,形成铜布线层;在该铜布线层上涂布含有从由氨和有机碱所组成的组中选出的至少一种物质的组合物;然后,形成含有硅的绝缘膜。
关于该实施方式中的铜布线层、从含有由氨和有机碱所组成的组中选出的至少一种物质的组合物、含有硅的绝缘膜以及相关要素(例如,比介电常数、密度、Si-OH基的生成、Cu-O-Si键的生成、绝缘膜和其原料化合物的组成、硅烷偶联剂的使用)的条件或优选的实施方式,与关于上述的半导体装置的实施方式中的条件或优选的实施方式相同。
本发明的绝缘膜的膜形成(绝缘膜的涂布)方法,没有特别限制,可采用公知的方法。可例示旋转涂布法或CVD。最通常的是,可举出旋转涂布法。用旋转涂布法制造的膜有SOG等的SOD(旋涂电解质(Spin-On Dielectrics))。
本发明的组合物的涂布,通常,分别在硅烷偶联剂的涂布和绝缘膜的涂布后实施赋予能量的处理。通过该赋予能量,在涂布本发明的组合物的情形下,与铜之间生成Cu-OH键,在涂布硅烷偶联剂的情形下,与硅烷偶联剂生成偶联。但是,并不否定在赋予能量前已生成Cu-OH键的情形。
在涂布绝缘膜的情形下,多得到交联结构。该情形的赋予能量的处理,也可改称为固化处理。例如,上述聚碳硅烷或聚硅氮烷,通过固化处理,R1~R3部分或全部消失,或者部分切断主链的Si-C键或Si-N键或者不切断主链的Si-C键或Si-N键而与生成Si-OH键一起生成Si-O-Si键,进行交联;或者与R1~R3部分或全部消失同时,部分切断主链的Si-C键或Si-N键或者不切断主链的Si-C键或Si-N键而与生成Si-OH键一起生成Si-O-Si键,进行交联。与此同时,有时也通过分解物的发生而产生多孔。
由以上所述,本发明的赋予能量的处理,从现象上考虑,也可认为是引起Cu-OH键、偶联、生成交联结构等的处理。
这些赋予能量的处理,可以分别在本发明的组合物的涂布、硅烷偶联剂的涂布和绝缘膜的涂布后进行,但也可组合在组合物的涂布、硅烷偶联剂的涂布后一次进行的处理而进行,也可在组合物的涂布、硅烷偶联剂的涂布和绝缘膜的涂布后一次进行。从效率方面考虑,多数优选后者。另外,也可通过相同的旋转涂布器进行涂布。该情形下,有时也优选在各涂布后进行预备赋予能量的处理。
本发明的赋予能量的处理,是指通过任何方法对对象物施加能量的处理。作为该赋予能量的处理,具体地,是指加热处理、电子射线照射处理、紫外线照射处理、X射线照射处理或其任意组合。即,作为赋予能量的处理中的能量源,可举出热、电子射线、紫外线、X射线。在实用上优选加热处理、紫外线照射处理或其组合。
加热处理的温度,优选为300℃以下,更优选为100~300℃的范围,进一步优选为100~250℃的范围。对于电子射线照射处理、紫外线照射处理和X射线照射处理的条件,没有特别限制,可进行适宜地选择。
