CN101872838A - 具有埋入相变化区域的存储单元及其制造方法 - Google Patents

具有埋入相变化区域的存储单元及其制造方法 Download PDF

Info

Publication number
CN101872838A
CN101872838A CN200910134763A CN200910134763A CN101872838A CN 101872838 A CN101872838 A CN 101872838A CN 200910134763 A CN200910134763 A CN 200910134763A CN 200910134763 A CN200910134763 A CN 200910134763A CN 101872838 A CN101872838 A CN 101872838A
Authority
CN
China
Prior art keywords
electrode
hearth electrode
width
column position
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910134763A
Other languages
English (en)
Other versions
CN101872838B (zh
Inventor
龙翔澜
林仲汉
杨明
亚历桑德罗·加布里埃尔·史克鲁特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
International Business Machines Corp
Original Assignee
Macronix International Co Ltd
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd, International Business Machines Corp filed Critical Macronix International Co Ltd
Publication of CN101872838A publication Critical patent/CN101872838A/zh
Application granted granted Critical
Publication of CN101872838B publication Critical patent/CN101872838B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/82Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays the switching components having a common active material layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Other compounds of groups 13-15, e.g. elemental or compound semiconductors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells

Abstract

本发明公开了一种具有埋入相变化区域的存储单元及其制造方法。本发明公开的一种存储单元包含一底电极包括一衬底部位及一柱状部位在该衬底部位之上,该柱状部位具有小于该衬底部位的一宽度。一介电层围绕该底电极且具有一顶表面。一存储元件于该底电极之上且包含一凹陷部位由该介电层的该顶表面延伸与该底电极的该柱状部位连接,其中该存储元件的该凹陷部位具有一宽度实质相等于该底电极的该柱状部位的该宽度。一顶电极在该存储元件之上。

