CN101807113B - 手势识别装置和手势识别方法 - Google Patents

手势识别装置和手势识别方法 Download PDF

Info

Publication number
CN101807113B
CN101807113B CN2010101183904A CN201010118390A CN101807113B CN 101807113 B CN101807113 B CN 101807113B CN 2010101183904 A CN2010101183904 A CN 2010101183904A CN 201010118390 A CN201010118390 A CN 201010118390A CN 101807113 B CN101807113 B CN 101807113B
Authority
CN
China
Prior art keywords
signal
value
motion
coordinate
sensor signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101183904A
Other languages
English (en)
Other versions
CN101807113A (zh
Inventor
大西佑介
宗像一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN101807113A publication Critical patent/CN101807113A/zh
Application granted granted Critical
Publication of CN101807113B publication Critical patent/CN101807113B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Position Input By Displaying (AREA)
  • Details Of Television Systems (AREA)

Abstract

一种手势识别装置包括:第一一维传感器部件和第二一维传感器部件,用于检测与沿着一个检测轴的一维方向上的物体的运动对应的移动,并且输出与检测的移动对应的信号;正规化处理部件,用于对从第一一维传感器部件和第二一维传感器部件输出的第一信号和第二信号执行正规化处理;相平面映射处理部件,用于通过使用基于正规化的第一信号和第二信号的x坐标值和y坐标值在相平面上绘制坐标,以时间序列形成对应于第一信号和第二信号的信号轨迹;相关系数计算部件,用于使用形成信号轨迹的坐标值来计算相应于第一信号和第二信号的相关系数;以及运动确定部件,用于基于相关系数的值来确定所检测的移动是第一方向上的运动还是第二方向上的运动。

