CN101999170B - 侧壁结构的可切换电阻器单元 - Google Patents

侧壁结构的可切换电阻器单元 Download PDF

Info

Publication number
CN101999170B
CN101999170B CN200980112695.XA CN200980112695A CN101999170B CN 101999170 B CN101999170 B CN 101999170B CN 200980112695 A CN200980112695 A CN 200980112695A CN 101999170 B CN101999170 B CN 101999170B
Authority
CN
China
Prior art keywords
conductive electrode
switching device
layer
resistivity switching
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980112695.XA
Other languages
English (en)
Other versions
CN101999170A (zh
Inventor
R·E·朔伊尔莱因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi International Operations Luxembourg SARL
Original Assignee
SanDisk 3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SanDisk 3D LLC filed Critical SanDisk 3D LLC
Publication of CN101999170A publication Critical patent/CN101999170A/zh
Application granted granted Critical
Publication of CN101999170B publication Critical patent/CN101999170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/22Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the metal-insulator-metal type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/023Formation of the switching material, e.g. layer deposition by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/068Patterning of the switching material by processes specially adapted for achieving sub-lithographic dimensions, e.g. using spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa or cup type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Other compounds of groups 13-15, e.g. elemental or compound semiconductors
    • H10N70/8845Carbon or carbides

Abstract

一种制备存储器器件的方法,包括形成第一导电电极(28),在该第一导电电极上形成绝缘结构(13),在该绝缘结构的侧壁上形成电阻率切换元件(14),在该电阻率切换元件上形成第二导电电极(26),以及在该第一导电电极和该第二导电电极之间形成与该电阻率切换元件串联的导向元件(22),其中该电阻率切换元件在从第一导电电极到第二导电电极的第一方向上的高度大于该电阻率切换元件在与第一方向垂直的第二方向上的厚度。