绝缘膜与铜之间的Cu-O-Si键,仅通过在铜表面上涂布绝缘膜形成用材料即可生成,但是多数在上述的赋予能量的处理之间生成或扩大。作为其机理,可认为是:通过向铜表面涂布组合物,生成或生成和扩大Cu-OH键,然后,通过与含有Si-OH基的绝缘膜的组成的反应,改变为Cu-O-Si键。对于形成的Si-OH键,可通过FT-IR光谱(3400~3200,950~810cm-1)确认,对于形成的Cu-O-Si键,可通过FT-IR光谱(3200~3000cm-1)确认。绝缘膜形成材料不含有Si-OH基的情形,Si-OH基的生成,可在从向铜表面涂布绝缘膜形成用材料开始至赋予能量的处理和赋予能量的处理之间生成。具体地,可通过赋予能量的处理前或赋予能量的处理中的环境中的水分引起的水解产生。也可是组合积极地使Si-OH基生成的条件(例如,提高环境湿度、浸渍在水中等)。
本发明发现,作为铜表面的性质,与现有技术不同,优选其被氧化。这是由于该情形下容易生成Cu-OH。为了该目的,也可积极地氧化铜表面,但是在制造时中止如现有技术所示的将对象物置于非氧化性环境中也是有效的。后者,制造更简单效果更大。铜的氧化,可通过FT-IR、XPS(X射线光电分光法)等检测。
如此进行,通过本发明,能够得到具有与作为布线材料的铜的密接性优异的绝缘膜的半导体装置。由此,能够实现具有低介电常数的可靠性高的绝缘膜的半导体装置,另外,通过密接性的提高,也有助于绝缘膜的机械特性(强度等)的改善。
实施例1
通过溅射法在Si晶片上形成40nm厚的铜膜,然后,在该铜膜上面,通过旋转涂布含有乙基胺的涂布溶液,在Cu表面上形成Cu-OH。接下来,在富含Cu-OH的Cu上,旋转涂布由用OH取代侧链的聚碳硅烷组成的组合物,在400℃下进行热处理,形成膜的厚度为70nm、比介电常数2.6、密度1.3g/cm3的绝缘膜,制成密接性评价用样品。该样品的剖面示于图1。本发明的结构,如图1所示,可为在埋入铜布线层1中的铜布线2上,形成涂布本发明的组合物而成的层3,在该层3上面层叠含有硅的绝缘膜4的结构。但是,图1中的层厚是与实际的层厚无关的示意性的选择。另外,通过FT-IR光谱检测Si-OH、Cu-OH的有无。
实施例2
通过溅射法在Si晶片上形成40nm厚的铜膜,然后,在该铜膜上面,通过依次旋转涂布含有乙基胺的涂布溶液、硅烷偶联剂,在Cu表面上形成Cu-OH。接下来,在富含Cu-OH的Cu上,旋转涂布由用OH取代侧链的聚碳硅烷组成的组合物,在400℃下进行热处理,形成膜的厚度为70nm、比介电常数2.6、密度1.3g/cm3的绝缘膜,制成密接性评价用样品。
比较例1
通过溅射法在Si晶片上形成40nm厚的铜膜,然后,通过400℃下的H2退火除去氧化Cu,然后旋转涂布由聚碳硅烷组成的组合物,在400℃下进行热处理,形成膜的厚度为70nm、比介电常数2.6、密度1.3g/cm3的绝缘膜,制成密接性评价用样品。
其结果示于表1。对于各10个样品,通过Stud-puII试验机(Sebastian Five,Quad Group Inc.)进行密接性评价试验,可知实施例1、2的样品具有优异的密接性。Cu-O-Si键的有无,通过FT-IR光谱(3200~3000cm-1)检测。
表1
 例   Cu-O-Si键的有无   密接性试验中的膜的剥离(10个)
 实施例1   有   2个
 实施例2   有   1个
 比较例1   无   10个