Description

具有埋入相变化区域的存储单元及其制造方法
技术领域
本发明是有关于使用相变化为基础存储材料,像是硫属化物与其它可编程电阻材料的高密度存储装置,以及制造这种装置的制造方法。
背景技术
相变化为基础存储材料,如硫属化物及类似材料的这种相变化存储材料,可通过施加其幅度适用于集成电路中的电流,而致使晶相变化。一般而言非晶态的特征是其电阻高于结晶态,此电阻值可轻易测量得到而用以作为指示。这种特性则引发使用可编程电阻材料以形成非易失性存储器电路等兴趣,此电路可用于随机存取读写。
从非晶态转变至结晶态一般是一低电流步骤。从结晶态转变至非晶态(以下指称为复位(reset))一般是一高电流步骤,其包括一短暂的高电流密度脉冲以融化或破坏结晶结构,其后此相变化材料会快速冷却,抑制相变化的过程,使得至少部份相变化结构得以维持在非晶态。需要最小化造成由该结晶态转变到该非晶态相变化的该复位电流幅度。该存储单元使用相变化材料包含一「主动区域」在该存储单元的该相变化材料的主体内,该区域是实际相变化发生所在。所使用的技术是使制造该主动区域很小,使得降低引起该相变化所需要的电流。同时也使用相关技术来热隔离该相变化存储单元的该主动区域,使得将用来引起相变化的电阻热被留在该主动区域中。
为降低复位所需的电流幅度,也可通过降低该存储单元中该相变化存储元件的大小,及/或在电极及该相变化材料间的结区域来达成,如此可以在较小绝对电流值通过该相变化材料元件的情况下而达到较高的电流密度。
此领域发展的一种方法是致力于在一集成电路结构上形成微小孔洞,并使用微量可编程的电阻材料填充这些微小孔洞。致力于这些微小孔洞的专利包括:于1997年11月11日公告的美国专利第5,687,112号“MultibitSingle Cell Memory Element Having Tapered Contact”、发明人为Ovshinky;于1998年8月4日公告的美国专利第5,789,277号“Method of MakingChalogenide[sic]Memory Device”、发明人为Zahorik等;于2000年11月21日公告的美国专利第6,150,253号“Controllable Ovonic Phase-ChangeSemiconductor Memory Device and Methods of Fabricating the Same”、发明人为Doan等。
一种用以在相变化单元中控制主动区域尺寸的方式,是设计非常小的电极以将电流传送至一相变化材料体中。此微小电极结构将在相变化材料的类似伞状小区域中诱发相变化,也即接触部位。请参照2002/8/22发证给Wicker的美国专利6,429,064号“Reduced Contact Areas of SidewallConductor”、2002/10/8发证给Gilgen的美国专利6,462,353“Method forFabricating a Small Area of Contact Between Electrodes”、2002/12/31发证给Lowrey的美国专利6,501,111号“Three-Dimensional(3D)ProgrammableDevice”、以及2003/7/1发证给Harshfield的美国专利6,563,156号“MemoryElements and Methods for Making same”。
制造非常小电极装置所引发的一种问题是与该非常小的电极不良接着有关,而可能造成在工艺中该底电极脱落。
美国专利申请号第12/016,840号专利,申请日为2008年1月18日以”Memory Cell with Memory Element Contacting an Inverted T-ShapedBottom Electrode”为题,提出一种具有反向T型的一底电极,在该底电极及存储材料之间具有一小块接触面积,形成一小块主动区域并降低该存储单元复位所需要的能量。该反向T型底电极也改善了该底电极在工艺中的该结构稳定度,因此提升这种装置的制造产率。
因此,需要一种可靠的存储单元的制造方法,可用于高密度集成电路存储装置的存储单元,并在该底电极的该临界尺寸上有着良好的控制,且可解决非常小电极的结构稳定度问题。
发明内容
有鉴于此,本发明的主要目的是提供一种存储单元,包含一底电极包括一衬底部位及一柱状部位在该衬底部位之上,该柱状部位具有小于该衬底部位的一宽度。一介电层围绕该底电极且具有一顶表面。一存储元件于该底电极之上且包含一凹陷部位由该介电层的该顶表面延伸与该底电极的该柱状部位连接,其中该存储元件的该凹陷部位具有一宽度实质相等于该底电极的该柱状部位的该宽度。一顶电极在该存储元件之上。
本发明是提供一种生产一存储单元的方法,包含形成一底电极包含一衬底部位及一柱状部位在该衬底部位之上,该柱状部位具有小于该衬底部位的一宽度。形成一介电层围绕该底电极且具有一顶表面。形成一凹陷由该介电层的顶表面延伸至该柱状部位的一顶表面,该凹陷具有一宽度实质相等于该底电极的该柱状部位的该宽度。形成一存储元件于该底电极之上且在该凹陷内包含一凹陷部位,并与该底电极的该柱状部位的该顶表面相连接。形成一顶电极在该存储元件之上。
本发明是提供一种存储单元,包含一存储存取层包括多个存储单元的存取电路包含一导电栓塞阵列延伸至该存储存取层的一顶表面。多个底电极,每一底电极包含一衬底部位及一柱状部位在该衬底部位之上,该柱状部位具有小于该衬底部位的一宽度,其中每一底电极接触一对应的导电栓塞。一介电层围绕该多个底电极并具有一顶表面。多个存储材料条于该底电极之上及作为该多个存储单元的存储元件。每一存储元件包含一凹陷部位由该介电层的该顶表面延伸至与其连接的一对应底电极的该柱状部位,其中每一该存储元件的该凹陷部位具有一宽度实质地相等于该对应底电极的该柱状部位的该宽度。该装置也包括多个顶电极条,每一顶电极条于一对应的存储材料条之上。
本发明提供一种存储单元在该存储元件内的该主动区域可以被制造的非常的小,因此降低复位时所需要的电流量。该小块主动区域是该柱状部位以及该凹陷部位的该宽度小于在该介电层的该顶表面上方的该存储元件部位的该宽度的结果。这样宽度上的差异可集中电流密度至该存储元件的该凹陷部位,因而降低了需要引起该主动区域的一相变化所需的电流幅度。更着,该柱状部位及该凹陷部位的该宽度较佳地小于用来形成该存储单元的一工艺的一最小特征尺寸,一般来说,该工艺是一光刻工艺。此外,该介电层也对该主动区域提供一些热隔离,这也帮助降低要引起一相变化所需要的电流大小。
若跟该衬底部位和该柱状部位宽度相同比较起来,该底电极的该衬底部位的较大宽度提供了与该底电极较佳的接着,并降低在工艺中该底电极脱落的风险。这样改善了在工艺中该底电极的结构稳定度并增加该装置的产率。
举凡本发明的特征、目的及优点等将可透过下列说明权利要求范围、说明书及所附图式获得充分了解。
附图说明
图1是绘示包含使用本发明所述存储单元的一存储阵列的集成电路的简单方块图。
图2是绘示使用本发明所述存储单元的一存储阵列的一部位。
图3绘示一『伞状』存储单元的一先前技术的一剖面图。
图4及图5绘示比起图3的存储单元具有改善结构稳定度的存储单元的剖面图。
图6至图16绘示制造具有改善结构稳定度的一存储单元的制造流程。