Description

手势识别装置和手势识别方法
技术领域
本发明涉及一种用于识别诸如人手的移动之类的运动(手势)的手势(gesture)识别装置,及其方法和由所述手势识别装置执行的程序。 
背景技术
作为用于识别人执行的运动(手势)的手势识别技术/方法,以下内容是已知的。 
作为所述技术之一,以下的执行手势识别的技术是已知的,在该技术中对于图像信号执行用于运动分析的图像信号处理,其中通过成像装置对做出手势的主体成像获得所述图像信号。 
另一技术也是已知的,在该技术中,提供了在其上安装了加速度传感器的遥控装置并且基于根据例如由握持所述遥控装置用户执行的运动获得的、来自加速度传感器的检测信号来执行手势识别。 
另外,通过使用例如用于检测从人体发射的红外辐射的红外检测元件来检测人的移动的另一技术也是已知的。 
例如,可以将以上的手势识别的结果应用于对电子装置的操作命令。也就是说,通过作为特定手势的用户移动可以远程操作电子装置。 
例如,在以上手势识别方法中的使用红外检测元件的方法中,与其中对所拍摄的图像信号执行用于运动分析的图像信号处理的方法相比,成像装置是不必要的并且具有大处理负荷的图像信号处理的执行也是不必要的。另外,当做出手势时,可以使用诸如用户的手之类的身体部位,因此,提供安装了加速度传感器的遥控装置是不必要的。 
例如,在JP-A-5-81503(专利文献1)中,公开了一种配置,其中,当在从信号输入起的给定的时间时段内,检测到具有与确定可移动方向的信号相同极性的信号时,所检测的信号被确定为是与移动方向相同的方向,因而可以由双元件型热释电(pyroelectric)传感器来连续地输入在相同方向上的移动,所述双元件型热释电传感器是红外检测元件类型。 
在JP-A-2008-16015(专利文献2)中,公开了一种入侵(intrusion)检测系统的配置,所述入侵检测系统通过使用热释电传感器来辨别人体和小动物。 
在JP-A-738971(专利文献3)中,公开了一种配置,其中,在电视接收机中以上和下、左和右的十字形状布置四个红外检测元件,并且基于由这些红外检测元件获得的检测信号之间的时间差,依据用户的手沿左右方向移动的手势来改变频道以及依据用户的手沿上下方向移动的手势来调节音量。 
在JP-A-11-259206(专利文献4)中,公开了一种配置,其中,通过使用滤波器单元可以仅仅识别人体的特定部位在特定方向上的快速移动,所述滤波器单元允许传送红外检测元件的检测信号中的频率高于给定频率的信号。 
在JP-A-2006-27726(专利文献5)中,公开了一种配置,其中,使用每一个具有两个体检测区域的两个热释电红外传感器来在单轴方向确定人体上的移动方向。 
发明内容
期望使用例如双元热释电(dual-type pyroelectric)传感器所代表的、可以检测单轴方向(一维)移动的一维传感器来获得比过去具有更高可靠性的手势识别结果。 
根据本发明的实施例,提供了如下所述的手势识别装置。 
也就是说,手势识别装置包括:第一一维传感器部件和第二一维传感器部件,用于检测与沿着一个检测轴的一维方向上的物体(object)的运动对应的移动,并且输出与检测的移动对应的信号,其中沿着关于第一方向和第二方向的不同方向布置检测轴,所述第一方向和第二方向是被定义为识别目标的物体的线性运动的方向;正规化(normalization)处理部件,用于通过将从第一一维传感器部件和第二一维传感器部件输出的相应的第一信号和第二信号各自的幅度值转换为由关于峰值的比率表示的值,来执行正规化处理;相平面映射处理部件,用于通过在各个相同的定时处,使用基于正规化的第一信号值的x坐标值和基于正规化的第二信号值的y坐标值、在相平面上绘制坐标,以时间序列形成对应于第一信号和第二信号的信号轨迹;相关系数计算部件,用于通过使用形成信号轨迹的坐标值来计算关于第一信号和第二信 号的相关系数;以及运动确定部件,用于至少基于相关系数的值是正还是负,来确定所检测的移动是第一方向上的运动还是第二方向上的运动。 
在以上的配置中,配置第一一维传感器部件和第二一维传感器部件,使得沿着关于作为之前已经被定义的物体的线性运动的方向的第一方向和第二方向的不同方向布置检测轴。据此,即使执行在第一方向和第二方向上移动运动中的任何一个运动,第一一维传感器部件和第二一维传感器部件两者也可以以良好的条件检测该运动并且输出信号。 
在这个条件下,来自第一一维传感器部件和第二一维传感器部件的信号被正规化并且被映射在在相平面上以形成信号轨迹,并且进一步,计算信号轨迹的相关系数。 
在信号轨迹的形状上反映了第一一维传感器部件和第二一维传感器部件输出的信号的相位和极性。因而,从信号轨迹计算的相关系数的正/负对应于检测的运动是第一方向运动还是第二方向运动。因此,可以做出确定以便基于相关系数来辨别第一方向运动和第二方向运动。 
如上所述的,根据本发明的实施例,与过去相比,可以以更高的精度,做出关于至少在作为彼此不同的第一方向和第二方向的沿着两个轴的方向上的运动的确定。 
附图说明
图1是示出根据实施例的相框(photo frame)显示设备的外观示例以及被定义为相对于相框显示设备的手势操作的手势运动的示例的视图; 
图2是示出相框显示设备的配置示例的框图; 
图3是示出一维传感器的配置示例的框图; 
图4A和图4B是示出作为一维传感器的双元热释电传感器的配置示例的视图; 
图5A和图5B是用于解释双元热释电传感器的运动检测原理的波形图; 
图6A和图6B是示出用于检测沿着水平/垂直方向的两个轴方向的手势运动的一维传感器的可想到的(conceivable)布置示例的视图; 
图7A至图7C是示出在图6A和图6B所示的布置示例下获得的传感器信号的波形图; 
图8A和图8B是示出根据实施例的一维传感器的布置示例的视图; 
图9是示出在根据实施例的一维传感器的布置示例下获得的传感器信号的波形图; 
图10A至图10D是示出在根据实施例的一维传感器的布置示例下获得的对应于向左运动、向右运动、向上运动和向下运动的传感器信号的波形图; 
图11A和图11B是用于解释传感器信号的正规化处理和相平面(phase plane)映射处理的曲线图; 
图12A至图12C是示出对应于向右运动和向左运动获得的传感器信号和相平面上的信号轨迹的示例的曲线图; 
图13A至图13C是示出对应于向下运动和向上运动获得的传感器信号和相平面上的信号轨迹的示例的曲线图; 
图14A至图14B是示出对应于右旋获得的传感器信号和相平面上的信号轨迹的示例的曲线图; 
图15A至图15B是示出对应于左旋获得的传感器信号和相平面上的信号轨迹的示例的曲线图; 
图16A和图16B是用于解释矢量的叉积(cross product)的视图; 
图17是示出手势运动确定单元的配置示例的框图; 
图18是示出由手势运动确定单元执行的处理例程示例的流程图; 
图19是示出用于检测手势运动时段和依据该检测记录样本的处理例程示例的流程图; 
图20是示出正规化处理的流程图; 
图21A和图21B是示出根据实施例的一维传感器(红外检测元件)的布置示例的修改示例的视图;以及 
图22A和图22B是示出根据实施例的一维传感器(红外检测元件)的布置示例的修改示例的视图。 
具体实施方式
下文中,将按照以下顺序来解释执行本发明的最佳模式(在以下描述中被称作实施例)。 
1.实施例中手势操作的示例 
2.相框显示设备的配置示例 
3.一维传感器对移动方向的检测原理 
4.一维传感器的可想到的布置示例 
5.作为实施例的一维传感器的布置示例 
6.用于确定手势运动的信号处理配置 
6-1正规化处理,相平面映射处理 
6-2水平/垂直方向上的手势运动的确定 
6-3向左运动/向右运动中的方向以及向上运动/向下运动中的方向的确定 
6-4左旋运动/右旋运动的确定 
7.确定手势运动的算法 
8.相平面映射处理的修改示例 
9.有关一维传感器的布置示例的修改示例 
1.实施例中手势操作的示例 
在该实施例中,将根据本发明实施例的手势识别装置应用于相框显示设备。当根据实施例的相框显示设备识别作为用户执行的手势操作的、给定的手的移动/运动(手势运动)时,该设备接收该运动作为操作命令并且执行适当的响应运动。 
图1作为透视图示出了根据该实施例的相框显示设备的外观示例,并且还示出了用户相对于相框显示设备执行的手势操作的示例。 
在图中所示的、具有规定的宽度、高度和深度的相框显示设备1在正面具有矩形的轮廓形状。 
在该情形中的相框显示设备1具有例如近似20cm至25cm的宽度和近似15cm的高度的轮廓尺寸,这适合于放置在桌子等上。 
在本体部分2的前部,提供了在其上显示图像的显示屏幕部分3。 
显示屏幕部分3是应用于相框显示设备1的显示设备中的图像面板部分。 
支座4是被附加在本体部分2的后侧的部分,用于使相框显示设备1的本体部分2保持如实际的相框一样的直立状态。 
在该情形中,在本体部分2的前部上的框的较低的中间部分处提供传感器单元5的窗口部分。传感器单元5由两对以下描述的一维传感器构成。配置在这些一维传感器中包括的检测元件(红外检测元件),使得在相框显示设备1的前方形成空间检测区域以及以下述的给定位置关系来布置空间检测区 域。 
在该实施例中,通过移动手来执行用户要执行的手势操作。用户移动他/她的手作为手势操作,使得自身的手进入相框显示设备1的前侧上的传感器单元5的空间检测区域。 
首先,将在该实施例中被确定为手势操作的手的移动(手势运动)基本定义为以下四种运动。 
1:从右向左直线地移动手的向左运动 
2:从左向右直线地移动手的向右运动 
3:向上直线地移动手的向上运动 
4:向下直线地移动手的向下运动 
另外,在该实施例中应用其中识别以上四种基本的手势运动的配置,并且可以进一步将以下两种运动定义为手势运动。 
5:通过以圆形方式做出的左手旋转(逆时针)来移动手的左旋运动 
6:通过以圆形方式做出的右手旋转(顺时针)来移动手的右旋运动 
根据该实施例的相框显示设备1基于传感器单元5的传感器信号来识别已经执行了以上六种手势操作的哪一种运动。然后,相框显示设备1执行与分配给所识别的手势运动的操作命令对应的运动。 
在此,列举了对于相应的六种手势运动分配操作命令的示例。以下的分配方式仅仅是示例并且可以以不同的方式考虑其他应用示例。 
首先,分配相应的向左/向右运动作为快进/预览相框显示设备1中显示的图像的操作命令。 
该实施例中的相框显示设备1能够在幻灯片中放映(slide show)显示在存储器中存储的图像,该幻灯片放映以固定的时间间隔依序显示图像。分配相应的向上/向下运动作为开始/停止幻灯片放映的显示的操作命令。 
除了相片图像,相框显示设备1还可以显示时钟、日历等,并且可以依据操作来切换显示。分配左旋/右旋运动作为用于依据给定的快退顺序(order)和预览顺序来切换显示的操作命令。 
2.相框显示设备的配置示例 
图2示出了可以作为实施例应用的相框显示设备1的内部配置示例。 
如图中所示,根据该实施例的相框显示设备1包括控制单元(CPU:中央处理单元)11、显示设备12、闪存13、SDRAM 14、时钟单元15、操作单 元16、存储卡接口17和传感器单元5。 
控制单元11包括例如CPU之类的硬件。作为控制单元11的CPU读取存储在闪存13中的程序并且将所述程序加载到例如SDRAM 14,然后,执行所读取的程序。因而,可以适当地获得作为相框显示设备1的必要的操作。 
SDRAM 14是控制单元11的主要存储设备,而闪存13是辅助存储设备。 
在该情形中,以固定(static)方式将闪存13包括在相框显示设备1中。除了程序之外,闪存13存储从存储卡20读取以及传递的图像数据。 
显示设备12包括显示面板和驱动显示面板的驱动电路单元,其中驱动电路依据控制单元11的图像显示控制执行对显示设备的操作以由此在显示面板上显示图像。作为显示面板显示图像的部分对应于在本体部分2的前部中暴露的显示屏幕部分3。 
在该实施例中,应用液晶显示器作为显示设备12,然而,同样优选地,可以应用诸如有机EL显示设备之类的其他显示设备。 
时钟单元15是用于对当前时间进行计时(clock)的部分。在该情形中,时钟单元15可以对年、月、日以及小时、分钟和秒进行计时作为当前时间。控制单元11可以读取并获得由时钟单元15计时的当前时间。 
在该情形中的操作单元16指示在相框显示设备1中以集成的方式包括的操作元件。当对操作单元16中包括的操作元件执行操作时,将对应于该操作的操作命令信号输出给控制单元11。控制单元11响应于输入的操作信号适当地执行必要的控制/处理。 
在允许通过使用遥控器来执行对相框显示设备1的操作的情形中,操作单元16还包括与相框显示设备1分开提供的遥控器以及在相框显示设备1的侧面提供的接收单元,该接收单元接收并解调从遥控器传送的命令信号并且将该信号作为操作信号传送给控制单元11。 
该实施例的相框显示设备1被配置为响应于手势操作执行适当的操作,然而,该设备包括作为适当的操作元件的操作单元16的配置。例如,当存在对相框显示设备1的各种操作时,可能存在手势操作难以表达的操作,然而,可以通过提供操作单元16来执行这些操作。另外,当诸如传感器单元5之类的处理(deal with)手势操作的功能出故障或者处于其他情形中时,可以通过对操作单元16操作来执行相同的操作。 
存储卡接口17包括在其上安装作为外部存储设备的存储卡20的部分, 存储卡接口17被配置为在控制单元11的控制下能够作为对安装的存储卡20进行的数据存取而至少读取数据。从存储卡20读取的数据被转移到控制单元11。 
将解释具有以上配置的相框显示设备1的基本使用的示例和相框显示设备1的对应的显示操作。 
用户在相框显示设备1上安装其中存储了由例如数字相机等拍摄的图像数据的存储卡20并且执行用于显示图像的操作。 
响应于该操作,控制单元11通过存储卡接口17读取在存储卡20中存储的图像数据并且执行控制,以便在显示设备12中将数据显示为图像。 
因而,在相框显示设备1的显示屏幕部分3上显示存储在用户安装的存储卡20中的图像数据的图像。 
也可以将从存储卡20读取的所拍摄的图像数据存储到闪存13,并且显示存储在闪存13中的图像数据。 
在该情形中,首先,用户在相框显示设备1上安装存储卡20并执行将存储在存储卡20中的图像数据转移到闪存13的操作并且在闪存13中存储数据。此时,相框显示设备1被配置为执行从例如存储卡20中存储的图像数据中选择在闪存13中要存储的图像数据的操作。 
依据该操作,控制单元11依序从存储卡20中读取所选择的图像数据并执行写入指令以及通过存储卡接口17向闪存13转移数据。闪存13响应于指令写入所转移的图像数据并存储图像数据以便根据文件来进行管理。在该情形中,闪存13中根据文件管理的图像数据是静止图像数据并且是作为JPEG(联合图像专家组)格式的图像文件而管理的。闪存13应用FAT作为文件系统,尽管这仅仅是示例。 
此后,当用户执行用于显示存储在闪存13中的图像的操作时,控制单元11从存储在闪存13中的图像数据文件中读取必要的图像数据文件。控制单元11执行控制,以便回放图像数据文件并在显示设备12中显示图像。 
该实施例的相框显示设备1可以回放和显示图像数据,如以下示例那样。 
首先,相框显示设备1可以执行一幅图像的显示,其中连续地显示从存储在闪存13或者存储卡20中的图像数据中选择的仅仅一个图像的数据。 
相框显示设备1还可以执行所谓的幻灯片放映的显示,其中从存储在闪存13或者存储卡20中的图像数据中选择的多个图像被依序显示,以便以固 定的时间间隔来改变。在幻灯片放映显示中,可以以固定的时间间隔来逐一显示图像以及可以以固定的时间间隔通过多幅图像来显示图像。 
此外,该实施例的相框显示设备1还可以显示用于指示当前时间的时钟、日历等。可以与时钟、日历等同时回放和显示存储在闪存1或者存储卡20中的图像数据。 
另外,可以以列表来显示存储在闪存13或者存储卡20中的图像数据的缩略图。 
此外,优选地,例如在图2示出的配置中提供诸如USB之类的数据接口并且通过这样的数据接口来读取图像数据。可以适当地执行对该配置的改变和增加,并且相框显示设备1的内部配置不限于图2所示的配置。 
3.一维传感器对移动方向的检测原理 
在该实施例中,应用作为检测在一维中,即,单轴方向上的移动的传感器的一维传感器作为传感器单元5。 
某些类型的一维传感器是已知的,并且在该实施例中应用具有两个红外检测元件的所谓双元热释电传感器。热释电传感器是这样的传感器,该传感器通过执行以已知的方式应用热释电效应的对红外辐射的检测来输出对应于背景和物体(辐射红外辐射的物体)之间的温度差的信号。 
