CN102246307A - 具有增大的击穿电压特性的基于沟槽的功率半导体器件 - Google Patents

具有增大的击穿电压特性的基于沟槽的功率半导体器件 Download PDF

Info

Publication number
CN102246307A
CN102246307A CN2009801492000A CN200980149200A CN102246307A CN 102246307 A CN102246307 A CN 102246307A CN 2009801492000 A CN2009801492000 A CN 2009801492000A CN 200980149200 A CN200980149200 A CN 200980149200A CN 102246307 A CN102246307 A CN 102246307A
Authority
CN
China
Prior art keywords
groove
region
semiconductor
well region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801492000A
Other languages
English (en)
Other versions
CN102246307B (zh
Inventor
约瑟夫·A·叶季纳科
丹尼尔·卡拉菲特
迪安·E·普罗布斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Semiconductor Corp
Original Assignee
Fairchild Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor Corp filed Critical Fairchild Semiconductor Corp
Publication of CN102246307A publication Critical patent/CN102246307A/zh
Application granted granted Critical
Publication of CN102246307B publication Critical patent/CN102246307B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Abstract

本发明公开了具有提供增大的击穿电压和其他益处的特征的示例性功率半导体器件。

Description

具有增大的击穿电压特性的基于沟槽的功率半导体器件
相关申请的引用
本申请要求于2008年12月8日提交的美国临时专利申请No.61/120818的权益,将其全部内容结合于此供参考。
背景技术
示例性功率半导体器件(功率半导体装置,power semiconductordevice)包括平面栅MOSFET晶体管、垂直栅MOSFET晶体管、绝缘栅双极晶体管(IGBT)、整流管和同步整流管。这些器件的槽栅多样性的典型实施包括在半导体芯片(裸芯片,die)顶面上形成的沟槽阵列,其中每个沟槽用屏蔽电极(shield electrode)和/或栅电极填充,这取决于功率器件的类型。沟槽定义平台(mesa)的对应阵列,每个平台布置(设置,dispose)在相邻沟槽之间。取决于在芯片上实现的器件,各种电极和/或掺杂区布置在平台的顶部。每个平台和它的相邻沟槽实现该器件的小实例(instance),并且这些小实例并联耦接在一起从而提供整个功率半导体器件。整个器件具有其中期望电流流过该器件的ON状态(连通状态)、其中电流在器件中基本被阻断的OFF状态(断开状态),以及其中由于在器件的导电电极之间施加过大断开电压导致的不期望电流流动的击穿状态。引发击穿的电压称为击穿电压(breakdown voltage)。每个平台和它的相邻沟槽被构造成提供一组期望的ON状态特性和击穿电压。在平台和沟槽的设计中,在实现良好ON状态特性、高击穿电压和改善的开关特性之间存在各种权衡(tradeoff)。
典型的功率半导体芯片具有其中布置有实现器件的平台和沟槽阵列的有源区、围绕该有源区的场终止区(field termination area),以及其中可以提供互连和沟道截止(channel stop)的无源区(inactive area)。场终止区使有源区周围的电场最小化,并且不用于传导电流。理想地,人们希望器件的击穿电压由与有源区相关的击穿过程确定。然而,存在在显著较低电压下能够在场终止区和无源区中发生的各种击穿过程。这些击穿过程可称为被动击穿过程。
现有技术中为了设计具有比有源区更高的击穿电压的场终止区已经做出了许多努力。然而,这样的现有技术设计常常没有达到该目的,经常需要增加总芯片面积和芯片成本的折衷。
发明内容
本发明的发明人发现了基于沟槽的功率器件中寄生击穿条件可能首先发生的若干位置。本申请提供了对抗这些击穿条件并增大击穿电压的新颖性和创造性特征。
本文中描述的本发明示例性实施方式的各个方面可以单独使用或以任意组合使用。
附图说明
图1示出了包括根据本发明的若干特征的一种示例性半导体芯片的顶视图。
图2示出了根据本发明的图1的示例性半导体芯片的左上角的放大视图。
图3示出了根据本发明的图1的示例性半导体芯片的左侧的一部分的放大视图。
图4和图5示出了根据本发明的图1的示例性半导体芯片的一部分的第一剖面图和其在图5中的放大图。
图6示出了根据本发明的图1的示例性半导体芯片的变形的一部分的放大剖面图。
图7-14示出了根据本发明的图1的示例性半导体芯片及其可能的变形的各种放大剖面图。
图15示出了包括根据本发明的若干特征的另一种示例性半导体芯片的顶视图。
图16-19示出了根据本发明的图15的示例性半导体芯片及其可能的变形的各种放大剖面图。
图20示出了包括根据本发明的若干特征的另一种示例性半导体芯片的顶视图。
图21-29示出了根据本发明的图20的示例性半导体芯片及其可能的变形的各种放大剖面图。
图30示出包括根据本发明的若干特征的另一种示例性半导体芯片的顶视图。
图31示出了根据本发明的图30的示例性半导体芯片的放大剖面图。
图32-34示出了根据本发明的包括沟槽屏蔽肖特基势垒二极管器件(trench-shielded Schottky barrier diode device)的示例性半导体芯片的各种剖面图。
具体实施方式
在下文中将参考其中示出了本发明的示例性实施方式的附图更充分地描述根据本发明的技术。然而,本发明可以以不同形式具体体现,并且不应该解释为限于本文中例举的这些实施方式。相反,提供这些实施方式以使本申请公开内容充分完整,并向本领域技术人员充分传达本发明的范围。在附图中,为了清楚,可能夸大了层和区域的厚度。使用相同的标号来指代整个说明书中的相同元件。这些元件对于不同的实施方式可以具有不同的相互关系和不同的位置。
还应理解,当一个层称为在另一个层或衬底“上”时,它能够直接在其他层或衬底上,或者也可以存在插入层。还应理解,当一个元件例如层、区域或衬底称为在另一元件“上”,“连接至”、“电连接至”、“耦接至”或“电耦接至”另一元件时,它能够直接在其他元件上、连接或耦合至其他元件,或可以存在一个或更多插入元件。相反,当一个元件称为“直接在另一元件上”、“直接连接至”或“直接耦接至”另一元件或层时,没有插入元件或层存在。可以理解,本申请的权利要求可以修改为引述本说明书中描述的或者附图中示出的示例性关系,其支持由原始申请提供。本文中使用的术语“和/或”包括相关例举项目中的一个或多个的任意和全部组合。
本文中使用的术语仅用于本发明的举例说明的目的,而不应解释为限制本发明的含义或范围。如在本说明书中使用的,除非根据上下文明确表示特定情形,单数形式可以包括复数形式。同样,在本说明书中使用的表达“包含”和/或“包括”既不限定提及的形状、数量、步骤、行为、操作、构件、元件和/或这些的组,也不排除存在或添加一个或多个其他其他不同的形状、数量、步骤、行为、操作、构件、元件和/或这些的组,或添加这些。空间相关术语,例如“在上方”、“高于”、“较高”、“在下方”、“在下面”、“低于”、“较低”等等,可以在本文中使用,用于方便描述以描述如图中所示的一个元件或特征相对于一个元件或特征的关系。应当理解,这些空间相关术语用于涵盖除了图中示出的定向之外,在使用或操作中器件的不同取向。例如,如果图中器件翻转,那么描述为“低于”其他元件或特征或“在其他元件或特征下面”或“在其他元件或特征下方”的元件将会定向为“在其他元件或特征上面”或“高于”其他元件或特征。因此,示例性术语“高于”可能涵盖高于和低于两种定向。
如本文使用的,术语例如“第一”、“第二”等用来描述各种构件、组件、区域、层和/或部分。然而,很明显,构件、组件、区域、层和/或部分不应由这些术语限定。这些术语仅用于区分一个构件、组件、区域、层或部分与另一构件、组件、区域、层或部分。因此,将要描述的第一构件、组件、区域、层或部分也可指第二构件、组件、区域、层或部分,而不背离本发明的范畴。
图1示出了包括根据本发明的若干特征的示例性半导体器件100的顶视图。器件100包括位于在芯片中部的有源器件区(装置区,device region)120。不失一般性,器件区120可实现一个垂直的、沟槽屏蔽的功率MOSFET器件。如下面更详细描述和示出的,该示例性MOSFET器件包括与平台(mesa)阵列交错(interleave)的沟槽阵列、布置在沟槽底部中的绝缘屏蔽电极(shield electrode)、布置在屏蔽电极上方的沟槽中的绝缘栅电极(gate electrode)、布置在平台中的源极区(source region)、布置在源极区上的源电极(source electrode)、以及布置在半导体器件背侧处的漏电极(drain electrode)。器件100进一步包括布置在器件区120上方并电耦接至源电极的源极金属层110(也称为导电层110)、以及布置在导电层110上方并与其电耦接且又电耦接至该功率MOSFET器件的源极区的源极焊盘(源极垫,source pad)111。源极焊盘111适合接收外部连接,例如提供源极电位的焊线(wire bond)或焊料凸点(solder bump),并在每侧上可以具有150微米的尺寸。
在器件区120左右侧的每侧上,器件100进一步包括与布置在沟槽中的栅电极和屏蔽电极形成电接触的连接区(connection region)150。在每个连接区中,一条导电材料,称为栅极浇道(gate runner),平行于器件区120的侧面布置并与其隔开。栅极浇道与沟槽中栅电极电接触,但与在沟槽之间交错的平台电绝缘。每个栅极浇道电耦接至位于在芯片底部的栅极焊盘(栅极垫,gate pad)112。栅极焊盘112适合接收外部连接,例如提供栅极电位的焊线或焊料凸点。同样在每个连接区150中,另一条导电材料,称为屏蔽浇道(shield runner),平行于栅极浇道布置并与其隔开。屏蔽浇道与沟槽中的屏蔽电极形成电接触,但与它覆盖的平台的部分电隔离。屏蔽浇道通过在芯片顶部处的源极导电层的延伸而电耦接至源极导电层,或者电耦接至屏蔽焊盘并使用外部连接。
沟道截断环(channel stopper)布置在芯片周边处或附近,并通过间隙与屏蔽浇道和器件区120的顶部部分隔开。沟道截断环是常规的,并且可以包括遮盖且接触一条掺杂半导体区的金属的隔离环(isolated ring),其围绕芯片周边形成一个环。必需注意,芯片100不包括在这种间隙中通常出现的常规场终止结构(field termination structure)。
图2示出了芯片100左上角的放大图,而图3示出了沿该芯片左侧的一部分的放大图。以上特征在这些图中更清晰地看到。图2和图3为接下来将要讨论的芯片100的许多剖面提供参考点。
图4是包括有源器件区120和第一场终止区的芯片100的一部分的剖面图。芯片100包括N+掺杂半导体衬底102、布置在半导体衬底102上的一个或多个外延生长半导体n-型层104(“外延半导体层”)、布置在无源(inactive)和第一场终止区中的外延半导体层104上方的氧化物层106、布置在氧化物层106上方的介电层(dielectric layer)107、布置在无源区左边部分的介电层107上方的栅极浇道、以及布置在第一场终止区中的介电层107上方的导电层110(源极金属层110)。如在现有技术中已知的,半导体区可以用p-型掺杂剂掺杂为p-导电型(或“p-型”)区,或用n-型掺杂剂掺杂为n-导电型(或“n-型”)区。在器件区120中,器件100进一步包括布置在外延半导体层中的多个沟槽122,以及在沟槽122之间交错(交替)的半导体材料的多个平台130。介电层107的部分覆盖沟槽122的顶部,并且源极金属层110在有源器件区120上方延伸并与平台130形成接触。沟槽122和平台130的结构参考图5在下面进行描述。在第一终止区中,器件100进一步包括第一末端沟槽(first end trench)222、布置在第一末端沟槽222和器件区120的最左边沟槽122之间的第一末端平台(first end mesa)230、以及布置在第一末端沟槽222左边的第二末端平台238。
图5是图4中示出的第一场终止区和器件区120的放大剖面图。每个沟槽122都具有衬有介电层123的相对侧壁(opposing sidewall)、布置在沟槽底部附近的侧壁之间的屏蔽电极124、布置在屏蔽电极124上方的介电层125、以及布置在该介电层上方且在沟槽侧壁之间的栅电极126。每个平台130包括布置在与层104顶面相邻的外延半导体层104中的p-型阱134、布置在与两个相邻沟槽122和外延半导体层104顶面相邻的p-型阱134中的一对源极(n+型)区136、以及布置在p-型阱134下方的N漂移区(drift region)132。(本文中描述的p-型阱、p-型区和p-掺杂区可以称为“第一导电型阱区”或“第二导电型阱区”,取决于讨论的上下文或权利要求的上下文内容)。在平台130的中心形成小沟槽,以允许源极金属层110与源极区136形成电接触,以及与在增强p+掺杂的小区域135处的p-阱134形成电接触。电子电流垂直传导通过器件,从源极区136,通过与栅极氧化物123相邻的p-型阱134的反转区(inverted region),进一步通过漂移区132,并向下直到N+衬底102和漏极接触,其中在正常操作条件下电流量通过沟槽122中的栅电极126上的电位进行调制。屏蔽电极124电耦接至源极金属层110和源极区136的电位,并屏蔽p-型阱免于高电场。
当设定栅电极126上的电位以将器件置于断开状态(例如,通常大约为零伏的电位)时,在其中漏极电位相对源极电位为非常高的击穿条件期间,大量电流仍可流动。在该击穿条件中,在每个平台130的区域中形成高电场,并且这种高电场产生雪崩载流子(avalanche carrier)(空穴和电子二者)。出现这种击穿条件的电压称为击穿电压。可以通过选择屏蔽氧化物厚度、平台宽度和N-漂移区132的掺杂以使N-漂移区132正常地耗尽电子而升高平台的击穿电压。这引起在断开状态条件期间的电场沿平台的中线更均匀地分布(例如,正方形电场轮廓),由此减小峰值电场(并由此增大能够产生雪崩载流子的电压)。N-漂移区132耗尽电子的条件称为“电荷平衡条件(charge-balanced condition)”。当平台宽度和N-漂移区132的掺杂的乘积(product)在1×1011cm-2到1×1013cm-2范围内时,通常能够实现电荷平衡条件。
理想地,人们希望通过与平台130相关的击穿过程来确定击穿电压。然而,各种寄生击穿机制在较低电压下在器件的各种场终止区中发生,并由此将器件的总体击穿电压的值布置为低于由平台130中的击穿过程引起的值。一种这样的电位寄生机制能够在设计有现有技术的终止区的器件区120的最外沟槽中的介电层123的薄部分处出现。没有紧接它的平台130,这个薄介电层将会暴露于耦接至漏极电位的n-型外延层的电位,并且大电场能够横跨该薄介电层形成,这能够在相对低电压下引起发生击穿
根据本发明的一个特征通过在器件区120的有源沟槽122的阵列的任一侧上布置末端沟槽222解决这种寄生击穿机制。沟槽222具有衬有介电层223的相对侧壁、布置在沟槽底部附近的侧壁之间的屏蔽电极124、布置在屏蔽电极124上方的介电层125、以及布置在介电层上方且在沟槽侧壁之间的栅电极226。然而,不同于沟槽122的介电层123,如沿着栅电极226的深度测量时,介电层223沿着面对n-型外延层的侧壁的厚度比沿着面对器件区120的沟槽122的侧壁的厚度更厚。在图中通过标号227表示较厚区。较厚的电介质减小介电层中的电场,并由此增大它的击穿电压。沟槽222可以具有与每个沟槽122相同的宽度,并且栅电极226可以具有小于栅电极126的宽度。
以上沟槽222、122与平台238、230和130在用于图4的剖面线指示附近的图3的顶视图中指示。沟槽和平台的类似布置在器件区120的相反侧上存在,如通过图2的顶视图中的这些标号指示的。尽管沟槽222对结合沟槽122和平台130的阵列(在该阵列的任一侧上)(例如,阵列的顶部和底部),但它们不环绕该阵列或者具有结合该阵列右侧和左侧的部分。即,在沟槽122和平台130的末端处没有垂直终止沟槽。(应当注意,沟槽122和平台130连续以在栅极浇道下方伸展(延展,run))。有关于此,器件100不具有布置在沟槽122末端处的p-掺杂区。这些特征中的每一个都减小场终止区的尺寸,并使有源区能够被增大和/或使芯片尺寸能够被减小。尽管以上构造用于提供MOSFET器件的器件区120,但它也能够应用于其他器件类型,例如IGBT器件和整流管,特别是其中存在上述电荷平衡条件的那些器件。
再次参考图5,作为本发明的另一特征,到末端沟槽222左边的宽平台238可以可选地具有布置在它表面的p-型区239,其紧接介电层223。P-型区239可以与任何电位直接去耦合,并以浮置状态(floating state)保持,或者可以电耦接至源极金属层110和源极电位(例如,它可以接地)。在任一情况下,区239减小宽平台238右上角周围的电场,从而消除作为寄生击穿机制的来源的这个区域。当电耦接至源极电位时,p-型区239进一步屏蔽电介质223免于区域227中的漏极电位。P-型区239可以在制造p-型阱134的相同工艺期间进行制造。
作为本发明的另一特征,到末端沟槽222右边的平台230可以构造为p-n二极管而不是MOSFET晶体管。为此,它可以包括p-型阱134和增强的p+掺杂区135,但没有源极区136。在器件区120的MOSFET晶体管的正常操作期间,该p-n二极管偏置于断开状态。平台230在宽平台238和用来从第一有源平台130缓冲宽平台238中的电位的第一有源平台130之间提供另外的间距。这使第一平台130的电特性能够与内平台130基本相同。
图6示出了根据本发明的图1的示例性半导体芯片的一种变形的一部分的放大剖面图。图6中的放大剖面中的特征与图5的放大剖面中示出的那些特征相同,其中增加了另外的沟槽220、介质层221和屏蔽电极124。末端沟槽220具有衬有介电层221的相对侧壁、以及布置在侧壁之间(优选从外延半导体层顶部到沟槽底部附近)的屏蔽电极224。屏蔽电极224电耦接至源极金属层110,或者能够保持电浮置(电浮动,electricallyfloating)以采取浮置电位(floating potential)。屏蔽电极224对末端沟槽(end trench)222和栅电极226提供漏极电位的另外屏蔽。平台230’限定在沟槽220和222之间。P-掺杂区239可以包括在沟槽220和222之间的平台230’中,或者省略。而且,可以使用布置在平台230’中并从沟槽222延伸到沟槽220的p-掺杂区234中。连同区域234,p-掺杂区239’可以包括在沟槽220的左侧上。一对沟槽220在阵列的任一侧(例如,阵列的顶部和底部)上结合沟槽122、222以及平台130、230、230’的阵列,但它们不环绕该阵列或者不具有结合该阵列右侧和左侧的部分。这个特征减小场终止区的尺寸,并且使有源区能够被增大和/或芯片尺寸能够被减小。尽管以上构造用于提供MOSFET器件的器件区120,但它也能够应用于其他器件类型,例如IGBT器件和整流管,特别是其中存在上面描述的电荷平衡条件的那些器件。
图7示出了沿图3中定义的切割线7-7,紧邻器件区120的连接区150中的上文提及的沟槽和平台的剖面图。薄量的氧化物层106布置在平台130和230的每一个上方,并且介电层107布置在栅电极126和226、以及下面的氧化物层106上方。可选的末端沟槽220、屏蔽电极221以及介电层221以虚轮廓示出。关于在图4和图5中示出的剖面,对于p-掺杂区239关于其毗邻元件的构造没有变化。
图8示出了沿图3中定义的切割线8-8,在栅极浇道下方的连接区150中的上文提及的沟槽和平台的剖面图。薄量的氧化物层106布置在平台130和230的每一个上方。栅电极126和226的顶部通过导电立管(导电焊线槽,conductive riser)126R电耦接在一起。导电立管126R通过氧化物106的薄部分与平台130、230电隔离。在典型的实施方式中,立管126R和栅电极126、226由相同材料例如多晶硅形成。在在先剖面中,立管126R被移除。金属栅极浇道在通过电介质107的岛分隔开的栅电极126和226上的位置处与立管126R形成接触。可省去这些岛。栅电极126和226在该点处在沟槽中终止。可选的末端沟槽220、屏蔽电极221和介电层221以虚线轮廓示出。关于图4和图5中示出的剖面,对于p-掺杂区239关于其毗邻元件的构造没有变化。
图9示出了沿图3中定义的切割线9-9,在栅极浇道和屏蔽浇道之间的连接区150中的上文提及的沟槽和平台的剖面图。仅屏蔽电极124和224存在于沟槽122和222中,其中氧化物层106覆盖它们以及平台130和230。
图10示出了沿图3中定义的切割线10-10,在连接区150中的沟槽122的剖面图,其中切割线10-10垂直于切割线4-4、7-7、8-8和9-9。栅电极126和屏蔽电极124布置在沟槽中,其中栅电极126具有与栅极浇道形成电接触的立管126R,并且其中屏蔽电极124具有与屏蔽浇道形成电接触的立管部分124R。介电层125在屏蔽电极124和栅电极126之间沿它们面对的水平维度布置,介电层125S在电极124和126之间沿它们面对的侧边维度布置,以及电介质的角落贴片(转角贴片,corner patch)125C布置在栅电极126的外侧角落和屏蔽电极124的内侧角落之间。屏蔽电极124具有邻近介电材料的贴片123C布置的外侧角落,以及邻近介电材料的侧面层123S布置的垂直侧。
曲率半径效应(radius of curvature effect)显著增加邻接屏蔽电极和栅电极126外侧角落的区域中的电场。介电贴片123C的厚度通常足以防止介电材料的击穿。然而,介电贴片125C和栅电极126周围的介电侧面层125S相对较薄,并且能够是用于末端沟槽222(在图8中示出)的击穿源。包括可选的屏蔽电极224和末端沟槽220屏蔽介电贴片125C和介电侧面层125S免于耦接至半导体层104的漏极电位,并由此减小介电贴片125C和介电侧面层125S中的电场。由于曲率半径效应引起的击穿的另一可能区域,特别是对于高电压器件,在屏蔽立管部分124R末端处的介电侧面层123S中存在,如图10中通过点“A”指示的。通过在介电侧面层123S上方并以距离L1超过沟槽122的末端延伸顶侧屏蔽浇道金属(其为导电引线(conductive trace)),能够显著减轻这种电位击穿。距离L1可以等于或大于沟槽122的深度。对于较浅的电压器件应用,在点“A”处的击穿可能性非常小,并且顶侧屏蔽浇道金属不在介电侧面层123S上方或超过沟槽122的末端延伸,如图中通过边缘“B”指示的。这种构造导致产生更薄的屏蔽浇道和更小的芯片。