Description

侧壁结构的可切换电阻器单元
相关专利申请的交叉引用
本申请要求2008年4月11日提交的美国临时专利申请61/071,093以及2008年6月30日提交的美国专利申请12/216,110的利益,通过引用以其整体合并到此。
技术领域
本发明一般涉及制备半导体器件的方法,更具体地说,涉及制备半导体非易失性存储器单元的方法。
背景技术
由半导体材料制备的器件被用来生成电气部件和系统中的存储器电路。存储器电路是这类器件的支柱,因为数据和指令集都被存储在其中。最大化这类电路上每单位面积的存储器元件的数目能够最小化其成本,因此是这类电路设计的主要动力。
图1图示说明了示例性的现有技术的存储器元件20,该存储器元件包括垂直朝向的圆柱形的结型二极管22和存储元件24(例如反熔丝的介电质或者金属氧化物电阻率切换层),所述结型二极管作为单元的导向元件。二极管22和存储元件24被插入顶部导体或电极26和底部导体或电极28之间。垂直朝向的结型二极管22包括第一导电类型(例如n型)的重掺杂的半导体区域30、未掺杂的半导体材料或者轻掺杂的半导体材料的中间区域32(被称为本征区域)以及第二导电类型(例如p型)的重掺杂的半导体区域34,以形成p-i-n二极管。如果需要,p型区域和n型区域的位置可以互换。结型二极管22的半导体材料通常为硅、锗、或者硅和/或锗的合金。也可以使用其它半导体材料。结型二极管22和存储元件24被串联布置在底部导体28和顶部导体26之间,所述底部导体和顶部导体可以由金属例如钨和/或TiN形成。存储元件24可以位于二极管22上或者二极管下。参照图1A,由Herner等提出的题为“High-Density Three-Dimensional Memory Cell”的美国专利6,952,030公开了一种示例性的非易失性存储器单元,该专利在下文中称作“030专利”并且通过引用以其整体合并到此。
金属氧化物可切换电阻器的电阻可能太小,以至于不被三维(3D)二极管阵列有效地探测到。相对于高的重置电流,低的重置电流通常是优选的,因此电阻器元件的电阻通常优选是高的。因为金属氧化物元件24被淀积在二极管柱22上,因此氧化物元件的电阻可能太小,因此产生不期望的高的重置电流。而且,在制备过程中,金属氧化物电阻器材料可能会由于刻蚀而被损坏,从而不能提供切换功能。
发明内容
一种制备存储器器件的方法,包括形成第一导电电极,在第一导电电极上形成绝缘结构,在绝缘结构的侧壁上形成电阻率切换元件,在电阻率切换元件上形成第二导电电极,以及在第一导电电极和第二导电电极之间形成与电阻率切换元件串联的导向元件,其中电阻率切换元件在从第一导电电极到第二导电电极的第一方向上的高度大于电阻率切换元件在与第一方向垂直的第二方向上的厚度。
附图说明
图1A图示说明了现有技术的存储器单元的三维视图。图1B和1C分别示出了现有技术的电阻率切换存储元件的侧视图和顶视图。
图2A和2B分别示出了根据本发明的实施例的单元的侧视图和顶视图。
图3、4、5、6A和7图示说明了根据本发明的实施例的存储器单元的侧截面图。图6B是图6A的单元的顶视图。
具体实施方式
本发明人认识到,可以通过几何效应来增加存储元件(在此也被称为电阻率切换元件)的电阻,这里电阻率切换元件形成在绝缘结构的侧壁上,与导向元件串联。在该配置中,电阻率切换元件在从底部导电电极到上部导电电极的“垂直”方向上的高度大于电阻率切换元件在与“垂直”方向正交的第二方向上的厚度。电阻率切换元件可以是位于绝缘结构的侧壁上的二元金属氧化物的薄层,并且仍然被提供为在下部电极和上部电极之间与二极管导向元件串联。
电阻率切换材料24的电阻值R可以通过下式计算:
R=ρ*t/(L*W)   [1]
这里ρ为材料的电阻率,t是层的高度,(L*W)是导电通路的面积。因此,层的电阻值可以高度依赖于几何尺寸。图1B、1C、2A和2B图示说明了电阻的这种依赖性。图1B和1C图示说明了位于二极管顶部的电阻率切换元件24(为了清楚,在图1B和1C中省略该二极管,其可以位于元件24的上方或下方)。由于在元件24切换到低电阻率状态期间形成的导电细丝25的面积L*W不受单元结构的限制,因此导电细丝的电阻可以是相对低的电阻。典型的金属氧化物可切换电阻材料可以形成具有在1K欧姆到10K欧姆范围内的电阻的细丝,该电阻低于由用于三维二极管阵列而形成的二极管典型实现的电阻。三维二极管阵列中的二极管不能可靠地重置相对低电阻的细丝。
图2A和2B图示说明了根据本发明的一个实施例的存储器单元结构的一部分的侧面截面图和顶视图,这里为了清楚,再次省略了二极管,但是其在电极26和28之间,位于电阻率切换元件14的上方或下方并且与电阻率切换元件串联。在这个实施例中,电阻率切换元件被形成在绝缘结构13的侧壁上。在这个配置中,由下式计算电阻值:
R=ρ*T/(l*W)    [2]
这里l是元件14在绝缘结构侧壁上淀积的厚度。长度l可以显著小于图1B和1C中的长度L。与图1B和1C中的配置相比,图2A和2B的配置中电阻增大为(L/l)倍。高度T是覆盖绝缘结构13的侧壁的电阻率切换元件14的高度。高度T可以等于图1B和1C的现有技术的平面厚度t,并且在一些情况下可以大于该平面厚度t。