在图3中示出使用热释电传感器作为一维传感器的设备的配置示例。 
图3中示出的一维传感器40包括聚光器(condenser)41、热释电传感器单元42和放大器滤波器43。 
由例如菲涅尔透镜形成聚光器41使得通过对热释电传感器单元42中的两个红外检测元件分离光而会聚(condense)入射光。 
双元热释电传感器单元42包括被布置以便对应于与一维对应的单轴检测轴的两个红外检测元件。 
两个红外检测元件中的每一个红外检测元件检测对应于每一个布置位置的空间检测区域中的物体与背景之间的温度差,输出对应于检测到的温度差的信号。热释电传感器单元42合成来自两个红外检测元件的信号并且输出作为检测信号的信号。该检测信号示出在单轴方向上的移动方向。 
放大器滤波器43执行仅仅滤除(filter)高于规定频率的频率分量以移除噪声分量等的滤波处理,并且执行对于检测信号的放大,然后,输出作为传感器信号的信号。 
将参照图4A和图4B来解释热释电传感器42对移动方向的检测原理。 
如附图所示,双元热释电传感器42包括两个红外检测元件51A、51B。红外检测元件51A、51B被插入到晶体管Tr的栅极端与热释电传感器42的外栅极端G之间以便串联连接。在此,红外检测元件51A、51B在其负电极处被串联连接。也就是说,红外检测元件51A、51B以彼此相反的极性被串联连接。红外检测元件51A的正电极被连接到晶体管的栅极端,红外检测元件51B的正电极端被连接到外栅极端G。 
电阻R1并联到红外检测元件51A、51B的串联连接。另外,栅极/源极电阻R2被插入到外栅极端G与漏极D之间。 
将参照图4A和图4B来解释热释电传感器42对移动方向的检测原理。 
如附图4A所示,双元热释电传感器42包括两个红外检测元件51A、51B。依据随后由图4B描述的位置关系来物理地布置红外检测元件51A、51B,其中通过聚光器41会聚的红外辐射入射到红外检测元件51A、51B上。 
红外检测元件51A、51B被插入到晶体管Tr的栅极端与热释电传感器42的外栅极端G之间以便以附图中所示的方式串联连接。在此,红外检测元件51A、51B在其负电极处串联连接。也就是说,红外检测元件51A、51B以相反的极性被串联连接。红外检测元件51A的正电极被连接到晶体管Tr的栅极端,红外检测元件51B的正电极端被连接到外栅极端G。 
电阻R1并联到红外检测元件51A、51B的串联连接。另外,栅极/源极电阻R2被插入到外栅极端G与漏极D之间。 
作为在源极端S和栅极端G之间的栅极/源极电压Vd而获得热释电传感器42的检测信号。 
在作为一维传感器40的设备中,布置红外检测元件51A、51B以便通过聚光器41接收外部的光。图4B示意性地示出在一维传感器40中红外检测元件51A、51B的物理布置的示例。在该图中,以某个固定的间隔在上侧放置红外检测元件51A而在下侧放置红外检测元件51B。对应于沿着纵向(垂直)方向通过红外检测元件51A、51B的虚线的方向将是对应于该布置的热释电传感器单元42的检测轴L。也就是说,在对应于图4B的空间(space)的红外检测元件51A、51B的布置方向上,将检测沿着纵向(垂直)方向的移动方向是向上移动还是向下移动。当使图4B能够对应于图4A的直线运动方向1、2时,运动方向1将是向上移动,而运动方向2将是向下移动。 
运动方向1、2是彼此相反方向的运动,即,当正方向是运动方向1时,操作方向2是相反方向。 
假设在图4A的运动方向1上发生物体的直线移动。响应于该移动,首先,由更靠近移动开始位置的红外检测元件51A先检测由该移动造成的背景与该物体之间的温度差的改变,然后,以一时间差中红外检测元件51B来检测该改变。 
严格来讲,红外检测元件响应于物体沿着检测轴L的移动,检测由该移动造成的背景与该物体之间的温度差的改变。在以下描述中,为使得描述更容易,将“检测由移动造成的背景与物体之间的温度差的改变”写作由红外检测元件“检测移动”。 
图5A示出依据运动方向1上的移动输出的红外检测元件51A、51B各自的信号Sa、Sb以及热释电传感器单元42的检测信号Vd。 
在该情形中的红外检测元件51A的信号Sa指示依据检测移动的开始,处于正电平的正弦波在点“t0”处上升,并且依据检测移动的结束,正弦波在点“t2”处变为0幅度。 
另一方面,红外检测元件51B在比红外检测元件51A晚的点处开始检测移动。在图4A中,信号Sb指示在点“t1”处开始检测。因而,该信号指示在点“t1”处生成处于负电平的正弦波。然后,依据检测移动的结束,正弦波在点“t3”处变为0电平。 
如参照图4A所解释的,以相反的极性连接红外检测元件51A和红外检测元件51B。因此,由检测移动获得的信号Sa、Sb的波形彼此相反。 
如从图4A的电路可见,通过合成信号Sa、Sb来获得检测信号Vd。 
也就是说,在点“t0”到点“t1”期间图5A中示出的检测信号Vd变为与信号Sa相同的、在半个周期内处于正电平的正弦波。由于将信号Sa和信号Sb合成,所以在点“t1”到点“t2”的期间该信号变为在半个周期内处于负电平的正弦波,其近似是从点“t0”到“t1”的时段的绝对值的两倍。然后,在点“t2”到点“t3”期间内出现与信号Sb相同的在半个周期内处于正电平的正弦波。 
另一方面,当发生在图4A中运动方向2上的物体的直线移动时,首先,由红外检测元件51B开始移动的检测,然后,由红外检测元件51A开始检测。 
图5B示出红外检测元件51A、51B各自的信号Sa、Sb以及检测信号 Vd。 
在图5B中,信号Sa指示处于正电平的正弦波从点“t1”处上升。信号Sb指示在点“t0”处开始处于负电平的正弦波。 
因此,在点“t0”到点“t1”期间检测信号Vd变为与的信号Sb相同的、半个周期处于负电平的正弦波。由于将信号Sa和信号Sb合成,所以在点“t1”到点“t2”的期间该信号变为在半个周期内处于正电平的正弦波,其近似是从点“t0”到“t1”的时段的绝对值的两倍。然后,在点“t2”到点“t3”期间内出现与信号Sa相同的在半个周期内处于负电平的正弦波。 
当将图5A的检测信号Vd与图5B的检测信号Vd比较时,它们的波形图案(pattern)是不同的以致彼此相反。也就是说,通过检测信号Vd的波形图案示出了沿检测轴L的移动方向。 
4.一维传感器的可想到的布置示例 
在此,在该实施例中,作为参照图1解释的手势运动,来识别向左运动、向右运动、向上运动、向下运动,右旋运动以及左旋运动。 
为了使得解释更容易且可理解,假设在以上的六种手势运动中仅仅要检测四种运动,即,向左运动、向右运动、向上运动、以及向下运动。 
考虑其中应用参照图3至图5B解释的双元热释电传感器作为一维传感器的情形。能够检测通过向左/向右运动进行的水平方向上的手势操作和通过向上/向下运动进行的垂直方向上的手势操作。也就是说,有必要检测彼此不同的两个轴的运动方向。 
因而,作为一维传感器的检测轴,需要作为对应于水平(横向)方向的检测轴和对应于垂直(纵向)方向的检测轴的两个检测轴,因此,两个一维传感器也是必需的。 
在图6A和图6B中示出了仅仅可想到的、以上两个一维传感器的布置的示例。 
在图6A中,示出了两个一维传感器40-1、40-2。一维传感器40-1的检测轴是L1,一维传感器40-2的检测轴是L2。 
布置一维传感器40-1使得检测轴L1对应于垂直(纵向)方向。另一方面,布置一维传感器40-2使得检测轴L2对应于水平(横向)方向。也就是说,以一维传感器40-1和40-2的检测轴彼此正交的位置关系来布置一维传感器40-1、40-2。 
在此,在一维传感器40-1的下面布置一维传感器40-2。 
图6B示出了依据图6A示出的一维传感器40-1、40-2的布置所形成的空间检测区域的示例。一个空间检测区域指示可以由对应的一个红外检测元件51来检测用于指示其中物体移动的空间区域。该空间检测区域将是受限的空间,其中在对应的一个红外检测元件51的外框被放大并在空间中投射到可用的检测方向上时,由所述框的轨迹示意性地形成所述受限的空间。 
首先,在一维传感器40-1侧,对应于位于上侧的红外检测元件51A-1,形成空间检测区域60A-1,而对应于位于较低侧的红外检测元件51B-1,形成空间检测区域60B-1。 
依据对应的红外检测元件51A-1、51B-1的形状和布置角度,空间检测区域60A-1、60B-1形成横截面具有矩形形状的空间,所述矩形形状在水平方向上延伸。关于位置关系,依据对应的红外检测元件51A-1、51B-1的布置的位置关系,在上侧布置空间检测区域60A-1,并且在下侧布置空间检测区域60B-1。 
在一维传感器40-2侧,对应于位于左侧的红外检测元件51A-2,形成空间检测区域60A-2,并且对应于位于右侧的红外检测元件51B-2,形成空间检测区域60B-2。 
依据对应的红外检测元件51A-2、51B-2的形状和布置角度,空间检测区域60A-2、60B-2形成横截面具有矩形形状的空间,在矩形形状中,水平方向为短边。相对于位置关系,依据对应的红外检测元件51A-2、51B-2的布置的位置关系,在左侧布置空间检测区域60A-2,在右侧布置空间检测区域60B-2。 
当应用一维传感器40-1、40-2的上述布置时,只要基于已经解释的一维传感器的检测原理就可以检测上下、左右的各自的手势运动。 
作为示例,在执行向右运动的情形下,首先执行向右运动的用户的手(物体)通过空间检测区域60A-2,然后,在一维传感器40-2侧通过空间检测区域60B-2。响应于此,红外检测元件51A-2、51B-2以时间差检测到该运动,如图5A和图5B所示,输出信号Sa、Sb并且输出有效的(significant)检测信号Vd。检测信号Vd指示物体已经向右方向移动。 
另一方面,该物体在方向轴是沿着垂直方向的一维传感器40-1侧同时通过空间检测区域60A-1、60B-1。如从例如图5A和图5B中可见,从红外检测元件51A-1、51B-1输出的信号Sa、Sb处于相反相位。因此,检测信号Vd 处于0电平。也就是说,该信号指示沿着上下方向不存在移动。 
同样,在执行向上或向下手势运动的情形中,如根据以上的解释很显然的是,原则上,一维传感器40-1的检测信号Vd指示物体已经在向上或向下方向上移动。一维传感器40-2的检测信号Vd指示在左右方向上不存在移动。 
然而,本发明人已经证实了根据图6A和图6B所示的一维传感器的布置来实际识别上/下和左/右手势运动非常困难。 
图7A、图7B和图7C分别示出了作为本发明人的实验结果,当在图6A和图6B所示的一维传感器40-1和40-2的布置下执行作为手势运动的向右运动时,获得的传感器信号S1和传感器信号S2。传感器信号S1是从其中检测轴沿着垂直方向的一维传感器40-1输出的信号,传感器信号S2是从其中检测轴沿着水平方向的一维传感器40-2输出的信号,并且传感器信号S1和传感器信号S2的波形对应于从内部热释电传感器单元42输出的检测信号Vd。 
如图7A、图7B和图7C中所示,在作为对应于水平方向上的检测轴的检测输出的传感器信号S2中,获得了对应于向右运动的检测的近似相同的波形。也就是说,仅仅稳定地检测到关于一维传感器40-2侧的向右运动。 
另一方面,在对应于垂直方向上的检测轴的传感器信号S1中,正常地应当保持近似0电平。然而,实际获得的传感器信号S1有时候如图7A所示具有非常小的幅度,而有时候如图7B和图7C所示具有大的幅度。此外,在图7B的情形下,传感器信号S1关于传感器信号S2的相位近似相同,而在图7C的情形下,传感器信号S1关于传感器信号S2的相位相反。因而,传感器信号S1在幅度和相位两者中的表现不是恒定的。 
如上所述,其中检测轴沿着作为手势运动的移动方向的一维传感器的传感器信号是稳定的,然而,其中检测轴沿着与运动方向正交的方向的一维传感器的传感器信号是不稳定的。 
以下可以列举导致上述的传感器信号的不稳定的主要原因之一。 
也就是说,物体的实际移动方向不是严格对应于红外检测元件的检测轴。因此,即使在打算将该物体沿着一个检测轴移动时,如果移动方向相对于一个检测轴倾斜,则在对应于另一个检测轴的红外检测元件处出现由该倾斜造成的信号幅度。 
例如,当物体在执行向右运动的同时以稍稍向上移动时,在一维传感器40-1的传感器信号中出现指示向上移动的幅度,而当该物体还稍稍向下移动 时,在一维传感器40-1的传感器信号中出现指示向下移动的幅度。 
如上所述,在传感器信号不稳定的情形中,即使在可以获得对应于手势运动的传感器信号时,辨别传感器信号是处于右/左(水平)方向中的手势运动还是处于上/下(垂直)方向中的手势运动也是相当困难的。 
例如,作为最突出的情形,假设对应于与手势运动的方向正交的检测轴的传感器信号的幅度增加到与对应于手势运动的方向的检测轴对应的传感器信号的幅度相同的程度。 
为了获得正确的手势识别结果,有必要从传感器信号S1、S2中选择对应于手势运动的真正方向的传感器信号。在此,当例如仅仅基于幅度电平(level)的大小选择对应于手势运动的真正方向的传感器信号时,在以上状态中存在做出错误选择的很高的可能性。当依据如下的算法,即,选择具有与依据手势运动可能出现的波形图案较接近的波形的传感器信号作为对应于手势运动的真正方向的传感器信号的算法,来做出选择时,与手势运动的真正方向不对应的传感器信号的波形变为较接近于波形图案的可能性可能很高,这是因为相位和幅度两者均不稳定。 
因而,在图6A所示的一维传感器40-1、40-2的布置示例中,难以获得具有高可靠性的手势识别结果。 
5.作为实施例的一维传感器的布置示例 
在该实施例中,期望在使用一维传感器的手势识别中获得与相关技术相比更高的识别准确度。 
首先,四个对应于上下、左右的手势运动是如在图1所示的实施例中的基本运动。也就是说,首先要作为手势运动识别的操作方向是水平(横向)方向(第一方向)和垂直(纵向)方向(第二方向)。 
在以上的假设中,在该实施例中给出如图8A所示的一维传感器40-1、40-2的物理布置的示例。 
也就是说,布置一维传感器40-1使得检测轴L1相对于水平/垂直方向以45度的角度倾斜。在该情形下,当从操作者(前向)侧看时,传感器向右倾斜。相对于一维传感器40-1的上下方向,其被布置为使得红外检测元件51A-1处于上侧,红外检测元件51B-1处于下侧。 
还布置一维传感器40-2使得检测轴L2相对于水平/垂直方向以45度的角度倾斜。然而,使该传感器向与一维传感器40-1相对的左侧倾斜,这引起 了检测轴L2的45度倾斜以便与一维传感器40-1的检测轴L1正交。 
在该情形下,布置该传感器使得在以上倾斜状态中,红外检测元件51B-2处于上侧,红外检测元件51A-2处于下侧。 
图8B示出了依据图8A的一维传感器40-1、40-2的布置形成的、对应于红外检测元件51A-1、51B-1、51A-2和51B-2的空间检测区域60A-1、60B-1、60A-2和60B-2。 
根据图8B所示的布置,首先,在一维传感器40-1中,在红外检测元件51A-1、51B-1中可以获得沿着水平方向的位置的位移。类似地,还可以获得沿垂直方向的位置的位移。 
因而,红外检测元件51A-1、51B-1可以依据沿着垂直方向的向上/向下运动的手势运动、以时间差来检测移动。类似地,它们还可以依据沿着水平方向的向左/向右运动的手势运动、以时间差来检测移动。因而,红外检测元件51A-1、51B-1可以输出如参照图5A和图5B解释的信号Sa、Sb以便对应于在水平/垂直方向上的任何手势运动。也就是说,一维传感器40-1可以检测与水平/垂直方向上的任何手势运动对应的移动并且输出稳定的传感器信号S1。 
类似地,一维传感器40-2也可以检测与水平/垂直方向上任何手势运动对应的移动并且输出稳定的传感器信号S2。 
图9示出了作为本发明人的实验结果的、当在图8A和图8B所示的一维传感器40-1和40-2的布置示例下执行向右运动作为手势运动时,获得的传感器信号S1和传感器信号S2。 
在图8A和图8B所示的一维传感器40-1、40-2(红外检测元件51A-1、51B-1、51A-2和51B-2)的布置示例的情形下,在检测到向右运动时,两个传感器信号S1、S2可以获得对应于图5B的检测信号Vd的波形。图9中所示的两个传感器信号S1、S2具有对应于图5B的检测信号Vd的波形。通过实验证实了在传感器信号S1、S2中可以稳定地获得可被认为与图9等同的波形。 
在此,在图10A到图10D中示意性地示出了在图8A和图8B所示的一维传感器40-1(红外检测元件51A-1、51B-1)和一维传感器40-2(红外检测元件51A-2、51B-2)的布置下执行上下、左右各自的手势运动时,获得的传感器信号S1、S2的波形。 