图11示出了沿图3中定义的切割线11-11,在连接区150中的平台130的剖面图,其中切割线11-11垂直于切割线4-4、7-7、8-8和9-9。p-掺杂阱134和用于栅电极126的立管126R在图右边示出。典型地,p-掺杂阱134电耦接至源极和屏蔽的电位,但对于其中区域用于场终止区中的一些情况下可以处于浮动状态。p-掺杂阱134具有在栅极立管126R(其是导电引线)处或在其下方终止的的末端。供参考,栅电极126和屏蔽电极124的轮廓以短划线示出。存在由于曲率半径效应导致的在p-掺杂阱134末端处发生击穿的可能性。然而,布置在p-掺杂阱134任一侧上的栅电极126和屏蔽电极124通常消耗邻近阱134末端的n-掺杂平台130的部分,由此显著减小阱134末端周围的电位和电场。然而,减小量的电场仍在阱134的末端周围存在,并且能够以径向方式(即,曲率半径效应)在阱134的末端处集中。然而,利用图11中示出的构造,阱134的末端基本上由栅极立管126R屏蔽,并且基本上减小了在该区域末端的曲率半径效应。具体地,导电立管126R引导在阱134末端处的平台130中存在的电场远离阱134的末端并朝向它自身,由此减小电场的径向集中。如果阱134的末端延伸到导电立管126R下部的左侧,那么将会丧失这种屏蔽。如果阱134的末端与导电立管126R下部的最远端侧(即,左侧)间隔开等于或大于阱134深度的距离L2,那么获得最佳的这种屏蔽效果。在优选的实施中,L2等于或大于阱134深度加上在阱134和导电立管126R之间的分隔距离,其中该分隔距离等于用于在图中示出的构造的氧化物层106的薄部分。
如上面提及的,布置在p-掺杂阱134任一侧上的栅电极126和屏蔽电极124通常消耗邻近阱134末端的n-掺杂平台130的部分,由此显著减小阱134末端周围的电位和电场。为实现这个益处,p-掺杂区的末端应与屏蔽电极124的末端、或沟槽122的末端间隔开至少距离L3,如图12中示出的。距离L3可以等于沟槽122的深度,或者可以等于沟槽122的深度和阱134的深度之间的差。阱134可以延伸超过栅极立管126R,如图13中示出的,并且阱134的末端进一步可以布置在屏蔽浇道(和场板(fieldplate))下面。如果屏蔽浇道布置在阱134末端附近或上方,则它能够以如之前参考图11描述的栅极立管126R提供屏蔽的方式提供屏蔽,从而减轻在阱134末端处的曲率半径效应。然而,对于低和中等电压施加,屏蔽浇道不需要布置在p掺杂阱134的末端上方。尽管优选没有其他p-掺杂区布置在阱134的末端和相邻沟槽的末端之间,但更轻度的p-掺杂区可以布置在阱134的末端和相邻沟槽的末端之间。如横跨平台宽度的剖面测量的,更轻度的p-掺杂区具有比阱134更低的掺杂剂量。换句话说,如横跨平台宽度的剖面测量的,更轻度的p-掺杂区具有由于掺杂剂导致的比阱134更低的整体改变。利用以上的构造,如在现有技术构造中完成的,不需要垂直于沟槽122末端伸展的终止沟槽。p-掺杂阱134末端的全部以上构造可以应用于沟槽屏蔽的肖特基势垒二极管器件,其中以上的间隔距离施加至肖特基金属的末端,或者如果类似于图6中示出的区域239’的p-掺杂区在肖特基金属的周边周围使用。采用这些发明性方面的沟槽屏蔽的肖特基势垒二极管器件的示例性实施方式在下面参考图32-34进行描述。
再次参考图10,可以看到,屏蔽浇道金属在处于或低于外延层104顶部表面的水平处与屏蔽电极124的立管部分124R的顶部表面形成电接触。这个特征也在图14中示出,其为垂直于图10的剖面。如图14中看到的,通过穿过介电层107和氧化物层106形成的接触开口形成从屏蔽浇道金属到立管部分124R的接触。这种构造具有减小的电接触电阻以及简化制造工艺的优点。在常规制造工艺中,多晶硅蚀刻掩模和蚀刻步骤用来定义在屏蔽浇道金属和屏蔽电极124、224之间的多晶硅总线结构。然而,能够通过调整工艺中使用的早期掩模,例如用来定义图5中示出的从源极金属到增强的掺杂区135和源极区136的掩模而定义以上简化的接触结构。因此,可以消除传统用来定义上述多晶硅总线结构的掩模和蚀刻步骤。
当制作高电流容量器件时,可以使用器件区120的若干实例而不是一个大的器件区120。器件区120的这些实例并联电耦接,并且与其中使用器件区120的一个大实例的情况相比,这种构造向屏蔽电极124的中心和栅电极126的中心提供低电阻路径。图15示出了布置在半导体芯片上的半导体器件200的顶部示意平面图。器件200包括布置在底部器件区120B上方的顶部器件区120A、布置在顶部器件区120A上方的顶部连接区150(如先前描述的)、布置在器件区120B下面的底部连接区150、布置在器件区120A和120B之间的中间连接区250。器件区120A和120B是先前描述的器件区120的实例。存在在每个连接区150中的栅极浇道和屏蔽浇道,以及在中间连接区250中的两个栅极浇道和一个屏蔽浇道。栅极浇道通过栅极馈送(gate feed)而电耦接至栅极焊盘212。源极金属层110布置在器件区120A和120B上方,电耦接至屏蔽浇道和两个源极焊盘111。多个交错沟槽122’和平台130’布置在半导体外延层中,并且在器件区120A、120B和连接区150、250内,如通过在图右侧处的短划线示出的。为在在图中视觉上清晰,仅示出了前几个沟槽和平台,但在阵列左边的箭头符号示意地表示交错沟槽和平台的阵列延伸到器件区120A、120B和连接区150、250的左侧。沟槽122’与沟槽122基本相同,除了它们连续伸展通过器件区120A、120B和连接区150、250之外。平台130’与平台130基本相同,除了它们连续伸展通过器件区120A、120B和连接区150、250之外。沟道截断环结构在芯片周边处围绕区域120A、120B、150和250,并通过间隙与区域120A、120B、150和250分隔开。这种间隙与在图11中示出的间隙相同。
图16示出了沿图15中示出的切割线16-16,连接区250的剖面图。该剖面沿沟槽122’截取。组件与参考图10在上面描述的组件相同,只是在该图左侧出现的栅电极126、栅极立管126R和栅极浇道的镜像组(mirrorset),不存在介电贴片123C和介电侧123S,并且沟槽122’、介电层123’、屏蔽电极124’和屏蔽立管124R’镜像到左侧并沿剖面从左到右伸展。栅极浇道与栅电极126的栅极立管126R形成电接触,但与屏蔽金属浇道以及屏蔽立管124R’和屏蔽电极124’电绝缘。屏蔽浇道金属与屏蔽立管124R’和屏蔽电极124’形成电接触,但与栅极浇道、栅极立管124R和栅电极124电绝缘。以上沟槽构造消除了在紧接连接区150中的沟槽中断的器件100的平台区中发生的电场和电位不平衡,并因此消除相应的局部化电荷不平衡。这种构造背离了在连接区205的中部包括复杂场终止结构的现有技术构造。
图17示出了沿图15中示出的切割线17-17,连接区250的剖面图。该剖面沿平台130’截取。组件与参考图10在上面描述的组件相同,除了在图左侧出现的p掺杂阱134、栅电极126、栅极立管126R和栅极浇道的镜像组之外。屏蔽电极124’和栅电极125的位置的轮廓用短划线示出。类似于器件100,每个p-掺杂阱134典型地电耦接至源极和屏蔽的电位,但对于其中该区域用于场终止区中的一些情形可以处于浮置状态。每个p-掺杂阱134都具有优选在导电立管126R(是导电引线)处或下方终止的末端。存在由于曲率半径效应引起的在每个p-掺杂阱134末端处发生击穿的可能性。然而,布置在p-掺杂阱134任一侧上的栅电极126和屏蔽电极124通常消耗与阱134末端相邻的每个n-掺杂平台130的部分,由此显著减小阱134末端周围的电位和电场。然而,减小量的电场仍在阱134的末端周围存在,并且能够以径向方式(即,曲率半径效应)在阱134的末端处集中。然而,利用图17中示出的构造,阱134的末端基本上由栅极立管126R屏蔽,并且该构造基本减小在区域末端处的曲率半径效应(如先前参考图11的器件100描述的)。如果阱134的末端延伸超过布置在它上面的导电立管126R下部的远侧,那么将会丧失这种屏蔽。如果阱134的末端不延伸超过导电立管126R下部的远侧,并进一步与导电立管126R下部最远侧间隔开等于或大于阱134深度的距离L2,那么获得最佳的这种屏蔽效应。在优选的实施中,L2等于或大于阱134的深度加上在阱134和导电立管126R之间的分隔距离,其中该分隔距离等于用于该图中示出的构造的氧化物层106的薄部分。
图18示出了连接区250的一种变形250’的剖面图,其包括布置在外延层(epi layer)104中并在屏蔽浇道金属下面的电浮置p-掺杂阱134C。(该p-掺杂区通过在它和适合从外部电路接收电位的导电层之间不形成直接电连接而使其浮置。)浮置p-掺杂阱134C充当在外延层104和在它上面的氧化层106的部分之间的缓冲屏蔽。由于屏蔽浇道金属通常处于接地电位并且外延层104的下面部分通常处于漏极电位,所以在屏蔽浇道金属和外延层104之间的氧化层106的部分能够经受高电场。为了减小在p-掺杂阱134C的末端处的曲率半径效应,这些末端可以布置在栅极立管126R附近或下面。
图19示出了连接区250的另一种变形250”的剖面图,其包括连续p-掺杂阱134’代替图17中示出的两个阱134。连续p-掺杂阱134’从器件区120A延伸到器件区120B,并穿过连接区250”,并且电耦接至源极金属层110(又耦接至屏蔽浇道金属)。因为阱134’没有侧边缘或角落,所以没有与连续p-掺杂阱134’相关的曲率半径效应。连续p-掺杂阱134’也充当在外延层104和它上面的氧化层106之间的缓冲屏蔽。如上面指出的,由于屏蔽浇道金属通常处于接地电位并且外延层104的下面部分通常处于漏极电位,所以在屏蔽浇道金属和外延层104之间的氧化层106的部分能够经受高电场。
在举例说明连接区150、250、250’和250”的所有实施方式中,可以理解,每个连接区都具有产生无源器件的带有平台130、130’的相邻部分的一个以上的材料体(material body)的构造,其平台。材料体可以包括掺杂区、介电层、导电层等。相反,每个器件区120、120A、120B具有产生有源器件的带有平台130、130’的部分的一个以上材料体的构造平台。
现在参考图20中示出的半导体器件300描述并举例说明另一个实施方式。半导体器件300具有与图1-3中示出的半导体器件100基本相同的平面图(俯视图)。图20是沿半导体器件300的芯片的左侧部分的放大图,类似于图3中示出的器件100的左侧部分的放大图。半导体器件300包括以基本相同方式布置的与器件100基本相同的元件,并进一步包括环绕在先前描述的沟槽122、222和平台130、230的全部阵列,或者环绕该阵列周围的至少75%周边的周边沟槽(perimeter trench)320。(可以理解,周边沟槽320可以通过可不显著影响它的效果的相对较小破裂的一个或多个破裂而是不连续的。)图21和图22示出了沿阵列的底部,并沿图20中示出的切割线21-21和22-22,周边沟槽320与沟槽122、222和平台130、230的阵列的剖面。周边沟槽320包括内衬它的相对侧壁的介电层321,以及布置在沟槽中的导电电极324。导电电极324可以电耦接至导电层,例如屏蔽浇道,从而接收接地电位,或可以与带有电位的任何导电层去耦接,由此处于浮置电位。周边屏蔽320与沟槽222隔开在相邻沟槽122之间的间隔数量级的距离。间隙区(gap region)330布置在周边屏蔽320和沟槽222之间。没有电位通过任何导电层耦接至间隙区330的顶部,并且间隙区330中的电位是浮置的。当周边沟槽电极324处于浮置电位时,在它和浮置间隙区330上的电位能够浮动从而设定关于漏极电位的平衡电位(补偿电位,equalizing potential),并能够由此减小对间隙区330中的电荷不平衡的敏感度。因此,变得比如果这些间隙区330通过常规接地p-阱固定在源极电位处更容易在间隙区330中实现电荷平衡条件。当周边沟槽电极324耦接至接地电位时实现基本相同的益处。间隙区330的宽度可以等于或小于平台130宽度的1.25倍,并且沿周边沟槽320各个侧面的间隙区330的宽度可以不同。例如,沿周边沟槽320(以及沟槽122和平台130的主阵列)左右垂直侧的间隙区330的宽度可以小于沿周边沟槽320(以及该主阵列)顶部和底部水平侧的间隙区330的宽度。
图23和图24是示出了沿主沟槽122和平台130的末端,并沿图20中示出的切割线23-23和24-24,周边沟槽320的剖面图。图23和图24的剖面基本上与对于器件100的图10和图11的剖面相同,加上添加的周边沟槽320和间隙区330。元件102-107、120、122、123、123C、123S、124、124R、125、125C、125S、126、126R、134、150、屏蔽浇道、栅极浇道和沟道截断环具有关于彼此的相同的相对关系。如上面指出的,由于曲率半径效应引起的击穿的一个可能区域,特别是对于高电压器件,存在于在屏蔽立管部分124R的末端处的介电侧面层123S中,如图23中通过点“A”指示的(与图10相同)。如先前描述的,通过在介电侧面层123S上方并以距离L1超过沟槽122的末端延伸顶侧屏蔽浇道金属(其为导电引线),能够显著减少这种可能的击穿区域。距离L1可以等于或大于沟槽122的深度。周边沟槽320还通过移动电场远离点A而减轻可能的击穿区域。如上面指示的,当周边沟槽电极324处于浮置电位时,在它和浮置间隙区330上的电位能够浮动从而设定关于漏极电位的平衡电位,并能够由此减小对间隙区330中电荷不平衡的敏感度。因此,变得比如果这些间隙区330通过常规接地p-阱固定在源极电位下更容易在间隙区330中实现电荷平衡条件。当周边沟槽电极324耦接至接地电位(这可以通过布置在屏蔽电极324和屏蔽浇道金属之间的导电材料的接触通孔(contact via)325来完成)时实现基本相同的益处,其中接触通孔325电耦接至屏蔽浇道和屏蔽电极324二者。
相同的以上益处能够通过在浮置间隙区330中使用浮置p-掺杂阱334基本实现。这种实施方式通过图25-28举例说明,除了添加了浮置p-掺杂阱334之外,其与图21-24中的剖面相同。没有接地电位电压耦接至阱334。图29示出了布置在沟槽222和周边沟槽320之间的在间隙区330的部分中的浮置p-掺杂阱334。阱334左延伸至与周边沟槽320相邻。尽管阱334已经作为与周边沟槽320相邻布置的连续条示出,但可以理解,阱334可以是分段的(在连续条带中具有间隙)。阱334的任何分段区的末端可以布置在屏蔽浇道和其他导电引线下面,以最小化曲率半径效应。
如上面指出的,周边沟槽320可以是连续的并环绕沟槽122、222和平台130、230的整个阵列,或这可以是不连续的并环绕该阵列周围的至少75%周边。再次参考图20,当使用不连续周边沟槽320时,通常在阵列的角落处引入沟槽320中的破裂,其中每个破裂典型地小于间隙区330宽度的两倍,并且典型地等于间隙区330的宽度。在使用不连续周边沟槽320的一个实施方式中,在图20中的点“D”处,周边沟槽在它的水平支柱的末端处破裂,使得周边沟槽320的水平支柱具有与内沟槽122、222相同的长度。周边沟槽320的垂直支柱可以与水平支柱的末端齐平结束,或者可以延伸超过水平支柱的末端,如通过到图20中的点“E”的垂直支柱之一的点线延伸示出的。后一种延伸目前优选在与水平支柱末端齐平的垂直支柱结束的上方。在使用不连续周边沟槽320的另一实施方式中,在图20中点“F”处,周边沟槽在它的垂直支柱末端处破裂,使得周边沟槽320的水平支柱延伸超过内沟槽122、222的末端。周边沟槽320的水平支柱可以与垂直支柱的末端齐平结束,或者可以以与在先前实施方式中描述的相同方式延伸超过垂直支柱的末端。在之前的两个实施方式的每一个中,周边沟槽320的水平支柱和垂直支柱可以是电浮置的或接地的。可以使垂直支柱接地而使水平支柱电浮,反之亦然。同样,不连续周边沟槽320的不同段可易于具有不同电状态(例如,浮置状态、接地状态)。
当使用具有接地或浮置电极324的周边沟槽320时,在周边沟槽320的角转向(corner turn)处可存在电荷不平衡。这是因为间隙区330经历周边沟槽320的两个侧面而不是一个,如在图30的放大俯视图中示出的。周边沟槽的电极324试图消耗尽比间隙区330的角落区中存在的电荷更多的电荷。这种电荷不平衡能够通过缩短与周边沟槽320的水平支柱相邻的沟槽222的长度而得到解决。这作为器件400提供,其除了缩短沟槽之外,与器件300相同。沟槽222的缩短减小了沟槽222在间隙区300角落上的电荷成像效应,并由此补偿周边沟槽的电极324的过度成像。图31示出了缩短的沟槽222的剖面,连同未缩短长度的轮廓以进行比较。沟槽222的末端比沟槽122的末端与周边沟槽320隔得更远。器件300的p型阱334可以添加到具有器件400,其中器件400具有以上描述的构造的任一种。器件400的p-型阱334可以处于浮动电位(浮置电位)或处于固定电位(例如,接地电位)。
如在器件100的讨论和图1-14中简要指出的,器件100的一些发明性方面可以应用于沟槽屏蔽肖特基势垒二极管器件。肖特基二极管器件可以具有与器件100相似的构造,如在图1-14中举例说明的,并且可以包括与器件100相同的组件,但不需要栅电极126和226、栅极浇道、栅极焊盘、源极区136、布置在平台上的介电层106和107的部分,以及阱区134。图32-34示出了根据本发明方面的示例性肖特基二极管器件100”的剖面。图32示出了通过器件100”的器件区120的剖面,类似于器件100的图6中示出的剖面。器件100”包括分别类似于沟槽122和222的沟槽122”和222”,除了沟槽122”和222”分别不需要包括栅电极126和226,并且可以包括延伸到外延层104顶部或其附近的屏蔽电极124”,并且其可以高于屏蔽电极124之外。(在其他肖特基实施方式中,可以使用栅电极126和226连同栅极浇道,这种情况下它们通常耦接至源极金属层110的电位。)器件100”还包括沟槽220、平台130、230和230’、场终止区中的介电层106和107、以及器件100的源极金属层110。作为与器件100的不同,源极金属层和屏蔽浇道可以融合在一起,因为它们之间不存在栅极浇道。源极金属层110接触平台130的顶部从而提供肖特基势垒接触。表面补偿注入可以布置在平台130顶部处,以调整肖特基接触的电特性(例如,势垒高度),如本领域中已知的。p-型阱134”可以布置在平台230顶部处,以提供具有比平台130中的肖特基势垒器件更高的反向偏置击穿电压的p-n结二极管。阱134”可以具有比阱134’更高的掺杂,使得可以省去增强的掺杂区135,或者可以包括增强的掺杂区135或在平台230顶部处的增强掺杂的层,以提供与源极金属层110的良好导电连接。在器件100的另一实施中,可以省去阱134”,并且介电层107和/106可以在平台230的顶部上方延伸,从而使它与源极金属层110电绝缘,因此使它与平台230’相似。在平台230的每一种实施中,平台230与沟槽222”和122”用来使对于器件100如上面描述的电位和场图案成形,从而改善器件100”的总体击穿电压特性。
图33示出了沿图3中定义的切割线10-10,在连接区150中的沟槽122”的剖面。图33的剖面类似于对于器件100的在图10中示出的剖面。屏蔽电极124”布置在沟槽中,其中屏蔽电极124与屏蔽浇道和源极金属层形成电接触。屏蔽电极124”具有邻近介电材料的贴片123C布置的外侧角,以及邻近介电材料的侧面层123S布置的垂直侧。如先前描述的,曲率半径效应显著增大紧接屏蔽电极外侧角的区域中的电场。由于曲率半径效应引起的可能击穿区,特别是对于高电压器件,存在于在屏蔽立管电极124”末端处的介电侧面层123S中,如在图33中通过点“A”指示的。这种电位击穿能够通过在介电侧面层123S上方并以距离L1超过沟槽122”的末端延伸顶侧屏蔽浇道金属(其为导电引线)而显著减轻。距离L1可以等于或大于沟槽122”的深度。对于较低电压器件应用,在点“A”处的击穿的可能性非常小,并且顶侧屏蔽浇道金属不需要在介电侧面层123S上方或超过沟槽122”的末端延伸,如在图中通过边缘“B”指示的。这种构造导致得到更薄的屏蔽浇道和更小的芯片。
图34示出了沿图3中定义的切割线11-11,在连接区150中的平台130的剖面。这个剖面类似于对于器件100的在图11-13中示出的剖面。如在图34中示出的,源极金属110覆盖平台130顶部的一部分(在图中的右边示出)从而提供肖特基势垒接触。在平台130任一侧上的屏蔽电极124”的位置以点线轮廓示出。介电层106和107使屏蔽浇道和场板与平台分隔开。存在在接触平台130的源极金属层110的末端边缘处发生击穿的可能性,其中它接触平台130,由于曲率半径效应。这个末端边缘是肖特基势垒金属的末端(即,与半导体一起形成肖特基势垒的金属部分),并在图中以点“C”指示。布置在平台130任一侧上的屏蔽电极124”通常消耗与源极金属层110末端边缘相邻的平台的部分,由此显著减小该末端边缘周围的电位和电场。为实现这个益处,末端边缘应与屏蔽电极124”的末端或沟槽122”的末端隔开至少距离L3,如图34中示出的。距离L3可以等于沟槽122”的深度。利用这种构造,不需要如在现有技术构造中可以完成的那样,在点C处的肖特基势垒金属末端边缘的平台130中布置p-掺杂区。然而,p-掺杂区130可以布置在肖特基势垒金属末端边缘附近的平台130中,如通过p掺杂区334’的点线轮廓指示的。如果使用p掺杂区334’,则它应当与屏蔽电极124”的末端、或沟槽122”的末端隔开至少以上的距离L3。
如能够在图33和34的每个中看出的,没有在层104顶部表面处、垂直于沟槽122”和屏蔽电极124”的末端布置的垂直终止沟槽。这是与对于器件100在上面示出的相同的终止构造,并且减小了芯片尺寸。然而,如果期望,垂直终止沟槽或周边沟槽可以添加到器件100”中。
尽管已经用n-型外延层和p-型掺杂阱区举例说明了以上实施方式,但是可以理解,本发明和实施方式可以用p-型外延层和n-型掺杂阱区来实现。换句话说,本发明和实施方式可以用颠倒的层和区域的掺杂极性来实现。
尽管本发明的各种实施方式主要以N沟道屏蔽栅极MOSFET的内容进行描述,但是这些实施方式可以在各种各样的其他类型的器件中实施,例如P-沟道MOSFET(即,除了所有硅区域的导电类型颠倒之外,结构类似于上述MOSFET的晶体管);N-沟道屏蔽栅极IGBT(即,除了使用P-型衬底代替N型衬底之外,结构类似于上述MOSFET的晶体管);P-沟道屏蔽栅极IGBT(即,除了衬底保持N-型之外,结构类似于上述MOSFET,但具有相反导电性的硅区的晶体管);屏蔽栅极同步整流管(即,集成屏蔽栅极MOSFET和肖特基);TMBS整流管,以及以上器件的超结(superjunction)变形(即,具有交替导电型硅的列的器件)。
“一”、“一个”和“该”的任何叙述用于指一个或多个,除非有具体的相反说明。
本文中已经采用的术语和表达用作描述的术语并且不用于限制,并且在使用这样的术语和表达中没有排除所示出和所描述的特征的等同替换的意图,应该理解,在要求保护的本发明范畴内可以进行各种修改。
此外,在不背离本发明范围的情况下,本发明一个或多个实施方式的一个或多个特征可以与本发明其他实施方式的一个或多个特征进行组合。
尽管本发明关于举例说明的实施方式进行了具体描述,但是应该理解,基于本申请公开内容可以形成各种变形、修改、改编和等效布置,并且落入本发明和权利要求的范畴之内。