图2A和2B中所示的本发明的实施例的一个优点是低电阻状态的增加,其依赖于高度T的数值。注意到,对于一些材料,切换到高电阻的区域可以小于图3中所示的T。从上面所描述的图中可以看出,,W倾向于大于图1B和1C中所示的现有技术的配置中的t,并且小于图2A和2B中所示的本发明的实施例的侧壁配置中的T。侧壁层的厚度l可以小于细丝区域的典型尺寸。由于l可以小于现有技术的细丝的直径,因此为了进一步增大电阻,在一些材料中还倾向于减小细丝在W尺寸上的程度。
本发明的实施例中的电阻率切换元件的电阻较少依赖于可变的细丝形成的尺寸,因为它受到尺寸l的限制。由于在一些材料中,电流通路穿过电阻率切换元件的截面面积被限定到小于典型的细丝尺寸,因此重置电流也会比较小。开关和阵列线中重置电流以及相关的IR压降的减小,对于允许包括侧壁电阻率切换元件的存储器阵列中重置电压和功耗降低是极大优势。三维二极管阵列中的二极管能够可靠地重置本发明的实施例中形成的相对高电阻的细丝。
在图1中,L倾向于随着t增加,并且可以大约为t的四倍,例如t是5nm,L是20nm。但是在图2中,l对T不敏感,使得可以通过工艺选择来增加T;例如,电阻率切换材料层的高度T可以大于5nm,例如大于20nm,并且厚度l可以小于20nm,例如小于5nm。结果,电阻可以从图1所示的增加为(L/l)*(T/t)倍,在该示例中即增加16倍。
图3-7图示说明了根据本发明的实施例的具有各种绝缘结构13的示例性存储器单元结构。电阻率切换元件14可以具有不同的形状。例如,其可以是环形的,围绕着绝缘结构,或者其可以位于绝缘材料中的槽内。类似地,绝缘结构可以具有不同的形状,例如柱形或轨道形。
如图3中所示,在下部电极28(在图1中示出)上形成柱形二极管22(也在图1A中详细地示出)。二极管22可以由任何合适的半导体材料形成,如硅、锗、SiGe或者其它化合物半导体材料,其可以是多晶的、单晶的或者无定形的。电极28位于衬底上,例如半导体晶圆(包括硅或者化合物半导体晶圆),或者玻璃、塑料,或者金属衬底。电极28可以包括金属(例如钨、铝或者它们的合金)或者金属化合物(例如氮化钛)。
接着,在二极管22上形成可选的导电阻挡层16。阻挡层16可以包括任何导电材料,例如氮化钛。接着,在阻挡层16上形成绝缘结构13。绝缘结构13可以包括任何合适的绝缘材料,例如氧化硅或者氮化硅或者有机绝缘材料。结构13可以具有任何合适的形状,例如轨道形或者柱形,只要其包含侧壁15。
接着,在绝缘结构13的至少一个侧壁上形成至少一个电阻率切换元件14。如果结构是圆柱形,如图2B中所示,则其只有一个侧壁15。电阻率切换元件14可以包括熔丝、多晶硅存储器效应材料、金属氧化物(例如二元金属氧化物(例如氧化镍)或者可切换复杂金属氧化物(例如钙钛矿氧化物))、碳纳米管、石墨烯可切换电阻材料、其它碳电阻率切换材料(例如无定形碳、多晶碳或者微晶碳)、相变材料,电解质切换材料,可切换复杂金属氧化物、导电桥元件或者可切换聚合物。电阻率切换元件的电阻率可以响应于在图1A中所示的电极26和28之间提供的正向和/或反向偏压而被增大或者减小。
可以通过任何合适的方法在绝缘结构13上形成电阻率切换元件14,例如化学气相沉积,物理气相沉积(例如溅射)等。元件14可以位于绝缘结构13的顶表面和绝缘结构13的侧壁15。替换地,可以在绝缘结构13上形成元件14(例如金属氧化物绝缘层),并且接着通过CMP或者其它方法来平坦化该元件14,以去除元件14位于结构13的上表面的厚度L0,并且暴露出绝缘结构13的上表面。如图3中所示,元件14的有效切换区域18具有长度L,该长度可能由于PVD淀积的遮蔽效应而比元件的平面厚度要薄。区域18中的这个侧壁颈缩增大了元件14的电阻。
在图4所示的替换实施例中,金属或者金属氮化物薄膜(例如氮化钛薄膜)被淀积在结构13上,并且随后通过CMP或者其它平坦化方法从绝缘结构的顶部选择性地去除。接着,在氧化气氛中氧化图形化的薄膜,从而形成金属氧化物或者氮氧化物电阻率切换元件14,例如氮氧化钛元件。由于上面所描述的颈缩现象,元件的有效区域18可以被完全转化为绝缘金属氧化物或者氮氧化物,而元件14的上部分42可以保持是导电金属或者金属氮化物。在图4中,为了清楚,放大了元件14的厚度。元件14可以具有10nm到30nm的垂直厚度。
在图4的实施例中,结构13的侧壁15包括在绝缘层13(例如氧化硅层)内形成的孔或者槽42的侧壁。孔或者槽露出底部电极28,以允许电阻率切换材料在电气上接触底部电极。如果需要,可以用绝缘填充材料44(例如氧化硅或者有机材料)填充保持在电阻率切换元件14中的沟,并且通过CMP或者其它合适的方法来平坦化该沟,以露出元件14的上表面。
如图4中所示,底部电极28可以包括TiN和钨层的组合。而且,如图4中所示,二极管22位于电阻率切换元件14和阻挡层16之上。然而,顺序可以是颠倒的,可以在阻挡层16和元件14之下形成二极管22。如果需要,可以在二极管22和上部电极26之间形成上部阻挡层46。上部阻挡层46可以包括硅化钛层(例如通过使钛层与二极管的多晶硅材料反应形成的C49相硅化钛层)和Ti/TiN双分子层。
如上面所讨论的,二极管22作为单元的导向元件。例如,存储器单元可以包括垂直朝向的圆柱形的结型二极管。在此使用术语“结型二极管”指代具有非欧姆导电特性的、具有两个终端电极并且由半导体材料制成的半导体器件,其在一个电极处是p型,在另外一个电极处是n型。示例包括p-n二极管和n-p二极管(其具有p型半导体材料与n型半导体材料的接触,例如齐纳二极管)以及p-i-n二极管(在其中在p型半导体材料和n型半导体材料之间插入本征(未掺杂的)半导体材料)。在其它实施例中,可以使用包括MIM或者MIIM结构的隧道二极管。