通过排除(exclude)依据在对应于一维传感器40-1(红外检测元件51A-1、51B-1)的一对空间检测区域60A-1、60B-1和对应于一维传感器40-2(红外检测元件51A-2、51B-2)的一对空间检测区域60A-2、60B-2之间的物理距离差生成的检测时间差,已经获得了在此示出的波形。 
如果在空间中空间检测区域彼此交叉,对于红外检测元件侧的检测而言也不是障碍。因此,在实际检测中,调节对应于一维传感器40-1(红外检测元件51A-1、51B-1)的空间检测区域60A-1、60B-1和对应于一维传感器40-2(红外检测元件51A-2、51B-2)的空间检测区域60A-2、60B-2使之彼此重叠来由此排除检测时间差引起的问题。 
图10A示出了通过检测作为向左运动的移动获得的传感器信号S1、S2。如图中所示,响应于向左运动,传感器信号S1、S2具有对应于图5A的检测信号Vd的彼此同相的波形。 
图10B示出了在向右运动的情形下获得的传感器信号S1、S2。在向右运动的情形下,传感器信号S1、S2具有关于图10A的波形反转的波形。也就是说,传感器信号S1、S2具有对应于图5B的检测信号Vd的彼此同相的波形。图9的波形对应于图10B的波形。 
图10C示出了通过检测作为向上运动的移动获得的传感器信号S1、S2。 
在该情形下,传感器信号S1具有对应于图5A的检测信号Vd的波形,传感器信号S2具有对应于图5B的检测信号Vd的波形,传感器信号S1和传感器信号S2彼此异相。 
图10D示出了通过检测作为向下运动的移动获得的传感器信号S1、S2。 
在该情形下,传感器信号S1、S2具有关于图10C的波形分别反转的波形。也就是说,传感器信号S1具有对应于图5B的检测信号Vd的波形,传感器信号S2具有对应于图5A的检测信号Vd的波形,传感器信号S1和传感器信号S2彼此异相。 
根据以上图10A到图10D,首先,可以基于传感器信号S1、S2是彼此同相还是彼此异相来确定手势运动是沿着水平方向还是沿着垂直方向的识别。此外,可以基于传感器信号S1、S2的极性来确定沿着水平方向的手势运动是向左运动还是向右运动,以及确定沿着垂直方向的手势运动是向上运动还是向下运动。 
6.用于确定手势运动的信号处理配置 
6-1.正规化处理、相平面映射处理 
在本实施例中,通过在图8A和图8B的一维传感器40-1、40-2的布置示例下、以下面解释的方式执行对传感器信号S1、S2的信号处理来执行手势识别的配置。 
在此,假设获得图11A中所示的传感器信号S1、S2。通过检测向上操作实际获得了传感器信号S1、S2。 
在该实施例中,对如上述获得的传感器信号S1、S2执行正规化处理。 
作为正规化处理,首先,找到有效时段(手势运动时段)中的最大值Vp1,其中在传感器信号S1中依据与手势运动对应的移动的检测来改变幅度。作为绝对值获得最大值Vp1。然后,将在相同手势运动时段中获得的传感器信号S1的幅度值除以最大值Vp1。因而,将传感器信号S1的幅度值正规化为在从-1到1的范围内的关于最大值Vp1的比率所示的值。 
关于传感器信号S2,也以相同的方式找到手势运动时段中的作为绝对值的最大值Vp2作为绝对值,并且将在相同手势运动时段中获得的传感器信号S2的幅度值除以最大值Vp2。因而,将幅度值正规化为在从-1到1的范围内的关于最大值Vp2的比率所示的值。 
热释电传感器检测背景与物体之间的温度差并且依据该差输出幅度值。然而,实际上将作为物体的操作者的手的温度变化。例如,由于体质引起的身体温度的基本差异,或者因为手是湿的或者冷的,所以手的温度可能显著地变化。另外,随着从操作者的手到红外检测元件的距离变长,检测信号的幅度减小。因而,即使在由操作者执行相同的操作时,每次从一维传感器40-1、40-2输出的传感器信号S1、S2的幅度的大小也可能变化,这是因为人手的温度、与手的距离等的影响引起的。因而,尽管响应于相同的手势来获得信号,但在传感器信号S1、S2中的幅度的变化仍然存在时,适当地评估以下的信号处理变得非常困难。 
因而,在该实施例中,通过执行以上的正规化处理,依据关于峰值(绝对值)的比率将幅度值转换为从-1到+1的范围内的值。据此,传感器S1、S2将具有其中排除了实际幅度的变化因素的正规化值。 
在以下的描述中分别将具有正规化的幅度值的传感器信号S1、S2称作正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2。 
在正规化处理之后,执行将正规化的传感器信号NOM_S1和正规化的传 感器信号NOM_S2关于相平面映射的处理(相平面映射处理)。 
图11B示出了使用对应于图11A中所示的传感器信号S1、S2的正规化的传感器信号NOM_S1和正规化的传感器信号NOM_S2,来执行相平面映射处理获得的结果。 
在图11B所示的相平面中,x坐标对应于正规化的传感器信号NOM_S1,y坐标对应于正规化的传感器信号NOM_S2。x坐标和y坐标均具有从-1到+1的坐标范围。 
在该情形中的相平面映射处理将是这样的处理,其中使得正规化的传感器信号NOM_S1的值为x坐标值并且使得正规化的传感器信号NOM_S2的值为y坐标值,其中在相同定时处获得所述x坐标值和y坐标值,以及依据在传感器信号中的时间流逝在相平面上绘制坐标。 
更具体地,在依据手势运动时段获得的N个正规化的传感器信号NOM_S1、NOM_S2的样本数据中,当第i个样本数据的值是“xi”、“yi”时,它将是计算对应于N个样本数据的所有坐标(xi,yi)的处理。 
因而,图11B的相平面上画出的曲线指示依据时间流逝绘制坐标的结果,即,绘制的点的轨迹。作为轨迹的该曲线在以下描述中也被称作信号轨迹,这是因为它是基于传感器信号S1、S2的。 
6-2.确定水平/垂直方向上的手势运动 
图12A至图12C示出对应于作为在水平方向上的手势运动的、向右运动/向左运动的相平面映射处理的结果的示例。 
图12A示出在作为手势操作执行向右运动并且随后执行向左运动时获得的传感器信号S1、S2。图中传感器信号S1、S2中的向右运动检测时段是其中可以获得对应于向右运动的检测的有效幅度的波形部分,以及向左运动检测时段是其中可以获得对应于向左运动的检测有效幅度的波形部分。 
作为使用对应于向右运动检测时段的、正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2,执行相平面映射处理的结果,可以获得在图12B中所示的相平面上的信号轨迹。 
同样,作为使用对应于向左运动检测时段,正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2,执行相平面映射处理的结果,可以获得在图12C中所示的相平面上的信号轨迹。 
图13A至图13C示出对应于作为在垂直方向上的手势运动的、向上运动 /向下运动的相平面映射处理的结果的示例。 
图13A示出在作为垂直手势运动的执行向下运动并且随后执行向上运动时获得的传感器信号S1、S2。图中传感器信号S1、S2中的向下运动检测时段是其中可以获得对应于向下运动的检测的有效幅度的波形部分,以及向上运动检测时段是其中可以获得对应于向上运动的检测的有效幅度的波形部分。 
作为使用对应于向下运动检测时段、正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2,执行相平面映射处理的结果,可以获得在图13B中所示的相平面上的信号轨迹。 
同样,作为使用对应于向上运动检测时段、正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2,执行相平面映射处理的结果,可以获得在图13C中所示的相平面上的信号轨迹。 
接着,在该实施例中,首先计算信号轨迹的相关系数,基于作为相平面映射处理的执行结果获得的信号轨迹来计算信号轨迹的相关系数“r”作为评估项,该评估项用于确定运动是否是对应于水平方向的手势运动(向左/向右运动)或者运动是否是对应于垂直方向的手势运动(向上运动/向下运动)。 
可以按照以下来计算相关系数“r”。 
r = Σ i = 1 N ( x i - x ‾ ) ( y i - y ‾ ) Σ i = 1 N ( x i - x ‾ ) 2 Σ i = 1 N ( y i - y ‾ ) 2
xi:NOM_S1的第i个样本值 
yi:NOM_S2的第i个样本值 
Figure GSB00000738281300202
NOM_S1的样本值的算术平均值 
Figure GSB00000738281300203
NOM_S2的样本值的算术平均值 
对应于水平方向上的手势运动的图12B和图12C中的相平面上示出的向右运动和向左运动的信号轨迹具有共同的特征。例如,当对应于信号轨迹的大体轮廓施加椭圆E时,对应于椭圆E的长轴的直线L在向右运动中和在向左运动两者中均向右上倾斜。当直线L被视作由线性函数y=ax+b表示的直线时,其将是a>0的直线。 
对应于垂直方向上的手势运动的图13B和图13C中的相平面上示出的向 上运动和向下运动的信号轨迹也具有共同的特征,然而,该特征不同于图12B和图12C。 
也就是说,与对图13B和图13C中的信号轨迹所施加的椭圆E的长轴对应的直线L在向下运动中和在向上运动两者中均向右下倾斜,并且当直线L被视作由线性函数y=ax+b表示的直线时,其将是a<0的直线。 
依据已经参照图10A至图10D解释的传感器信号S1、S2的极性和相互相位的关系,出现该特征。 
根据以上,当对应于信号轨迹获得的直线L的梯度向右上倾斜时,识别到手势运动对应于水平方向,当其向右下倾斜时,识别到手势运动对应于垂直方向。 
相关系数“r”的正/负对应于直线L的向上倾斜/向下倾斜。当传感器信号S1、S2的相位和幅度接近时,相关系数“r”近似于“+1”,并且信号轨迹的整个形状也近似向上倾斜的直线。另一方面,当传感器信号S1、S2近似于其中每个信号的相同波形被反转的相反相位的状态时,相关系数“r”近似于“-1”,并且信号轨迹的形状也近似向下倾斜的直线。 
具体地,当实际计算图12B和图12C中所示的信号轨迹的相关系数“r”时,可以获得近似-0.8的值。 
另一方面,当实际计算图13B和图13C中所示的信号轨迹的相关系数“r”时,可以获得近似-0.75至-0.8的值。 
如上所述,为了识别在水平方向和垂直方向中的哪一个方向上执行手势运动,在该实施例中计算关于正规化的传感器信号NOM_S1、NOM_S2的相关系数“r”。作为计算的结果,可以配置该算法使得当相关系数“r”大于“0”时,将手势运动识别为在水平方向上的运动,当相关系数“r”小于“0”时,将手势运动识别为在垂直方向上的运动。 
在该实施例中,当相关系数“r”的绝对值小于固定值时,如将在随后描述的,检测的手势运动对应于旋转运动的可能性较高。因此,当实际执行该实施例时,优选地是在计算相关系数“r”之后,确定检测的运动属于水平/垂直方向的手势运动和旋转运动中的哪一个。这将在随后描述。 
6-3.确定向左/向右运动中的方向和向上/向下运动中的方向 
如上所述,可以基于指示相平面上正规化的传感器信号NOM_S1、NOM_S2之间的相关程度的相关系数“r”来确定在水平方向和垂直方向中的 哪一个方向执行手势运动。 
然后,当确定是沿着水平方向执行手势运动时,必须识别手势运动是向左运动还是向右运动。同样,当确定是沿着垂直方向执行手势运动时,必须识别手势运动是向上运动还是向下运动。 
在此,再次使用对应于水平方向上的手势运动的图12A至图12C作为参照。 
在图12B中所示的与由向右运动形成的信号轨迹对应的椭圆E中,直线L具有向右上倾斜的梯度以及关于原点被偏置(bias)到第一象限。 
另一方面,在图12C中的在与由向左运动形成的信号轨迹对应的椭圆E中,直线L也具有向右上倾斜的梯度,然而,与图12B相反的方式,它关于原点被偏置到第三象限。 
依据以下事实,出现根据向右运动和向左运动的偏置的差异:当在如图10A和图10B所示的向右运动和向左运动之间进行比较时,对应于每个运动的一对传感器信号S1、S2中的信号处于同相,以及在各自运动中的传感器信号S1和在各自运动中的传感器信号S2处于异相。 
关于垂直方向上的手势运动,当在如图10C和图10D所示的向上运动和向下运动之间比较时,对应于向上运动和向下运动中的每个运动的一对传感器信号S1、S2中的信号处于异相,以及在各自运动中的传感器信号S1和在各自运动中的传感器信号S2处于异相。 
根据上述的相位关系,首先,如图13B所示,在与由向下运动形成的信号轨迹对应的椭圆E中,直线L具有向右下倾斜的梯度以及关于原点被偏置到第二象限。另一方面,如在图13C所示,在与由向上运动形成的信号轨迹对应的椭圆E中,直线L具有向右下倾斜的梯度以与图13B相反的方式、关于原点被偏置到第四象限。 
根据以上,首先,在水平方向上的手势运动中,当作为信号轨迹的总体的形状(椭圆E)在相平面上被偏置到第一象限时,它指示向右运动,当椭圆E被偏置到第三象限时,它指示向左运动。 
类似地,在垂直方向上的手势运动中,当作为信号轨迹的总体的形状(椭圆E)在相平面上被偏置到第二象限时,它指示向下运动,当椭圆E被偏置到第四象限时,它指示向上运动。 
因而,在该实施例中,为了评估信号轨迹的总体的形状(椭圆E)被偏 置到哪一个象限,计算相平面上信号轨迹的重心(barycenter)G。 
将重心G计算为坐标G(gx,gy)。 
在图12B、图12C、图13B和图13C中,将坐标G示为作为直线L的椭圆E的长轴的中点。然而,坐标G是被示意性地示出的,并且要计算的实际坐标G不总是对应于直线L。 
在此,可以考虑一些计算重心G的x坐标gx和y坐标gy的方法。作为方法之一,计算关于正规化的传感器信号NOM_S1、NOM_S2的算术平均值。例如,在该情形下,算术表达式将如下所示, 
g x = 1 N Σ i = 1 N x i , g y = 1 N Σ i = 1 N y i
重心G(gx,gy)指示在作为信号轨迹的总体的形状中重心的位置。因此,由相平面上重心G(gx,gy)距原点的方向来示出在信号轨迹的总体的形状中关于原点的偏置的方向。据此,可以将重心G(gx,gy)用作识别在相应的水平和垂直方向上的运动方向的评估值。 
也就是说,作为一种算法,在手势运动处于水平方向上的情形下,在重心G(gx,gy)位于第一象限时,可以识别出运动是向右运动,在重心G(gx,gy)位于第三象限时,运动是向左运动。同样,在手势运动处于垂直方向上的情形下,在重心G(gx,gy)位于第二象限时,将运动识别为向下运动,在重心G(gx,gy)位于第四象限时,将运动识别为向上运动。 
在此,在该实施例中要计算的相关系数“r”是用于确定手势运动属于水平方向上的运动和垂直方向上的运动中的哪一个的评估值。也就是说,它是用于评估由运动检测获得的传感器信号S1、S2是同相还是异相的评估值。 
重心位置G(gx,gy)是用于确定水平方向上的手势运动是向左运动还是向右运动以及用于确定垂直方向上的手势运动是向上运动还是向下运动的评估值。也就是说,可以将重心G视作用于评估传感器信号S1、S2本身的极性(波形图案)的值。 
作为评估和确定传感器信号S1、S2之间的相位差以及传感器信号S1、S2本身的极性的方法,通常以下方法是可设想的。 
也就是说,首先计算传感器信号S1、S2的幅度的最大值和最小值。然后,确定两个计算的最大值和最小值之间的时间差是否处于阈值内。通常并且一般地基于例如依据手势运动获得的传感器信号S1、S2的幅度值来设置该 阈值。由传感器信号S1、S2之间的峰值的时间差来确定传感器信号S1、S2是处于同相还是异相。同样,确定传感器信号S1、S2的最大值和最小值出现的顺序,由此确定信号的极性。 
在如图8A和图8B所示的一维传感器40-1、40-2的布置中,与图6A和图6B的情形相比,可以获得极其稳定的传感器信号S1、S2。然而,手势运动是实际由作为人的用户的手的移动来执行的,因此,移动速度不是恒定的并且发生手关于检测轴的抖动(tremor)。传感器信号S1、S2生成由于不确定性效应引起的某种程度的幅度和相位中的变化。当不顾这种变化因素将作为评估的传感器信号S1、S2的峰值之间的时间差与固定的阈值相比较时,难以获得具有高可靠性的确定结果。 