Claims (35)

1.一种半导体器件,包括:
延伸到半导体区中并且具有第一末端和第二末端的第一沟槽;
内衬所述第一沟槽的相对侧壁的第一介电层;
布置在所述第一沟槽中的第一屏蔽电极;
延伸到所述半导体区中并且具有第一末端和第二末端的第二沟槽;
内衬所述第二沟槽的相对侧壁的第二介电层;
布置在所述第二沟槽中的第二屏蔽电极;以及
布置在所述半导体区中且在所述第一和第二沟槽之间的第一导电型的第一阱区,所述第一阱区与所述第一沟槽的所述第一末端至少间隔第一距离;并且
其中,在所述第一阱区和所述第一沟槽的所述第一末端之间没有布置所述第一导电型的其他阱区。
2.根据权利要求1所述的半导体器件,其中,所述第一阱区电耦接至导电层以接收电位。
3.根据权利要求1所述的半导体器件,其中,所述第一沟槽在所述半导体区内延伸至第一深度,并且其中所述第一距离等于所述第一深度。
4.根据权利要求1所述的半导体器件,其中,所述第一沟槽在所述半导体区内延伸至第一深度,其中所述第一阱区在所述半导体区中延伸至第二深度,所述第二深度小于所述第一深度,并且其中所述第一距离等于所述第一深度和所述第二深度之间的差。
5.根据权利要求1所述的半导体器件,其中,所述半导体区布置在半导体芯片中;
其中所述第一和第二沟槽的所述第一末端面对所述半导体芯片的第一边缘;
其中所述半导体区的第一部分布置在所述第一和第二沟槽的所述第一末端与所述半导体芯片的所述第一边缘之间;以及
其中所述第一部分不具有布置在所述半导体区中的垂直终止沟槽。
6.根据权利要求1所述的半导体器件,其中,所述第一阱区具有与所述第一沟槽的所述第一末端至少间隔所述第一距离的第一末端,并且其中所述器件进一步包括布置在所述第一阱区的所述第一末端上方的场板,所述场板电耦接至所述屏蔽电极。
7.根据权利要求1所述的半导体器件,其中,所述第一阱区具有与所述第一沟槽的所述第一末端至少间隔所述第一距离的第一末端,并且其中没有布置在电耦接至所述屏蔽电极的所述第一阱区的所述第一末端上方的导电层。
8.一种半导体器件,包括:
延伸到半导体区内并且具有第一末端和第二末端的第一沟槽;
内衬所述第一沟槽的相对侧壁的第一介电层;
布置在所述第一沟槽中的第一屏蔽电极;
延伸到所述半导体区中并且具有第一末端和第二末端的第二沟槽;
内衬所述第二沟槽的相对侧壁的第二介电层;
布置在所述第二沟槽中的第二屏蔽电极;
布置在所述半导体区中且在所述第一和第二沟槽之间的第一导电型的第一阱区,所述第一阱区与所述第一沟槽的所述第一末端至少间隔第一距离;以及
布置在所述第一阱区与所述第一沟槽的所述第一末端之间的第一导电型的第二阱区,所述第二阱区比所述第一阱区更轻度地掺杂。
9.根据权利要求8所述的半导体器件,其中,所述第一阱区电耦接至导电层以接收电位。
10.根据权利要求8所述的半导体器件,其中,所述第一沟槽在所述半导体区内延伸至第一深度,并且其中所述第一距离等于所述第一深度。
11.根据权利要求8所述的半导体器件,其中,所述第一沟槽在所述半导体区内延伸至第一深度,其中所述第一阱区在所述半导体区内延伸至第二深度,所述第二深度小于所述第一深度,并且其中所述第一距离等于所述第一深度和所述第二深度之间的差。
12.根据权利要求8所述的半导体器件,其中,所述半导体层布置在半导体芯片上;
其中所述第一和第二沟槽的所述第一末端面对所述半导体芯片的第一边缘;
所述半导体层的第一部分布置在所述第一和第二沟槽的所述第一末端与所述半导体芯片的所述第一边缘之间;以及
其中所述第一部分不具有布置在所述半导体层的所述第一表面处的垂直终止沟槽。
13.根据权利要求8所述的半导体器件,其中,所述第一阱区具有与所述第一沟槽的所述第一末端至少间隔所述第一距离的第一末端,并且其中所述器件进一步包括布置在所述第一阱区的所述第一末端上方的场板,所述场板电耦接至所述屏蔽电极。
14.根据权利要求8所述的半导体器件,其中,所述第一阱区具有与所述第一沟槽的所述第一末端至少间隔所述第一距离的第一末端,并且其中没有布置在电耦接至所述屏蔽电极的所述第一阱区的所述第一末端上方的导电层。
15.一种沟道屏蔽肖特基势垒整流器件,包括:
延伸到半导体区内并且具有第一末端和第二末端的第一沟槽;
内衬所述第一沟槽的相对侧壁的第一介电层;
布置在所述第一沟槽中的第一屏蔽电极;
延伸到所述半导体区内并且具有第一末端和第二末端的第二沟槽;
内衬所述第二沟槽的相对侧壁的第二介电层;
布置在所述第二沟槽中的第二屏蔽电极;以及
由所述第一和第二沟槽限定的平台区,所述平台区具有宽度、高度和顶面;以及
布置在所述平台的所述顶面处的肖特基接触,所述肖特基接触具有与所述第一沟槽的所述第一末端至少间隔第一距离的第一末端。
16.根据权利要求15所述的半导体器件,其中,所述第一距离等于所述沟槽的深度。
17.根据权利要求15所述的半导体器件,其中,p-掺杂区布置在所述肖特基势垒金属的末端边缘处的所述沟槽的所述末端之间,所述p-掺杂区与所述沟槽的所述末端间隔开。
18.一种半导体器件,包括:
延伸到半导体区内并且具有第一末端和第二末端的第一沟槽;
内衬所述第一沟槽的相对侧壁的第一介电层;
布置在所述第一沟槽中的第一电极;
延伸到所述半导体区内并且具有第一末端和第二末端的第二沟槽;
内衬所述第二沟槽的相对侧壁的第二介电层;
布置在所述第二沟槽中的第二电极;
布置在所述半导体区中且在所述第一和第二沟槽之间的第一导电型的阱区,所述阱区具有第一末端;以及
布置在所述第一和第二沟槽上方的导电引线,所述导电引线具有垂直于所述沟槽伸展的长度和小于所述长度的宽度,所述导电引线具有与布置在所述沟槽之间的所述半导体区的部分间隔第一距离的部分,所述引线的所述部分具有平行于所述引线的长度的第一侧面和第二侧面,所述第一侧面比所述第二侧面更靠近所述阱区的所述第一末端;并且
其中,所述阱区的所述第一末端与所述导电引线的所述第二侧面至少间隔第二距离。
19.根据权利要求18所述的半导体器件,其中,所述阱区电耦接至导电层以接收电位。
20.根据权利要求18所述的半导体器件,其中,所述阱区在所述半导体区内延伸第一深度,并且其中所述第二距离等于所述第一深度。
21.根据权利要求18所述的半导体器件,其中,所述阱区在所述半导体区内延伸第一深度,并且其中所述第二距离等于所述第一距离加上所述第一深度。
22.一种半导体器件,包括:
布置在半导体区的表面处的至少第一器件区和第二器件区,所述第二器件区与所述第一器件区相邻并且与所述第一器件区间隔开;
布置在所述第一器件区和所述第二器件区之间的连接区;
第一沟槽,其延伸到所述半导体区内,而且至少从所述第一器件区延伸,通过所述连接区,并到达所述第二器件区;
内衬所述第一沟槽的相对侧壁的第一介电层;
布置在所述第一沟槽中的第一电极;以及
布置在所述连接区中的所述第一沟槽上方并且电耦接至所述连接区中的所述第一电极的第一导电引线。
23.根据权利要求22所述的半导体器件,其中,所述第一电极包括栅电极,并且具有在所述器件区的每一个中的布置在它上方的电介质。
24.根据权利要求22所述的半导体器件,其中,所述第一电极包括屏蔽电极,并且其中所述半导体器件进一步包括布置在所述第一沟槽中但与所述屏蔽电极电绝缘的栅电极。
25.根据权利要求24所述的半导体器件,进一步包括第二导电引线,其布置在所述连接区中的所述第一沟槽上方并且电耦接至所述连接区中的所述栅电极,并且与所述屏蔽电极电绝缘。
26.根据权利要求22所述的半导体器件,进一步包括与所述第一沟槽相邻布置的第一平台、在所述连接区内具有所述第一平台区的部分的一个或多个材料体的第一构造、在所述第一器件区内具有所述第一平台区的所述部分的一个或多个材料体的第二构造、在第二第一器件区内具有所述第一平台区的所述部分的一个或多个材料体的第三构造,其中所述第一构造不同于所述第二构造和所述第三构造中的每一个。
27.根据权利要求22所述的半导体器件,进一步包括:
第二沟槽,其延伸到所述半导体区内而且至少从所述第一器件区延伸,通过所述连接区,并到达所述第二器件区;
内衬所述第二沟槽的相对侧壁的第二介电层;
布置在所述第二沟槽中的第二电极;以及
布置在所述半导体区中且在所述第一和第二沟槽之间的第一导电型的阱区,所述阱区具有第一末端;以及
布置在所述第一和第二沟槽上方的第二导电引线,所述导电引线具有垂直于所述沟槽伸展的长度和小于所述长度的宽度,所述第二导电引线具有与布置在所述沟槽之间的所述半导体区的部分间隔第一距离的部分,所述第二引线的所述部分具有平行于所述引线的长度的第一侧面和第二侧面,所述第一侧面比所述第二侧面更靠近所述阱区的所述第一末端;并且
其中所述阱区的所述第一末端与所述第二导电引线的所述第二侧面至少间隔第二距离。
28.根据权利要求27所述的半导体器件,其中,所述阱区电耦接至导电层以接收电位。
29.根据权利要求27所述的半导体器件,其中,所述阱区在所述半导体区内延伸第一深度,并且其中所述第二距离等于所述第一深度。
30.根据权利要求27所述的半导体器件,其中所述阱区在所述半导体区内延伸第一深度,并且其中所述第二距离等于所述第一距离加上所述第一深度。
31.根据权利要求27所述的半导体器件,进一步包括布置在所述半导体区中、在所述第一和第二沟槽之间并且在所述第一导电引线下面的第一导电型的第二阱区。
32.根据权利要求31所述的半导体器件,其中,所述第二阱区是电浮置的。
33.根据权利要求22所述的半导体器件,进一步包括布置在所述半导体区中且在所述第一导电引线下面的第一导电型的阱区。
34.根据权利要求33所述的半导体器件,其中,所述第二阱区是电浮置的。
35.根据权利要求22所述的半导体器件,进一步包括:
第二沟槽,其延伸到所述半导体区内而且至少从所述第一器件区延伸,通过所述连接区,并到达所述第二器件区;
内衬所述第二沟槽的相对侧壁的第二介电层;
布置在所述第二沟槽中的第二电极;以及
布置在所述半导体区中且在所述第一和第二沟槽之间的第一导电型的阱区,所述阱区从所述第一器件区延伸,通过所述连接区,并到达所述第二器件区。
CN200980149200.0A 2008-12-08 2009-11-25 具有增大的击穿电压特性的基于沟槽的功率半导体器件 Expired - Fee Related CN102246307B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12081808P 2008-12-08 2008-12-08
US61/120,818 2008-12-08
US12/417,586 2009-04-02
US12/417,586 US8174067B2 (en) 2008-12-08 2009-04-02 Trench-based power semiconductor devices with increased breakdown voltage characteristics
PCT/US2009/065906 WO2010077502A2 (en) 2008-12-08 2009-11-25 Trench-based power semiconductor devices with increased breakdown voltage characteristics

Publications (2)

Publication Number Publication Date
CN102246307A true CN102246307A (zh) 2011-11-16
CN102246307B CN102246307B (zh) 2015-07-15

Family

ID=42230113

Family Applications (3)

Application Number Title Priority Date Filing Date
CN200980149200.0A Expired - Fee Related CN102246307B (zh) 2008-12-08 2009-11-25 具有增大的击穿电压特性的基于沟槽的功率半导体器件
CN200980149202.XA Expired - Fee Related CN102246308B (zh) 2008-12-08 2009-11-25 具有增大的击穿电压特性的基于沟槽的功率半导体器件
CN2009801492049A Expired - Fee Related CN102246309B (zh) 2008-12-08 2009-11-25 具有增大的击穿电压特性的基于沟槽的功率半导体器件

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN200980149202.XA Expired - Fee Related CN102246308B (zh) 2008-12-08 2009-11-25 具有增大的击穿电压特性的基于沟槽的功率半导体器件
CN2009801492049A Expired - Fee Related CN102246309B (zh) 2008-12-08 2009-11-25 具有增大的击穿电压特性的基于沟槽的功率半导体器件

Country Status (6)

Country Link
US (7) US8174067B2 (zh)
KR (3) KR101660935B1 (zh)
CN (3) CN102246307B (zh)
DE (3) DE112009003514B4 (zh)
TW (3) TWI485847B (zh)
WO (3) WO2010077502A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367437A (zh) * 2012-04-03 2013-10-23 朱江 一种沟槽mos半导体装置及其制造方法
CN104241337A (zh) * 2013-06-21 2014-12-24 英飞凌科技奥地利有限公司 具有复合中心的半导体器件和制造方法
CN117059669A (zh) * 2023-10-09 2023-11-14 华羿微电子股份有限公司 一种屏蔽栅型mosfet终端结构及制作方法