在图5中所示的另一替换实施例中,电阻率切换元件14包括绝缘层,例如以绝缘状态淀积在孔或者槽42内(而不是如图4中所示的氧化导电层)的金属氧化物层(例如Al2O3)。从而,使用大马士革类型工艺形成元件。如图5中所示,形成元件14的绝缘层并不一定需要平坦化,可以延伸出结构13。而且,如图5中所示,二极管22可以相对于元件14被偏移(offset),以确保元件14接触二极管。如图5中所示,元件14可以为5nm-30nm高,而电极28可以是大约200nm高。
在图6A和6B分别示出了另外一个实施例的侧视图和顶视图,其中绝缘结构13可以包括绝缘的轨道形状的结构13。可以通过图形化绝缘层(例如氧化硅或者氮化硅)来将轨道形成到绝缘结构轨道13中。轨道13可以在与下部电极28(例如TiN/W/TiN电极)相同的方向上延伸。优选地,轨道13可以相对于电极28偏移,使得每个轨道13的侧壁15位于邻近电极28的上表面。接着,在轨道13的侧壁15上形成电阻率切换元件14。从而,底部电极28被暴露在邻近轨道13之间。由于轨道13与电极28和二极管22部分地未对准,因此这允许电阻率切换元件14位于与各自下面的电极28和各自覆在上面的二极管22接触。例如,可以通过在轨道13上淀积金属氧化物层并且接着将该金属氧化物层平坦化来形成元件14。金属氧化物层可以凹陷低于轨道的上表面,在这里没有二极管22形成在金属层上。可以用绝缘填充材料44(例如氧化硅)来填充轨道13之间的空间,之后进行CMP或者其它平坦化。同样地,也可以用平坦化的填充材料48来填充二极管22之间的空间。
在图7所示的另一替换实施例中,可以通过在底部电极28上形成至少一个二极管22来形成存储器器件。随后,在二极管上形成阻挡层16和绝缘结构13,例如圆柱形结构13。在结构13的侧壁15上形成电阻率切换元件14。
可以通过在绝缘模版层上形成硬质掩膜图形层来形成结构13。硬质掩膜层可以包括钨或者无定形碳或者其它材料。可以通过任何合适的方法(例如各向同性刻蚀),使用硬质掩膜图形作为掩膜来钻蚀(undercut)硬质掩膜图案,以此来选择性地去除模版层。结果,减小了模版层的宽度,并且由模版层形成至少一个绝缘柱。这形成了“蘑菇”形的绝缘结构13柱干,其被较大直径的硬质掩膜盖覆盖。
接着,通过任何合适的方法(例如原子层淀积)在绝缘结构13柱的侧壁以及硬质掩膜盖上随后淀积电阻率切换材料,例如金属氧化物层。可以使用硬质掩膜图形作为掩膜选择性地刻蚀半导体二极管层(以及可选地刻蚀阻挡层16),以形成至少一个柱形二极管导向元件(以及可选地形成图形化阻挡层16)。在上部电极26被形成为与电阻率切换元件14接触之前,可以可选地去除硬质掩膜图形层,或者如果硬质掩膜是导电的,则可以将硬质掩膜保留为上部电极26的一部分。从而,在这个结构中,二极管具有与硬质掩膜图形相同的直径,而绝缘结构13由于各向同性刻蚀和钻蚀而具有比二极管小的直径(或者宽度)。这可以允许电阻率切换元件14的边缘直接或者间接地在电气上接触结构13下面的二极管22,并且直接或者间接地在电气上接触位于结构13上面的上部电极26。
本发明的实施例的存储器单元可以包括一次性可编程的(OTP)或者可重复写入的非易失性存储器元件,并且可以选择于以下器件中的至少一个:反熔丝,熔丝,串联布置的二极管与反熔丝,多晶硅存储效应元件,金属氧化物存储器,可切换复杂金属氧化物,碳纳米管存储器,石墨烯或者其它碳可切换电阻材料,相变材料存储器,导电桥元件或者可切换聚合物存储器。
已经描述了第一存储器级的形成。可以在该第一存储器级上形成其它的存储器级,以形成单片三维存储器阵列。在一些实施例中,存储级之间可以共用导体;也就是,顶部导体将作为下一个存储器级的底部导体。在其它实施例中,在第一存储器级上形成层间介电层(未示出),其表面被平坦化,并且在该平坦化的层间介电层上开始构造第二存储器级,而没有共用导体。
单片三维存储器阵列是在单个衬底(例如晶圆)上形成多个存储器级,而没有插入的衬底。在现有的级的层上直接淀积或生长形成一个存储器级的层。相比之下,堆叠式存储器通过在分开的衬底上形成存储级并且将这些存储级互相粘结在顶上,如Leedy的美国专利No.5,915,167,“Three dimensional structure memory”中公开的那样。在粘结之前,可以减薄衬底或者从存储器级中去除衬底,但是由于存储器级最初是在分开的衬底上形成的,因此这种存储器不是真正的单片三维存储器。
在衬底上形成的单片三维存储器阵列包括在衬底上第一高度处形成的至少第一存储器级和在不同于该第一高度的第二高度处形成的第二存储器级。可以在衬底上以这种多层阵列方式形成三个、四个、八个或者实际上任何数目的存储器级。
在整个说明书中,一个层被描述为在另一个层“上”或者“下”。应理解,这些术语描述了层和元件相对于在其上形成它们的衬底(在大多数实施例中是单晶硅晶圆衬底)的位置;一个特征当其离晶圆衬底较远时是在另一个上,当其离晶圆衬底较近时是在另一个下。虽然很清楚,可以在任意方向旋转晶圆或者管芯,但是第一特征在晶圆或者管芯上的相对方向不会改变。此外,附图刻意没有按比例示出,仅表示层和被处理的层。
已经以说明性的方式描述了本发明。应理解,所用的术语意在描述词语的本质而不是限制它。在上述教导下,本发明的许多修改和变型是可能的。因此,在附随的权利要求的范围之内,可以以不同于具体描述的实施例来实施本发明。