在该实施例中,首先在执行了关于传感器信号S1、S2的正规化处理之后执行相平面映射,然后,计算相关系数“r”和重心位置G的坐标。与例如上述的峰值之间的时间差相比较,作为用于传感器信号S1、S2之间的相位差和极性的评估值相关系数“r”和重心位置G具有较高的可信度(faithfulness)。也就是说,根据该实施例,可以获得比以前更高准确度的对上下、左右的手势运动的识别结果。 
6-4.确定左旋/右旋运动 
在该实施例中,可以基于由相平面映射处理形成的信号轨迹来识别其中物体移动从而画出圆形移动轨迹的旋转运动。因而,如参照图1解释的,除了上下运动、左右运动之外,该实施例还包括作为手势运动的右旋运动和左旋运动。 
其后,将解释该实施例中识别旋转运动的方法。 
图14A示出依据连续三次执行的作为右旋运动的手势运动输出的传感器信号S1、S2的波形示例。 
在图中所示的传感器信号S1、S2中,由一次旋转运动获得的两个波形具有M形状的峰值的绝对值处于正极性侧的极性,以及传感器信号S2的相位超前于传感器信号S1的相位。 
在图14B中示出了通过对图14A中的传感器信号S1、S2正规化并且执行相平面映射处理所获得的结果。 
在上下、左右的手势运动的情形下,传感器信号S1、S2具有可以被视作同相(0度)或者异相(180度)的相位差的关系,然而,在旋转操作的 情形下,如图14A所示,在传感器信号S1、S2中发生小于180度的相位差。因而,相关系数“r”的绝对值将小于在上下、左右的手势操作的情形下中的值。也就是说,当作为信号轨迹的形状来观察信号时,与上下、左右的手势操作的情形相比较,如图14B所示,该轨迹近似于圆形形状。也就是说,椭圆的长轴和短轴之间的比率近似于1。 
因此,作为确定手势运动是否是旋转操作的一种方法,最简单的方法是确定相关系数“r”的绝对值是否是小到依据旋转运动获得的值小的程度的值,即,小于固定值。 
根据以上,当通过相平面映射处理、依据传感器信号S1、S2的时间流逝来绘制样本值时,在此将注意力集中在相平面上的信号轨迹的旋转方向上。然后,作为图14B示出的整个信号轨迹形成轨迹,以便如箭头Ar中所示的那样,在右方向(顺时针方向)上旋转。 
通过传感器信号S1、S2之间的相位差来确定信号轨迹的旋转方向。也就是说,在图14A中传感器信号S2的相位超前于传感器信号S1的相位,因此,信号轨迹的旋转方向将是右方向。 
另一方面,图15A示出依据连续三次执行的作为左旋运动的手势运动输出的传感器信号S1、S2的波形示例。 
在图中所示的传感器信号S1、S2中,由一次旋转运动获得的两个波形具有M形状的峰值的绝对值处于负极性侧的极性,以及传感器信号S2的相位落后于传感器信号S1的相位。也就是说,传感器信号S1、S2之间的相位差的关系与图14A中的情形相反。 
依据以上,当通过对图15A的传感器信号S1、S2正规化而执行相平面映射处理时,所获得的信号轨迹是如图15B的箭头Ar所示的在左方向上(逆时针方向)旋转的轨迹。 
结果,例如,在因为相关系数“r”小于固定值,而将手势运动识别为沿着旋转方向的手势运动的情形下,为了进一步确定旋转方向(绘制旋转方向)是右旋运动的方向还是左旋运动的方向,应用以下算法是合适的。 
也就是说,计算所形成的信号轨迹的旋转方向作为整个趋势是右旋还是左旋。当获得的信号轨迹的旋转方向是右旋时,将手势运动确定为右旋运动,当信号轨迹的旋转方向是左旋时,将手势运动确定为左旋运动。 
作为信号处理,必须确定信号轨迹的方向是右旋方向还是左旋方向。 
因而,在该实施例中,计算形成信号轨迹的各个坐标的叉积。在此,在二维平面上由x轴和y轴形成的叉积仅仅具有与这两个轴正交的z轴方向的分量(z分量),并且x方向的分量和y方向的分量将是“0”。可以根据叉积的z分量之和的符号是正还是负,来计算信号轨迹的旋转方向的整个趋势。 
在此,在图16A和图16B中示出了信号轨迹的旋转方向和叉积之间的关系。 
首先,图16A示出, 
通过第i个正规化的传感器信号NOM_S1、NOM_S2的样本在相平面上绘制的坐标“0”(xi,yi,0), 
通过第i+1个正规化的传感器信号NOM_S1、NOM_S2的样本在相平面上绘制的坐标A(xi+1,yi+1,0), 
通过第i-1个正规化的传感器信号NOM_S1、NOM_S2的样本在相平面上绘制的坐标B(xi-1,yi-1,0)。 
此外,作为在二维平面上这些坐标的位置关系,示出了其中坐标A(xi+1,yi+1,0)位于坐标“0”(xi,yi,0)的左侧,以及坐标B(xi-1,yi-1,0)位于坐标“0”(xi,yi,0)的右侧的状态。 
在此,假设由矢量“a”表示从作为开始点的坐标“0”(xi,yi,0)到坐标A(xi+1,yi+1,0)的方向和距离,并且由矢量“b”表示从作为开始点的坐标“0”(xi,yi,0)到坐标B(xi-1,yi-1,0)的方向和距离。然后,当计算矢量“a”与矢量“b”之间的叉积时,在此时获得正值作为z分量的值。作为矢量“a”与矢量“b”的叉积的绝对值表示由作为相邻边的、对应于图16A中所示的矢量“a”、“b”的线段形成的平行四边形的面积S。 
图16B示出了其中在图16A中的坐标“0”(xi,yi,0)、坐标A(xi+1,yi+1,0)和坐标B(xi-1,yi-1,0)中替换了坐标A(xi+1,yi+1,0)的位置和坐标B(xi-1,yi-1,0)的位置的情形。矢量“a”和“b”的叉积的绝对值等于图16A中的值。也就是说,绝对值表示平行四边形的面积S。然而,z分量的符号将是负的。 
在该实施例中,依据图16A和图16B来计算传感器信号S1、S2的各个样本定时的叉积,并且进一步计算所计算的叉积之和。可以通过以下方式来计算叉积之和的值“p”。 
p = Σ i = 1 N { ( x i + 1 - x i ) · ( y i - 1 - y i ) - ( y i + 1 - y i ) · ( x i - 1 - x i ) }
然后,根据所计算的叉积的z分量之和的值“p”的符号是正还是负,来确定信号轨迹的旋转方向的整个趋势。也就是说,识别手势运动是左旋运动还是右旋运动。 
当通过以下图16A和图16B计算时,在叉积的z分量之和的值“p”的符号是正的情形下,确定信号轨迹的旋转方向的整个趋势是左旋。也就是说,确定手势运动为左旋运动。同样,在叉积的z分量之和的值“p”的符号是负的情形下,确定信号轨迹的旋转方向的整个趋势是右旋。也就是说,确定手势运动为右旋运动。 
7.确定手势运动的算法 
将解释用于实现上面已经描述的根据实施例的手势运动的确定的算法示例。 
首先,图17以框图的配置示出实施例的相框显示设备1的手势运动确定单元18的配置示例。由如图2所示执行程序的控制单元11来实现手势运动确定单元18。除了手势运动确定单元18之外,还在图中示出了包括一维传感器40-1、40-2的传感器单元5。 
由手势运动确定单元18中的第一传感器信号记录单元31和手势检测单元33输入从一维传感器40-1输出的传感器信号S1。由手势运动确定单元18中的第二传感器信号记录单元32和手势检测单元33输入从一维传感器40-2输出的传感器信号S2。 
尽管未示出,但处于正被输入到手势运动确定单元18的阶段中的传感器信号S1、S2已被转换为通过给定的样本频率和量化比特数目采样的数字信号。 
手势检测单元33是用于基于输入的传感器信号S1、S2来检测手势运动的时段的单元。随后将通过图19的流程图来描述手势检测单元33的处理。手势检测单元33向第一传感器信号记录单元31和第二传感器信号记录单元32通知所检测的手势运动的开始/结束。 
第一传感器信号记录单元31和第二传感器信号记录单元32通过在由手势检测单元33通知的手势运动时段中分别采用(take)传感器信号S1、S2,记录各个样本定时处的数据。 
由第一传感器信号记录单元31记录的传感器信号S1的样本数据被输出给第一正规化处理单元34。 
第一正规化处理单元34对传感器信号S1执行正规化处理以获得如图11A和图11B所述的被正规化到从-1到+1的范围内的、正规化的传感器信号NOM_S1的样本数据组。 
类似地,第二正规化处理单元35也通过采用由第二传感器信号记录单元32记录的传感器信号S2的样本数据来执行正规化处理以获得被正规化到从-1到+1的范围内的、正规化的传感器信号NOM_S2的样本数据组。 
正规化的传感器信号NOM_S1、NOM_S2的样本数据组被传送给相平面映射处理单元36。 
相平面映射处理单元36计算通过如图11A和图11B所述在相平面上绘制所输入的正规化的传感器信号NOM_S1、NOM_S2的样本数据组而获得的信号轨迹的数据,并且将该数据传送给评估项计算单元37。信号轨迹数据将是在相平面上绘制以便对应于每个样本号码“i”的、的坐标(xi,yi)的值(一对正规化的传感器信号NOM_S1和NOM_S2)。 
评估项计算单元37包括相关系数计算单元37a、重心计算单元37b和旋转方向计算单元37c。 
通过之前由“表达式1”解释的计算,相关系数计算单元37a通过使用所接收的信号轨迹数据(各个样本定时处的正规化的传感器信号NOM_S1和NOM_S2的数据)来执行计算信号轨迹的数据相关系数“r”的处理。 
例如通过之前由“表达式2”解释的计算,重心计算单元37b使用信号轨迹数据来计算重心的坐标G(gx,gy)。 
如之前由图16A和图16B以及“表达式3”解释的,旋转方向计算单元37c对信号轨迹的各个样本所计算的叉积的z坐标之和的值“p”进行计算。 
运动确定单元38通过适当地使用可以由评估项计算单元37获得的相关系数“r”、重心坐标G(gx,gy)以及叉积的z分量之和的值“p”,来执行确定手势运动对应于向左运动、向右运动、向上运动、向下运动、左旋运动以及右旋运动中的哪一个的处理,并且输出确定结果。 
控制单元11将由手势运动确定单元18输出的手势运动的确定结果处理为操作命令,由此执行控制以便获得作为示例引用的相框显示设备1的适当的操作。 
图18作为流程图示出、图17中所示的手势运动确定部件18执行的处理例程的示例。 
在图中,首先在步骤S101中通过检测手势运动时段进行记录传感器信号的处理。由手势检测单元33、第一传感器信号记录单元31和第二传感器信号记录单元32来执行图中所示的处理。 
通过图19的流程图来示出步骤S101的处理例程的示例。 
在图19的步骤S201中,首先,手势检测单元33输入传感器信号S1、S2以将它们与阈值比较。当一维传感器40-1检测到可能是手势运动的运动时,可以基于获得的传感器信号的幅度来确定在该情形下的阈值。在该情形下,将通过一维传感器40-1、40-2输入的传感器信号S1、S2按照原样与阈值比较,然而,优选地,也将正规化的传感器信号S1、S2(其可以与NOM_S1、NOM_S2相同)以及正规化的传感器信号S1、S2的值与阈值比较。 
在步骤S201中,必须等待传感器信号S1、S2的电平值(样本值)中至少一个等于或大于阈值。然后,当在步骤S201获得肯定的确定结果时,该处理前进到之后的例程步骤S202。例如,对应于图17,响应于步骤S201中获得的肯定的确定结果,手势检测单元33向第一传感器信号记录单元31和第二传感器信号记录单元32通知手势运动的开始。 
在步骤S202中开始,通过第一传感器信号记录单元31和第二传感器信号记录单元32记录传感器信号S1、S2的样本数据。也就是说,响应于手势检测单元33通知手势运动的开始,而开始传感器信号S1、S2的记录。 
可以将该情形下的手势检测单元33视作通过获得步骤S201中的肯定的确定结果来检测手势运动的开始定时的单元。手势检测单元33应当在这之后检测手势运动的结束定时。在该情形中,在两个传感器信号S1、S2从传感器信号S1、S2中的至少一个等于或者大于阈值的状态变得均小于阈值之后,在一时间点检测手势运动的结束定时,其中所述时间点为在信号变为小于阈值的状态之后经过了给定的时间段时的点。在步骤S203之后的处理将是用于检测手势运动的结束定时的处理。 
由手势检测单元33执行步骤S203。当在步骤S201中获得了肯定的确定结果时,传感器信号S1、S2中的至少一个等于或大于阈值。在这之后执行的步骤S203中,手势检测单元33确定现在两个传感器信号S1、S2是否小于阈值。 
当在步骤S203中获得了否定的确定结果时,在步骤S204中确定是否激活了定时器。在接着解释的步骤S207中重置/启动该定时器,所述定时器对 从传感器信号S1、S2变得小于阈值时的点直到被视作手势运动的结束点的时间点计时。当在步骤S204中由于定时器没有被激活而获得否定的确定结果时,处理返回到步骤S203。当定时器被激活时,则在步骤S205停止该定时器并且处理返回到步骤S203。 
当在步骤S203中获得了肯定的确定结果时,首先,在步骤S206中确定是否激活了定时器。当定时器没有被激活时,在步骤S207重置该定时器的计数值以启动计数,然后,处理返回到步骤S203。 
另一方面,当在步骤S206中由于定时器被激活而获得肯定的确定结果时,处理前进到步骤S208。 
在步骤S208中,基于定时器的当前计数值来确定是否已经过了定时器时段。当由于没有经过定时器时段而获得否定的确定结果时,处理返回到步骤S203。另一方面,当由于已经经过了定时器时段而获得肯定的确定结果时,处理前进到步骤S209并且停止定时器的计数。在步骤S208中由于已经经过了定时器时段而获得确定结果的事实对应于由手势检测单元33通知手势运动时段已经结束的处理。 
在步骤S210中,依据手势运动时段的结束,第一传感器信号记录单元和第二传感器信号记录单元32到完成了到那时为止的对传感器信号S1、S2的样本数据的记录。 
在图18中,在已经执行了步骤S101的处理之后,将执行步骤S102的处理。在步骤S102中,第一正规化处理单元34和第二正规化处理单元35对由第一传感器信号记录单元31和第二传感器信号记录单元32,记录的传感器信号S1、S2的样本数据执行正规化处理。 
之前已经参照图11A和图11B解释了正规化处理,并且将处理例程的示例示为图20的流程图。作为该流程图的步骤的流程,首先,对传感器信号S1执行正规化处理,然后,对传感器信号S2执行正规化处理。 
首先,在步骤S301,在作为与将传感器信号S1、S2一般化获得的传感器信号Sm对应的变量的“m”中代入“1”。 
接着,在步骤S302中,获取传感器信号Sm的样本数据中的最大值Smmax。该最大值Smmax对应于参照图11A解释的传感器信号S1或传感器信号S2的最大值Vp1,Vp2(绝对值)中的任一个。 
在步骤S303中,在表示传感器信号Sm的样本数据的号码的“i”中代入 作为初始值的“1”。 
在随后的步骤S304中,对传感器信号Sm中的第i个样本数据正规化。 
作为用于正规化的处理,例如,假设在传感器信号中的第i个样本数据的正规化的值是NOM_Sm_i并且在传感器信号Sm中的第i个样本数据是Sm_i,执行由以下表达式表示的计算。 
NOM_Sm_i=Sm_i/SmMAX    (表达式1) 
也就是说,如上所述,将传感器信号的样本数据的值除以相同传感器信号Sm的最大值(绝对值)。 
在步骤S305,确定变量“i”是否是最大值。该最大值对应于与手势运动时段对应记录的传感器信号S1、S2的每个样本号码N。 
当在此获得否定的确定结果时,这意味着仍然存在还没有被获取的正规化的样本值。因而,在步骤S306中递增变量“i”并且处理返回到步骤S304。因而,可以对样本数据依序获得正规化的值。 
然后,当结束传感器信号Sm的最后的样本数据的正规化处理时,在步骤S305获得肯定的确定结果,并且处理前进到步骤S307。在步骤S307中,确定变量“m”是否是最大值。对应于以上的解释,存在两个传感器信号S1、S2,因此,变量“m”的最大值是2。 
当在步骤S307获得否定的确定结果时,这意味着仍然存在还没有被执行的正规化处理的传感器信号。因而,在该情形下在步骤S308中递增变量“m”,并且处理返回到步骤S302。据此,对另一传感器信号开始正规化处理。 
然后,例如,对传感器信号S1、S2已经完成了正规化处理,在步骤S307中获得肯定的结果,并且完成了步骤S102中对传感器信号的正规化处理。 
对传感器信号S1、S2按照时间序列中的样本的顺序排列的样本数据的正规化值NOM_Sm_i可以被视作上述的正规化的传感器信号NOM_S1和正规化的传感器信号NOM_S2。 
在图20中的处理中,作为对传感器信号S1、S2执行正规化处理的例程,首先,如上述的,应用了其中首先处理传感器信号S1并且依序处理传感器信号S2的算法。然而,实际上优选地应用作为并行处理而近似同时执行对传感器信号S1、S2的正规化处理的算法以便对应于图17所示的框图配置。 