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866255B2 (en) * 2008-03-12 2014-10-21 Infineon Technologies Austria Ag Semiconductor device with staggered oxide-filled trenches at edge region
US8304829B2 (en) 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8174067B2 (en) 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US20100264486A1 (en) * 2009-04-20 2010-10-21 Texas Instruments Incorporated Field plate trench mosfet transistor with graded dielectric liner thickness
US7952141B2 (en) * 2009-07-24 2011-05-31 Fairchild Semiconductor Corporation Shield contacts in a shielded gate MOSFET
DE102009060072B4 (de) * 2009-12-22 2017-05-11 Infineon Technologies Ag Halbleiterbauelement und Verfahren zu seiner Herstellung
JP2011176077A (ja) * 2010-02-24 2011-09-08 Toshiba Corp 半導体装置
US8431457B2 (en) * 2010-03-11 2013-04-30 Alpha And Omega Semiconductor Incorporated Method for fabricating a shielded gate trench MOS with improved source pickup layout
US8367501B2 (en) 2010-03-24 2013-02-05 Alpha & Omega Semiconductor, Inc. Oxide terminated trench MOSFET with three or four masks
US8394702B2 (en) * 2010-03-24 2013-03-12 Alpha And Omega Semiconductor Incorporated Method for making dual gate oxide trench MOSFET with channel stop using three or four masks process
KR101669261B1 (ko) * 2010-06-14 2016-10-25 삼성전자주식회사 수직 채널 트랜지스터를 구비한 반도체 소자 및 그 제조 방법
US8580667B2 (en) 2010-12-14 2013-11-12 Alpha And Omega Semiconductor Incorporated Self aligned trench MOSFET with integrated diode
JP5641995B2 (ja) * 2011-03-23 2014-12-17 株式会社東芝 半導体素子
US9318623B2 (en) * 2011-04-05 2016-04-19 Cree, Inc. Recessed termination structures and methods of fabricating electronic devices including recessed termination structures
US8502313B2 (en) * 2011-04-21 2013-08-06 Fairchild Semiconductor Corporation Double layer metal (DLM) power MOSFET
US8502314B2 (en) * 2011-04-21 2013-08-06 Fairchild Semiconductor Corporation Multi-level options for power MOSFETS
US8502302B2 (en) * 2011-05-02 2013-08-06 Alpha And Omega Semiconductor Incorporated Integrating Schottky diode into power MOSFET
US8803205B2 (en) * 2011-05-31 2014-08-12 Infineon Technologies Austria Ag Transistor with controllable compensation regions
US8698229B2 (en) * 2011-05-31 2014-04-15 Infineon Technologies Austria Ag Transistor with controllable compensation regions
US20120306009A1 (en) * 2011-06-03 2012-12-06 Suku Kim Integration of superjunction mosfet and diode
US8680607B2 (en) * 2011-06-20 2014-03-25 Maxpower Semiconductor, Inc. Trench gated power device with multiple trench width and its fabrication process
US8912621B1 (en) * 2011-07-11 2014-12-16 Diodes Incorporated Trench schottky devices
US8829603B2 (en) 2011-08-18 2014-09-09 Alpha And Omega Semiconductor Incorporated Shielded gate trench MOSFET package
US8785279B2 (en) * 2012-07-30 2014-07-22 Alpha And Omega Semiconductor Incorporated High voltage field balance metal oxide field effect transistor (FBM)
KR101279185B1 (ko) * 2011-08-25 2013-06-27 주식회사 케이이씨 전력 반도체 소자
JP5900503B2 (ja) * 2011-09-08 2016-04-06 富士電機株式会社 半導体装置
JP2013065749A (ja) * 2011-09-20 2013-04-11 Toshiba Corp 半導体装置
DE102011054372B4 (de) * 2011-10-11 2013-11-21 Infineon Technologies Austria Ag Verfahren zur Herstellung einer Halbleitertransistorstruktur
US8872278B2 (en) 2011-10-25 2014-10-28 Fairchild Semiconductor Corporation Integrated gate runner and field implant termination for trench devices
US20130168765A1 (en) * 2012-01-04 2013-07-04 Vishay General Semiconductor Llc Trench dmos device with improved termination structure for high voltage applications
JP5656889B2 (ja) * 2012-01-24 2015-01-21 三菱電機株式会社 半導体装置及びこれを備えた半導体モジュール
US8697520B2 (en) * 2012-03-02 2014-04-15 Alpha & Omega Semiconductor Incorporationed Method of forming an asymmetric poly gate for optimum termination design in trench power MOSFETS
TWM435722U (en) * 2012-03-22 2012-08-11 Excelliance Mos Corp Power MOSFET
US20130285136A1 (en) * 2012-04-25 2013-10-31 Macronix International Co., Ltd. Schottky diode with enhanced breakdown voltage
CN103426738B (zh) 2012-05-17 2018-05-18 恩智浦美国有限公司 具有边缘端部结构的沟槽半导体器件及其制造方法
JP6107156B2 (ja) * 2012-05-21 2017-04-05 富士電機株式会社 半導体装置
JP6154583B2 (ja) 2012-06-14 2017-06-28 ラピスセミコンダクタ株式会社 半導体装置およびその製造方法
KR101893615B1 (ko) * 2012-06-15 2018-08-31 매그나칩 반도체 유한회사 반도체 소자 및 그 소자의 제조 방법
JP2014063771A (ja) * 2012-09-19 2014-04-10 Toshiba Corp 半導体装置
US9099419B2 (en) 2012-10-09 2015-08-04 Infineon Technologies Ag Test method and test arrangement
US9455205B2 (en) * 2012-10-09 2016-09-27 Infineon Technologies Ag Semiconductor devices and processing methods
US9184277B2 (en) * 2012-10-31 2015-11-10 Infineon Technologies Austria Ag Super junction semiconductor device comprising a cell area and an edge area
US9105713B2 (en) 2012-11-09 2015-08-11 Infineon Technologies Austria Ag Semiconductor device with metal-filled groove in polysilicon gate electrode
CN103824883B (zh) * 2012-11-19 2017-05-03 比亚迪股份有限公司 一种具有终端耐压结构的沟槽mosfet的及其制造方法
US9184284B2 (en) * 2012-12-31 2015-11-10 Infineon Technologies Ag Method for operating field-effect transistor, field-effect transistor and circuit configuration
US10068834B2 (en) * 2013-03-04 2018-09-04 Cree, Inc. Floating bond pad for power semiconductor devices
JP6164604B2 (ja) 2013-03-05 2017-07-19 ローム株式会社 半導体装置
JP6164636B2 (ja) * 2013-03-05 2017-07-19 ローム株式会社 半導体装置
US9018700B2 (en) * 2013-03-14 2015-04-28 Fairchild Semiconductor Corporation Direct-drain trench FET with source and drain isolation
KR101828495B1 (ko) 2013-03-27 2018-02-12 삼성전자주식회사 평탄한 소스 전극을 가진 반도체 소자
KR101934893B1 (ko) 2013-03-27 2019-01-03 삼성전자 주식회사 그루브 소스 컨택 영역을 가진 반도체 소자의 제조 방법
JP6244665B2 (ja) * 2013-05-29 2017-12-13 住友電気工業株式会社 半導体装置
US9117902B2 (en) * 2013-08-01 2015-08-25 Chip Integration Tech. Co., Ltd. Dual trench rectifier and method for forming the same
CN103474459B (zh) * 2013-09-06 2016-01-27 北京大学深圳研究生院 隧穿场效应晶体管
KR20150030799A (ko) * 2013-09-12 2015-03-23 매그나칩 반도체 유한회사 반도체 소자 및 그 제조 방법
CN105745758B (zh) * 2013-11-29 2019-05-10 Abb瑞士股份有限公司 绝缘栅双极晶体管
US9343528B2 (en) * 2014-04-10 2016-05-17 Semiconductor Components Industries, Llc Process of forming an electronic device having a termination region including an insulating region
US9324784B2 (en) 2014-04-10 2016-04-26 Semiconductor Components Industries, Llc Electronic device having a termination region including an insulating region
DE102014005879B4 (de) * 2014-04-16 2021-12-16 Infineon Technologies Ag Vertikale Halbleitervorrichtung
CN103928509B (zh) * 2014-05-04 2016-06-29 常州中明半导体技术有限公司 具有不连续p型基区的沟槽绝缘栅双极型晶体管
CN105097889B (zh) * 2014-05-13 2018-10-16 帅群微电子股份有限公司 半导体元件的终端结构及其制造方法
DE102014112371B4 (de) 2014-08-28 2023-11-23 Infineon Technologies Austria Ag Halbleitervorrichtung und elektronische anordnung mit einer halbleitervorrichtung
JP6260711B2 (ja) * 2014-09-08 2018-01-17 富士電機株式会社 半導体装置の製造方法
JP6402773B2 (ja) 2014-09-08 2018-10-10 富士電機株式会社 半導体装置及びその製造方法
JP6588447B2 (ja) 2014-09-09 2019-10-09 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6337969B2 (ja) 2014-09-11 2018-06-06 富士電機株式会社 半導体装置およびその製造方法
US20160247879A1 (en) * 2015-02-23 2016-08-25 Polar Semiconductor, Llc Trench semiconductor device layout configurations
US9680003B2 (en) 2015-03-27 2017-06-13 Nxp Usa, Inc. Trench MOSFET shield poly contact
US9515178B1 (en) * 2015-09-10 2016-12-06 Freescale Semiconductor, Inc. Shielded trench semiconductor devices and related fabrication methods
US9530882B1 (en) * 2015-11-17 2016-12-27 Force Mos Technology Co., Ltd Trench MOSFET with shielded gate and diffused drift region
KR102481427B1 (ko) 2016-01-13 2022-12-27 삼성전자주식회사 반도체 장치 및 그 제조 방법
DE102016103384B4 (de) * 2016-02-25 2024-02-08 Infineon Technologies Austria Ag Halbleitervorrichtung mit nadelförmigen Feldplattenstrukturen in einem Transistorzellengebiet und in einem inneren Abschlussgebiet
US9818828B2 (en) 2016-03-09 2017-11-14 Polar Semiconductor, Llc Termination trench structures for high-voltage split-gate MOS devices
US9899343B2 (en) 2016-03-09 2018-02-20 Polar Semiconductor, Llc High voltage tolerant bonding pad structure for trench-based semiconductor devices
TWI567978B (zh) * 2016-04-21 2017-01-21 帥群微電子股份有限公司 超接面半導體元件
US10381166B2 (en) 2016-05-25 2019-08-13 Vishay Sprague, Inc. High performance and reliability solid electrolytic tantalum capacitors and screening method
DE102016110645A1 (de) * 2016-06-09 2017-12-14 Infineon Technologies Ag Halbleitervorrichtung mit einem eine erste feldplatte und eine zweite feldplatte aufweisenden transistor
CN107527800B (zh) * 2016-06-22 2021-05-11 无锡华润上华科技有限公司 沟槽栅极结构及其制造方法
US10032728B2 (en) * 2016-06-30 2018-07-24 Alpha And Omega Semiconductor Incorporated Trench MOSFET device and the preparation method thereof
JP6872951B2 (ja) * 2017-03-30 2021-05-19 エイブリック株式会社 半導体装置及びその製造方法
US10546811B2 (en) * 2017-05-10 2020-01-28 Micron Technology, Inc. Assemblies which include wordlines over gate electrodes
JP6866792B2 (ja) * 2017-07-21 2021-04-28 株式会社デンソー 半導体装置およびその製造方法
US11056581B2 (en) * 2017-08-21 2021-07-06 Semiconductor Components Industries, Llc Trench-gate insulated-gate bipolar transistors
US10727326B2 (en) 2017-08-21 2020-07-28 Semiconductor Components Industries, Llc Trench-gate insulated-gate bipolar transistors (IGBTs)
US10601413B2 (en) * 2017-09-08 2020-03-24 Cree, Inc. Power switching devices with DV/DT capability and methods of making such devices
US10896885B2 (en) * 2017-09-13 2021-01-19 Polar Semiconductor, Llc High-voltage MOSFET structures
US10103257B1 (en) * 2017-11-10 2018-10-16 Nxp Usa, Inc. Termination design for trench superjunction power MOSFET
US10312363B1 (en) 2018-02-02 2019-06-04 Sanken Electric Co., Ltd. Semiconductor device having improved edge trench, source electrode and gate electrode structures
CN111712926B (zh) * 2018-02-19 2024-02-02 三菱电机株式会社 碳化硅半导体装置
US10361276B1 (en) * 2018-03-17 2019-07-23 Littelfuse, Inc. Embedded field plate field effect transistor
DE102018106967B3 (de) * 2018-03-23 2019-05-23 Infineon Technologies Ag SILIZIUMCARBID HALBLEITERBAUELEMENT und Halbleiterdiode
US11004839B1 (en) * 2018-08-13 2021-05-11 Renesas Electronics America Inc. Trench power MOSFET with integrated-schottky in non-active area
CN110838486B (zh) * 2018-08-17 2023-04-07 力智电子股份有限公司 功率晶体管元件
CN111293168B (zh) * 2018-12-10 2023-08-25 深圳尚阳通科技股份有限公司 Igbt器件及其制造方法
DE112019006364T5 (de) * 2018-12-21 2021-09-02 Rohm Co., Ltd. Halbleiterbauelement
CN111508843B (zh) * 2019-01-31 2023-07-14 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
JP7319072B2 (ja) * 2019-03-28 2023-08-01 ローム株式会社 半導体装置
US11217689B2 (en) 2019-06-17 2022-01-04 Semiconductor Components Industries, Llc Method of forming a semiconductor device and structure therefor
JP7310356B2 (ja) * 2019-06-27 2023-07-19 富士電機株式会社 半導体装置
EP3761357A1 (en) * 2019-07-04 2021-01-06 Infineon Technologies Austria AG Semiconductor device
US10950699B2 (en) * 2019-08-05 2021-03-16 Vishay-Siliconix, LLC Termination for vertical trench shielded devices
CN112992682A (zh) * 2019-12-13 2021-06-18 华润微电子(重庆)有限公司 沟槽型场效应晶体管结构及其制备方法
CN111312824B (zh) * 2020-01-09 2022-03-04 安建科技(深圳)有限公司 沟槽型功率半导体器件及其制备方法
JP7446119B2 (ja) 2020-02-07 2024-03-08 ローム株式会社 半導体装置
US11329150B2 (en) * 2020-04-14 2022-05-10 Nxp Usa, Inc. Termination for trench field plate power MOSFET
US11869948B2 (en) * 2021-02-17 2024-01-09 Wolfspeed, Inc. Power semiconductor device with reduced strain
TWI823771B (zh) * 2022-12-08 2023-11-21 美商達爾科技股份有限公司 垂直式半導體功率器件及其製造方法