Claims (12)

1.一种制备存储器器件的方法,包括:
形成第一导电电极;
图形化绝缘层以形成绝缘轨道,使得所述第一导电电极被暴露在邻近的绝缘轨道之间;
在绝缘轨道的侧壁上并且与所述第一导电电极接触地形成电阻率切换元件;
在所述电阻率切换元件上形成第二导电电极;以及
在所述第一导电电极和所述第二导电电极之间形成与所述电阻率切换元件串联的导向元件;
其中所述电阻率切换元件在从所述第一导电电极到所述第二导电电极的第一方向上的高度大于所述电阻率切换元件在与所述第一方向正交的第二方向上的厚度。
2.根据权利要求1所述的方法,还包括:
在所述电阻率切换元件上形成绝缘层;以及
在形成所述第二导电电极层的步骤之前,平坦化所述绝缘层,以暴露所述电阻率切换元件的上表面。
3.根据权利要求1所述的方法,其中所述电阻率切换元件是位于所述绝缘结构的侧壁上的金属氧化物层。
4.根据权利要求1所述的方法,其中所述电阻率切换元件选自于反熔丝介电质、熔丝、多晶硅存储效应材料、金属氧化物或者可切换复杂金属氧化物材料、碳纳米管材料、石墨烯可切换电阻材料、碳电阻率切换材料、相变材料、导电桥元件、电解质切换材料或者可切换聚合物材料。
5.根据权利要求1所述的方法,其中所述电阻率切换元件包括金属氧化物,通过在所述绝缘结构的侧壁上淀积金属层或者金属氮化物层,并且氧化所述金属层或者金属氮化物层以形成金属氧化物层或者金属氮氧化物层,以此来形成所述金属氧化物。
6.根据权利要求1所述的方法,还包括在绝缘层内形成槽,以形成所述绝缘结构,使得所述第一导电电极被暴露在所述槽的底部,并且所述电阻率切换元件被形成在所述槽绝缘结构的侧壁上并且与所述第一导电电极接触。
7.根据权利要求1所述的方法,还包括用绝缘填充材料填充所述绝缘轨道之间的空间。
8.根据权利要求1所述的方法,其中所述导向元件包括位于所述电阻率切换元件上的二极管。
9.根据权利要求1所述的方法,其中所述导向元件包括位于所述电阻率切换元件下的二极管。
10.一种制备存储器器件的方法,包括:
形成第一导电电极;
在所述第一导电电极上形成至少一个二极管层;
在所述二极管层上形成至少一个绝缘模板层;
在所述模板层上形成硬质掩膜图形;
使用所述硬质掩膜图形作为掩膜来刻蚀所述模板层;
减小所述模板层的宽度以形成绝缘柱;
在所述绝缘柱的侧壁上淀积金属氧化物电阻率切换层;
使用所述硬质掩膜图形作为掩膜来刻蚀所述二极管层,以形成柱形的二极管导向元件;以及
形成与所述金属氧化物电阻率切换层接触的第二导电电极。
11.根据权利要求10所述的方法,其中:
通过各向同性刻蚀所述绝缘模板层以钻蚀所述硬质掩膜图形来执行减小宽度的步骤;以及
通过原子层淀积来执行淀积所述金属氧化物的步骤。
12.根据权利要求11所述的方法,还包括在形成所述第二导电电极之前,去除与所述电阻率切换层接触的硬质掩膜图形。
CN200980112695.XA 2008-04-11 2009-04-01 侧壁结构的可切换电阻器单元 Active CN101999170B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US7109308P 2008-04-11 2008-04-11
US61/071,093 2008-04-11
US12/216,110 US7812335B2 (en) 2008-04-11 2008-06-30 Sidewall structured switchable resistor cell
US12/216,110 2008-06-30
PCT/US2009/039126 WO2009126492A1 (en) 2008-04-11 2009-04-01 Sidewall structured switchable resistor cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012105722908A Division CN102983273A (zh) 2008-04-11 2009-04-01 侧壁结构的可切换电阻器单元

Publications (2)

Publication Number Publication Date
CN101999170A CN101999170A (zh) 2011-03-30
CN101999170B true CN101999170B (zh) 2013-01-16

Family

ID=40839545

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980112695.XA Active CN101999170B (zh) 2008-04-11 2009-04-01 侧壁结构的可切换电阻器单元
CN2012105722908A Pending CN102983273A (zh) 2008-04-11 2009-04-01 侧壁结构的可切换电阻器单元

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2012105722908A Pending CN102983273A (zh) 2008-04-11 2009-04-01 侧壁结构的可切换电阻器单元

Country Status (7)

Country Link
US (1) US7812335B2 (zh)
EP (1) EP2277201A1 (zh)
JP (2) JP5044042B2 (zh)
KR (1) KR101532203B1 (zh)
CN (2) CN101999170B (zh)
TW (1) TWI380437B (zh)
WO (1) WO2009126492A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830698B2 (en) * 2008-04-11 2010-11-09 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
KR20110050422A (ko) * 2008-07-08 2011-05-13 쌘디스크 3디 엘엘씨 탄소계 저항률 스위칭 물질과 이를 형성하는 방법
WO2010078467A1 (en) * 2008-12-31 2010-07-08 Sandisk 3D, Llc Modulation of resistivity in carbon-based read-writeable materials
EP2478572A4 (en) * 2009-09-18 2013-11-13 Hewlett Packard Development Co LUMINAIRE DIODE WITH METAL DIELECTRIC METAL AFUBAU
JP5439147B2 (ja) * 2009-12-04 2014-03-12 株式会社東芝 抵抗変化メモリ
US8374018B2 (en) * 2010-07-09 2013-02-12 Crossbar, Inc. Resistive memory using SiGe material
CN102332454B (zh) * 2010-07-15 2013-04-10 复旦大学 一次可编程存储单元、存储器及其制备方法
JP5572056B2 (ja) * 2010-10-20 2014-08-13 株式会社東芝 記憶装置及びその製造方法
US8502185B2 (en) * 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
US8482078B2 (en) 2011-05-10 2013-07-09 International Business Machines Corporation Integrated circuit diode
US8394682B2 (en) 2011-07-26 2013-03-12 Micron Technology, Inc. Methods of forming graphene-containing switches
US8879299B2 (en) 2011-10-17 2014-11-04 Sandisk 3D Llc Non-volatile memory cell containing an in-cell resistor
KR20130043533A (ko) * 2011-10-20 2013-04-30 삼성전자주식회사 도전성 버퍼 패턴을 갖는 비-휘발성 메모리소자 및 그 형성 방법
US8710481B2 (en) 2012-01-23 2014-04-29 Sandisk 3D Llc Non-volatile memory cell containing a nano-rail electrode
KR20130087233A (ko) 2012-01-27 2013-08-06 삼성전자주식회사 가변 저항 메모리 장치 및 그 형성 방법
KR20140141574A (ko) 2012-02-29 2014-12-10 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 함유 영역과 열평형을 이루는 채널 영역을 갖는 멤리스터
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
WO2014050198A1 (ja) * 2012-09-28 2014-04-03 日本電気株式会社 スイッチング素子およびスイッチング素子の製造方法
CN104051619B (zh) * 2013-03-13 2017-07-04 旺宏电子股份有限公司 具有相变元件的存储器单元及其形成方法
US9093635B2 (en) * 2013-03-14 2015-07-28 Crossbar, Inc. Controlling on-state current for two-terminal memory
KR101458566B1 (ko) * 2013-05-21 2014-11-07 재단법인대구경북과학기술원 정류소자 및 그의 제조 방법
KR102225782B1 (ko) 2014-07-28 2021-03-10 삼성전자주식회사 가변 저항 메모리 장치 및 그 제조 방법
WO2016122576A1 (en) 2015-01-30 2016-08-04 Hewlett Packard Enterprise Development Lp Composite selector electrodes
US9806256B1 (en) 2016-10-21 2017-10-31 Sandisk Technologies Llc Resistive memory device having sidewall spacer electrode and method of making thereof
KR102474306B1 (ko) * 2018-02-20 2022-12-06 에스케이하이닉스 주식회사 크로스-포인트 어레이 장치 및 이의 제조 방법
KR20200127712A (ko) 2019-05-03 2020-11-11 삼성전자주식회사 가변 저항 메모리 소자
US10991879B2 (en) 2019-06-26 2021-04-27 Western Digital Technologies, Inc. Multi-level phase change memory cells and method of making the same
CN112018234B (zh) * 2020-07-22 2021-10-15 厦门半导体工业技术研发有限公司 半导体器件和半导体器件的制造方法
DE112021007796T5 (de) * 2021-06-09 2024-04-18 Microchip Technology Incorporated Kohlenstoffnanoröhren- (cnt-) speicherzellenelement und konstruktionsverfahren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686646B2 (en) * 2002-02-15 2004-02-03 Matrix Semiconductor, Inc. Diverse band gap energy level semiconductor device
CN1967897A (zh) * 2005-11-14 2007-05-23 旺宏电子股份有限公司 管型相变化存储器