解释返回到图18。 
在执行了如步骤S102的正规化处理之后,相平面映射处理单元36通过 使用在步骤S102中获得的传感器信号S1、S2的正规化值的数据(正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2)来在步骤S103执行相平面映射处理。据此,相平面映射处理单元36获取信号轨迹的数据。 
在步骤S104中,评估项计算单元37中的相关系数计算单元37a通过使用信号轨迹的数据来计算相关系数“r”。 
在随后的步骤S105中,由运动确定单元38进行估计此时检测的手势运动属于水平方向上的手势运动、垂直方向上的手势运动以及旋转运动中的哪一种的处理。 
在步骤S105中,运动确定单元38取得在步骤S104中计算的相关系数“r”。然后,确定相关系数“r”属于r>0.5、r<-0.5和-0.5≤r≤0.5的范围中的哪一个。 
如上所述,在水平方向和垂直方向之间确定时,原则上当相关系数r是正值时,确定手势运动是水平方向上的手势运动,当相关系数r是负值时,确定手势运动是垂直方向上的手势运动。 
然而,在增加了旋转运动作为要确定的手势运动的情形下,给定固定值,并且当相关系数“r”的绝对值小于固定值时,确定手势运动是旋转运动并且当相关系数“r”的绝对值大于固定值时,确定手势运动是处于水平/垂直方向上的手势运动。 
作为在步骤S105中要与相关系数“r”比较的阈值“+0.5”、“-0.5”对应于用于确定手势运动属于水平/垂直方向上的手势运动和旋转运动中的哪一种的固定值。作为阈值的具体值“+0.5”、“-0.5”仅仅是示例,并且鉴于实际的情况应当适当地更改它们。同样,优选地将不同值设置为正阈值和负阈值。 
在该情形下,当相关系数“r”大于0.5时,将手势运动确定为处于水平方向上的手势运动。因而,当在步骤S105中确定相关系数“r”大于0.5,运动确定单元38首先在步骤S106输出手势运动是处于水平方向上的手势运动的识别结果。接着,作为对应于该识别结果的处理,执行随后步骤S107之后的例程,以由此进一步执行确定手势运动是向右运动还是向左运动的处理。 
在步骤S107中,运动确定单元38通过重心计算单元37b计算关于信号轨迹的重心G(gx,gy)。接着,在步骤S108,运动确定单元38取得在步骤S107中计算的重心G并且确定重心G(gx,gy)的坐标存在的象限。 
在步骤S108中,在确定坐标存在于第一象限时,运动确定单元38输出 手势运动是向右运动的确定结果。在确定坐标存在于第三象限时,输出手势运动是向左运动的确定结果。 
在步骤S108中,当确定坐标存在于除了第一象限和第三象限以外的象限(第二象限、第四象限)时,在此处理前进到步骤S122,并且输出还没有执行有效手势运动的确定结果。 
例如,优选地,依据之前固定的规则和计算,应用进行校正的算法,使得位于第二象限或者第四象限的重心G位于第一象限和第三象限的象限中更适合的象限,并且依据该结果输出向右运动或者向左运动的确定结果。 
当在步骤S105中确定相关系数“r”小于-0.5时,如在步骤S111中所示,运动确定单元38首先输出手势运动是处于垂直方向上的手势运动的识别结果。然后,作为对应于该识别结果的处理,执行步骤S112之后的例程,以由此进一步执行确定手势运动对应于向上运动和向下运动中的哪一个运动的处理。 
在步骤S112中,运动确定单元38通过重心计算单元37b计算关于信号轨迹的重心G(gx,gy)并且在随后的步骤S113中确定重心G(gx,gy)的坐标存在的象限。 
在步骤S113中,在确定坐标存在于第二象限时,运动确定单元38输出手势运动是向下运动的确定结果。在确定坐标存在于第四象限时,输出手势运动是向上运动的确定结果。 
当确定坐标存在于除了第二象限和第四象限以外的象限(第一象限、第三象限)时,在步骤S122确定还没有执行有效手势操作的确定结果。同样,在该情形中,优选地,进行校正使得重心G位于第二象限或第四象限,并且以与确定水平方向上的手势运动相同的方式,输出向上运动或者向下运动的确定结果。 
当在步骤S105中确定相关系数“r”等于或者大于-0.5并且等于或者小于0.5时,首先执行步骤S116的确定处理。在步骤S116中,确定传感器信号的记录样本的数目是否大于之前设置的阈值。 
如上已经描述的,当相关系数“r”等于或者大于-0.5并且等于或者小于0.5时,可以将手势运动确定为属于旋转运动。 
然而,在检测除了旋转运动以外的运动时,也存在相关系数“r”的绝对值等于或者小于固定值的可能性。例如,在以相对于水平方向或者垂直方向 显著倾斜的角度移动物体的运动的情形下,尽管它是线性移动,但在彼此正交的检测轴之间发生串扰(crosstalk)并且减小了相关系数“r”的绝对值。结果,存在相关系数“r”的绝对值变得等于或者小于固定值的可能性。 
步骤S116的处理用于考虑到以上内容而在相关系数“r”被确定为等于或者大于-0.5并且等于或者小于0.5时辨别检测的运动是属于旋转运动还是其他运动。 
传感器信号的记录样本的数目N指示由第一传感器信号记录单元31和第二传感器信号记录单元32记录的样本数据的数目,以便对应于由手势检测单元33检测的手势运动时段。也就是说,记录样本的数目N是由手势检测单元33检测的手势运动时段,其指示了在其间已经连续检测运动的时间长度。 
水平/垂直方向上的手势运动是线性移动,因此,作为手势运动时段检测的时间段是较短的。另一方面,旋转运动具有描绘弧形的移动轨迹,因此,时间段将因而较长。也就是说,作为旋转运动,适当长的时间段对于手势运动时段是必要的。 
因此,与步骤S116对应,基于所获得的样本的数目来确定阈值,所述获得的样本的数目对应于当执行旋转操作时作为手势运动时段获得的共同的(common)、平均时间长度。作为步骤S116的处理,当记录样本的数目N大于阈值时,在步骤S117中获得手势运动是旋转运动的确定结果。另一方面,当记录样本的数目N小于阈值的否定的确定结果时,处理前进到步骤S122,并且输出还没有执行有效运动的确定结果。 
在步骤S118中,运动确定单元38计算信号轨迹的旋转方向。也就是说,运动确定单元38通过执行之前的“表达式3”的计算,来计算信号轨迹的叉积的z分量之和的值“p”。叉积的z分量之和的值“p”的正/负指示旋转方向。 
在步骤S119中,运动确定单元38基于在步骤S118中计算的叉积的z分量之和的值“p”,来确定信号轨迹的旋转方向的整个趋势。也就是说,当叉积的z分量之和的值“p”是正值时,确定信号轨迹的旋转方向的整个趋势是左旋,当叉积的z分量之和的值“p”是负值时,确定信号轨迹的旋转方向的整个趋势是右旋。 
当运动确定单元38在步骤S119中确定旋转方向是右旋时,该单元在步骤S120输出右旋运动的确定结果。当运动确定单元38确定旋转方向是左旋 时,该单元在步骤S121输出左旋运动的确定结果。 
8.相平面映射处理的修改的示例 
在以上参照图11A和图11B解释的相平面映射处理中,通过使用在相同的样本定时处的正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2的值,在相平面上绘制坐标。也就是说,当关于正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2的N个记录样本的第i个样本值是xi、yi时,依序在相平面上绘制坐标(xi,yi)(1≤i≤N)。在该情形下,将正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2的值按其原样用作要绘制的坐标的坐标值。 
另一方面,在相平面映射处理的修改示例中,使用通过对原始的正规化的传感器信号NOM_S1、NOM_S2的样本值取幂(exponentiation)获得的值作为在相平面上要绘制的x轴坐标和y轴坐标的值。在该情形下,使用3或更大的奇数作为取幂的指数“n”。 
也就是说,作为正规化处理,当关于正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2的N个记录样本的第i个样本值是xi、yi时,绘制坐标(xi^n,yi^n):(1≤i≤N,n是3或者更大的奇数)。 
首先,在对正规化的传感器信号NOM_S1、正规化的传感器信号NOM_S2取幂时,将具有较小的绝对值的值转换为更小的值。这意味着绝对值越大给定越大的权重。因此,与绘制的坐标(xi,yi)的情形相比,强调了在相平面上形成的信号轨迹的综合(comprehensive)形状的趋势。例如,如上所述在水平/垂直方向中的手势运动的情况下,信号轨迹的综合形状可被看作椭圆E。在该情况下椭圆E的形状变长,其中长轴和短轴的比率增加。 
然而,在使用偶数作为取幂的指数“n”时,在原始样本值(xi,yi)是负数的情形下,取幂后的值被反转为正值。因而,使用奇数作为的幂的指数“n”允许将原始样本值(xi,yi)的正/负符号保持原样而不反转。 
强调并且可以拉长(elongate)通过坐标(xi^n,yi^n)执行相平面映射所形成的信号轨迹的整个形状。作为通过使用以此方式形成的信号轨迹所计算的相关系数“r”,对应于例如在水平/垂直方向上的手势运动,可以获得大于固定值的绝对极值(extreme)绝对值。同样,对应于旋转运动,可以获得小于固定值的极值。也就是说,在确定手势运动属于水平方向、垂直方向和旋转方向上的手势运动中的哪一种时,可以增加准确度。 
同样当基于由坐标(xi^n,yi^n)形成的信号轨迹来计算重心G的坐标时,尽管所计算的坐标依据所检测的手势运动位于适当的象限,但是它们可以是远离原点并且是明确的(definite)。也就是说,关于水平方向上的手势运动,提高了对向右运动和向左运动的确定准确度。同样,关于垂直方向上的手势运动,可以增强对向上运动和向下运动的确定准确度。 
例如,通过以下计算,基于由坐标(xi^n,yi^n)形成的信号轨迹可以计算重心G的坐标(gx,gy)。 
g x = Σ i = 1 N x i 3 , g y = Σ i = 1 N y i 3
9.关于一维传感器的布置示例的修改示例 
在传感器单元5中包括的一维传感器40-1、40-2中、检测一维移动的两对红外检测元件51A-1、51B-1以及红外检测元件51A-2、51B-2的布置示例不限于图8A和图8B中所示的布置示例。也就是说,优选地应用其他配置,只要通过对关于要识别的/确定的沿着两个轴的线性手势运动的各个移动方向、检测轴给出例如45度的角度,一对红外检测元件51A-1、51B-1和一对红外检测元件51A-2、51B-2可以对沿着两个轴的2个线性手势运动、以时间差输出对应于移动的信号Sa、Sb。 
因而,作为一维传感器的布置的修改示例,参照图21A、图21B和图22A、图22B将示出红外检测元件51A-1、51B-1以及红外检测元件51A-2、51B-2的其他布置示例。 
在图21A和图21B中所示的修改示例中,示出了其中在作为传感器单元5的一个组件/设备上安装红外检测元件51A-1、51B-1以及红外检测元件51A-2、51B-2的示例。例如,通常提供包括一对红外检测元件51A、51B的设备,诸如图8A和图8B所示的一维传感器40-1、40-2,作为通用的热释电传感器组件。然而,在诸如在该实施例中,基本上检测沿着彼此正交的两个轴的线性手势运动的情形下,优选地,还将该设备配置为一个包括两对红外检测元件51A-1、51B-1以及红外检测元件51A-2、51B-2的热释电传感器组件。 
作为在图21A中的布置,首先,对应于红外检测元件51A-1、51B-1的检测轴L1和对应于红外检测元件51A-2、51B-2的检测轴L2关于水平/垂直方向处于与图8A相同的角度关系。在该条件下,通过所示的示例,在通过 检测轴L1的位置处布置红外检测元件51A-1、51B-1并且在通过检测轴L2的位置处布置红外检测元件51A-2、51B-2。 
在图21B中示出了根据图21A的配置、依据红外检测元件51A-1、51B-1以及红外检测元件51A-2、51B-2的布置形成的空间检测区域60A-1、60B-1以及空间检测区域60A-2、60B-2。 
接着,将解释在图22A和图22B中所示的修改示例。 
在该情形下,如图22A所示,将检测轴L1设置为被分为彼此之间处于固定距离的2个平行的检测轴L1a、L1b。检测轴L1a、L1b设置了关于水平/垂直方向的、与图8A的检测轴L1相同的角度。在该情形下,应用了其中检测轴L1a处于较下侧而检测轴L1b处于上侧的位置关系。类似的,也将检测轴L2设置为被分为彼此之间处于固定距离的2个平行的检测轴L2a、L2b,只要关于水平/垂直方向设置了与图8A的检测轴L2相同的角度。在该情形下,应用了其中检测轴L2b处于较下侧而检测轴L2a处于上侧的位置关系。 
在以上的条件下,在检测轴L1a上布置红外检测元件51A-1,并且在检测轴L1b上布置红外检测元件51B-1。同样,在检测轴L2a上布置红外检测元件51A-2,并且在检测轴L2b上布置红外检测元件51B-2。 
在图22B中示出了依据红外检测元件51A-1、51B-1以及红外检测元件51A-2、51B-2的布置形成的空间检测区域60A-1、60B-1以及空间检测区域60A-2、60B-2。 
同样,根据图21A、图21B以及图22A、图22B所示的配置示例的任一种,一对红外检测元件51A-1、51B-1也可以以图8A和图8B所示的方式,对于水平/垂直方向的任一个方向的移动,以时间差检测移动。 
同样,另一对红外检测元件51A-2、51B-2也可以对水平/垂直方向的任一个方向中的移动,以时间差检测移动。 
红外检测元件51A-1、51B-1和红外检测元件51A-2、51B-2检测水平/垂直方向上的线性移动的顺序与图8A和图8B相同。 
在之前的解释中,图17的手势运动确定单元18执行软件处理,所述软件处理是由作为控制单元11的CPU执行程序实现的。然而,可以通过DSP(数字信号处理器)来配置作为手势运动确定单元18的信号处理。也就是说,允许在DSP中存储用于执行作为手势运动确定单元18的信号处理的程序和指令。 
还可以设想由硬件来配置作为手势运动确定单元18的信号处理。 
可进一步设想通过写入例如闪存和ROM来存储由作为控制单元11的CPU执行的程序,以及在可移动存储介质中存储程序并且从可移动存储介质安装(包括更新)所述程序以便将其存储在闪存等中。还可设想可以通过允许程序通过给定的数据接口在另一主机设备的控制下安装程序。进一步,可设想在网络上的服务器等中的存储设备上存储程序以具有例如执行手势识别的设备网络功能,可以通过从服务器下载获取该功能来安装所述程序。 
在之前的解释中,对一维传感器40-1、40-2的检测轴L1、L2给出了相对于水平/垂直方向的45度的角度。这是因为在实施例中定义的其中两个轴正交的线性手势运动是沿着对应于向左和向右运动的水平方向(第一方向)以及沿着对应于向上和向下运动的垂直方向(第二方向)。 
例如,当将其中两个轴正交的线性手势运动定义为分别沿着相对于水平/垂直方向处于45度角度的方向的运动时,应当布置一维传感器40-1、40-2使得检测轴L1、L2对应于水平/垂直方向。 
在该实施例中,作为最有可能的示例,将沿着两个轴的线性手势运动定义为沿着彼此正交方向的运动时,然而,方向处于正交不是必须的。也就是说,线性手势运动的各个的轴彼此交叉的角度可以是不同于90度的角度。 
在该实施例中,即使当线性手势运动的各个的轴彼此交叉的角度是不同于90度的角度时,如果在一对检测元件处获得了必要的检测时间差,也可以适当地识别各个轴的方向上的手势运动。 
在以上的描述中,已经列举了其中应用双元热释电传感器作为一维传感器40的情形。然而,可以列举除了使用热释电效应的系统以外的其他系统作为要被应用为一维传感器的传感器系统。可以应用基于这些系统配置的一维传感器。 
在上面的解释中,将实施例中的识别/确定手势的配置应用到相框显示设备,然而,这仅仅是示例。可以以不同的方式将实施例的手势识别的配置应用到其他各种类型的设备。 
本申请包含分别于2009年2月12日和2009年5月18日向日本专利局提交的日本优先权专利申请JP2009-030136和JP2009-120193中所公开的内容相关的主题,通过引用在此并入其全部内容。 
本领域的技术人员应当理解取决于设计要求和其他因素,可以出现各种 修改、组合、子组合和变更,只要它们在所附的权利要求或其等效物的范围内。 