Family Cites Families (417)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404295A (en) 1964-11-30 1968-10-01 Motorola Inc High frequency and voltage transistor with added region for punch-through protection
US3412297A (en) 1965-12-16 1968-11-19 United Aircraft Corp Mos field-effect transistor with a onemicron vertical channel
US3497777A (en) 1967-06-13 1970-02-24 Stanislas Teszner Multichannel field-effect semi-conductor device
US3564356A (en) 1968-10-24 1971-02-16 Tektronix Inc High voltage integrated circuit transistor
US3660697A (en) 1970-02-16 1972-05-02 Bell Telephone Labor Inc Monolithic semiconductor apparatus adapted for sequential charge transfer
US4003072A (en) 1972-04-20 1977-01-11 Sony Corporation Semiconductor device with high voltage breakdown resistance
US3855009A (en) 1973-09-20 1974-12-17 Texas Instruments Inc Ion-implantation and conventional epitaxy to produce dielectrically isolated silicon layers
US4011105A (en) 1975-09-15 1977-03-08 Mos Technology, Inc. Field inversion control for n-channel device integrated circuits
US4337474A (en) 1978-08-31 1982-06-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US4638344A (en) 1979-10-09 1987-01-20 Cardwell Jr Walter T Junction field-effect transistor controlled by merged depletion regions
US4698653A (en) 1979-10-09 1987-10-06 Cardwell Jr Walter T Semiconductor devices controlled by depletion regions
US4345265A (en) 1980-04-14 1982-08-17 Supertex, Inc. MOS Power transistor with improved high-voltage capability
US4868624A (en) 1980-05-09 1989-09-19 Regents Of The University Of Minnesota Channel collector transistor
US4300150A (en) 1980-06-16 1981-11-10 North American Philips Corporation Lateral double-diffused MOS transistor device
US4326332A (en) 1980-07-28 1982-04-27 International Business Machines Corp. Method of making a high density V-MOS memory array
EP0051693B1 (de) 1980-11-12 1985-06-19 Ibm Deutschland Gmbh Elektrisch umschaltbarer Festwertspeicher
US4324038A (en) 1980-11-24 1982-04-13 Bell Telephone Laboratories, Incorporated Method of fabricating MOS field effect transistors
US4969028A (en) 1980-12-02 1990-11-06 General Electric Company Gate enhanced rectifier
GB2089119A (en) 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
JPS58106870A (ja) 1981-12-18 1983-06-25 Nissan Motor Co Ltd パワ−mosfet
US4974059A (en) 1982-12-21 1990-11-27 International Rectifier Corporation Semiconductor high-power mosfet device
JPS6016420A (ja) 1983-07-08 1985-01-28 Mitsubishi Electric Corp 選択的エピタキシヤル成長方法
US4641174A (en) 1983-08-08 1987-02-03 General Electric Company Pinch rectifier
US4639761A (en) 1983-12-16 1987-01-27 North American Philips Corporation Combined bipolar-field effect transistor resurf devices
US4568958A (en) 1984-01-03 1986-02-04 General Electric Company Inversion-mode insulated-gate gallium arsenide field-effect transistors
FR2566179B1 (fr) 1984-06-14 1986-08-22 Commissariat Energie Atomique Procede d'autopositionnement d'un oxyde de champ localise par rapport a une tranchee d'isolement
US5208657A (en) 1984-08-31 1993-05-04 Texas Instruments Incorporated DRAM Cell with trench capacitor and vertical channel in substrate
US4824793A (en) 1984-09-27 1989-04-25 Texas Instruments Incorporated Method of making DRAM cell with trench capacitor
FR2581252B1 (fr) 1985-04-26 1988-06-10 Radiotechnique Compelec Composant semiconducteur du type planar a structure d'anneaux de garde, famille de tels composants et procede de realisation
US4774556A (en) 1985-07-25 1988-09-27 Nippondenso Co., Ltd. Non-volatile semiconductor memory device
US5262336A (en) 1986-03-21 1993-11-16 Advanced Power Technology, Inc. IGBT process to produce platinum lifetime control
US5528058A (en) 1986-03-21 1996-06-18 Advanced Power Technology, Inc. IGBT device with platinum lifetime control and reduced gaw
US4767722A (en) 1986-03-24 1988-08-30 Siliconix Incorporated Method for making planar vertical channel DMOS structures
US5034785A (en) 1986-03-24 1991-07-23 Siliconix Incorporated Planar vertical channel DMOS structure
US4716126A (en) 1986-06-05 1987-12-29 Siliconix Incorporated Fabrication of double diffused metal oxide semiconductor transistor
US5607511A (en) 1992-02-21 1997-03-04 International Business Machines Corporation Method and apparatus for low temperature, low pressure chemical vapor deposition of epitaxial silicon layers
US4746630A (en) 1986-09-17 1988-05-24 Hewlett-Packard Company Method for producing recessed field oxide with improved sidewall characteristics
US4941026A (en) 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
JP2577330B2 (ja) 1986-12-11 1997-01-29 新技術事業団 両面ゲ−ト静電誘導サイリスタの製造方法
EP0272143B1 (en) 1986-12-19 1999-03-17 Applied Materials, Inc. Bromine etch process for silicon
US4796070A (en) 1987-01-15 1989-01-03 General Electric Company Lateral charge control semiconductor device and method of fabrication
US5105243A (en) 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US4821095A (en) 1987-03-12 1989-04-11 General Electric Company Insulated gate semiconductor device with extra short grid and method of fabrication
US4745079A (en) 1987-03-30 1988-05-17 Motorola, Inc. Method for fabricating MOS transistors having gates with different work functions
US4801986A (en) 1987-04-03 1989-01-31 General Electric Company Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method
US4823176A (en) 1987-04-03 1989-04-18 General Electric Company Vertical double diffused metal oxide semiconductor (VDMOS) device including high voltage junction exhibiting increased safe operating area
US4833516A (en) 1987-08-03 1989-05-23 International Business Machines Corporation High density memory cell structure having a vertical trench transistor self-aligned with a vertical trench capacitor and fabrication methods therefor
US5164325A (en) 1987-10-08 1992-11-17 Siliconix Incorporated Method of making a vertical current flow field effect transistor
US4893160A (en) 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
US4914058A (en) 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
JPH01227468A (ja) 1988-03-08 1989-09-11 Oki Electric Ind Co Ltd 半導体記憶装置
US4967245A (en) 1988-03-14 1990-10-30 Siliconix Incorporated Trench power MOSFET device
US5283201A (en) 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
KR0173111B1 (ko) 1988-06-02 1999-02-01 야마무라 가쯔미 트렌치 게이트 mos fet
US4881105A (en) 1988-06-13 1989-11-14 International Business Machines Corporation Integrated trench-transistor structure and fabrication process
US4961100A (en) 1988-06-20 1990-10-02 General Electric Company Bidirectional field effect semiconductor device and circuit
US4942445A (en) 1988-07-05 1990-07-17 General Electric Company Lateral depletion mode tyristor
JPH0216763A (ja) 1988-07-05 1990-01-19 Toshiba Corp 半導体装置の製造方法
US4853345A (en) 1988-08-22 1989-08-01 Delco Electronics Corporation Process for manufacture of a vertical DMOS transistor
US5268311A (en) 1988-09-01 1993-12-07 International Business Machines Corporation Method for forming a thin dielectric layer on a substrate
US5156989A (en) 1988-11-08 1992-10-20 Siliconix, Incorporated Complementary, isolated DMOS IC technology
US5346834A (en) 1988-11-21 1994-09-13 Hitachi, Ltd. Method for manufacturing a semiconductor device and a semiconductor memory device
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US4876579A (en) 1989-01-26 1989-10-24 Harris Corporation Low top gate resistance JFET structure
US5111253A (en) 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
US4954854A (en) 1989-05-22 1990-09-04 International Business Machines Corporation Cross-point lightly-doped drain-source trench transistor and fabrication process therefor
US4992390A (en) 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
JP2623850B2 (ja) 1989-08-25 1997-06-25 富士電機株式会社 伝導度変調型mosfet
DE69034136T2 (de) 1989-08-31 2005-01-20 Denso Corp., Kariya Bipolarer transistor mit isolierter steuerelektrode
US5119153A (en) 1989-09-05 1992-06-02 General Electric Company Small cell low contact resistance rugged power field effect devices and method of fabrication
US4982260A (en) 1989-10-02 1991-01-01 General Electric Company Power rectifier with trenches
US4994883A (en) 1989-10-02 1991-02-19 General Electric Company Field controlled diode (FCD) having MOS trench gates
US5248894A (en) * 1989-10-03 1993-09-28 Harris Corporation Self-aligned channel stop for trench-isolated island
US5204545A (en) 1989-11-22 1993-04-20 Mitsubishi Denki Kabushiki Kaisha Structure for preventing field concentration in semiconductor device and method of forming the same
US5077228A (en) 1989-12-01 1991-12-31 Texas Instruments Incorporated Process for simultaneous formation of trench contact and vertical transistor gate and structure
JP2590284B2 (ja) 1990-02-28 1997-03-12 株式会社日立製作所 半導体装置及びその製造方法
US5075739A (en) 1990-01-02 1991-12-24 Motorola, Inc. High voltage planar edge termination using a punch-through retarding implant and floating field plates
US5134448A (en) 1990-01-29 1992-07-28 Motorola, Inc. MOSFET with substrate source contact
US5215275A (en) 1990-05-30 1993-06-01 Paul Gold Plastic bags roll and method for making same
US5242845A (en) 1990-06-13 1993-09-07 Kabushiki Kaisha Toshiba Method of production of vertical MOS transistor
US5126807A (en) 1990-06-13 1992-06-30 Kabushiki Kaisha Toshiba Vertical MOS transistor and its production method
US5025548A (en) * 1990-06-15 1991-06-25 Justesen Scott F Right-angle drive for vertical milling machine
US5071782A (en) 1990-06-28 1991-12-10 Texas Instruments Incorporated Vertical memory cell array and method of fabrication
US5079608A (en) 1990-11-06 1992-01-07 Harris Corporation Power MOSFET transistor circuit with active clamp
DE69125794T2 (de) 1990-11-23 1997-11-27 Texas Instruments Inc Verfahren zum gleichzeitigen Herstellen eines Feldeffekttransistors mit isoliertem Gate und eines Bipolartransistors
US5065273A (en) 1990-12-04 1991-11-12 International Business Machines Corporation High capacity DRAM trench capacitor and methods of fabricating same
US5684320A (en) 1991-01-09 1997-11-04 Fujitsu Limited Semiconductor device having transistor pair
US5168331A (en) 1991-01-31 1992-12-01 Siliconix Incorporated Power metal-oxide-semiconductor field effect transistor
JP2825004B2 (ja) 1991-02-08 1998-11-18 インターナショナル・ビジネス・マシーンズ・コーポレーション 側壁電荷結合撮像素子及びその製造方法
CN1019720B (zh) 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
US5164802A (en) 1991-03-20 1992-11-17 Harris Corporation Power vdmosfet with schottky on lightly doped drain of lateral driver fet
US5250450A (en) 1991-04-08 1993-10-05 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
JP2603886B2 (ja) 1991-05-09 1997-04-23 日本電信電話株式会社 薄層soi型絶縁ゲート型電界効果トランジスタの製造方法
US5219793A (en) 1991-06-03 1993-06-15 Motorola Inc. Method for forming pitch independent contacts and a semiconductor device having the same
KR940006702B1 (ko) 1991-06-14 1994-07-25 금성일렉트론 주식회사 모스패트의 제조방법
JP2570022B2 (ja) 1991-09-20 1997-01-08 株式会社日立製作所 定電圧ダイオード及びそれを用いた電力変換装置並びに定電圧ダイオードの製造方法
JPH0613627A (ja) 1991-10-08 1994-01-21 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US5300452A (en) 1991-12-18 1994-04-05 U.S. Philips Corporation Method of manufacturing an optoelectronic semiconductor device
JPH05304297A (ja) 1992-01-29 1993-11-16 Nec Corp 電力用半導体装置およびその製造方法
JPH05218556A (ja) * 1992-02-04 1993-08-27 Fuji Photo Film Co Ltd 固体レーザー
IT1254799B (it) 1992-02-18 1995-10-11 St Microelectronics Srl Transistore vdmos con migliorate caratteristiche di tenuta di tensione.
US5315142A (en) 1992-03-23 1994-05-24 International Business Machines Corporation High performance trench EEPROM cell
JP2904635B2 (ja) 1992-03-30 1999-06-14 株式会社東芝 半導体装置およびその製造方法
US5554862A (en) 1992-03-31 1996-09-10 Kabushiki Kaisha Toshiba Power semiconductor device
JPH06196723A (ja) 1992-04-28 1994-07-15 Mitsubishi Electric Corp 半導体装置及びその製造方法
US5640034A (en) 1992-05-18 1997-06-17 Texas Instruments Incorporated Top-drain trench based resurf DMOS transistor structure
US5233215A (en) 1992-06-08 1993-08-03 North Carolina State University At Raleigh Silicon carbide power MOSFET with floating field ring and floating field plate
JP2948985B2 (ja) 1992-06-12 1999-09-13 三菱電機株式会社 半導体装置
US5346835A (en) 1992-07-06 1994-09-13 Texas Instruments Incorporated Triple diffused lateral resurf insulated gate field effect transistor compatible with process and method
JPH0637269A (ja) 1992-07-17 1994-02-10 Mitsubishi Electric Corp 接合型電界効果トランジスタ、その接合型電界効果トランジスタを含む半導体記憶装置およびそれらの製造方法
US5430324A (en) 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5910669A (en) 1992-07-24 1999-06-08 Siliconix Incorporated Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof
US5558313A (en) 1992-07-24 1996-09-24 Siliconix Inorporated Trench field effect transistor with reduced punch-through susceptibility and low RDSon
US5281548A (en) 1992-07-28 1994-01-25 Micron Technology, Inc. Plug-based floating gate memory
US5294824A (en) 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
GB9216599D0 (en) 1992-08-05 1992-09-16 Philips Electronics Uk Ltd A semiconductor device comprising a vertical insulated gate field effect device and a method of manufacturing such a device
US5241195A (en) 1992-08-13 1993-08-31 North Carolina State University At Raleigh Merged P-I-N/Schottky power rectifier having extended P-I-N junction
US5300447A (en) 1992-09-29 1994-04-05 Texas Instruments Incorporated Method of manufacturing a minimum scaled transistor
JP3167457B2 (ja) 1992-10-22 2001-05-21 株式会社東芝 半導体装置
US5171935A (en) 1992-11-05 1992-12-15 The Ensign-Bickford Company Low-energy blasting initiation system method and surface connection thereof
JPH06163907A (ja) 1992-11-20 1994-06-10 Hitachi Ltd 電圧駆動型半導体装置
US5275965A (en) 1992-11-25 1994-01-04 Micron Semiconductor, Inc. Trench isolation using gated sidewalls
US5326711A (en) 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
JP3417013B2 (ja) 1993-10-18 2003-06-16 株式会社デンソー 絶縁ゲート型バイポーラトランジスタ
US5418376A (en) 1993-03-02 1995-05-23 Toyo Denki Seizo Kabushiki Kaisha Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure
US5341011A (en) 1993-03-15 1994-08-23 Siliconix Incorporated Short channel trenched DMOS transistor
DE4309764C2 (de) 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
US5726084A (en) * 1993-06-24 1998-03-10 Northern Telecom Limited Method for forming integrated circuit structure
KR960012585B1 (en) 1993-06-25 1996-09-23 Samsung Electronics Co Ltd Transistor structure and the method for manufacturing the same
US5371396A (en) 1993-07-02 1994-12-06 Thunderbird Technologies, Inc. Field effect transistor having polycrystalline silicon gate junction
US5365102A (en) 1993-07-06 1994-11-15 North Carolina State University Schottky barrier rectifier with MOS trench
BE1007283A3 (nl) 1993-07-12 1995-05-09 Philips Electronics Nv Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen.
JPH07122749A (ja) 1993-09-01 1995-05-12 Toshiba Corp 半導体装置及びその製造方法
US5424563A (en) 1993-12-27 1995-06-13 Harris Corporation Apparatus and method for increasing breakdown voltage ruggedness in semiconductor devices
EP0661753A1 (en) 1994-01-04 1995-07-05 Motorola, Inc. Semiconductor structure with field limiting ring and method for making
JP3400846B2 (ja) 1994-01-20 2003-04-28 三菱電機株式会社 トレンチ構造を有する半導体装置およびその製造方法
JP3481287B2 (ja) 1994-02-24 2003-12-22 三菱電機株式会社 半導体装置の製造方法
US5429977A (en) 1994-03-11 1995-07-04 Industrial Technology Research Institute Method for forming a vertical transistor with a stacked capacitor DRAM cell
JP3125567B2 (ja) 1994-03-28 2001-01-22 富士電機株式会社 絶縁ゲート型サイリスタ
US5434435A (en) 1994-05-04 1995-07-18 North Carolina State University Trench gate lateral MOSFET
DE4417150C2 (de) 1994-05-17 1996-03-14 Siemens Ag Verfahren zur Herstellung einer Anordnung mit selbstverstärkenden dynamischen MOS-Transistorspeicherzellen