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8400959D0 (en) 1984-01-13 1984-02-15 British Petroleum Co Plc Semiconductor device
US4646266A (en) 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US5166760A (en) 1990-02-28 1992-11-24 Hitachi, Ltd. Semiconductor Schottky barrier device with pn junctions
EP0695494B1 (en) 1993-04-23 2001-02-14 Irvine Sensors Corporation Electronic module comprising a stack of ic chips
US5555204A (en) 1993-06-29 1996-09-10 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US5535156A (en) 1994-05-05 1996-07-09 California Institute Of Technology Transistorless, multistable current-mode memory cells and memory arrays and methods of reading and writing to the same
US5559732A (en) 1994-12-27 1996-09-24 Syracuse University Branched photocycle optical memory device
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5693556A (en) 1995-12-29 1997-12-02 Cypress Semiconductor Corp. Method of making an antifuse metal post structure
US5723358A (en) 1996-04-29 1998-03-03 Vlsi Technology, Inc. Method of manufacturing amorphous silicon antifuse structures
US5835396A (en) 1996-10-17 1998-11-10 Zhang; Guobiao Three-dimensional read-only memory
US5915167A (en) 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
NO972803D0 (no) 1997-06-17 1997-06-17 Opticom As Elektrisk adresserbar logisk innretning, fremgangsmåte til elektrisk adressering av samme og anvendelse av innretning og fremgangsmåte
NO973993L (no) 1997-09-01 1999-03-02 Opticom As Leseminne og leseminneinnretninger
US6111784A (en) 1997-09-18 2000-08-29 Canon Kabushiki Kaisha Magnetic thin film memory element utilizing GMR effect, and recording/reproduction method using such memory element
US5991193A (en) 1997-12-02 1999-11-23 International Business Machines Corporation Voltage biasing for magnetic ram with magnetic tunnel memory cells
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6377502B1 (en) 1999-05-10 2002-04-23 Kabushiki Kaisha Toshiba Semiconductor device that enables simultaneous read and write/erase operation
US6187617B1 (en) 1999-07-29 2001-02-13 International Business Machines Corporation Semiconductor structure having heterogeneous silicide regions and method for forming same
US6306718B1 (en) 2000-04-26 2001-10-23 Dallas Semiconductor Corporation Method of making polysilicon resistor having adjustable temperature coefficients
US8575719B2 (en) 2000-04-28 2013-11-05 Sandisk 3D Llc Silicon nitride antifuse for use in diode-antifuse memory arrays
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6777773B2 (en) 2000-08-14 2004-08-17 Matrix Semiconductor, Inc. Memory cell with antifuse layer formed at diode junction
EP2323164B1 (en) 2000-08-14 2015-11-25 SanDisk 3D LLC Multilevel memory array and method for making same
US6486065B2 (en) 2000-12-22 2002-11-26 Matrix Semiconductor, Inc. Method of forming nonvolatile memory device utilizing a hard mask
US6541312B2 (en) 2000-12-22 2003-04-01 Matrix Semiconductor, Inc. Formation of antifuse structure in a three dimensional memory
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6574130B2 (en) 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6584029B2 (en) 2001-08-09 2003-06-24 Hewlett-Packard Development Company, L.P. One-time programmable memory using fuse/anti-fuse and vertically oriented fuse unit memory cells
US6567301B2 (en) 2001-08-09 2003-05-20 Hewlett-Packard Development Company, L.P. One-time programmable unit memory cell based on vertically oriented fuse and diode and one-time programmable memory using the same
US6525953B1 (en) 2001-08-13 2003-02-25 Matrix Semiconductor, Inc. Vertically-stacked, field-programmable, nonvolatile memory and method of fabrication
US6580144B2 (en) * 2001-09-28 2003-06-17 Hewlett-Packard Development Company, L.P. One time programmable fuse/anti-fuse combination based memory cell
EP1450373B1 (en) 2003-02-21 2008-08-27 STMicroelectronics S.r.l. Phase change memory device
US6693823B2 (en) 2002-01-02 2004-02-17 Intel Corporation Minimization of metal migration in magnetic random access memory
US6559516B1 (en) 2002-01-16 2003-05-06 Hewlett-Packard Development Company Antifuse structure and method of making
US6853049B2 (en) 2002-03-13 2005-02-08 Matrix Semiconductor, Inc. Silicide-silicon oxide-semiconductor antifuse device and method of making
US6778421B2 (en) 2002-03-14 2004-08-17 Hewlett-Packard Development Company, Lp. Memory device array having a pair of magnetic bits sharing a common conductor line
US6548313B1 (en) 2002-05-31 2003-04-15 Intel Corporation Amorphous carbon insulation and carbon nanotube wires
US6952043B2 (en) 2002-06-27 2005-10-04 Matrix Semiconductor, Inc. Electrically isolated pillars in active devices
US7081377B2 (en) 2002-06-27 2006-07-25 Sandisk 3D Llc Three-dimensional memory
US7071008B2 (en) 2002-08-02 2006-07-04 Unity Semiconductor Corporation Multi-resistive state material that uses dopants
US6834008B2 (en) 2002-08-02 2004-12-21 Unity Semiconductor Corporation Cross point memory array using multiple modes of operation
US7105108B2 (en) 2002-08-15 2006-09-12 Advanced Energy Technology Inc. Graphite intercalation and exfoliation process
JP4509467B2 (ja) * 2002-11-08 2010-07-21 シャープ株式会社 不揮発可変抵抗素子、及び記憶装置
US6813177B2 (en) 2002-12-13 2004-11-02 Ovoynx, Inc. Method and system to store information
JP2006511965A (ja) 2002-12-19 2006-04-06 マトリックス セミコンダクター インコーポレイテッド 高密度不揮発性メモリを製作するための改良された方法
US7285464B2 (en) 2002-12-19 2007-10-23 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US6946719B2 (en) 2003-12-03 2005-09-20 Matrix Semiconductor, Inc Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide
US7176064B2 (en) 2003-12-03 2007-02-13 Sandisk 3D Llc Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US20050226067A1 (en) 2002-12-19 2005-10-13 Matrix Semiconductor, Inc. Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US7800932B2 (en) * 2005-09-28 2010-09-21 Sandisk 3D Llc Memory cell comprising switchable semiconductor memory element with trimmable resistance
US8637366B2 (en) 2002-12-19 2014-01-28 Sandisk 3D Llc Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US7618850B2 (en) 2002-12-19 2009-11-17 Sandisk 3D Llc Method of making a diode read/write memory cell in a programmed state
US7113426B2 (en) 2003-03-28 2006-09-26 Nantero, Inc. Non-volatile RAM cell and array using nanotube switch position for information state
US6914801B2 (en) 2003-05-13 2005-07-05 Ovonyx, Inc. Method of eliminating drift in phase-change memory
US7511352B2 (en) 2003-05-19 2009-03-31 Sandisk 3D Llc Rail Schottky device and method of making
US6873543B2 (en) 2003-05-30 2005-03-29 Hewlett-Packard Development Company, L.P. Memory device
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
JP2005109659A (ja) 2003-09-29 2005-04-21 Toshiba Corp 半導体集積回路装置
US6847544B1 (en) 2003-10-20 2005-01-25 Hewlett-Packard Development Company, L.P. Magnetic memory which detects changes between first and second resistive states of memory cell
US6999366B2 (en) 2003-12-03 2006-02-14 Hewlett-Packard Development Company, Lp. Magnetic memory including a sense result category between logic states
US7172840B2 (en) 2003-12-05 2007-02-06 Sandisk Corporation Photomask features with interior nonprinting window using alternating phase shifting
US7474000B2 (en) 2003-12-05 2009-01-06 Sandisk 3D Llc High density contact to relaxed geometry layers
US6951780B1 (en) 2003-12-18 2005-10-04 Matrix Semiconductor, Inc. Selective oxidation of silicon in diode, TFT, and monolithic three dimensional memory arrays
US20050221200A1 (en) 2004-04-01 2005-10-06 Matrix Semiconductor, Inc. Photomask features with chromeless nonprinting phase shifting window
US7307013B2 (en) 2004-06-30 2007-12-11 Sandisk 3D Llc Nonselective unpatterned etchback to expose buried patterned features
US7224013B2 (en) 2004-09-29 2007-05-29 Sandisk 3D Llc Junction diode comprising varying semiconductor compositions
US7405465B2 (en) 2004-09-29 2008-07-29 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
KR100719346B1 (ko) 2005-04-19 2007-05-17 삼성전자주식회사 저항 메모리 셀, 그 형성 방법 및 이를 이용한 저항 메모리배열
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20060250836A1 (en) 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
US7345907B2 (en) 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
US7426128B2 (en) 2005-07-11 2008-09-16 Sandisk 3D Llc Switchable resistive memory with opposite polarity write pulses
US7615770B2 (en) * 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7601995B2 (en) 2005-10-27 2009-10-13 Infineon Technologies Ag Integrated circuit having resistive memory cells
US20070111429A1 (en) * 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7884346B2 (en) * 2006-03-30 2011-02-08 Panasonic Corporation Nonvolatile memory element and manufacturing method thereof
JP2007281208A (ja) * 2006-04-07 2007-10-25 Matsushita Electric Ind Co Ltd 多層抵抗変化素子アレイ、抵抗変化装置、多層不揮発性記憶素子アレイ、及び不揮発性記憶装置
US7575984B2 (en) * 2006-05-31 2009-08-18 Sandisk 3D Llc Conductive hard mask to protect patterned features during trench etch
US7492630B2 (en) 2006-07-31 2009-02-17 Sandisk 3D Llc Systems for reverse bias trim operations in non-volatile memory
KR100881181B1 (ko) * 2006-11-13 2009-02-05 삼성전자주식회사 반도체 메모리 소자 및 그 제조 방법
US7667999B2 (en) 2007-03-27 2010-02-23 Sandisk 3D Llc Method to program a memory cell comprising a carbon nanotube fabric and a steering element
US7982209B2 (en) 2007-03-27 2011-07-19 Sandisk 3D Llc Memory cell comprising a carbon nanotube fabric element and a steering element
KR100888617B1 (ko) * 2007-06-15 2009-03-17 삼성전자주식회사 상변화 메모리 장치 및 그 형성 방법
US8294219B2 (en) * 2007-07-25 2012-10-23 Intermolecular, Inc. Nonvolatile memory element including resistive switching metal oxide layers
US8665629B2 (en) 2007-09-28 2014-03-04 Qimonda Ag Condensed memory cell structure using a FinFET
JP5374865B2 (ja) * 2007-12-10 2013-12-25 富士通株式会社 抵抗変化素子、これを用いた記憶装置、及びそれらの作製方法
US7764534B2 (en) 2007-12-28 2010-07-27 Sandisk 3D Llc Two terminal nonvolatile memory using gate controlled diode elements
JP5364280B2 (ja) * 2008-03-07 2013-12-11 株式会社東芝 不揮発性記憶装置及びその製造方法
US7723180B2 (en) 2008-04-11 2010-05-25 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US7859887B2 (en) 2008-04-11 2010-12-28 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US7830698B2 (en) 2008-04-11 2010-11-09 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686646B2 (en) * 2002-02-15 2004-02-03 Matrix Semiconductor, Inc. Diverse band gap energy level semiconductor device
CN1967897A (zh) * 2005-11-14 2007-05-23 旺宏电子股份有限公司 管型相变化存储器

Also Published As

Publication number Publication date
US20090256129A1 (en) 2009-10-15
KR101532203B1 (ko) 2015-07-06
TW200950078A (en) 2009-12-01
WO2009126492A1 (en) 2009-10-15
CN101999170A (zh) 2011-03-30
TWI380437B (en) 2012-12-21
JP5395213B2 (ja) 2014-01-22
EP2277201A1 (en) 2011-01-26
CN102983273A (zh) 2013-03-20
JP5044042B2 (ja) 2012-10-10
JP2012212902A (ja) 2012-11-01
JP2011517855A (ja) 2011-06-16
US7812335B2 (en) 2010-10-12
KR20110005830A (ko) 2011-01-19

Similar Documents

Publication Publication Date Title
CN101999170B (zh) 侧壁结构的可切换电阻器单元
US10748966B2 (en) Three-dimensional memory device containing cobalt capped copper lines and method of making the same
US10256272B2 (en) Resistive memory device containing etch stop structures for vertical bit line formation and method of making thereof
US9076518B2 (en) Three-dimensional memory structures having shared pillar memory cells
US9698202B2 (en) Parallel bit line three-dimensional resistive random access memory
US7259038B2 (en) Forming nonvolatile phase change memory cell having a reduced thermal contact area
CN101477987B (zh) 制造三维立体堆叠的电阻转换存储器的方法
KR101957897B1 (ko) 가변 저항 메모리 장치 및 그 제조 방법
US8624293B2 (en) Carbon/tunneling-barrier/carbon diode
EP2286453A1 (en) Non-volatile memory arrays comprising rail stacks with a shared diode component portion for diodes of electrically isolated pillars
US9276041B2 (en) Three dimensional RRAM device, and methods of making same
US20080017890A1 (en) Highly dense monolithic three dimensional memory array and method for forming
CN104124257A (zh) 三维可变电阻存储器件及其制造方法
CN101615656A (zh) 非易失性存储装置及其制造方法
WO2009085079A1 (en) Method of programming cross-point diode memory array
JP2013505581A (ja) 低コンタクト抵抗を有する3次元ポリシリコンダイオードおよびその形成方法
JP2010067942A (ja) 不揮発性半導体記憶装置及びその製造方法
CN107579087B (zh) 一种存储器单元阵列结构和电子装置
JP5695417B2 (ja) 逆方向リークが減少した3次元の読み書きセルとそれを作る方法
WO2020251637A1 (en) Three-dimensional memory device including constricted current paths, and methods of manufacturing the same
CN117835699A (zh) 电阻式存储器装置以及其制作方法
KR101155093B1 (ko) 반도체 메모리 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160531

Address after: texas

Patentee after: Sandisk Corp.

Address before: American California

Patentee before: Sandisk 3D LLC

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: texas

Patentee after: DELPHI INT OPERATIONS LUX SRL

Address before: texas

Patentee before: Sandisk Corp.