【主要元件符号说明】
10集成电路
11存储阵列
12字线(或列)译码器及驱动器
13、34、35、606字线
14位线(或行)译码器及驱动器
15、36、37位线
16总线
17方块
18数据总线
19数据输入线
20电路
21数据输出线
22偏压调整状态机构
23偏压调整供应电压及电流源
24、25、26、27存取晶体管
28、29、30、31相变化元件
32源极线
33源极线终端
50、400、500存储单元
52介电层
54导电栓塞
56底电极
57、61、423、425宽度
60存储材料层
62顶电极
63主动区域
70、71、72、73底电极
402、1600介电层
404顶表面
408栓塞
422衬底部位
420反向T型底电极
424、524柱状部位
430存储元件
432凹陷部位
440顶电极
450主动区域
480导电栓塞
600存储存取层
601、603掺杂区域
608衬底
610共同源极线
700底电极材料层
710牺牲材料层
800掩模元件
810亚光刻宽度
900多层柱
910、1000牺牲元件
920电极元件
1300凹陷
1410顶电极材料层
1500存储材料条
1510顶电极
1610导电介层孔
具体实施方式
后续的发明说明将参照至特定结构实施例与方法。可以理解的是,本发明的范畴并非限制于特定所揭露的实施例,且本发明可利用其它特征、元件、方法与实施例进行实施。较佳实施例是被描述以了解本发明,而非用以限制本发明的范畴,本发明的范畴是以权利要求范围定义的。熟习该项技艺者可以根据后续的叙述而了解本发明的均等变化。在各实施例中的类似元件将以类似标号进行指定。
请参照图1,其是显示依据本发明一实施例的一集成电路10的简化方块图。该集成电路10包括一存储阵列11,其是使用了本发明所揭露具有阶段垂直型底电极在一半导体衬底伞相变化存储单元。一字线(或列)译码器12具有读取、设置、复位模式是耦接至在该存储阵列中11沿着列安置的多个字线13。一位线(或行)译码器及驱动器14是耦接至在该存储阵列中11沿着行安置的多个位线15,以读取、设置、复位至存储阵列11中的该相变化存储单元。地址是经由一总线16而提供至一字线译码器及驱动器12与一位线译码器14。在方块17中的感测放大器与数据输入结构,包含该读取、设置、复位模式的电流源,是经由一数据总线18而耦接至位线译码器14。数据是从集成电路10的输入/输出端、或集成电路内部与外部的其它数据来源,而经由数据输入线19以将数据传输至方块17中的数据输入结构。在所述实施例中,其它电路20包括于此集成电路10中,例如一泛用目的处理器或特定目的应用电路、或可提供单芯片系统功能的模块组合其是由系统于单芯片的存储阵列所支持。数据是从方块17中的感测放大器、经由数据输出线21、而传输至集成电路10的输入/输出端或其它位于集成电路10内部或外部的数据目的地。
在本实施例中所使用的控制器,使用了偏压调整状态机构22,并控制了偏压调整供应电压及电流源23的应用,例如读取、编程、擦除、擦除确认与编程确认电压或用以该字线及位线的电流,及使用一存取控制流程来控制该字线/源极线操作。该控制器22可利用特殊目的逻辑电路而应用,如熟习该项技艺者所熟知。在替代实施例中,控制器22包括了通用目的处理器,其可使于同一集成电路,以执行一计算机程序而控制装置的操作。在又一实施例中,控制器22是由特殊目的逻辑电路与通用目的处理器组合而成。
如图2所示,该阵列11的每个存储单元包括了一个存取晶体管(或在其它的存取装置像是二极管),四个存取晶体管是以标号24、25、26、27显示的,而四个相变化元件是以标号28、29、30、31显示的,以及四个底电极以标号71、72、73、74显示的。每个存取晶体管24、25、26、27的源极被共同连接至一源极线32,而其终结于一源极线终端33。在另一实施例中,这些选择元件的源极线并未电连接,而是可独立控制的。多条字线13包含字线34、35是沿着第一方向平行地延伸。字线34、35是与字线译码器12电性连接。存取晶体管24、26的栅极被连接至一共同字线,像是字线34,而存取晶体管25、27的栅极被共同连接至字线35。多条位线15包含位线36、37具有该相变化元件28、29的一端与该位线36相连接。特别是相变化元件28被连接介于该存取晶体管24的漏极及该位线36之间,相变化元件29被连接介于该存取晶体管25的漏极及该位线36之间。类似地,相变化元件30连接介于该存取晶体管26的漏极及该位线37之间,相变化元件31连接介于该存取晶体管27的漏极及该位线37之间。需要注意的是,在图中为了方便起见,仅绘示四个存储单元,在实际应用中,该阵列11包含数千至数百万的这种存储单元。同时也可使用其它阵列结构,例如该存取装置可为一二极管或其它转换装置,当不是使用图2所绘示的该晶体管时。
图3绘示在一底电极56及一顶电极62之间具有存储材料层60一『伞状』存储单元先前技术的剖面图。一导电栓塞54延伸穿过介电层52以耦接该存储单元50至下方存取电路(未示)。介电层64,包含一种或一种以上的介电层,围绕该底电极56、存储材料60、及顶电极62。该底电极56具有一宽度57小于该顶电极62及该存储材料60的该宽度61。
在操作上,在该栓塞54及该顶电极62的电压可以引起电流由该栓塞54经过该顶电极56及该存储材料60流至该顶电极62,或反之亦然。
由于宽度57及宽度61的差异在操作上该电流密度,在邻近于该底电极56的该存储材料60的该区域中会是最大,使得该存储材料60的该主动区域63成为一伞状,如图3所示。
由于需要最小化该底电极54的该宽度57(在一些实施例中是一直径)使得在较小的绝对电流值通过该存储材料60的情况下能达到更高的电流密度。
然而,尝试降低该宽度57时,会因为在该底电极56及该栓塞54之间较小的接触表面而引起在电子及结构稳定度上的问题。
图4绘示解决上述所讨论的问题并比起图3可以改善结构稳定度的一存储单元400的一剖面图。该存储单元400包含具有一衬底部位422的一反向T型底电极420以及一柱状部位424在该衬底部位422之上。该衬底部位具有一第一宽度423(在一些实施例中为一直径)以及该柱状部位424具有一第二宽度425(在一些实施例中为一直径),而该第二宽度425小于该第一宽度423。对于该底电极420而言,该底电极420的该衬底部位422的该较大的宽度423提供较佳的结构稳定度。
该底电极420的该柱状部位424接触一存储元件430,该底电极420耦接该存储元件430至一导电栓塞480。该底电极420可以包含,像是氮化钛或氮化钽。氮化钛是较佳的,因为其与存储材料元件的GST有良好的接触(如上所述),其是半导体工艺中常用的材料,且在GST转换的高温(典型地介于600至700℃)下可提供良好的扩散势垒。替代地。该底电极可包含氮化钛铝或氮化钽铝,例如包括一个以上选自下列群组的元素:钛、钨、钼、铝、钽、铜、铂、铱、镧、镍、氮、氧、钌及其结合。
该导电栓塞480延伸通过介电层402至下方存取电路(未示),在该所述实施例中该导电栓塞480包含一顽固金属像是钨。也可使用其它金属包含钛、钼、铝、钽、铜、铂、铱、镧、镍和钌。其它栓塞结构及材料也可使用。
一顶电极440接触该存储元件430,该顶电极440包含一导电材料像是上述该底电极420的一种或一种以上参考材料。该顶电极440可包含一位线的一部位。替代地,一导电介层孔(未示)可耦接该顶电极440至一位线。