JPH07326663A (ja) 1994-05-31 1995-12-12 Fuji Electric Co Ltd ウエハの誘電体分離方法
US5405794A (en) 1994-06-14 1995-04-11 Philips Electronics North America Corporation Method of producing VDMOS device of increased power density
US5424231A (en) 1994-08-09 1995-06-13 United Microelectronics Corp. Method for manufacturing a VDMOS transistor
US5583368A (en) 1994-08-11 1996-12-10 International Business Machines Corporation Stacked devices
DE69525003T2 (de) 1994-08-15 2003-10-09 Siliconix Inc Verfahren zum Herstellen eines DMOS-Transistors mit Grabenstruktur unter Verwendung von sieben Masken
US5581100A (en) 1994-08-30 1996-12-03 International Rectifier Corporation Trench depletion MOSFET
JPH0895379A (ja) 1994-09-27 1996-04-12 Fujitsu Ltd 現像装置及びこの現像装置を有する静電記録装置
US5583065A (en) 1994-11-23 1996-12-10 Sony Corporation Method of making a MOS semiconductor device
US6153920A (en) 1994-12-01 2000-11-28 Lucent Technologies Inc. Process for controlling dopant diffusion in a semiconductor layer and semiconductor device formed thereby
EP0717435A1 (en) 1994-12-01 1996-06-19 AT&T Corp. Process for controlling dopant diffusion in a semiconductor layer and semiconductor layer formed thereby
US5674766A (en) 1994-12-30 1997-10-07 Siliconix Incorporated Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer
US5665996A (en) 1994-12-30 1997-09-09 Siliconix Incorporated Vertical power mosfet having thick metal layer to reduce distributed resistance
US5597765A (en) 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
US5545915A (en) 1995-01-23 1996-08-13 Delco Electronics Corporation Semiconductor device having field limiting ring and a process therefor
JPH08204179A (ja) 1995-01-26 1996-08-09 Fuji Electric Co Ltd 炭化ケイ素トレンチmosfet
US5670803A (en) 1995-02-08 1997-09-23 International Business Machines Corporation Three-dimensional SRAM trench structure and fabrication method therefor
JP3325736B2 (ja) 1995-02-09 2002-09-17 三菱電機株式会社 絶縁ゲート型半導体装置
DE69602114T2 (de) 1995-02-10 1999-08-19 Siliconix Inc Graben-Feldeffekttransistor mit PN-Verarmungsschicht-Barriere
JP3291957B2 (ja) 1995-02-17 2002-06-17 富士電機株式会社 縦型トレンチmisfetおよびその製造方法
US5595927A (en) 1995-03-17 1997-01-21 Taiwan Semiconductor Manufacturing Company Ltd. Method for making self-aligned source/drain mask ROM memory cell using trench etched channel
US5557127A (en) 1995-03-23 1996-09-17 International Rectifier Corporation Termination structure for mosgated device with reduced mask count and process for its manufacture
US5828101A (en) 1995-03-30 1998-10-27 Kabushiki Kaisha Toshiba Three-terminal semiconductor device and related semiconductor devices
US5592005A (en) 1995-03-31 1997-01-07 Siliconix Incorporated Punch-through field effect transistor
US5554552A (en) 1995-04-03 1996-09-10 Taiwan Semiconductor Manufacturing Company PN junction floating gate EEPROM, flash EPROM device and method of manufacture thereof
US5744372A (en) 1995-04-12 1998-04-28 National Semiconductor Corporation Fabrication of complementary field-effect transistors each having multi-part channel
JPH08306914A (ja) 1995-04-27 1996-11-22 Nippondenso Co Ltd 半導体装置およびその製造方法
US5567634A (en) 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
US6049108A (en) 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US5856692A (en) 1995-06-02 1999-01-05 Siliconix Incorporated Voltage-clamped power accumulation-mode MOSFET
US6078090A (en) 1997-04-02 2000-06-20 Siliconix Incorporated Trench-gated Schottky diode with integral clamping diode
EP0746042B1 (en) 1995-06-02 2004-03-31 SILICONIX Incorporated Bidirectional blocking trench power MOSFET
US5920108A (en) 1995-06-05 1999-07-06 Harris Corporation Late process method and apparatus for trench isolation
US5777362A (en) 1995-06-07 1998-07-07 Harris Corporation High efficiency quasi-vertical DMOS in CMOS or BICMOS process
US5648670A (en) 1995-06-07 1997-07-15 Sgs-Thomson Microelectronics, Inc. Trench MOS-gated device with a minimum number of masks
GB9512089D0 (en) 1995-06-14 1995-08-09 Evans Jonathan L Semiconductor device fabrication
US5629543A (en) 1995-08-21 1997-05-13 Siliconix Incorporated Trenched DMOS transistor with buried layer for reduced on-resistance and ruggedness
DE19636302C2 (de) 1995-09-06 1998-08-20 Denso Corp Siliziumkarbidhalbleitervorrichtung und Verfahren zur Herstellung
US5705409A (en) 1995-09-28 1998-01-06 Motorola Inc. Method for forming trench transistor structure
US5879971A (en) 1995-09-28 1999-03-09 Motorola Inc. Trench random access memory cell and method of formation
US5679966A (en) 1995-10-05 1997-10-21 North Carolina State University Depleted base transistor with high forward voltage blocking capability
US5973367A (en) 1995-10-13 1999-10-26 Siliconix Incorporated Multiple gated MOSFET for use in DC-DC converter
US5949124A (en) 1995-10-31 1999-09-07 Motorola, Inc. Edge termination structure
US6037632A (en) 1995-11-06 2000-03-14 Kabushiki Kaisha Toshiba Semiconductor device
US6242787B1 (en) 1995-11-15 2001-06-05 Denso Corporation Semiconductor device and manufacturing method thereof
US5780343A (en) 1995-12-20 1998-07-14 National Semiconductor Corporation Method of producing high quality silicon surface for selective epitaxial growth of silicon
US5637898A (en) 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US6097063A (en) 1996-01-22 2000-08-01 Fuji Electric Co., Ltd. Semiconductor device having a plurality of parallel drift regions
EP0879481B1 (de) 1996-02-05 2002-05-02 Infineon Technologies AG Durch feldeffekt steuerbares halbleiterbauelement
JP3444081B2 (ja) 1996-02-28 2003-09-08 株式会社日立製作所 ダイオード及び電力変換装置
KR0175277B1 (ko) 1996-02-29 1999-02-01 김광호 중첩된 필드플레이트구조를 갖는 전력반도체장치 및 그의 제조방법
US6084268A (en) 1996-03-05 2000-07-04 Semiconductor Components Industries, Llc Power MOSFET device having low on-resistance and method
US5821583A (en) 1996-03-06 1998-10-13 Siliconix Incorporated Trenched DMOS transistor with lightly doped tub
US5814858A (en) 1996-03-15 1998-09-29 Siliconix Incorporated Vertical power MOSFET having reduced sensitivity to variations in thickness of epitaxial layer
DE19611045C1 (de) 1996-03-20 1997-05-22 Siemens Ag Durch Feldeffekt steuerbares Halbleiterbauelement
JP3575908B2 (ja) 1996-03-28 2004-10-13 株式会社東芝 半導体装置
US5895951A (en) 1996-04-05 1999-04-20 Megamos Corporation MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches
US5770878A (en) 1996-04-10 1998-06-23 Harris Corporation Trench MOS gate device
KR100223198B1 (ko) 1996-04-11 1999-10-15 다니구찌 이찌로오, 기타오카 다카시 높은 강복 전압을 갖는 반도체 장치 및 그 제조 방법
US5602046A (en) 1996-04-12 1997-02-11 National Semiconductor Corporation Integrated zener diode protection structures and fabrication methods for DMOS power devices
US5767004A (en) 1996-04-22 1998-06-16 Chartered Semiconductor Manufacturing, Ltd. Method for forming a low impurity diffusion polysilicon layer
US6236099B1 (en) 1996-04-22 2001-05-22 International Rectifier Corp. Trench MOS device and process for radhard device
US5973368A (en) 1996-06-05 1999-10-26 Pearce; Lawrence G. Monolithic class D amplifier
US5719409A (en) 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
JPH09331062A (ja) 1996-06-11 1997-12-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
EP0948818B1 (en) 1996-07-19 2009-01-07 SILICONIX Incorporated High density trench dmos transistor with trench bottom implant
US5808340A (en) 1996-09-18 1998-09-15 Advanced Micro Devices, Inc. Short channel self aligned VMOS field effect transistor
US5807783A (en) 1996-10-07 1998-09-15 Harris Corporation Surface mount die by handle replacement
JP2891205B2 (ja) 1996-10-21 1999-05-17 日本電気株式会社 半導体集積回路の製造方法
JPH10132871A (ja) 1996-10-29 1998-05-22 Toshiba Corp 半導体装置
US5972741A (en) 1996-10-31 1999-10-26 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
US6168983B1 (en) 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6207994B1 (en) 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US5998822A (en) 1996-11-28 1999-12-07 Nippon Steel Semiconductor Corp. Semiconductor integrated circuit and a method of manufacturing the same
US6110804A (en) 1996-12-02 2000-08-29 Semiconductor Components Industries, Llc Method of fabricating a semiconductor device having a floating field conductor
KR100233832B1 (ko) 1996-12-14 1999-12-01 정선종 반도체 소자의 트랜지스터 및 그 제조방법
US6011298A (en) 1996-12-31 2000-01-04 Stmicroelectronics, Inc. High voltage termination with buried field-shaping region
JPH10256550A (ja) 1997-01-09 1998-09-25 Toshiba Corp 半導体装置
KR100218260B1 (ko) 1997-01-14 1999-09-01 김덕중 트랜치 게이트형 모스트랜지스터의 제조방법
JP3938964B2 (ja) 1997-02-10 2007-06-27 三菱電機株式会社 高耐圧半導体装置およびその製造方法
US5877528A (en) 1997-03-03 1999-03-02 Megamos Corporation Structure to provide effective channel-stop in termination areas for trenched power transistors
US6057558A (en) 1997-03-05 2000-05-02 Denson Corporation Silicon carbide semiconductor device and manufacturing method thereof
KR100225409B1 (ko) 1997-03-27 1999-10-15 김덕중 트렌치 디-모오스 및 그의 제조 방법
US6163052A (en) 1997-04-04 2000-12-19 Advanced Micro Devices, Inc. Trench-gated vertical combination JFET and MOSFET devices
US5879994A (en) 1997-04-15 1999-03-09 National Semiconductor Corporation Self-aligned method of fabricating terrace gate DMOS transistor
US5805494A (en) 1997-04-30 1998-09-08 International Business Machines Corporation Trench capacitor structures
US6110763A (en) 1997-05-22 2000-08-29 Intersil Corporation One mask, power semiconductor device fabrication process
JP3618517B2 (ja) 1997-06-18 2005-02-09 三菱電機株式会社 半導体装置およびその製造方法
US6110799A (en) 1997-06-30 2000-08-29 Intersil Corporation Trench contact process
US6037628A (en) 1997-06-30 2000-03-14 Intersil Corporation Semiconductor structures with trench contacts
US6096608A (en) 1997-06-30 2000-08-01 Siliconix Incorporated Bidirectional trench gated power mosfet with submerged body bus extending underneath gate trench
US5907776A (en) 1997-07-11 1999-05-25 Magepower Semiconductor Corp. Method of forming a semiconductor structure having reduced threshold voltage and high punch-through tolerance
EP0892435A1 (en) 1997-07-14 1999-01-20 STMicroelectronics S.r.l. Integrated semiconductor transistor with current sensing
JP3502531B2 (ja) 1997-08-28 2004-03-02 株式会社ルネサステクノロジ 半導体装置の製造方法
DE19740195C2 (de) 1997-09-12 1999-12-02 Siemens Ag Halbleiterbauelement mit Metall-Halbleiterübergang mit niedrigem Sperrstrom
US6051468A (en) 1997-09-15 2000-04-18 Magepower Semiconductor Corp. Method of forming a semiconductor structure with uniform threshold voltage and punch-through tolerance
JP3315356B2 (ja) 1997-10-15 2002-08-19 株式会社東芝 高耐圧半導体装置
US6031265A (en) 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
KR100249505B1 (ko) 1997-10-28 2000-03-15 정선종 수평형 이중 확산 전력 소자의 제조 방법
US6337499B1 (en) 1997-11-03 2002-01-08 Infineon Technologies Ag Semiconductor component
US6005271A (en) 1997-11-05 1999-12-21 Magepower Semiconductor Corp. Semiconductor cell array with high packing density
US5943581A (en) 1997-11-05 1999-08-24 Vanguard International Semiconductor Corporation Method of fabricating a buried reservoir capacitor structure for high-density dynamic random access memory (DRAM) circuits
US6081009A (en) 1997-11-10 2000-06-27 Intersil Corporation High voltage mosfet structure
US6429481B1 (en) 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
JP4192281B2 (ja) 1997-11-28 2008-12-10 株式会社デンソー 炭化珪素半導体装置
US6396102B1 (en) 1998-01-27 2002-05-28 Fairchild Semiconductor Corporation Field coupled power MOSFET bus architecture using trench technology
US6204168B1 (en) 1998-02-02 2001-03-20 Applied Materials, Inc. Damascene structure fabricated using a layer of silicon-based photoresist material
US5900663A (en) 1998-02-07 1999-05-04 Xemod, Inc. Quasi-mesh gate structure for lateral RF MOS devices
US5949104A (en) 1998-02-07 1999-09-07 Xemod, Inc. Source connection structure for lateral RF MOS devices
US5897343A (en) 1998-03-30 1999-04-27 Motorola, Inc. Method of making a power switching trench MOSFET having aligned source regions
US5945724A (en) 1998-04-09 1999-08-31 Micron Technology, Inc. Trench isolation region for semiconductor device
US6137152A (en) 1998-04-22 2000-10-24 Texas Instruments - Acer Incorporated Planarized deep-shallow trench isolation for CMOS/bipolar devices
US6150697A (en) 1998-04-30 2000-11-21 Denso Corporation Semiconductor apparatus having high withstand voltage
US6048772A (en) 1998-05-04 2000-04-11 Xemod, Inc. Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection
DE19820223C1 (de) 1998-05-06 1999-11-04 Siemens Ag Verfahren zum Herstellen einer Epitaxieschicht mit lateral veränderlicher Dotierung
JP4189610B2 (ja) 1998-05-08 2008-12-03 ソニー株式会社 光電変換素子およびその製造方法
US6104054A (en) 1998-05-13 2000-08-15 Texas Instruments Incorporated Space-efficient layout method to reduce the effect of substrate capacitance in dielectrically isolated process technologies
US6015727A (en) 1998-06-08 2000-01-18 Wanlass; Frank M. Damascene formation of borderless contact MOS transistors
US6064088A (en) 1998-06-15 2000-05-16 Xemod, Inc. RF power MOSFET device with extended linear region of transconductance characteristic at low drain current
KR100372103B1 (ko) 1998-06-30 2003-03-31 주식회사 하이닉스반도체 반도체소자의소자분리방법
US6156611A (en) 1998-07-20 2000-12-05 Motorola, Inc. Method of fabricating vertical FET with sidewall gate electrode
JP2000056281A (ja) 1998-08-07 2000-02-25 Mitsubishi Electric Corp 光変調器とその製造方法
US6316280B1 (en) 1998-09-07 2001-11-13 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor devices separated from a wafer
DE19848828C2 (de) 1998-10-22 2001-09-13 Infineon Technologies Ag Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit
US5998833A (en) 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6194741B1 (en) 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
US6677626B1 (en) 1998-11-11 2004-01-13 Fuji Electric Co., Ltd. Semiconductor device with alternating conductivity type layer and method of manufacturing the same
US6156606A (en) 1998-11-17 2000-12-05 Siemens Aktiengesellschaft Method of forming a trench capacitor using a rutile dielectric material
US6084264A (en) 1998-11-25 2000-07-04 Siliconix Incorporated Trench MOSFET having improved breakdown and on-resistance characteristics
DE59902506D1 (de) * 1999-01-11 2002-10-02 Fraunhofer Ges Forschung Mos-leistungsbauelement und verfahren zum herstellen desselben
US6204097B1 (en) 1999-03-01 2001-03-20 Semiconductor Components Industries, Llc Semiconductor device and method of manufacture
US6208185B1 (en) 1999-03-25 2001-03-27 Wisconsin Alumni Research Corporation High performance active gate drive for IGBTs
US6188105B1 (en) 1999-04-01 2001-02-13 Intersil Corporation High density MOS-gated power device and process for forming same
TW425701B (en) 1999-04-27 2001-03-11 Taiwan Semiconductor Mfg Manufacturing method of stack-type capacitor
US6433385B1 (en) 1999-05-19 2002-08-13 Fairchild Semiconductor Corporation MOS-gated power device having segmented trench and extended doping zone and process for forming same
US6198127B1 (en) 1999-05-19 2001-03-06 Intersil Corporation MOS-gated power device having extended trench and doping zone and process for forming same
US6492663B1 (en) 1999-05-20 2002-12-10 Richard A. Blanchard Universal source geometry for MOS-gated power devices
US6191447B1 (en) 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
US6242784B1 (en) 1999-06-28 2001-06-05 Intersil Corporation Edge termination for silicon power devices
US6274905B1 (en) 1999-06-30 2001-08-14 Fairchild Semiconductor Corporation Trench structure substantially filled with high-conductivity material
WO2001005040A1 (en) * 1999-07-13 2001-01-18 Samsung Electronics Co., Ltd. Address generating device for use in multi-stage channel interleaver/deinterleaver