Claims (14)

1.一种半导体装置,具有铜布线层,其中,在铜布线层上具有:
涂布含有从由氨和有机碱所组成的组中选出的至少一种物质的组合物而成的层,所述至少一种物质是具有氨基的物质,并通过铜布线层的铜与所述组合物的相互作用生成Cu-OH键;
位于该层上的含有硅的绝缘膜,所述绝缘膜含有Si-OH基,
而且,所述Cu-OH键与所述Si-OH基进行反应,从而在铜布线层的铜表面形成Cu-O-Si键。
2.如权利要求1所述的半导体装置,其中,上述绝缘膜具有以硅和氧作为主成分的组成、或以硅和氧和碳作为主成分的组成、或以硅和氧和氮作为主成分的组成。
3.如权利要求1所述的半导体装置,其中,上述绝缘膜是由以下化合物生成,所述化合物在主链上含有硅并且含有碳和氮中的至少一种并且任意地含有氧,而且,与主链结合的基团是用羟基取代或未用羟基取代的烃基。
4.如权利要求3所述的半导体装置,其中,上述化合物是从由下述式(1)表示的聚碳硅烷、下述式(2)表示的聚硅氮烷和这些硅化合物中的R1~R3全部或部分被OH基取代的化合物所组成的组中选出的化合物,
Figure FSB00000703272100011
Figure FSB00000703272100021
在式(1)、(2)中,R1、R2和R3相互独立并且在式(1)、(2)之间也相互独立地分别表示氢原子、取代或未取代的烷基、取代或未取代的烯基、取代或未取代的环烷基、或取代或未取代的芳基,n是10~1000的整数。
5.如权利要求1所述的半导体装置,其中,在涂布上述组合物后,进行赋予能量的处理。
6.如权利要求5所述的半导体装置,其中,上述赋予能量的处理是从由加热处理、电子射线照射处理、紫外线照射处理、X射线照射处理和这些处理的任意的组合所组成的组中选出的处理。
7.一种半导体装置的制造方法,其制造具有铜布线层的半导体装置,其中,包括下述工序:
形成铜布线层;
在该铜布线层上涂布含有从由氨和有机碱所组成的组中选出的至少一种物质的组合物,所述至少一种物质是具有氨基的物质,并通过铜布线层的铜与所述组合物的相互作用生成Cu-OH键;
然后,形成含有硅的绝缘膜,所述绝缘膜含有Si-OH基,
而且,所述Cu-OH键与所述Si-OH基进行反应,从而在铜布线层的铜表面形成Cu-O-Si键。
8.如权利要求7所述的半导体装置的制造方法,其中,在涂布上述组合物前,上述铜布线层的铜表面已被氧化。
9.如权利要求7所述的半导体装置的制造方法,其中,上述绝缘膜具有以硅和氧作为主成分的组成、或以硅和氧和碳作为主成分的组成、或以硅和氧和氮作为主成分的组成。
10.如权利要求7所述的半导体装置的制造方法,其中,上述绝缘膜是由以下化合物生成,所述化合物在主链上含有硅并且含有碳和氮中的至少一种并且任意地含有氧,而且,与主链结合的基团是用羟基取代或未用羟基取代的烃基。
11.如权利要求10所述的半导体装置的制造方法,其中,上述化合物是从由下述式(1)表示的聚碳硅烷、下述式(2)表示的聚硅氮烷和这些硅化合物中的R1~R3全部或部分被OH基取代的化合物所组成的组中选出的化合物,
Figure FSB00000703272100031
在式(1)、(2)中,R1、R2和R3相互独立并且在式(1)、(2)之间也相互独立地分别表示氢原子、取代或未取代的烷基、取代或未取代的烯基、取代或未取代的环烷基、或取代或未取代的芳基,n是10~1000的整数。
12.如权利要求7所述的半导体装置的制造方法,其中,在涂布上述组合物后,进行赋予能量的处理。
13.如权利要求12所述的半导体装置的制造方法,其中,上述赋予能量的处理是从由加热处理、电子射线照射处理、紫外线照射处理、X射线照射处理和这些处理的任意的组合所组成的组中选出的处理。
14.一种半导体装置,其是使用权利要求7~13中任一项所述的半导体装置的制造方法制造而成。
CN2007800521327A 2007-03-13 2007-03-13 半导体装置和半导体装置的制造方法 Expired - Fee Related CN101627463B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/000212 WO2008111125A1 (ja) 2007-03-13 2007-03-13 半導体装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN101627463A CN101627463A (zh) 2010-01-13
CN101627463B true CN101627463B (zh) 2012-05-30

Family

ID=39759076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800521327A Expired - Fee Related CN101627463B (zh) 2007-03-13 2007-03-13 半导体装置和半导体装置的制造方法

Country Status (6)