介电层402包含一种或一种以上的介电材料层,具有一顶表面402并围绕该底电极420。该存储元件430包含一凹陷部位432向下延伸该介电层402的该顶表面404以接触该底电极420的该柱状部位424。该存储元件430的该凹陷部位432是自动对准于该底电极420的该柱状部位424,且具有一宽度实质地与该柱状部位424的该宽度425相同。在本发明所使用「实质地」一词是为了与制造容忍度相符合。举例来说,该存储元件430可包含选自于以下群组一个或更多材料:锗、锑、碲、硒、铟、镓、铋、锡、铜、钯、铅、硫、硅、氧、磷、砷、氮及金。
在操作上,该栓塞480及该顶电极440的电压可以引起一电流由该栓塞480经过该底电极420及该存储元件430流至该顶电极440,反之亦然。
该主动区域450是该存储元件430中存储材料被引发在至少两种固态相间转换的该区域。可理解地,该主动区域450可在该所述的结构中被制造的非常地小,因而降低引起一相变化所需要的电流幅度。该柱状部位424以及该凹陷部位432的该宽度425小于在该介电层的该顶表面404上方的该存储元件430的该部位的该宽度。该宽度425较佳地小于用来形成该存储单元400的一工艺的一最小特征尺寸,一般来说,该工艺是一光刻工艺。宽度425及宽度431的差异集中电流密度至该存储元件430的该凹陷部位432,因而降低了需要引起该主动区域450的一相变化所需的电流幅度。该介电层402也对该主动区域450提供一些热隔离,这也帮助降低要引起一相变化所需要的电流大小。
该底电极420具有一反向T型在两方面增加结构稳定性。首先,在该底电极420及该栓塞480间所增加的面积增加了该单元整体的强度。第二,这样的设计将一区位的弱点(即该底电极420结束端点最窄部位的平面)自该底电极420及该栓塞480之间的界面处移至该底电极420之内。
图5绘示类似图4所述存储单元的一第二存储单元的剖面图,类似的元件则以类似的标号代表。一底电极520包含一衬底部位422及一柱状部位524在该衬底部位422之上,该衬底部位422包含一加热材料,而该加热材料具有大于该衬底部位422材料的一电阻率。在操作上,该柱状部位524由于其高电阻率作为一加热器之用,对于一给定电流而引起更大的温度改变,因而增加在该存储元件430的该主动区域450该相变化循环的效率。在一实施例中,该衬底部位包含氮化钛,该柱状部位可包含氮化钽、氮化钨或氮化钽铝。
存储单元400、500的实施例,包括了在存储元件中使用相变化存储材料,包括硫属化物材料与其它材料。硫属化物包括下列四元素的任一个:氧(O)、硫(S)、硒(Se)、以及碲(Te),形成元素周期表上第VIA族的部分。硫属化物包括将一硫属元素与一更为正电性的元素或自由基结合而得。硫属化合物合金包括将硫属化合物与其它物质如过渡金属等结合。一硫属化合物合金通常包括一个以上选自元素周期表第IVA族的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化合物合金包括下列元素中一个以上的复合物:锑(Sb)、镓(Ga)、铟(In)、以及银(Ag)。许多以相变化为基础的存储材料已经被描述于技术文件中,包括下列合金:镓/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲、以及碲/锗/锑/硫。在锗/锑/碲合金家族中,可以尝试大范围的合金成分。此成分可以下列特征式表示:TeaGebSb100-(a+b),其中a与b代表了所组成元素的原子总数为100%时,各原子的百分比。一位研究员描述了最有用的合金系为,在沉积材料中所包含的平均碲浓度是远低于70%,典型地是低于60%,并在一般型态合金中的碲含量范围从最低23%至最高58%,且最佳是介于48%至58%的碲含量。锗的浓度是高于约5%,且其在材料中的平均范围是从最低8%至最高30%,一般是低于50%。最佳地,锗的浓度范围是介于8%至40%。在此成分中所剩下的主要成分则为锑。(Ovshinky‘112专利,栏10~11)由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及GeSb4Te7。(Noboru Yamada,”Potential of Ge-Sb-Te Phase-change Optical Disks forHigh-Data-Rate Recording”,SPIE v.3109,pp.28-37(1997))更一般地,过渡金属如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)、以及上述的混合物或合金,可与锗/锑/碲结合以形成一相变化合金其包括有可编程的电阻性质。可使用的存储材料的特殊范例,例如Ovshinsky‘112专利中栏11-13所述,其范例在此被列入参考。
硫属化物及其它相变化材料掺杂杂质来修饰导电性、转换温度、熔点及使用在掺杂硫属化物存储元件的其它特性。使用在掺杂硫属化物代表性的杂质包含氮、硅、氧、二氧化硅、氮化硅、铜、银、金、铝、氧化铝、钽、氧化钽、氮化钽、钛、氧化钛。可参见美国专利第6,800,504号专利及美国专利申请公开号第2005/0029502号专利。
相变化材料能在此单元主动信道区域内依其位置顺序于材料为一般非晶状态的第一结构状态与为一般结晶固体状态的第二结构状态之间切换。这些材料至少为双稳定态。此词汇「非晶」是用以指称一相对较无次序的结构,其较之一单晶更无次序性,而带有可检测的特征如较之结晶态更高的电阻值。此词汇「结晶态」是用以指称一相对较有次序的结构,其较之非晶态更有次序,因此包括有可检测的特征例如比非晶态更低的电阻值。典型地,相变化材料可电切换至完全结晶态与完全非晶态之间所有可检测的不同状态。其它受到非晶态与结晶态的改变而影响的材料特中包括,原子次序、自由电子密度、以及活化能。此材料可切换成为不同的固态、或可切换成为由两种以上固态所形成的混合物,提供从非晶态至结晶态之间的灰阶部分。此材料中的电性质也可能随之改变。
相变化合金可通过施加一电脉冲而从一种相态切换至另一相态。先前观察指出,一较短、较大幅度的脉冲倾向于将相转换材料的相态改变成大体为非晶态。一较长、较低幅度的脉冲倾向于将相转换材料的相态改变成大体为结晶态。在较短、较大幅度脉冲中的能量,够大因此足以破坏结晶结构的键能,同时时间够短,因此可以防止原子再次排列成结晶态。合适的曲线是取决于经验或模拟,特别是针对一特定的相变化合金。在本文中所揭露的该相变化材料并通常被称为GST,可理解的是也可以使用其它类型的相变化材料。在本发明中用来所实施的相变化只读存储器(PCRAM)是Ge2Sb2Te5
可用于本发明其它实施例中的其它可编程的存储材料包括,掺杂N2的GST、GexSby、或其它以不同结晶态转换来决定电阻的物质;PrxCayMnO3、PrxSryMnO3、ZrOx,或其它使用一电脉冲以改变电阻状态的物质;TCNQ(7,7,8,8-tetracyanoquinodimethane)、PCBM(methanofullerene6,6-phenyl C61-butyric acid methyl ester)、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C60-TCNQ、以其它物质掺杂的TCNQ、或任何其它聚合物材料其包括有以一电脉冲而控制的双稳定或多稳定电阻态。