GB9917099D0 (en) 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
US6211018B1 (en) 1999-08-14 2001-04-03 Electronics And Telecommunications Research Institute Method for fabricating high density trench gate type power device
US6362028B1 (en) * 1999-08-19 2002-03-26 Industrial Technology Research Institute Method for fabricating TFT array and devices formed
US6077733A (en) 1999-09-03 2000-06-20 Taiwan Semiconductor Manufacturing Company Method of manufacturing self-aligned T-shaped gate through dual damascene
US6252277B1 (en) 1999-09-09 2001-06-26 Chartered Semiconductor Manufacturing Ltd. Embedded polysilicon gate MOSFET
US6103619A (en) 1999-10-08 2000-08-15 United Microelectronics Corp. Method of forming a dual damascene structure on a semiconductor wafer
GB9926992D0 (en) * 1999-11-15 2000-01-12 Gray Matter Alpha Limited Braking assembly
US6437419B1 (en) 1999-11-29 2002-08-20 Fairchild Semiconductor Corporation Emitter ballast resistor with enhanced body effect to improve the short circuit withstand capability of power devices
JP3804375B2 (ja) 1999-12-09 2006-08-02 株式会社日立製作所 半導体装置とそれを用いたパワースイッチング駆動システム
US6461918B1 (en) 1999-12-20 2002-10-08 Fairchild Semiconductor Corporation Power MOS device with improved gate charge performance
JP4765012B2 (ja) 2000-02-09 2011-09-07 富士電機株式会社 半導体装置及びその製造方法
CN1315195C (zh) 2000-02-10 2007-05-09 国际整流器有限公司 在单面上带块形连接的垂直导电倒装芯片式器件
US6376878B1 (en) 2000-02-11 2002-04-23 Fairchild Semiconductor Corporation MOS-gated devices with alternating zones of conductivity
GB0003186D0 (en) 2000-02-12 2000-04-05 Koninkl Philips Electronics Nv A semiconductor device
US6392290B1 (en) 2000-04-07 2002-05-21 Siliconix Incorporated Vertical structure for semiconductor wafer-level chip scale packages
US6417554B1 (en) * 2000-04-27 2002-07-09 International Rectifier Corporation Latch free IGBT with schottky gate
US6482681B1 (en) 2000-05-05 2002-11-19 International Rectifier Corporation Hydrogen implant for buffer zone of punch-through non epi IGBT
WO2001088997A2 (en) 2000-05-13 2001-11-22 Koninklijke Philips Electronics N.V. Trench-gate semiconductor device and method of making the same
JP4528460B2 (ja) 2000-06-30 2010-08-18 株式会社東芝 半導体素子
US6445035B1 (en) 2000-07-24 2002-09-03 Fairchild Semiconductor Corporation Power MOS device with buried gate and groove
JP4963750B2 (ja) 2000-08-10 2012-06-27 ルネサスエレクトロニクス株式会社 半導体集積回路装置
US6437386B1 (en) 2000-08-16 2002-08-20 Fairchild Semiconductor Corporation Method for creating thick oxide on the bottom surface of a trench structure in silicon
US6696726B1 (en) 2000-08-16 2004-02-24 Fairchild Semiconductor Corporation Vertical MOSFET with ultra-low resistance and low gate charge
US6700158B1 (en) 2000-08-18 2004-03-02 Fairchild Semiconductor Corporation Trench corner protection for trench MOSFET
GB0022149D0 (en) 2000-09-09 2000-10-25 Zetex Plc Implantation method
US6680232B2 (en) 2000-09-22 2004-01-20 Fairchild Semiconductor Corporation Trench etch with incremental oxygen flow
JP4750933B2 (ja) 2000-09-28 2011-08-17 株式会社東芝 薄型パンチスルー型パワーデバイス
JP2002164433A (ja) 2000-11-27 2002-06-07 Mitsubishi Electric Corp 半導体装置とその製造方法
US6365942B1 (en) 2000-12-06 2002-04-02 Fairchild Semiconductor Corporation MOS-gated power device with doped polysilicon body and process for forming same
JP3899231B2 (ja) 2000-12-18 2007-03-28 株式会社豊田中央研究所 半導体装置
US6906352B2 (en) 2001-01-16 2005-06-14 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US6906362B2 (en) 2002-01-22 2005-06-14 Fairchild Semiconductor Corporation Method of isolating the current sense on power devices while maintaining a continuous stripe cell
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US7345342B2 (en) 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6677641B2 (en) 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US7132712B2 (en) 2002-11-05 2006-11-07 Fairchild Semiconductor Corporation Trench structure having one or more diodes embedded therein adjacent a PN junction
EP1271654B1 (en) 2001-02-01 2017-09-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
DE60139386D1 (de) 2001-02-02 2009-09-10 Mitsubishi Electric Corp Halbleiteranordnung mit einem bipolartransistor mit isoliertem gate und einer freilaufdiode
WO2002069394A1 (en) 2001-02-27 2002-09-06 Fairchild Semiconductor Corporation Process for depositing and planarizing bpsg for dense trench mosfet application
US6683346B2 (en) 2001-03-09 2004-01-27 Fairchild Semiconductor Corporation Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge
JP4839519B2 (ja) 2001-03-15 2011-12-21 富士電機株式会社 半導体装置
JP4073176B2 (ja) 2001-04-02 2008-04-09 新電元工業株式会社 半導体装置およびその製造方法
KR100535062B1 (ko) 2001-06-04 2005-12-07 마츠시타 덴끼 산교 가부시키가이샤 고내압 반도체장치
DE10127885B4 (de) 2001-06-08 2009-09-24 Infineon Technologies Ag Trench-Leistungshalbleiterbauelement
US6683363B2 (en) 2001-07-03 2004-01-27 Fairchild Semiconductor Corporation Trench structure for semiconductor devices
GB0120595D0 (en) * 2001-08-24 2001-10-17 Koninkl Philips Electronics Nv A semiconductor rectifier
US6573558B2 (en) 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
GB0122120D0 (en) 2001-09-13 2001-10-31 Koninkl Philips Electronics Nv Edge termination in MOS transistors
US6831329B2 (en) 2001-10-26 2004-12-14 Fairchild Semiconductor Corporation Quick punch through IGBT having gate-controllable DI/DT and reduced EMI during inductive turn off
US6573569B2 (en) 2001-11-06 2003-06-03 Fairchild Semiconductor Corporation Trench MOSFET with low gate charge
US6635535B2 (en) 2001-11-20 2003-10-21 Fairchild Semiconductor Corporation Dense trench MOSFET with decreased etch sensitivity to deposition and etch processing
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
US6777747B2 (en) 2002-01-18 2004-08-17 Fairchild Semiconductor Corporation Thick buffer region design to improve IGBT self-clamped inductive switching (SCIS) energy density and device manufacturability
US6798019B2 (en) 2002-01-18 2004-09-28 Fairchild Semiconductor Corporation IGBT with channel resistors
JP3733338B2 (ja) * 2002-03-11 2006-01-11 富士写真フイルム株式会社 サーマルプリンタ及びサーマルヘッドのクリーニング方法
JP3908572B2 (ja) 2002-03-18 2007-04-25 株式会社東芝 半導体素子
JP2004146772A (ja) 2002-03-18 2004-05-20 Fujitsu Ltd 半導体装置及びその製造方法
US7091573B2 (en) 2002-03-19 2006-08-15 Infineon Technologies Ag Power transistor
TWI248136B (en) 2002-03-19 2006-01-21 Infineon Technologies Ag Method for fabricating a transistor arrangement having trench transistor cells having a field electrode
DE10212149B4 (de) 2002-03-19 2007-10-04 Infineon Technologies Ag Transistoranordnung mit Schirmelektrode außerhalb eines aktiven Zellenfeldes und reduzierter Gate-Drain-Kapazität
US6780686B2 (en) 2002-03-21 2004-08-24 Advanced Micro Devices, Inc. Doping methods for fully-depleted SOI structures, and device comprising the resulting doped regions
US6838722B2 (en) 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
US6653161B1 (en) 2002-05-16 2003-11-25 Intel Corporation Method and apparatus for forming a capacitive structure including single crystal silicon
JP4158453B2 (ja) 2002-08-22 2008-10-01 株式会社デンソー 半導体装置及びその製造方法
US6867099B2 (en) * 2002-08-27 2005-03-15 Powerchip Semiconductor Corp. Spilt-gate flash memory structure and method of manufacture
JP4086602B2 (ja) 2002-09-17 2008-05-14 株式会社日立製作所 多気筒エンジンの制御装置及び制御方法
US6825510B2 (en) 2002-09-19 2004-11-30 Fairchild Semiconductor Corporation Termination structure incorporating insulator in a trench
US6818947B2 (en) 2002-09-19 2004-11-16 Fairchild Semiconductor Corporation Buried gate-field termination structure
EP1557888A4 (en) 2002-10-04 2009-11-04 Shindengen Electric Mfg SEMICONDUCTOR ELEMENT AND PROCESS FOR ITS MANUFACTURE
US20040065937A1 (en) 2002-10-07 2004-04-08 Chia-Shun Hsiao Floating gate memory structures and fabrication methods
US6861701B2 (en) 2003-03-05 2005-03-01 Advanced Analogic Technologies, Inc. Trench power MOSFET with planarized gate bus
US6919598B2 (en) 2003-03-10 2005-07-19 Zia Hossain LDMOS transistor with enhanced termination region for high breakdown voltage with low on-resistance
TW583748B (en) 2003-03-28 2004-04-11 Mosel Vitelic Inc The termination structure of DMOS device
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7098520B2 (en) 2003-06-24 2006-08-29 Hynix Semiconductor, Inc. Semiconductor memory device having pick-up structure
US6987305B2 (en) * 2003-08-04 2006-01-17 International Rectifier Corporation Integrated FET and schottky device
DE112004001163B4 (de) 2003-08-20 2017-12-28 Denso Corporation Halbleiteranordnung eines vertikalen Typs
DE10341793B4 (de) * 2003-09-10 2021-09-23 Infineon Technologies Ag Halbleiterbauelement und Verfahren zu dessen Herstellung
DE10345347A1 (de) 2003-09-19 2005-04-14 Atmel Germany Gmbh Verfahren zur Herstellung eines DMOS-Transistors mit lateralem Driftregionen-Dotierstoffprofil
US7254342B2 (en) 2003-10-29 2007-08-07 Fujitsu Limited Method and system for transmitting information in an optical communication system with low signal distortion
DE10353387B4 (de) 2003-11-14 2008-07-24 Infineon Technologies Ag Verfahren zur Herstellung einer Leistungstransistoranordnung und Leistungstransistoranordnung
US6890804B1 (en) 2003-11-21 2005-05-10 Agere Systems, Inc. Metal-oxide-semiconductor device formed in silicon-on-insulator
DE10355588B4 (de) 2003-11-28 2006-06-14 Infineon Technologies Ag MOS-Transistoreinrichtung
US7049652B2 (en) 2003-12-10 2006-05-23 Sandisk Corporation Pillar cell flash memory technology
JP4999464B2 (ja) 2003-12-19 2012-08-15 サード ディメンジョン (スリーディ) セミコンダクタ インコーポレイテッド 広いメサを備えた超接合ディバイスの製造方法
JP4699692B2 (ja) 2003-12-26 2011-06-15 ローム株式会社 半導体装置の製造方法および半導体装置
US7416948B2 (en) 2003-12-30 2008-08-26 Fairchild Semiconductor Corporation Trench FET with improved body to gate alignment
WO2005065385A2 (en) 2003-12-30 2005-07-21 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7355237B2 (en) * 2004-02-13 2008-04-08 Sandisk Corporation Shield plate for limiting cross coupling between floating gates
US6995428B2 (en) 2004-02-24 2006-02-07 System General Corp. High voltage LDMOS transistor having an isolated structure
GB0405325D0 (en) 2004-03-10 2004-04-21 Koninkl Philips Electronics Nv Trench-gate transistors and their manufacture
US7183153B2 (en) * 2004-03-12 2007-02-27 Sandisk Corporation Method of manufacturing self aligned non-volatile memory cells
US20050242411A1 (en) 2004-04-29 2005-11-03 Hsuan Tso [superjunction schottky device and fabrication thereof]
DE102005023891B4 (de) 2004-05-24 2009-08-27 DENSO CORPORATION, Kariya-shi Verfahren zum Herstellen einer Siliziumkarbid-Halbleitervorrichtung und Siliziumkarbid-Halbleitervorrichtung
US7180152B2 (en) 2004-07-08 2007-02-20 International Rectifier Corporation Process for resurf diffusion for high voltage MOSFET
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
DE102004052678B3 (de) 2004-10-29 2006-06-14 Infineon Technologies Ag Leistungs- Trenchtransistor
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
JP2008536316A (ja) 2005-04-06 2008-09-04 フェアチャイルド・セミコンダクター・コーポレーション トレンチゲート電界効果トランジスタおよびその形成方法
US7382019B2 (en) 2005-04-26 2008-06-03 Fairchild Semiconductor Corporation Trench gate FETs with reduced gate to drain charge
WO2006126164A2 (en) 2005-05-24 2006-11-30 Nxp B.V. Edge termination for semiconductor device
US7553740B2 (en) 2005-05-26 2009-06-30 Fairchild Semiconductor Corporation Structure and method for forming a minimum pitch trench-gate FET with heavy body region
WO2006127914A2 (en) 2005-05-26 2006-11-30 Fairchild Semiconductor Corporation Trench-gate field effect transistors and methods of forming the same
DE112006001516T5 (de) 2005-06-10 2008-04-17 Fairchild Semiconductor Corp. Feldeffekttransistor mit Ladungsgleichgewicht
US7648877B2 (en) 2005-06-24 2010-01-19 Fairchild Semiconductor Corporation Structure and method for forming laterally extending dielectric layer in a trench-gate FET
DE102005029816A1 (de) 2005-06-27 2006-11-23 Daimlerchrysler Ag Ansteuersystem für eine permanenterregte elektrische Maschine
US8084815B2 (en) 2005-06-29 2011-12-27 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
TWI400757B (zh) 2005-06-29 2013-07-01 Fairchild Semiconductor 形成遮蔽閘極場效應電晶體之方法
KR20070015309A (ko) 2005-07-30 2007-02-02 페어차일드코리아반도체 주식회사 고전압 반도체소자
US7385248B2 (en) 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
EP1786036A1 (en) 2005-11-11 2007-05-16 STMicroelectronics S.r.l. Floating gate non-volatile memory cell and process for manufacturing
JP2007165461A (ja) 2005-12-12 2007-06-28 Elpida Memory Inc 半導体装置及びその製造方法
US7768064B2 (en) 2006-01-05 2010-08-03 Fairchild Semiconductor Corporation Structure and method for improving shielded gate field effect transistors
US7449354B2 (en) 2006-01-05 2008-11-11 Fairchild Semiconductor Corporation Trench-gated FET for power device with active gate trenches and gate runner trench utilizing one-mask etch
US20070181927A1 (en) 2006-02-03 2007-08-09 Yedinak Joseph A Charge balance insulated gate bipolar transistor
US7807536B2 (en) 2006-02-10 2010-10-05 Fairchild Semiconductor Corporation Low resistance gate for power MOSFET applications and method of manufacture
US7633119B2 (en) 2006-02-17 2009-12-15 Alpha & Omega Semiconductor, Ltd Shielded gate trench (SGT) MOSFET devices and manufacturing processes
US7595542B2 (en) 2006-03-13 2009-09-29 Fairchild Semiconductor Corporation Periphery design for charge balance power devices
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
US7521773B2 (en) 2006-03-31 2009-04-21 Fairchild Semiconductor Corporation Power device with improved edge termination
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
DE102006036347B4 (de) 2006-08-03 2012-01-12 Infineon Technologies Austria Ag Halbleiterbauelement mit einer platzsparenden Randstruktur
DE102006056809B9 (de) * 2006-12-01 2009-01-15 Infineon Technologies Austria Ag Anschlussstruktur für ein elektronisches Bauelement
US7732842B2 (en) 2006-12-06 2010-06-08 Fairchild Semiconductor Corporation Structure and method for forming a planar schottky contact
US7956411B2 (en) * 2008-01-15 2011-06-07 Fairchild Semiconductor Corporation High aspect ratio trench structures with void-free fill material
US7799646B2 (en) * 2008-04-07 2010-09-21 Alpha & Omega Semiconductor, Ltd Integration of a sense FET into a discrete power MOSFET
US7750412B2 (en) 2008-08-06 2010-07-06 Fairchild Semiconductor Corporation Rectifier with PN clamp regions under trenches
US20100090274A1 (en) * 2008-10-10 2010-04-15 Force Mos Technology Co. Ltd. Trench mosfet with shallow trench contact
US7897462B2 (en) 2008-11-14 2011-03-01 Semiconductor Components Industries, L.L.C. Method of manufacturing semiconductor component with gate and shield electrodes in trenches
US8174067B2 (en) 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8304829B2 (en) 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8148749B2 (en) 2009-02-19 2012-04-03 Fairchild Semiconductor Corporation Trench-shielded semiconductor device
TWI464590B (zh) 2010-09-23 2014-12-11 Quanta Comp Inc 一種具有供電開關之手持式電腦系統
US8872278B2 (en) 2011-10-25 2014-10-28 Fairchild Semiconductor Corporation Integrated gate runner and field implant termination for trench devices
US9269779B2 (en) * 2014-07-21 2016-02-23 Semiconductor Components Industries, Llc Insulated gate semiconductor device having a shield electrode structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367437A (zh) * 2012-04-03 2013-10-23 朱江 一种沟槽mos半导体装置及其制造方法
CN103367437B (zh) * 2012-04-03 2017-04-26 朱江 一种沟槽mos半导体装置及其制造方法
CN104241337A (zh) * 2013-06-21 2014-12-24 英飞凌科技奥地利有限公司 具有复合中心的半导体器件和制造方法
CN104241337B (zh) * 2013-06-21 2017-07-18 英飞凌科技奥地利有限公司 具有复合中心的半导体器件和制造方法
CN117059669A (zh) * 2023-10-09 2023-11-14 华羿微电子股份有限公司 一种屏蔽栅型mosfet终端结构及制作方法
CN117059669B (zh) * 2023-10-09 2024-02-06 华羿微电子股份有限公司 一种屏蔽栅型mosfet终端结构及制作方法