Claims (7)

1.一种手势识别装置,包括:
第一一维传感器部件和第二一维传感器部件,用于检测与沿着一个检测轴的一维方向上的物体的运动对应的移动,并且输出与检测的移动对应的信号,其中沿着关于第一方向和第二方向的不同方向布置检测轴,所述第一方向和第二方向是被定义为识别目标的物体的线性运动的方向;
正规化处理部件,用于通过将从第一一维传感器部件和第二一维传感器部件输出相应的第一信号和第二信号的幅度值转换为由相对于峰值的比率表示的值,来执行正规化处理;
相平面映射处理部件,用于通过使用在各个相同的定时处的,基于正规化的第一信号值的x坐标值和基于正规化的第二信号值的y坐标值、在相平面上绘制坐标,以时间序列形成对应于第一信号和第二信号的信号轨迹;
相关系数计算部件,用于通过使用形成所述信号轨迹的坐标值来计算相对于第一信号和第二信号的相关系数;以及
运动确定部件,用于至少基于所述相关系数的值是正还是负,来确定所检测的移动是第一方向上的运动还是第二方向上的运动。
2.根据权利要求1所述的手势识别装置,进一步包括:
重心计算部件,用于计算相平面上信号轨迹的重心的坐标,
其中,当所述相关系数对应于运动是沿着第一方向的确定结果时,所述运动确定部件基于所计算的重心的坐标来确定所述运动是在第一方向上的正向运动还是反向运动,以及
当所述相关系数对应于运动是沿着第二方向的确定结果时,基于所计算的重心的坐标来确定所述运动是在第二方向上的正向运动还是反向运动。
3.根据权利要求1或2所述的手势识别装置,进一步包括:
绘制旋转方向识别部件,用于识别绘制旋转方向,所述绘制旋转方向是在以圆形的方式移动物体的旋转运动被固定为要识别的物体的运动的条件下,以时间序列来绘制所述信号轨迹的坐标时的旋转方向,
其中,当所述相关系数的绝对值等于或者小于对应于所检测的物体的移动是旋转运动的确定结果的固定值时,所述运动确定部件基于所识别的绘制旋转方向来确定所述运动是右旋运动还是左旋运动。
4.根据权利要求3所述的手势识别装置,
其中,所述绘制旋转方向识别部件基于在绘制的各个坐标处的叉积的z分量的值求和之后的和值的正/负来识别所述绘制旋转方向。
5.根据权利要求3所述的手势识别装置,
其中,当所述相关系数的绝对值等于或者小于固定值以及其中已经检测物体的移动的时段的时间长度等于或者大于固定值时,所述运动确定部件获得检测的物体的移动是旋转运动的确定结果。
6.根据权利要求1或2所述的手势识别装置,
其中,所述相平面映射处理部件使用由奇数指数对正规化的第一信号的值取幂获得的值作为基于正规化的第一信号的值的x坐标值,并且
使用由奇数指数对正规化的第二信号的值取幂获得的值作为基于正规化的第二信号的值的y坐标值。
7.一种手势识别方法,包括步骤:
通过将从第一一维传感器部件和第二一维传感器部件输出的相应的第一信号和第二信号幅度值转换为由相对于峰值的比率表示的值,来执行正规化处理,其中,所述第一一维传感器部件和第二一维传感器部件中的每一个检测与沿着一个检测轴的一维方向上的物体的运动对应的移动,并且输出与检测的移动对应的信号,其中沿着相应于第一方向和第二方向的不同方向布置检测轴,所述第一方向和第二方向是被定义为识别目标的物体的线性运动的方向;
通过使用在各个相同的定时处的,基于正规化的第一信号值的x坐标值和基于正规化的第二信号值的y坐标值、在相平面上绘制坐标,以时间序列形成对应于第一信号和第二信号的信号轨迹;
通过使用形成所述信号轨迹的坐标值来计算相对于第一信号和第二信号的相关系数;以及
至少基于所述相关系数的值是正还是负,来确定所检测的移动是第一方向上的运动还是第二方向上的运动。
CN2010101183904A 2009-02-12 2010-02-12 手势识别装置和手势识别方法 Expired - Fee Related CN101807113B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009030136 2009-02-12
JP030136/09 2009-02-12
JP120193/09 2009-05-18
JP2009120193A JP5177075B2 (ja) 2009-02-12 2009-05-18 動作認識装置、動作認識方法、プログラム