利用PVD溅射或磁控溅射方式硫属化物材料的一示范方法,其反应气体为氩气、氮气、氧气、及/或氦气、压力为1mTorr至100mTorr。此沉积步骤一般是在室温下进行。一长宽比为1~5的准直器可用以改良其注入表现。为了改善其注入表现,也可使用数十至数百伏特的直流偏压。若有需要时,同时合并使用直流偏压以及准直器也是可行的。
有时需要在真空中或氮气环境中进行一沉积后退火处理,以改良硫属化物材料的结晶态。此退火处理的温度典型地是介于100℃至400℃,而退火时间则少于30分钟。
该硫属化物材料的厚度是取决于存储单元结构的设计。一般来说,一硫属化物具有大于8nm的厚度可具有一相变化特性使得该材料可以呈现至少两种稳定电阻状态。
图6至图16绘示制造具有改善结构稳定度的一存储单元的制造流程。
图6绘示提供具有一顶表面604的一存储存取层600的第一步骤的剖面图。该存储存取层600可以由本项技术领域所熟知的标准步骤来形成,以及包含字线606在一方向延伸进入并穿出图6所绘示的该剖面。该字线606于一衬底之上并形成该存取晶体管的该栅极。存取层600包含一共同源极线610接触掺杂区域601作为该存取晶体管的该源极区域。在其它实施例中该共同源极线610可在该衬底608注入一掺杂区域。该栓塞408延伸通过介电层602(一般是二氧化硅或氮化硅)以接触在该衬底608内对应的掺杂区域603作为该存取晶体管漏极区域。
接着,在该存储存取层600的该顶表面604形成一底电极材料层700,以及在该底电极材料层700上方形成一牺牲材料层710,而成为图7所绘示的结构。在一实施例中,该底电极材料层700以及该牺牲材料层710都分别具有100nm的厚度。
该底电极材料层700以及该牺牲材料层710的材料是选自下述可被选择性刻蚀能力的材料。该底电极材料层700可包含一种或一种以上前述图4及图5该底电极420、450的参考材料,而在该绘示实施例中包含一氮化钛层。在一替代实施例中,该底电极材料层700包含一氮化钛层以及一加热材料层在该氮化钛层之上,该加热材料层具有大于氮化钛的一电阻率。
在该所述实施例中,该牺牲材料层710包含硅。替代地,在其它实施例可使用氮化硅或其它该牺牲材料层710适合的材料。
接着,在该牺牲材料层710上形成包含掩模元件的一刻蚀掩模,形成图8所绘示的结构。
借着使用一光刻工艺在该牺牲材料层710上图案化一光刻胶层来形成该掩模元件800,接着剪裁该图案化的光刻胶以形成具有一次光刻宽度810的该掩模元件800,例如在一些实施例中小于50nm。举例来说,在光刻胶剪裁的实施上使用一氧等离子体来等向刻蚀该光刻胶并缩小该光刻胶在垂直及水平方向上的尺寸。在一替代实施例中,一硬光刻胶层像是一氮化硅或氧化硅低温沉积层可以使用光刻来图案化,接着通过使用一等向性湿法刻蚀来剪裁,像是稀释的氟化氢对于二氧化硅以及热磷酸对于氮化硅,或等向氟或溴化氢为基础的活性离子刻蚀。
接着,使用该掩模元件800来非等向性刻蚀该牺牲材料层710及该底电极材料层700,因此露出该存储存取层600的该顶表面604并形成多层柱900,如图9所示。该非等向性刻蚀可以使用像是活性离子刻蚀RIE。如在图式中所见一多层柱900包含一电极元件920及一牺牲元件910在该电极元件920上。
接着,移除该掩模元件800以及剪裁该牺牲元件910来缩小该宽度,因此形成具有如图10所绘示结构的一宽度1010的剪裁的牺牲元件。在该所述实施例中,使用等向刻蚀工艺来所小该牺牲元件910的该厚度及宽度以形成该剪裁的牺牲元件1000。若该牺牲元件910包含硅,使用一氟或氢氧化钾为基础的化学干法或湿法刻蚀可用来剪裁该牺牲元件910。替代地,可以使用活性离子刻蚀于各种的介电材料来剪裁该牺牲元件910。如在图中所示,该牺牲元件1000具有小于该电极元件920的一宽度1010,并仅于该电极元件920的一部份之上。因为该电极元件920较佳地具有一小于该最小光刻特征尺寸的一宽度,该宽度1010也可小于用来形成该电极元件920的该最小光刻特征尺寸。在一实施例中该剪裁的牺牲元件1000的该宽度是约30nm。
接着,使用该剪裁的牺牲元件1000作为掩模实施非等向性刻蚀在该电极元件920以形成该底电极420,而成为图11所绘示的结构。该非等向刻蚀形成具有一宽度425的该柱状部位424的该底电极,而该宽度425小于该衬底部位422的该宽度423。该底电极420的该衬底部位420的该较大宽度423提供与该底电极420较佳的接着,并降低在工艺中该底电极420脱落的风险。这样改善了在工艺中该底电极420的结构稳定度并增加该装置的产率。
该非等向性刻蚀可以使用一时序方式刻蚀工艺,该时序方式刻蚀可以使用一氯或氟为基础的活性离子刻蚀工艺。
在替代实施例中,该电极元件920包含一加热材料层在一导电层之上,该加热材料层可以选择地刻蚀以形成该柱状部位424使用该剪裁的牺牲元件1000作为刻蚀掩模。
接着,在图11绘示的结构上形成一介电层1200并平坦化,例如使用化学机械抛光法CMP以露出该剪裁的牺牲元件1000,形成图12所绘示的结构。
接着,移除该剪裁的牺牲元件1000以形成凹陷1300,形成图12所绘示的结构。在实施例中该剪裁的牺牲元件1000包含硅,使用可以用来移除该剪裁的牺牲元件1000的一氟或氢氧化钾为基础化学的干法或湿法刻蚀。
在图13所绘示结构上形成一存储材料层1400包含该凹陷1300,以及在该存储材料层1400上形成一顶电极材料层1410,形成图14所绘示的结构。
因为图11的该剪裁的牺牲元件1000是用来作为刻蚀掩模以形成该底电极420的该柱状部位424,当移除该剪裁的牺牲元件1000以形成该凹陷1300并接着填充用该存储材料层1400来填充该凹陷1300。
接着,图案化该存储材料层1400及该顶电极材料层1410以形成该存储材料条1500及顶电极1510在该各自的存储材料条1500之上,形成图15A及图15B所示的顶视图及剖面图。这样图案化的步骤可以使用传统的光刻技术来达成,包含在该顶电极材料层1410上图案化一光刻胶层,使用该光刻胶层作为一刻蚀掩模来刻蚀,并接着移除该光刻胶层。如图中所示一顶电极1510包含邻近存储单元的该顶电极440,以及一存储材料条1500包含该邻近存储单元的该存储元件430。
替代地,可以图案化该存储材料层1400及该顶电极材料层1410以形成存储材料条和位线条于个别的存储材料条之上。在另一实施例中,可以图案化该存储材料层1400及该顶电极材料层来形成多层叠层。
接着,在图15所绘示的结构上形成一介电层1600,以及形成导电介层孔1610来耦接该顶电极1510至位线1620形成在该介电层1600之上,形成图16所绘示的结构。
虽然本发明已参照较佳实施例来加以描述,但所应了解的是,本发明创作并未受限于其详细描述内容。替换方式及修改样式已于先前描述中所建议,并且其它替换方式及修改样式将为熟习此项技艺的人士所思及。特别是,根据本发明的结构与方法,所有具有实质上相同于本发明的构件结合而达成与本发明实质上相同结果者皆不脱离本发明的精神范畴。
任何在前文中提及的专利申请案以及印刷文本,均被列为本发明的参考。