Also Published As

Publication number Publication date
KR101589645B1 (ko) 2016-01-28
WO2010077502A2 (en) 2010-07-08
WO2010077500A1 (en) 2010-07-08
DE112009003514T5 (de) 2012-06-14
DE112009003565B4 (de) 2021-04-29
US20150194521A1 (en) 2015-07-09
US20100140697A1 (en) 2010-06-10
US20100140696A1 (en) 2010-06-10
CN102246308B (zh) 2014-05-07
TWI491037B (zh) 2015-07-01
US8563377B2 (en) 2013-10-22
US20140042532A1 (en) 2014-02-13
TWI520326B (zh) 2016-02-01
CN102246309A (zh) 2011-11-16
DE112009003657T5 (de) 2012-08-02
KR101737593B1 (ko) 2017-05-18
US20120193748A1 (en) 2012-08-02
US8932924B2 (en) 2015-01-13
CN102246309B (zh) 2013-11-27
US9391193B2 (en) 2016-07-12
CN102246307B (zh) 2015-07-15
TW201029177A (en) 2010-08-01
TWI485847B (zh) 2015-05-21
CN102246308A (zh) 2011-11-16
TW201029175A (en) 2010-08-01
TW201030972A (en) 2010-08-16
KR101660935B1 (ko) 2016-09-28
WO2010077503A2 (en) 2010-07-08
DE112009003565T5 (de) 2012-09-13
US8174067B2 (en) 2012-05-08
DE112009003514B4 (de) 2021-06-02
KR20110091590A (ko) 2011-08-11
KR20110096151A (ko) 2011-08-29
US8963212B2 (en) 2015-02-24
US8564024B2 (en) 2013-10-22
KR20110091591A (ko) 2011-08-11
US20100140689A1 (en) 2010-06-10
WO2010077502A3 (en) 2010-08-26
WO2010077503A3 (en) 2010-08-26
US20140042536A1 (en) 2014-02-13
US8193581B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
CN102246309B (zh) 具有增大的击穿电压特性的基于沟槽的功率半导体器件
CN102246306B (zh) 具有增大的击穿电压特性的基于沟槽的功率半导体器件
KR101745776B1 (ko) 전력용 반도체 소자
US6359308B1 (en) Cellular trench-gate field-effect transistors
CN102163621A (zh) 半导体器件以及制造半导体器件的方法
JP7207463B2 (ja) 半導体装置
CN113257905A (zh) Igbt器件
US11810958B2 (en) Transistor component having gate electrodes and field electrodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150715

Termination date: 20211125

CF01 Termination of patent right due to non-payment of annual fee