Country Link
US (1) US8378489B2 (zh)
EP (1) EP2124250A4 (zh)
JP (1) JP5071474B2 (zh)
KR (1) KR101119649B1 (zh)
CN (1) CN101627463B (zh)
WO (1) WO2008111125A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476185B2 (ja) 2010-03-31 2014-04-23 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
JP5795221B2 (ja) * 2011-09-26 2015-10-14 株式会社東芝 パターン形成方法
JP6540361B2 (ja) 2015-08-18 2019-07-10 富士通株式会社 半導体装置及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362740A (zh) * 2000-12-27 2002-08-07 株式会社东芝 半导体器件及其制造方法
CN1419709A (zh) * 2000-03-21 2003-05-21 和光纯药工业株式会社 半导体基板洗涤剂和洗涤方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071484B2 (ja) * 1991-03-29 2000-07-31 サンスター技研株式会社 湿熱硬化性シーリング材組成物
US5750643A (en) * 1993-05-18 1998-05-12 Sri International Dehydrocoupling treatment and hydrosilylation of silicon-containing polymers, and compounds and articles produced thereby
JP3476283B2 (ja) * 1995-08-17 2003-12-10 富士通株式会社 基板平坦化材料及びこれを用いた基板の平坦化方法
US6136680A (en) * 2000-01-21 2000-10-24 Taiwan Semiconductor Manufacturing Company Methods to improve copper-fluorinated silica glass interconnects
JP3869608B2 (ja) * 2000-01-25 2007-01-17 Necエレクトロニクス株式会社 防食剤
TWI229123B (en) * 2000-03-03 2005-03-11 Nec Electronics Corp Anticorrosive treating concentrate
JP3463045B2 (ja) * 2000-03-03 2003-11-05 Necエレクトロニクス株式会社 防食処理原液
JP3604007B2 (ja) * 2000-03-29 2004-12-22 富士通株式会社 低誘電率被膜形成材料、及びそれを用いた被膜と半導体装置の製造方法
JP2001291720A (ja) * 2000-04-05 2001-10-19 Hitachi Ltd 半導体集積回路装置および半導体集積回路装置の製造方法
TW523792B (en) * 2000-09-07 2003-03-11 Toshiba Corp Semiconductor device and its manufacturing method
JP4545973B2 (ja) * 2001-03-23 2010-09-15 富士通株式会社 シリコン系組成物、低誘電率膜、半導体装置および低誘電率膜の製造方法
JP3886779B2 (ja) * 2001-11-02 2007-02-28 富士通株式会社 絶縁膜形成用材料及び絶縁膜の形成方法
JP4198438B2 (ja) * 2002-10-24 2008-12-17 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
US7187081B2 (en) * 2003-01-29 2007-03-06 International Business Machines Corporation Polycarbosilane buried etch stops in interconnect structures
JP4209212B2 (ja) * 2003-01-30 2009-01-14 Necエレクトロニクス株式会社 半導体装置の製造方法
US7081673B2 (en) * 2003-04-17 2006-07-25 International Business Machines Corporation Multilayered cap barrier in microelectronic interconnect structures
EP1615260A3 (en) * 2004-07-09 2009-09-16 JSR Corporation Organic silicon-oxide-based film, composition and method for forming the same, and semiconductor device
CN1787186A (zh) * 2004-12-09 2006-06-14 富士通株式会社 半导体器件制造方法
JP2006179599A (ja) * 2004-12-21 2006-07-06 Toshiba Corp 半導体装置およびその製造方法
JP4459096B2 (ja) * 2005-03-16 2010-04-28 富士通株式会社 半導体装置の製造方法
JP2006303179A (ja) 2005-04-20 2006-11-02 Fujitsu Ltd 埋込導電体の形成方法
JP2006351877A (ja) * 2005-06-16 2006-12-28 Fujitsu Ltd 積層体の製造方法、半導体デバイスおよび半導体デバイスの製造方法
US8405217B2 (en) 2006-03-06 2013-03-26 Alchimer Coating method and solutions for enhanced electromigration resistance
JP5380797B2 (ja) * 2006-08-21 2014-01-08 富士通株式会社 半導体デバイスの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419709A (zh) * 2000-03-21 2003-05-21 和光纯药工业株式会社 半导体基板洗涤剂和洗涤方法
CN1362740A (zh) * 2000-12-27 2002-08-07 株式会社东芝 半导体器件及其制造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP特开2001-207170A 2001.07.31
JP特开2001-319913A 2001.11.16
JP特开2006-179599A 2006.07.06
JP特开2006-261268A 2006.09.28
JP特开2006-351877A 2006.12.28

Also Published As

Publication number Publication date
KR101119649B1 (ko) 2012-03-14
US20090309221A1 (en) 2009-12-17
US8378489B2 (en) 2013-02-19
WO2008111125A1 (ja) 2008-09-18
CN101627463A (zh) 2010-01-13
JP5071474B2 (ja) 2012-11-14
EP2124250A4 (en) 2014-06-25
EP2124250A1 (en) 2009-11-25
JPWO2008111125A1 (ja) 2010-06-24
KR20100005046A (ko) 2010-01-13

Similar Documents

Publication Publication Date Title
CN101490145B (zh) 多孔膜的前体组合物及其制备方法、多孔膜及其制作方法、以及半导体装置
CN101045820B (zh) 形成绝缘膜的组合物以及制造半导体器件的方法
CN101689412A (zh) 绝缘膜材料、多层布线基板及其制造方法和半导体装置及其制造方法
KR100956046B1 (ko) 다공질막의 전구체 조성물 및 그 제조 방법, 다공질막 및 그 제작 방법, 그리고 반도체 장치
KR20100122871A (ko) 전구체 함유 질소를 사용한 유전 장벽 증착
KR100743440B1 (ko) 노광광 차폐막 형성용 재료, 다층 배선 및 이의 제조 방법,및 반도체 장치
CN101627463B (zh) 半导体装置和半导体装置的制造方法
JP5131267B2 (ja) 表面疎水化膜形成材料、多層配線構造、半導体装置および半導体装置の製造方法
US20130178061A1 (en) Method of manufacturing porous film and method of manufacturing semiconductor device
CN101960582B (zh) 布线基板、半导体装置以及半导体装置的制造方法
CN101649053B (zh) 硅化合物、多层布线装置及其制造方法
KR101443999B1 (ko) 반도체 장치의 제조 방법
Ming et al. Preparation of porous ultra low k films using different sacrificial porogen precursors for 28 nM technological node
CN100557778C (zh) 绝缘膜、半导体器件及其制造方法
KR101350020B1 (ko) 반도체 장치의 제조방법
JP2006351877A (ja) 積層体の製造方法、半導体デバイスおよび半導体デバイスの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

CF01 Termination of patent right due to non-payment of annual fee