Claims (14)

1.一种存储单元,其特征在于,包含:
一底电极包含一衬底部位及一柱状部位在该衬底部位之上,该柱状部位具有小于该衬底部位的一宽度;
一介电层围绕该底电极且具有一顶表面;
一存储元件在该底电极之上且包含一凹陷部位由该介电层的该顶表面延伸与该底电极的该柱状部位连接,其中该存储元件的该凹陷部位具有一宽度相等于该底电极的该柱状部位的该宽度;以及
一顶电极在该存储元件之上。
2.根据权利要求1所述的存储单元,其特征在于,该存储元件的该凹陷部位是自动对准于该底电极的该柱状部位。
3.根据权利要求1所述的存储单元,其特征在于,该柱状部位包含一材料,而该材料具有大于该衬底部位材料的一电阻率。
4.根据权利要求1所述的存储单元,其特征在于,该底电极的该柱状部位的宽度小于30nm。
5.一种制造一存储单元的方法,其特征在于,该方法包含:
形成一底电极包含一衬底部位及一柱状部位在该衬底部位之上,该柱状部位具有小于该衬底部位的一宽度;
形成一介电层围绕该底电极且具有一顶表面;
形成一凹陷由该介电层的顶表面延伸至该柱状部位的一顶表面,该凹陷具有一宽度相等于该底电极的该柱状部位的该宽度;
形成一存储元件该底电极之上且在该凹陷内包含一凹陷部位,并与该底电极的该柱状部位的该顶表面相连接;以及
形成一顶电极在该存储元件之上。
6.根据权利要求5所述的方法,其特征在于,该凹陷是自动对准于该底电极的该柱状部位。
7.根据权利要求5所述的方法,其特征在于,该柱状部位包含一材料,而该材料具有大于该衬底部位材料的一电阻率。
8.根据权利要求5所述的方法,其特征在于,形成一底电极的该步骤包含:
形成一底电极材料层;
形成一牺牲材料层在该底电极材料层之上;
形成一刻蚀掩模在该牺牲材料层之上;
使用该刻蚀掩模刻蚀穿过该底电极材料层,因此形成一多层柱,而该多层柱包含具有底电极材料的一电极元件,以及具有牺牲材料的一牺牲元件在该电极元件之上,且该牺牲元件具有一宽度;
缩小该牺牲元件的该宽度;
使用该缩小宽度的牺牲元件作为一刻蚀掩模来刻蚀穿过该电极元件的一部位,因而形成该底电极。
9.根据权利要求8所述的方法,其特征在于,该牺牲材料包含硅或氮化硅。
10.根据权利要求8所述的方法,其特征在于,该缩小该牺牲元件的该宽度包含非等向性刻蚀该牺牲元件。
11.根据权利要求8所述的方法,其特征在于,形成一介电层的该步骤及形成一凹陷的该步骤包含:
形成该介电层在该底电极以及该缩小宽度的牺牲元件之上;
平坦化该介电层以露出该缩小宽度的牺牲元件;
移除该缩小宽度的牺牲元件以形成自该介电层的一顶表面延伸的该凹陷,因而露出该底电极的该柱状部位的一顶表面。
12.根据权利要求11所述的方法,其特征在于,形成该存储元件的该步骤及形成该顶电极的该步骤包含:
形成一存储材料层在该介电层的该顶表面之上及在该凹陷之内,以与该底电极的该柱状部位的该顶表面连接;
形成一顶电极材料层在该存储材料层之上;以及
图案化该存储材料层及该顶电极材料层。
13.一种存储装置,其特征在于,包含:
一存储存取层包含多个存储单元的存取电路包含一导电栓塞阵列延伸至该存储存取层的一顶表面;
多个底电极,每一底电极包含一衬底部位及一柱状部位在该衬底部位之上,该柱状部位具有小于该衬底部位的一宽度,其中每一底电极接触一对应的导电栓塞;
一介电层围绕该多个底电极并具有一顶表面;
多条存储材料条在该底电极之上及作为该多个存储单元的存储元件,而每一存储元件包含一凹陷部位由该介电层的该顶表面延伸至与其连接的一对应底电极的该柱状部位,其中每一该存储元件的该凹陷部位具有一宽度相等于该对应底电极的该柱状部位的该宽度;以及
多条顶电极条,每一顶电极条在一对应的存储材料条之上。
14.根据权利要求13所述的存储装置,其特征在于,更包含:多条位线在该多个顶电极条之上;以及
一导电介层孔的阵列耦接该顶电极条至一对应的位线。
CN2009101347634A 2008-04-22 2009-04-22 具有埋入相变化区域的存储单元及其制造方法 Active CN101872838B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/107,573 US7791057B2 (en) 2008-04-22 2008-04-22 Memory cell having a buried phase change region and method for fabricating the same
US12/107,573 2008-04-22