Publications (2)

Publication Number Publication Date
CN101807113A CN101807113A (zh) 2010-08-18
CN101807113B true CN101807113B (zh) 2012-07-04

Family

ID=42541117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101183904A Expired - Fee Related CN101807113B (zh) 2009-02-12 2010-02-12 手势识别装置和手势识别方法

Country Status (3)

Country Link
US (1) US8224619B2 (zh)
JP (1) JP5177075B2 (zh)
CN (1) CN101807113B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778405A (zh) * 2012-10-17 2014-05-07 原相科技股份有限公司 以自然影像进行的手势辨识方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090185080A1 (en) * 2008-01-18 2009-07-23 Imu Solutions, Inc. Controlling an electronic device by changing an angular orientation of a remote wireless-controller
WO2011148607A1 (ja) * 2010-05-28 2011-12-01 パナソニック株式会社 ジェスチャ認識装置及びジェスチャ認識方法
CN101968714B (zh) * 2010-09-30 2014-06-04 中兴通讯股份有限公司 识别在移动终端界面上输入的操作轨迹的方法和系统
JP5554689B2 (ja) * 2010-11-22 2014-07-23 旭化成エレクトロニクス株式会社 位置および動作判定方法および入力装置
JP5617581B2 (ja) * 2010-12-08 2014-11-05 オムロン株式会社 ジェスチャ認識装置、ジェスチャ認識方法、制御プログラム、および、記録媒体
JP5527280B2 (ja) * 2011-05-16 2014-06-18 コニカミノルタ株式会社 人体検知装置及び該人体検知装置を備えた画像処理装置
US8897491B2 (en) 2011-06-06 2014-11-25 Microsoft Corporation System for finger recognition and tracking
US9507427B2 (en) * 2011-06-29 2016-11-29 Intel Corporation Techniques for gesture recognition
US20130033644A1 (en) * 2011-08-05 2013-02-07 Samsung Electronics Co., Ltd. Electronic apparatus and method for controlling thereof
EP2986014A1 (en) 2011-08-05 2016-02-17 Samsung Electronics Co., Ltd. Method for controlling electronic apparatus based on voice recognition and motion recognition, and electronic apparatus applying the same
JP2013080413A (ja) * 2011-10-05 2013-05-02 Sony Corp 入力装置、入力認識方法
WO2013055777A1 (en) * 2011-10-10 2013-04-18 Edward Hartley Sargent Capture of events in space and time
CN102520795B (zh) * 2011-12-07 2014-12-24 东蓝数码股份有限公司 智能终端上基于陀螺仪的人机交互检测及处理方法
CN102566796B (zh) * 2011-12-07 2015-03-11 东蓝数码有限公司 智能终端上基于线加速度传感器的人机交互检测及处理方法
US20130325256A1 (en) * 2012-05-29 2013-12-05 Delphi Technologies, Inc. Non-contact gesture recognition system and method
JP5645885B2 (ja) * 2012-06-29 2014-12-24 京セラドキュメントソリューションズ株式会社 画像形成装置
TWI479430B (zh) * 2012-10-08 2015-04-01 Pixart Imaging Inc 以自然影像進行的手勢辨識方法
CN103023654B (zh) * 2012-12-10 2016-06-29 深圳Tcl新技术有限公司 智能遥控系统识别过程中的去除抖动方法及装置
EP2929486A4 (en) 2012-12-10 2016-11-23 Invisage Technologies Inc RECORDING SCENES AND EVENTS IN SPACE AND TIME
US20140282280A1 (en) * 2013-03-14 2014-09-18 Samsung Electronics Co., Ltd. Gesture detection based on time difference of movements
WO2014143867A1 (en) * 2013-03-15 2014-09-18 Springs Window Fashions, Llc Window covering motorized lift and control system motor and operation
JP2014182452A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 情報処理装置及びプログラム
US9971414B2 (en) 2013-04-01 2018-05-15 University Of Washington Through Its Center For Commercialization Devices, systems, and methods for detecting gestures using wireless communication signals
US9672627B1 (en) * 2013-05-09 2017-06-06 Amazon Technologies, Inc. Multiple camera based motion tracking
DE102014106661B4 (de) * 2013-05-24 2023-11-16 Avago Technologies International Sales Pte. Ltd. Schalterbetätigungseinrichtung, mobiles Gerät und Verfahren zum Betätigen eines Schalters durch eine nicht-taktile Translationsgeste
CN103605460B (zh) * 2013-08-30 2017-01-25 华为技术有限公司 一种手势识别方法和相关终端
DE102013015337A1 (de) * 2013-09-14 2015-03-19 Daimler Ag Verfahren zum Betreiben eines Gestenerkennungssystems für einen Kraftwagen
JP6360736B2 (ja) * 2013-09-17 2018-07-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 空気調和装置
CN104516660B (zh) * 2013-09-27 2019-03-08 联想(北京)有限公司 一种信息处理方法、系统及电子设备
US9665204B2 (en) * 2013-10-04 2017-05-30 Microchip Technology Incorporated Continuous circle gesture detection for a sensor system
US20160259421A1 (en) * 2013-10-08 2016-09-08 University Of Washington Through Its Center For Commercialization Devices, systems, and methods for controlling devices using gestures
KR102098400B1 (ko) * 2013-10-28 2020-04-08 매그나칩 반도체 유한회사 제스처 셀 및 이를 포함하는 제스처 센서
CN103558927A (zh) * 2013-11-21 2014-02-05 广州视声电子实业有限公司 一种3d手势控制方法和装置
CN104898822B (zh) * 2014-03-03 2018-04-27 联想(北京)有限公司 一种控制方法及电子设备
US9509648B2 (en) * 2014-04-11 2016-11-29 International Business Machines Corporation Associating sentiment with objects presented via social media
CN105446463B (zh) * 2014-07-09 2018-10-30 杭州萤石网络有限公司 进行手势识别的方法及装置
CN106489111B (zh) * 2014-07-15 2019-05-10 旭化成株式会社 输入设备、生物体传感器、存储介质以及模式设定方法
US9692968B2 (en) 2014-07-31 2017-06-27 Invisage Technologies, Inc. Multi-mode power-efficient light and gesture sensing in image sensors
USD822060S1 (en) 2014-09-04 2018-07-03 Rockwell Collins, Inc. Avionics display with icon
DE102014017585B4 (de) * 2014-11-27 2017-08-24 Pyreos Ltd. Schalterbetätigungseinrichtung, mobiles Gerät und Verfahren zum Betätigen eines Schalters durch eine nicht-taktile Geste
JP2016118707A (ja) * 2014-12-22 2016-06-30 株式会社リコー 画像形成装置
CN104573653A (zh) * 2015-01-06 2015-04-29 上海电机学院 一种物体运动状态的识别装置及方法
US9836896B2 (en) 2015-02-04 2017-12-05 Proprius Technologies S.A.R.L Keyless access control with neuro and neuro-mechanical fingerprints
US9577992B2 (en) 2015-02-04 2017-02-21 Aerendir Mobile Inc. Data encryption/decryption using neuro and neuro-mechanical fingerprints
US9590986B2 (en) 2015-02-04 2017-03-07 Aerendir Mobile Inc. Local user authentication with neuro and neuro-mechanical fingerprints
US10357210B2 (en) 2015-02-04 2019-07-23 Proprius Technologies S.A.R.L. Determining health change of a user with neuro and neuro-mechanical fingerprints
CN105069409B (zh) * 2015-07-24 2018-05-15 上海科勒电子科技有限公司 一种基于红外技术的三维手势识别方法及系统
US10429935B2 (en) * 2016-02-08 2019-10-01 Comcast Cable Communications, Llc Tremor correction for gesture recognition
JP2017150942A (ja) * 2016-02-24 2017-08-31 アイシン精機株式会社 車両用操作検出装置
CN107543612A (zh) * 2016-06-26 2018-01-05 周尧 一种智能手势识别装置
CN107015641A (zh) * 2017-02-28 2017-08-04 海航生态科技集团有限公司 判断左打右打的方法及装置
JP7008195B2 (ja) * 2017-10-27 2022-01-25 パナソニックIpマネジメント株式会社 撮影装置
US11350060B1 (en) * 2018-03-05 2022-05-31 Amazon Technologies, Inc. Using motion sensors for direction detection
CN111259694B (zh) * 2018-11-30 2021-02-12 北京字节跳动网络技术有限公司 基于视频的手势移动方向识别方法、装置、终端和介质
JP7265873B2 (ja) * 2019-01-28 2023-04-27 株式会社東海理化電機製作所 動作判別装置、コンピュータプログラム、および記憶媒体
JP7212531B2 (ja) * 2019-01-28 2023-01-25 株式会社東海理化電機製作所 動作判別装置、コンピュータプログラム、および記憶媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766820B2 (ja) * 1991-09-20 1998-06-18 セイコープレシジョン株式会社 人体移動方向判別装置
JP3010610B2 (ja) * 1992-05-15 2000-02-21 株式会社明電舎 空間フィルタを用いた移動距離測定法
JPH0738971A (ja) 1993-07-22 1995-02-07 Hokuriku Electric Ind Co Ltd リモコン装置
JPH11259206A (ja) * 1998-03-09 1999-09-24 Fujitsu Ltd 赤外線検出式入力装置
JP3775779B2 (ja) * 2000-10-30 2006-05-17 株式会社国際電気通信基礎技術研究所 歩行航行装置およびそれを用いたナビゲーションシステム
JP2004141514A (ja) * 2002-10-28 2004-05-20 Toshiba Corp 画像処理装置及び超音波診断装置
JP2006277626A (ja) * 2005-03-30 2006-10-12 Saxa Inc 焦電型赤外線センサを用いた非接触入力装置
JP4151982B2 (ja) * 2006-03-10 2008-09-17 任天堂株式会社 動き判別装置および動き判別プログラム
JP5097452B2 (ja) 2006-06-06 2012-12-12 オプテックス株式会社 感度切替型の侵入検知システム
JP4897411B2 (ja) * 2006-09-26 2012-03-14 任天堂株式会社 情報処理プログラムおよび情報処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778405A (zh) * 2012-10-17 2014-05-07 原相科技股份有限公司 以自然影像进行的手势辨识方法
CN103778405B (zh) * 2012-10-17 2017-07-04 原相科技股份有限公司 以自然影像进行的手势辨识方法

Also Published As

Publication number Publication date
JP2010211781A (ja) 2010-09-24
US20100204953A1 (en) 2010-08-12
CN101807113A (zh) 2010-08-18
US8224619B2 (en) 2012-07-17
JP5177075B2 (ja) 2013-04-03

Similar Documents

Publication Publication Date Title
CN101807113B (zh) 手势识别装置和手势识别方法
Kiefer et al. Eye tracking for spatial research: Cognition, computation, challenges
Garg et al. Semantic–geometric visual place recognition: a new perspective for reconciling opposing views
US10902056B2 (en) Method and apparatus for processing image
US9317921B2 (en) Speed-up template matching using peripheral information
US20120308092A1 (en) Method and apparatus for fingerprint image reconstruction
US20140168367A1 (en) Calibrating visual sensors using homography operators
Zuñiga-Noël et al. The UMA-VI dataset: Visual–inertial odometry in low-textured and dynamic illumination environments
US20140085245A1 (en) Display integrated camera array
JP2010211781A5 (zh)
CN102741782A (zh) 用于位置探测的方法和系统
US20130002541A1 (en) Image processing device, image processing method and program
Raudies et al. Modeling boundary vector cell firing given optic flow as a cue
CN112132866A (zh) 目标对象跟踪方法、装置、设备及计算机可读存储介质
Yesiltepe et al. Computer models of saliency alone fail to predict subjective visual attention to landmarks during observed navigation
Tomono Loop detection for 3D LiDAR SLAM using segment-group matching
Peretroukhin et al. Inferring sun direction to improve visual odometry: A deep learning approach
Emerson et al. Investigating visitor engagement in interactive science museum exhibits with multimodal Bayesian hierarchical models
Ke et al. Sample partition and grouped sparse representation
Solman et al. Spatial partitions systematize visual search and enhance target memory
Abuhashish et al. Using augmented reality technology in pathfinding
Giannopoulos Supporting Wayfinding Through Mobile Gaze-Based Interaction
Kano et al. Hand waving in command spaces: a framework for operating home appliances
Yang et al. What Do We Actually Need During Self-localization in an Augmented Environment?
Basori et al. Intelligence Context Aware Mobile Navigation using Augmented Reality Technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20150212

EXPY Termination of patent right or utility model