Publications (2)

Publication Number Publication Date
CN101872838A true CN101872838A (zh) 2010-10-27
CN101872838B CN101872838B (zh) 2012-11-28

Family

ID=41200350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101347634A Active CN101872838B (zh) 2008-04-22 2009-04-22 具有埋入相变化区域的存储单元及其制造方法

Country Status (3)

Country Link
US (1) US7791057B2 (zh)
CN (1) CN101872838B (zh)
TW (1) TWI376801B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610751A (zh) * 2012-02-27 2012-07-25 北京大学 一种纳米尺寸阻变存储器小孔的制备方法
CN102751304A (zh) * 2011-04-19 2012-10-24 旺宏电子股份有限公司 以相变存储材料为基础的高密度存储装置及其制造方法
CN105633279A (zh) * 2016-01-29 2016-06-01 中国科学院上海微系统与信息技术研究所 包含部分限定型相变材料结构的相变存储单元及制作方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511984B2 (en) * 2006-08-30 2009-03-31 Micron Technology, Inc. Phase change memory
WO2010022036A2 (en) * 2008-08-18 2010-02-25 Contour Semiconductor, Inc. Method for forming self-aligned phase-change semiconductor diode memory
IT1391864B1 (it) * 2008-09-30 2012-01-27 St Microelectronics Rousset Cella di memoria resistiva e metodo per la fabbricazione di una cella di memoria resistiva
US8063394B2 (en) * 2008-10-08 2011-11-22 Qimonda Ag Integrated circuit
US9030867B2 (en) 2008-10-20 2015-05-12 Seagate Technology Llc Bipolar CMOS select device for resistive sense memory
US7933136B2 (en) * 2008-11-07 2011-04-26 Seagate Technology Llc Non-volatile memory cell with multiple resistive sense elements sharing a common switching device
US8203869B2 (en) * 2008-12-02 2012-06-19 Seagate Technology Llc Bit line charge accumulation sensing for resistive changing memory
US8159856B2 (en) 2009-07-07 2012-04-17 Seagate Technology Llc Bipolar select device for resistive sense memory
US8110822B2 (en) * 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8241944B2 (en) 2010-07-02 2012-08-14 Micron Technology, Inc. Resistive RAM devices and methods
CN102347442A (zh) * 2010-07-29 2012-02-08 中芯国际集成电路制造(上海)有限公司 一种制作相变存储器件结构的方法
US8728859B2 (en) * 2010-08-12 2014-05-20 International Business Machines Corporation Small footprint phase change memory cell
CN102403455A (zh) * 2010-09-17 2012-04-04 中芯国际集成电路制造(上海)有限公司 制作相变存储器元件的方法
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
KR20130106659A (ko) * 2012-03-20 2013-09-30 에스케이하이닉스 주식회사 멀티 레벨을 갖는 상변화 메모리 장치 및 그 제조방법
KR101908062B1 (ko) 2012-03-29 2018-10-15 삼성전자주식회사 상변화 메모리 장치 및 이의 제조 방법
US8934285B2 (en) 2012-10-15 2015-01-13 Marvell World Trade Ltd. Method and apparatus for forming a contact in a cell of a resistive random access memory to reduce a voltage required to program the cell
US9256126B2 (en) 2012-11-14 2016-02-09 Irresistible Materials Ltd Methanofullerenes
CN105098072B (zh) * 2015-07-30 2017-08-08 江苏时代全芯存储科技有限公司 相变化存储装置的制造方法
FR3050071B1 (fr) * 2016-04-08 2018-05-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Memoire resistive, procedes de fabrication et de programmation associes
US10566531B2 (en) 2017-11-17 2020-02-18 International Business Machines Corporation Crosspoint fill-in memory cell with etched access device
US10714680B2 (en) 2018-08-27 2020-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Large height tree-like sub 30nm vias to reduce conductive material re-deposition for sub 60nm MRAM devices
FR3096826B1 (fr) * 2019-05-28 2022-06-03 St Microelectronics Srl Cellule mémoire
US10897239B1 (en) 2019-09-06 2021-01-19 International Business Machines Corporation Granular variable impedance tuning
US11152565B2 (en) * 2019-09-17 2021-10-19 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and manufacturing method thereof
FR3107138B1 (fr) 2020-02-06 2022-02-11 Commissariat Energie Atomique Cellule mémoire à changement de phase
US11916010B2 (en) * 2020-05-21 2024-02-27 Intel Corporation Back end of line integration for self-aligned vias
US20230270023A1 (en) * 2020-08-05 2023-08-24 Qorvo Us, Inc. Control method for switches based on dual phase materials

Family Cites Families (260)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4452592A (en) 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (ja) 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
US4719594A (en) * 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) * 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) * 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) * 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6420725B1 (en) * 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (ko) * 1995-12-27 1999-04-15 김주용 플래쉬 메모리 장치
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) * 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) * 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) * 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5716883A (en) * 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) * 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US7023009B2 (en) * 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
FR2774209B1 (fr) * 1998-01-23 2001-09-14 St Microelectronics Sa Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) * 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) * 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6351406B1 (en) * 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) * 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6291137B1 (en) 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
KR100441692B1 (ko) 1999-03-25 2004-07-27 오보닉스, 아이엔씨. 개선된 접점을 갖는 전기적으로 프로그램가능한 메모리 소자
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
US6177317B1 (en) * 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) * 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6927411B2 (en) * 2000-02-11 2005-08-09 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6444557B1 (en) * 2000-03-14 2002-09-03 International Business Machines Corporation Method of forming a damascene structure using a sacrificial conductive layer
US6888750B2 (en) * 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) * 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
KR100382729B1 (ko) 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100625129B1 (ko) 2001-01-30 2006-09-18 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치의 제조 방법
KR100400037B1 (ko) 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) * 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
DE10128482A1 (de) * 2001-06-12 2003-01-02 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) * 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) * 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) * 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3948292B2 (ja) 2002-02-01 2007-07-25 株式会社日立製作所 半導体記憶装置及びその製造方法
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
CN1639868A (zh) * 2002-04-09 2005-07-13 松下电器产业株式会社 非易失性存储器及其制造方法
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) * 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) * 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4133141B2 (ja) 2002-09-10 2008-08-13 株式会社エンプラス 電気部品用ソケット
JP4190238B2 (ja) * 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
KR20050053750A (ko) 2002-10-11 2005-06-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 상변환 물질을 포함하는 전기 장치
US6992932B2 (en) * 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) * 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6940744B2 (en) * 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
US7589343B2 (en) 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
US7277317B2 (en) 2003-01-31 2007-10-02 Nxp B.V. MRAM architecture for low power consumption and high selectivity
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
KR100486306B1 (ko) * 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
KR100504698B1 (ko) * 2003-04-02 2005-08-02 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
KR100979710B1 (ko) * 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US20060006472A1 (en) * 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) * 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US7132350B2 (en) * 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
US20050018526A1 (en) * 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
KR100615586B1 (ko) * 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) * 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US20050062087A1 (en) * 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
KR100558548B1 (ko) 2003-11-27 2006-03-10 삼성전자주식회사 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (ko) * 2003-12-13 2006-04-10 주식회사 하이닉스반도체 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) * 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
KR100532509B1 (ko) 2004-03-26 2005-11-30 삼성전자주식회사 SiGe를 이용한 트렌치 커패시터 및 그 형성방법
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
US7359231B2 (en) * 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
KR100657897B1 (ko) * 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) * 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (ko) 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
US7443062B2 (en) * 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
KR100626388B1 (ko) * 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
DE102004052611A1 (de) * 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US7364935B2 (en) 2004-10-29 2008-04-29 Macronix International Co., Ltd. Common word line edge contact phase-change memory
US7238959B2 (en) 2004-11-01 2007-07-03 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same
US20060108667A1 (en) * 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7202493B2 (en) * 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
JP4646634B2 (ja) * 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7099180B1 (en) 2005-02-15 2006-08-29 Intel Corporation Phase change memory bits reset through a series of pulses of increasing amplitude
US7229883B2 (en) 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
JP2006244561A (ja) 2005-03-01 2006-09-14 Renesas Technology Corp 半導体装置
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) * 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
KR100675279B1 (ko) 2005-04-20 2007-01-26 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들
KR100668846B1 (ko) * 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7321130B2 (en) * 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7345907B2 (en) * 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
US20070037101A1 (en) * 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
US7615770B2 (en) * 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) * 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7414258B2 (en) * 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) * 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) * 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) * 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) * 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7542338B2 (en) * 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7684225B2 (en) * 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
US7879643B2 (en) 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751304A (zh) * 2011-04-19 2012-10-24 旺宏电子股份有限公司 以相变存储材料为基础的高密度存储装置及其制造方法
CN102751304B (zh) * 2011-04-19 2015-06-03 旺宏电子股份有限公司 以相变存储材料为基础的高密度存储装置及其制造方法
CN102610751A (zh) * 2012-02-27 2012-07-25 北京大学 一种纳米尺寸阻变存储器小孔的制备方法
CN105633279A (zh) * 2016-01-29 2016-06-01 中国科学院上海微系统与信息技术研究所 包含部分限定型相变材料结构的相变存储单元及制作方法

Also Published As

Publication number Publication date
US20090261313A1 (en) 2009-10-22
US7791057B2 (en) 2010-09-07
CN101872838B (zh) 2012-11-28
TW200947695A (en) 2009-11-16
TWI376801B (en) 2012-11-11

Similar Documents

Publication Publication Date Title
CN101872838B (zh) 具有埋入相变化区域的存储单元及其制造方法
CN101783390B (zh) 具有改善结构稳定性的存储单元及其制造方法
CN102522374B (zh) 一种具有柱状底电极相变化存储装置及其制造方法
CN101197317B (zh) 具有热障的相变化存储单元及其制造方法
CN101252167B (zh) 具有自我形成间隙的可程序化电阻存储单元
CN100555699C (zh) 双稳态电阻随机存取存储器的结构与方法
CN100563040C (zh) 相变化存储单元及其制造方法
CN101504967B (zh) 中心加热相变化存储器结构及其制造方法
CN100573952C (zh) 使用单一接触结构的桥路电阻随机存取存储元件及方法
CN101236985B (zh) 一种具有共平面电极表面的存储单元装置及其制造方法
CN101685826B (zh) 一种具有二极管驱动器的存储阵列及其制造方法
US7932506B2 (en) Fully self-aligned pore-type memory cell having diode access device
CN101252168B (zh) 具有加热器的相变化储存单元及其制造方法
CN100550462C (zh) 具有l型电极的电阻式随机存取存储器单元
CN101290948B (zh) 存储器结构及其制造方法以及存储单元阵列的制造方法
US8415651B2 (en) Phase change memory cell having top and bottom sidewall contacts
CN101237026B (zh) 一种存储装置及其制造方法
CN101814521B (zh) 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法
CN100543966C (zh) 用以制造存储元件的方法
CN102013431A (zh) 具有自动对准底电极和二极管存取装置的伞状存储单元
CN101127386A (zh) 用于限制电阻随机存取存储器熔化点的自对准结构及方法
CN101877384A (zh) 低操作电流相变存储器元件结构
CN101728483B (zh) 介电层夹置的柱状存储装置
CN100583483C (zh) 相变化存储单元及其制造方法
CN100502084C (zh) 具有热绝缘层的薄膜相变化单元及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant