Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónCN102276399 A
Tipo de publicaciónSolicitud
Número de solicitudCN 201010199956
Fecha de publicación14 Dic 2011
Fecha de presentación11 Jun 2010
Fecha de prioridad11 Jun 2010
También publicado comoCN102276399B
Número de publicación201010199956.0, CN 102276399 A, CN 102276399A, CN 201010199956, CN-A-102276399, CN102276399 A, CN102276399A, CN201010199956, CN201010199956.0
Inventores杨远飞, 王华文, 齐国祯
Solicitante中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos:  SIPO, Espacenet
由甲醇和石脑油生产低碳烯烃的方法 Naphtha production from methanol and carbon olefins traducido del chino
CN 102276399 A
Resumen
The invention relates to a method for producing lower olefins from methanol and naphtha. The method is used for mainly solving the problem of the low yield of the lower olefins in the prior art. The problem is well solved by adopting the technical scheme as follows: the method for producing the lower olefins from the methanol and the naphtha mainly comprises the following steps: (a) a raw material mainly including methanol is in contact with a catalyst in a reactor to generate a product material flow I including the lower olefins and hydrocarbon with more than four carbons and form a carbon deposition catalyst at the same time; (b) the carbon deposition catalyst enters a regenerator to be regenerated through a spent inclined tube so as to form a regeneration catalyst; (c) the regenerationcatalyst is divided into three parts, the first part returns into a methanol reactor, the second part enters the upper section of a naphtha conversion reactor and is in contact with the raw material including the hydrocarbon with more than four carbons, the third part enters the lower section of the naphtha conversion reactor and is in contact with the raw material including the naphtha, and a product material flow II including the lower olefins is generated and enters an assistant sedimentation steam stripper above the regenerator; and (d) the decaying catalyst in the assistant sedimentationsteam stripper returns to the regenerator through a spent vertical tube built-in the regenerator, wherein the ratio of the mass flow of the catalyst in the spent inclined tube to the mass flow of themethanol is 0.4-1.5; the ratio of the mass flow of the catalyst in the spent inclined tube to the mass flow of the catalyst in the spent vertical tube is less than 0.8; and the ratio of the residencetimes of the upper section and the lower section of the naphtha conversion reactor is 1.5-4.0. The method can be applied in the industrial production of the lower olefins.
Reclamaciones(10)  traducido del chino
1. 一种由甲醇和石脑油生产低碳烯烃的方法,所述方法包括以下步骤:(a)主要为甲醇的原料在甲醇转化反应器中与分子筛催化剂接触,生成包括低碳烯烃、 碳四以上烃的产品物流I,同时形成积碳催化剂;(b)所述积碳催化剂通过待生斜管进入再生器再生,形成再生催化剂;(c)所述再生催化剂分为三部分,第一部分通过再生斜管返回甲醇转化反应器,第二部分进入石脑油转化反应器上段,与包括所述碳四以上烃的原料接触,第三部分进入石脑油转化反应器下段,与包括石脑油的原料接触,生成包括低碳烯烃的产品物流II,携带催化剂进入位于再生器上方的辅助沉降汽提器;(d)辅助沉降汽提器内的失活催化剂通过内置于再生器中的待生立管返回再生器;其中,待生斜管催化剂质量流量与甲醇的质量流量之比为0. 4〜1. 5,待生斜管与待生立管内的催化剂质量流量之比小于0.8,石脑油转化反应器上段停留时间与下段停留时间之比为1. 5〜4. 0。 1. A production from methanol and naphtha to light olefins, said method comprising the steps of: (a) The main raw material for methanol in the methanol conversion reactor is contacted with a molecular sieve catalyst to produce light olefins including, carbon four or more hydrocarbon product stream I, while the formation of carbon catalyst; (b) the carbon catalyst to be born by the chute into the regenerator regeneration, the regenerated catalyst to form; (c) the regenerated catalyst is divided into three parts, the first part By reproducing inclined tube returns methanol conversion reactor, the second portion into the naphtha reforming section of the reactor, and comprising contacting said feedstock carbon four or more hydrocarbons, the third part into the lower section of the naphtha reforming reactor, and including naphtha contacting the feedstock oil to produce a product stream comprising light olefins II, carries the catalyst into the regenerator is located above the secondary settling the stripper; (d) the secondary settling deactivated catalyst inside the stripper in the regenerator to be built by the Health riser return regenerator; where the mass flow ratio of the spent catalyst mass flow chute and methanol 4~1 0. 5, to be born and to be inclined tube mass flow ratio of raw catalyst riser is less than 0.8. naphtha reforming reactor residence time in the upper section and the lower the ratio of the residence time of 1 5~4 0.
2.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述分子筛包括ZSM-5 ;所述甲醇转化反应器为快速流化床;所述石脑油转化反应器为变径提升管,提升管上段直径与下段直径之比为1.2〜2. 5 : 1。 The naphtha produced from methanol and carbon olefins according to claim 1, wherein said molecular sieve comprises ZSM-5; conversion of the methanol reactor is a fast fluidized bed; the conversion of naphtha Reducing reactor is a riser, the riser section of lower diameter than the diameter of 1.2~2 5: 1.
3.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述碳四以上烃来自产品物流I中分离出来的碳四混合烃,其中烯烃质量含量大于60%。 3. from methanol and naphtha to light olefins and a method as claimed in claim 1, wherein said four or more carbon hydrocarbons from the product stream is separated I four carbon mixed hydrocarbon, wherein the olefin content greater than 60% by mass .
4.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述产品物流I和产品物流II共用一套分离流程。 According to claim 1 from methanol and naphtha to light olefins and a method, wherein said product stream I and II share a product stream separation process.
5.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述再生催化剂积碳量质量分数小于0. 5%。 5. from methanol and naphtha to light olefins and a method as claimed in claim 1, characterized in that the mass of the regenerated catalyst coke content is less than the amount of 0.5%.
6.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述石脑油馏程在20°C〜220°C之间。 The naphtha produced from methanol and carbon olefins according to claim 1, characterized in that between 20 ° C~220 ° C distillation range of the naphtha.
7.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述再生催化剂分为三部分,20〜40%通过再生斜管返回甲醇转化反应器,20〜40%进入石脑油转化反应器上段,20〜60%进入石脑油转化反应器下段。 According to claim 1 wherein the production of light olefins from methanol and method for naphtha, characterized in that the regenerated catalyst is divided into three parts, 20~40% by the regeneration inclined pipe to return the methanol conversion reactor, 20~40 % naphtha reforming zone into the reactor, 20~60% naphtha reforming zone into the next reactor.
8.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述甲醇转化反应器中反应条件为:反应温度为400〜500°C,气相线速为0. 8〜2. 0米/秒。 8. from methanol and naphtha to light olefins and the method according to claim 1, characterized in that the methanol conversion reactor of the reaction conditions were: reaction temperature of 400~500 ° C, vapor line speed is zero. 8~2. 0 m / sec.
9.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述石脑油转化反应器中反应条件为:反应温度为570〜650°C,下段气相线速为5〜10米/秒,上段气相线速为1. 5〜3. 0米/秒,待生立管中催化剂的质量流量与石脑油的质量流量之比为5. 0 〜8. O0 According to claim 1 from methanol and naphtha production of light olefins, characterized in that the naphtha reforming reactor reaction conditions were: reaction temperature of 570~650 ° C, under gas phase linear velocity of 5 to 10 m / s, the linear velocity of gas phase 1. 5~3. 0 m / s, the mass flow ratio of the mass flow and the catalyst in the spent naphtha riser to 5. 0 ~8. O0
10.根据权利要求2所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述ZSM-5 分子筛的硅铝比在30〜100。 10. from methanol and naphtha to light olefins and a method according to the claim 2, wherein the aluminosilicate zeolite ZSM-5 ratio of 30~100.
Descripción  traducido del chino

由甲醇和石脑油生产低碳烯烃的方法 Naphtha production from methanol and carbon olefins

技术领域 FIELD

[0001] 本发明涉及一种由甲醇和石脑油生产低碳烯烃的方法。 [0001] The present invention relates to a process for producing light olefins from methanol and naphtha method. 技术背景 Technical Background

[0002] 低碳烯烃,即乙烯和丙烯,是两种重要的基础化工原料,其需求量在不断增加。 [0002] olefins, namely ethylene and propylene, are two important basic chemical raw materials, the demand is increasing. 一般地,乙烯、丙烯是通过石油路线来生产,但由于石油资源有限的供应量及较高的价格,由石油资源生产乙烯、丙烯的成本不断增加。 Generally, ethylene, propylene is produced by the oil line, but because of the limited supply of petroleum resources and the higher the price, the cost of production of ethylene from petroleum resources, increasing propylene. 近年来,人们开始大力发展替代原料转化制乙烯、丙烯的技术。 In recent years, people began to develop alternative feedstock into ethylene, propylene technology. 其中,一类重要的用于轻质烯烃生产的替代原料是含氧化合物,例如醇类(甲醇、乙醇)、醚类(二甲醚、甲乙醚)、酯类(碳酸二甲酯、甲酸甲酯)等,这些含氧化合物可以通过煤、天然气、生物质等能源转化而来。 Among them, an important class of alternative raw materials for the production of light olefins are oxygenates, such as alcohols (methanol, ethanol), ethers (dimethyl ether, methyl ethyl ether), esters (dimethyl carbonate, methyl formate esters), these may be converted from an oxygen-containing compounds by coal, natural gas, biomass and other energy. 某些含氧化合物已经可以达到较大规模的生产,如甲醇,可以由煤或天然气制得,工艺十分成熟,可以实现上百万吨级的生产规模。 Certain oxygenates may have reached large-scale production, such as methanol, can be obtained from coal or natural gas, technology is very mature, you can achieve the megaton scale of production. 由于含氧化合物来源的广泛性,再加上转化生成轻质烯烃工艺的经济性,所以由含氧化合物转化制烯烃(OTO)的工艺,特别是由甲醇转化制烯烃(MTO)的工艺受到越来越多的重视。 Due to extensive source of oxygen-containing compounds, plus generate light olefins conversion process of the economy, so-to-olefins (OTO) by oxygenate conversion process, in particular by the conversion of methanol to olefins (MTO) process more come more and more attention.

[0003] 石脑油是一种轻质油品,由原油蒸馏或石油二次加工切取相应馏分而得。 [0003] Naphtha is a light oil, crude distillation or by secondary processing of petroleum fractions derived cut accordingly. 其沸点范围依需要而定,通常为较宽的馏程,如20〜220°C。 Its boiling point range as needed, and generally for a wide distillation range, such as 20~220 ° C. 石脑油是管式炉裂解制取乙烯,丙烯及催化重整制取苯、甲苯、二甲苯的重要原料。 Naphtha is a tube furnace cracking takes ethylene, propylene and catalytic reforming take an important raw material, benzene, toluene, xylene. 作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70% (体积)。 As cracking feedstock, naphtha composition content requires the alkanes and cycloalkanes not less than 70% (by volume). 石脑油催化裂解制低碳烯烃则是在催化剂存在的条件下, 对石油烃类进行裂解来获得低碳烯烃的生产过程。 Catalytic cracking of naphtha to light olefins is in the presence of a catalyst for cracking of petroleum hydrocarbons to obtain light olefins production process. 同传统的管式炉蒸汽热裂解相比,该过程反应温度比蒸汽裂解反应约低50〜200°C,能耗显著降低;裂解炉管内壁结焦速率也会降低,从而可延长操作周期,增加炉管寿命;同时二氧化碳排放也会降低,减轻了污染,并可灵活调整产品结构。 Compared with the conventional cracking tube furnace steam heat, the process of steam cracking reactions than the reaction temperature of about low 50~200 ° C, significantly lower energy consumption; cracking tube inner wall of the coking rate will be reduced, and thus extend the operating cycle, increasing furnace tube life; at the same time will reduce carbon dioxide emissions, reduce pollution, and flexible adjustment of product structure.

[0004] US6166282中公布了一种氧化物转化为低碳烯烃的技术和反应器,采用快速流化床反应器,气相在气速较低的密相反应区反应完成后,上升到内径急速变小的快分区后,采用特殊的气固分离设备初步分离出大部分的夹带催化剂。 [0004] US6166282 discloses a in the conversion of oxygenates to light olefins and reactor technology, the use of a fast fluidized bed reactor, the gas velocity in the gas phase of the dense phase reaction zone lower the reaction was completed, up to the inner diameter of the rapid change After small fast partition, using a special gas-solid separation equipment initially isolated from most of the entrained catalyst. 由于反应后产物气与催化剂快速分离,有效的防止了二次反应的发生。 Since the reaction product gas after the rapid separation of the catalyst, is effective to prevent the occurrence of secondary reactions. 经模拟计算,与传统的鼓泡流化床反应器相比,该快速流化床反应器内径及催化剂所需藏量均大大减少。 After the simulation, compared with conventional bubbling fluidized bed reactor, the fast fluidized bed reactor volume required for possession diameter and catalyst greatly reduced. 但该方法存在低碳烯烃收率较低的问题。 However, the presence of lower olefins yield problem with this method.

[0005] CN1723^52中公布了带有中央催化剂回路的多级提升管反应装置用于氧化物转化为低碳烯烃工艺,该套装置包括多个提升管反应器、气固分离区、多个偏移元件等,每个提升管反应器各自具有注入催化剂的端口,汇集到设置的分离区,将催化剂与产品气分开。 [0005] CN1723 ^ 52 published multistage reactor riser with a central oxide catalyst for the conversion of light olefins loop process, the sleeve means comprises a plurality of riser reactors, gas-solid separation zone, a plurality of offset components, etc., each of the riser reactors each having a catalyst injection port, to a set of pooled separation zone, the catalyst was separated from the product gas. 但该方法存在低碳烯烃收率较低的问题。 However, the presence of lower olefins yield problem with this method.

[0006] EP0448000和EP0882692中公布了一种甲醇生产丙烯的方法,甲醇首先转化为DME 和水,然后将混合物输送到第一台反应器,并向该反应器中加入蒸汽。 [0006] EP0448000 and EP0882692 discloses a methanol in propylene production method, the methanol is first converted to DME and water, and then the mixture was fed to the first reactor, and adding steam to the reactor. 在第一反应器中甲醇和(或)二甲醚或其混合物与催化剂接触进行反应,催化剂采用含ZnO和CdO的专用ZSM-5 催化剂,反应温度观0〜570°C,压力0. 01〜0. IMPa,制备得到以丙烯为主要烃类的产品。 Methanol and (or) dimethyl ether or mixtures thereof contacted with the catalyst in the first reactor in the reactor, the use of special catalysts containing ZSM-5 catalyst ZnO and CdO, the reaction temperature View 0~570 ° C, pressure 0.1 01~ 0. IMPa, prepared propylene as the main hydrocarbon products. 较重产物如C5+烃继续在第二台反应器中进行反应转化为以丙烯为主的烃类,经冷却后送回分离器。 Heavier products such as C5 + hydrocarbons to continue the reaction conversion of propylene mainly hydrocarbons in the second reactor, after cooling back to the separator. 产品经压缩、进一步精制后可得到纯度为97%的化学级丙烯。 The compressed product, after further purification to a purity of 97% chemical grade propylene. 但是该工艺中采用多个固定床反应器,由于催化剂的活性限制,因此需要频繁切换操作,而且取热问题也很复杂。 However, a plurality of fixed bed reactors used in this process, due to limitation of the catalyst activity, requiring frequent switching operation, and the problem of heat removal is also very complicated.

[0007] US 20070083071公布了一种烃催化裂解生产乙烯、丙烯的工艺方法,烃原料在催化裂解炉中转化为包括低碳烯烃的产品,然后将产品物流通过一系列工艺分离成C2〜C3 烷烃、C2〜C3烯烃、C4+烃三种物流,将C2〜C3烷烃返回管式裂解炉进行热裂解,C4+烃返回催化裂解炉进行催化裂解,最终得到较高收率的乙烯、丙烯产品。 [0007] US 20070083071 discloses a catalytic cracking of hydrocarbons to produce ethylene, propylene process, the hydrocarbon feedstock to a product including light olefins in the catalytic cracking furnace, and then separating the product stream through a series of processes into a C2~C3 alkane , C2~C3 olefins, C4 + hydrocarbons three streams, the return pipe C2~C3 alkane cracking furnace pyrolysis, C4 + hydrocarbons returned catalytic cracker catalytic cracking and eventually get a higher yield of ethylene and propylene products. 该方法采用提升管反应器,反应物停留时间较短,低碳烯烃产品单程收率较低。 The method uses a riser reactor, the reactants residence time is shorter, one-pass yield lower olefins product.

[0008] 虽然现有技术中已经分别存在甲醇制烯烃、石脑油制烯烃的技术,但已有技术中两种工艺尚无耦合操作的先例,而且对于甲醇制烯烃反应过程中产生的碳四以上高碳烃副产物如何有效利用也是难题之一。 [0008] Although the methanol to olefins, naphtha olefins technology already exists in the prior art, respectively, but there is no coupling of two prior art process operation precedent, and carbon for methanol to olefins produced during the reaction of four higher hydrocarbons over how to effectively utilize byproducts is one problem. 同时,现有技术均存在低碳烯烃收率较低的问题。 Meanwhile, the presence of the prior art have the problem of low yield of light olefins. 本发明有针对性的解决了上述问题。 The present invention is targeted to solve the above problems.

发明内容 SUMMARY

[0009] 本发明所要解决的技术问题是现有技术中存在的低碳烯烃收率不高的问题,提供一种新的由甲醇和石脑油生产低碳烯烃的方法。 [0009] The technical problem to be solved by the present invention is the yield of light olefins present in the prior art is not high, to provide a new method for the production of methanol and naphtha to light olefins. 该方法用于低碳烯烃的生产中,具有低碳烯烃收率较高的优点。 The method for the production of light olefins, having the advantage of higher yields of light olefins.

[0010] 为解决上述问题,本发明采用的技术方案如下:一种由甲醇和石脑油生产低碳烯烃的方法,所述方法包括以下步骤:(a)主要为甲醇的原料在反应器中与催化剂接触,生成包括低碳烯烃、碳四以上烃的产品物流I,同时形成积碳催化剂;(b)积碳催化剂通过待生斜管进入再生器再生,形成再生催化剂;(C)再生催化剂分为三部分,第一部分返回甲醇反应器,第二部分进入石脑油转化反应器上段,与包括碳四以上烃的原料接触,第三部分进入石脑油转化反应器下段,与包括石脑油的原料接触,生成包括低碳烯烃的产品物流II,进入再生器上方的辅助沉降汽提器;(d)辅助沉降汽提器内的失活催化剂通过内置于再生器中的待生立管返回再生器;其中,待生斜管催化剂质量流量与甲醇的质量流量之比为0. 4〜 1. 5,待生斜管与待生立管内的催化剂质量流量之比小于0. 8,石脑油转化反应器上段与下段停留时间之比为1.5〜4.0。 [0010] To solve the above problems, the present invention adopts the technical scheme as follows: one from methanol and naphtha production of light olefins, said method comprising the steps of: (a) The main raw material for methanol in the reactor contact with the catalyst to produce light olefins including, four or more carbon hydrocarbons product stream I, while the formation of carbon catalyst; (b) by the spent catalyst coke chute into the regenerator the regeneration, the regenerated catalyst is formed; (C) regenerating the catalyst is divided into three parts, the first return methanol reactor, the second part of the feed to the contact section on naphtha reforming reactor, and includes four or more carbon hydrocarbons, and the third part into the next segment of naphtha reforming reactor, and including naphtha contacting the feedstock oil to produce a product stream comprising light olefins II, the top of the regenerator into the secondary settling the stripper; (d) the secondary settling deactivated catalyst stripper via built within the spent riser in regenerator Returns regenerator; where the mass flow ratio of the spent catalyst mass flow chute and methanol 0. 4 ~ 1.5, to be born and to be born inclined tube mass flow ratio of the catalyst within the riser of less than 0.8, stone naphtha reforming reactor and the residence time of the upper section than the lower section of 1.5~4.0.

[0011] 上述技术方案中,所述分子筛包括ZSM-5 ;所述甲醇转化反应器为快速流化床;所述石脑油转化反应器为变径提升管,提升管上段直径与下段直径之比为1. 2〜2. 5 : 1 ; 所述碳四以上烃来自产品物流I中分离出来的碳四混合烃,其中烯烃质量含量大于60% ; 所述产品物流I和产品物流II共用一套分离流程;所述再生催化剂积碳量质量分数小于0. 5% ;所述石脑油馏程在20°C〜220°C之间;所述再生催化剂分为三部分,20〜40%通过再生斜管返回甲醇转化反应器,20〜40%进入石脑油转化反应器上段,20〜60%进入石脑油转化反应器下段;所述甲醇转化反应器中反应条件为:反应温度为400〜500°C,气相线速为0. 8〜2. 0米/秒;所述石脑油转化反应器中反应条件为:反应温度为570〜650°C, 下段气相线速为5〜10米/秒,上段气相线速为1. 5〜3. 0米/秒,待生立管中催化剂的质量流量与石脑油的质量流量之比为5. 0〜8. 0 ;所述ZSM-5分子筛的硅铝比在30〜100。 [0011] The technical solution, the molecular sieves include ZSM-5; conversion of the methanol reactor is a fast fluidized bed; the naphtha reforming reactor is adjustable riser, riser diameter of the upper section and the lower section diameter 1. 2~2 ratio of 5: 1; four or more carbon hydrocarbons from the product stream is separated I four carbon mixed hydrocarbon, wherein the olefin content greater than 60% by mass; the product stream I and II share a product stream sets of separation processes; the regenerated catalyst mass fraction is less than the amount of carbon 0.5%; the naphtha distillation range between 20 ° C~220 ° C; the regenerated catalyst is divided into three parts, 20~40% Inclined tube back through regeneration methanol conversion reactor, 20~40% into the segment naphtha conversion reactor, 20~60% into the lower segment naphtha reforming reactor; the reactor the methanol conversion reaction conditions were: reaction temperature of 400~500 ° C, vapor line speed to 0. 8~2 0 m / s; the naphtha reforming reactor, the reaction conditions as follows: reaction temperature is 570~650 ° C, lower vapor line speed for 5 ~ 10 m / s, the linear velocity of gas phase 1. 5~3 0 m / s, the mass flow ratio of the spent catalyst riser and the mass flow 5. 0~8 naphtha is 0;.. The aluminosilicate zeolite ZSM-5 than in 30~100.

[0012] 采用本发明的方法,将甲醇制烯烃和石脑油催化裂解制烯烃两种工艺有机的耦合在一起,采用一种催化剂,达到共产低碳烯烃的目的。 [0012] The method of the invention, the methanol to olefins and olefin cracking naphtha catalytic organic two processes are coupled together using a catalyst to achieve the objective of communism light olefins. 本发明通过采用下细上粗的变径提升管,有效保证了石脑油裂解和碳四以上烃裂解反应所需的气固接触时间,提高了烯烃的收率。 The present invention uses a thick under thin adjustable riser, effectively ensuring the gas-solid contact time than naphtha cracking and carbon four hydrocarbon cracking reactions needed to improve the yield of olefins. 由于石脑油催化裂解和碳四以上高碳烃催化裂解反应类型有相似之处,本发明所述方法中将甲醇转化生成的副产碳四以上高碳烃返回石脑油转化反应器的上段,在有效保证催化剂活性和气固接触时间的基础上,尽量多的增产低碳烯烃。 Because the catalytic cracking naphtha and four or more carbon-carbon hydrocarbon catalytic cracking reaction types are similar, byproduct carbon generated in the methanol conversion method of the present invention, four or more higher hydrocarbons return naphtha reforming reactor upper section , to ensure the effective catalyst activity and gas-solid contact time, based on the increase as much light olefins. 因此,采用本发明的方法,可以实现提高低碳烯烃收率的目的。 Accordingly, the present invention method can achieve the purpose of improving the yield of light olefins.

[0013] 采用本发明的技术方案:所述分子筛包括ZSM-5 ;所述甲醇转化反应器为快速流化床;所述石脑油转化反应器为变径提升管,提升管上段直径与下段直径之比为1. 2〜 2.5 : 1;所述碳四以上烃来自产品物流I中分离出来的碳四混合烃,其中烯烃质量含量大于60% ;所述产品物流I和产品物流II共用一套分离流程;所述再生催化剂积碳量质量分数小于0.5% ;所述石脑油馏程在20°C〜220°C之间;所述再生催化剂分为三部分, 20〜40 %通过再生斜管返回甲醇转化反应器,20〜40%进入石脑油转化反应器上段,20〜 60%进入石脑油转化反应器下段;所述甲醇转化反应器中反应条件为:反应温度为400〜 500°C,气相线速为0. 8〜2. 0米/秒;所述石脑油转化反应器中反应条件为:反应温度为570〜650°C,下段气相线速为5〜10米/秒,上段气相线速为1. 5〜3. 0米/秒,待生立管中催化剂的质量流量与石脑油的质量流量之比为5. 0〜8. 0 ;所述ZSM-5分子筛的硅铝比在30〜100,产品物流I的低碳烯烃碳基收率可达到60. 14%重量,产品物流II的低碳烯烃碳基收率可达到40. 42%重量,取得了较好的技术效果。 [0013] The technical solution of the present invention: the molecular sieves include ZSM-5; conversion of the methanol reactor is a fast fluidized bed; the naphtha reforming reactor is adjustable riser, riser diameter upper section and the lower section diameter ratio of 1. 2 ~ 2.5: 1; four or more carbon hydrocarbons from the product stream is separated I four carbon mixed hydrocarbon, wherein the olefin content greater than 60% by mass; the product stream I and II share a product stream sets of separation processes; the amount of carbon regenerated catalyst mass fraction less than 0.5%; the naphtha distillation range between 20 ° C~220 ° C; the regenerated catalyst is divided into three parts, 20~40% by renewable Inclined tube returns methanol conversion reactor, 20~40% naphtha reforming zone into the reactor, 20~ 60% naphtha reforming section down into the reactor; the reactor the methanol conversion reaction conditions were: reaction temperature of 400~ 500 ° C, vapor linear velocity 0. 8~2 0 m / sec; the naphtha reforming reactor reaction conditions were: reaction temperature of 570~650 ° C, under gas phase linear velocity of 5 to 10 m / sec, the linear velocity of gas phase 1. 5~3 0 m / s, the mass flow ratio of the spent catalyst riser and the mass flow 5. 0~8 naphtha is 0;.. The ZSM- 5 aluminosilicate zeolite than in 30~100, product logistics I, carbon-based olefins yield could reach 60.14% by weight, the product stream II is a carbon-based olefins yield could reach 40.42% by weight, get good technical effects.

附图说明 Brief Description

[0014] 图1为本发明所述方法的流程示意图。 [0014] Figure 1 a schematic flow diagram of the method of the present invention.

[0015] 图1中,1为甲醇转化反应器原料进料;2为甲醇转化反应器反应区;3为气固快速分离设备;4为甲醇转化反应器汽提区;5为甲醇转化反应器待生催化剂循环斜管;6为待生斜管;7为甲醇转化反应器换热器;8为甲醇转化反应器气固旋风分离器;9为甲醇转化反应器沉降区;10为产品集气室;11为产品物流I出口管线;12为再生斜管;13为待生塞阀;14为再生介质入口管线;15为待生立管;16为再生斜管;17为石脑油原料进料管线;18 为再生斜管;19为预提升段;20为再生器;21为汽提介质入口管线;22为汽提区;23为再生器旋风分离器;对为再生烟气出口管线;25为辅助沉降汽提器J6为气固旋风分离器; 27为产品物流II出口管线;观为包括碳四以上烃的原料进料管线;四为石脑油转化反应器上段;30为石脑油转化反应器下段。 [0015] Figure 1, a raw material for methanol conversion reactor feed; 2 reactor for methanol conversion reaction zone; 3 Solid Separator device; 4 methanol conversion reactor stripping zone; methanol conversion reactor 5 spent catalyst circulation chute; 6 for the spent chute; 7 methanol conversion reactor heat exchanger; 8 methanol conversion reactor gas-solid cyclone; 9 methanol conversion reactor settling zone; 10 for product gas collection 11 Products Logistics I export pipeline;; room for regeneration chute 12; 13 for plug valves to be born; for regeneration medium inlet line 14; 15 is to be born riser; 16 for regeneration chute; 17 for naphtha feedstock into feed line; 18 for regeneration chute; 19 for the pre-upgrade section; regenerator 20; 21 for the stripping medium inlet line; 22 for the stripping zone; 23 regenerator cyclones; for regenerative flue gas export pipeline; 25 for the secondary sedimentation stripper J6 for gas-solid cyclone; 27 for the product stream II export pipeline; concept to include four or more carbon hydrocarbon feedstock feed line; four for a segment on naphtha reforming reactor; 30 for naphtha under oil conversion reactor section.

[0016] 甲醇经进料管线1进入甲醇转化反应器反应区2中,与分子筛催化剂接触,反应生成含有低碳烯烃的产品,携带待生催化剂经过气固快速分离设备3进入甲醇转化反应器沉降区9,其中,气固快速分离设备3分离出来的大部分催化剂进入甲醇转化反应器汽提区4, 而气相产品以及部分未被气固快速分离设备分离的催化剂经入旋风分离器8分离进行再次分离,催化剂经过旋风分离器8的料腿返回到甲醇转化反应器汽提区4,气相产品进入集气室10后经出口管线11进入后续的分离工段。 [0016] methanol via a feed line into the methanol conversion reactor zone 2, the contact with the zeolite catalyst, the reaction product containing light olefins, carrying spent catalyst through the gas-solid separation equipment rapid conversion of methanol into the reactor 3 settlement zone 9, wherein the catalyst is most rapid gas-solid separation device 3 is separated into the methanol conversion reactor of the stripping zone 4, and the gas phase portion of the product and is not Solid Separator apparatus for separating the catalyst was carried out into the cyclone separator 8 again separated, the catalyst through a cyclone dipleg 8 is returned to the methanol conversion reactor stripper section 4, a gas phase products enters the plenum 10 into the subsequent separation section via outlet line 11. 被气固快速分离设备3和旋风分离器8分离出的待生催化剂经过汽提后分为两部分,一部分经过换热器7换热后通过催化剂循环斜管5返回到甲醇转化反应器反应区2的底部,另外一部分经过待生斜管6进入再生器20中烧炭再生,焦炭燃烧生成的烟气经过旋风分离器23后通过烟气出口管线M进入后续的能量回收系统,再生催化剂一部分通过再生斜管12返回甲醇转化反应器反应区2中,一部分通过再生斜管16进入石脑油转化反应器下段30,与石脑油原料接触,生成的产品携带催化剂进入石脑油转化反应器上段四,与包括碳四以上烃的原料和从再生斜管18中来的再生催化剂接触,生产的混合产品进入辅助沉降汽提器25,经过气固旋风分离器分离后,催化剂进入汽提区22,经汽提后经待生立管15返回再生器20,生成的产品经出口管线27进入分离工段。 Spent catalyst is Solid Separator apparatus 3 and cyclone 8 separated after stripping is divided into two parts, after a heat exchanger 7 through catalyst recycle chute 5 is returned to the reaction zone the methanol conversion reactor the bottom 2, and the other part of the spent chute 6 after entering the regenerator 20 charcoal regeneration, coke combustion flue gases through the cyclone 23 into the subsequent flue gas energy recovery system through outlet line M, by a portion of the regenerated catalyst regeneration inclined pipe 12 returns the methanol conversion reactor the reaction zone 2, a portion of the inclined tube 16 into the regeneration by naphtha conversion reactor lower section 30, in contact with the naphtha feed, the resulting product to carry the catalyst into the reactor naphtha reforming section four, and the regenerated catalyst from the regeneration inclined tube 18 come into contact with four or more carbon hydrocarbons include raw materials, production of hybrid products into the secondary sedimentation stripper 25, after the cyclone gas-solid separation, the catalyst into the stripping zone 22 , after stripping to be born after 15 return riser regenerator 20, the resulting product through the outlet line 27 into the separation section.

[0017] 下面通过实施例对本发明作进一步的阐述,但不仅限于本实施例。 [0017] The following examples of the present invention is further illustrated by, but is not limited to this embodiment.

具体实施方式 DETAILED DESCRIPTION

[0018]【实施例1】 [0018] [Example 1]

[0019] 在小型快速流化床反应-再生装置中,反应器型式同图1所示,催化剂采用ZSM-5, 硅铝比为50(体积)。 [0019] In a small fast fluidized bed reactor - reproducing apparatus, the same type of reactor as shown in Figure 1, a catalyst using ZSM-5, silica-alumina ratio of 50 (by volume). 甲醇转化反应区平均温度为440°C,气相线速为1. 12米/秒,纯度为99. 5%的甲醇进料,甲醇重时空速为5. 7小时―1,待生斜管催化剂质量流量与甲醇进料质量流量之比为0.7,再生器平均温度为675°C,再生催化剂积碳量为0.¾% (重量)。 The average temperature of the methanol conversion reaction zone is 440 ° C, vapor linear velocity of 1.12 m / s, with a purity of 99.5% of the methanol feed, methanol weight hourly space velocity of 5.7 hours -1, the spent catalyst chute ratio of mass flow and mass flow rate of methanol feed is 0.7, the average temperature of the regenerator is 675 ° C, the amount of regenerated catalyst coke (wt) 0.¾%. 待生斜管与待生立管中催化剂质量流量之比为0. 5。 Inclined to be born and to be born riser pipe than the mass flow rate of the catalyst was 0.5. 石脑油馏程在25〜204°C,烷烃和环烷烃的含量为93. 5% (重量),烯烃含量小于0.2% (重量),芳烃含量为6. 2% (重量),并添加15% (重量)的水蒸气,与石脑油混合进料。 Naphtha distillation range at 25~204 ° C, the content of alkanes and cycloalkanes to 93.5% (wt), the olefin content is less than 0.2% (by weight), aromatic content of 6.2% (by weight), and adding 15 % (by weight) of water vapor, mixed with the naphtha feed. 石脑油转化反应器上段直径与下段直径的比值为2. 5 : 1,上段中与下段的气相停留时间之比为2.1,提升管下段反应温度为632°C,下段气相线速为7. 3米/秒,上段反应温度为608°C,上段气相线速为2. 1米/秒。 Naphtha reforming reactor upper section diameter ratio of the lower diameter is 2.5: 1, in the previous paragraph with the gas phase section of the residence time ratio of 2.1, a riser lower reaction temperature was 632 ° C, under gas phase linear velocity is 7. 3 m / s, the upper reaction temperature is 608 ° C, the linear velocity of the gas phase section of 2.1 m / sec. 石脑油转化反应器上段进料包括质量分数60%的混合碳四以上烃(其中烯烃含量为88%,碳四烃总量为91% )、30%石脑油、10%水蒸气,再生催化剂分为三部分,20%通过再生斜管返回甲醇转化反应器,20%进入石脑油转化反应器上段,60%进入石脑油转化反应器下段。 The naphtha reforming reactor stage feed comprising 60% of the mass fraction of mixed C4 + hydrocarbon (wherein the olefin content is 88%, the total amount of carbon four hydrocarbon 91%), 30% naphtha, 10% water vapor, the regeneration The catalyst is divided into three parts, 20% by the regeneration inclined pipe returns methanol conversion reactor, 20% of the segment into the reactor naphtha conversion, 60% conversion of naphtha into the lower segment of the reactor. 保持催化剂流动控制的稳定性,反应器出口产物采用在线气相色谱分析,产品物流I的低碳烯烃碳基收率可达到60. 14%重量,产品物流II的低碳烯烃收率可达到36. 25%重量。 Maintain the stability of the catalyst flow control, the product outlet of the reactor using on-line gas chromatographic analysis of the product stream I carbon-based lower olefins yield can reach 60.14% by weight, the light olefins product stream II yields up to 36. 25% by weight.

[0020]【实施例2】 [0020] [Example 2]

[0021] 按照实施例1所述的条件,催化剂采用ZSM-5,硅铝比为30(体积)。 [0021] according to the conditions described in Example 1, a catalyst using ZSM-5, silica-alumina ratio of 30 (by volume). 甲醇转化反应区平均温度为400°C,气相线速为0. 8米/秒,待生斜管催化剂质量流量与甲醇进料质量流量之比为0.4,再生器平均温度为668°C,再生催化剂积碳量为0.21% (重量)。 The average temperature of the methanol conversion reaction zone is 400 ° C, vapor linear velocity of 0.8 m / sec, than the spent catalyst chute feed mass flow rate and mass flow rate of methanol was 0.4, the average temperature of the regenerator is 668 ° C, regeneration The catalyst amount of 0.21% carbon (by weight). 待生斜管与待生立管中催化剂质量流量之比为0. 34。 Inclined to be born and to be born riser pipe than the mass flow rate of the catalyst was 0.34. 石脑油转化反应器上段与下段的气相停留时间之比为4. 0,提升管下段反应温度为649°C,下段气相线速为10米/秒,上段反应温度为631°C,上段气相线速为1.5米/秒。 Naphtha reforming section of the reactor and than the lower section of the gas phase residence time of 4.0, the riser lower reaction temperature was 649 ° C, under gas phase linear velocity of 10 m / sec, the upper reaction temperature of 631 ° C, the gas phase line speed of 1.5 m / sec. 石脑油转化反应器上段进料包括质量分数75%的混合碳四以上烃(其中烯烃含量为88%,碳四烃总量为91%)、10%石脑油、15%水蒸气,再生催化剂分为三部分,40%通过再生斜管返回甲醇转化反应器,40%进入石脑油转化反应器上段,20%进入石脑油转化反应器下段。 Naphtha reforming reactor comprises a mass fraction of the feed section of 75% or more of mixed C4 hydrocarbons (wherein the olefin content is 88%, the total amount of carbon four hydrocarbon 91%), 10% naphtha, 15% water vapor, the regeneration The catalyst is divided into three parts, 40% by the regeneration inclined pipe returns methanol conversion reactor, 40% of the segment into the reactor naphtha conversion, 20% conversion of naphtha into the lower segment of the reactor. 保持催化剂流动控制的稳定性,反应器出口产物采用在线气相色谱分析,产品物流I的低碳烯烃碳基收率可达到56. 08%重量,产品物流II 的低碳烯烃收率可达到39. 17%重量。 Maintain the stability of the catalyst flow control, the product outlet of the reactor using on-line gas chromatographic analysis of the product stream I carbon-based lower olefins yield can reach 56.08% by weight, the light olefins product stream II yields up to 39. 17% by weight.

[0022]【实施例3】 [0022] [Example 3]

[0023] 按照实施例1所述的条件,催化剂采用ZSM-5,硅铝比为100(体积)。 [0023] according to the conditions described in Example 1, a catalyst using ZSM-5, silica-alumina ratio of 100 (volume). 甲醇转化反应区平均温度为500°C,气相线速为2. 0米/秒,待生斜管催化剂质量流量与甲醇进料质量流量之比为1. 5,再生器平均温度为640°C,再生催化剂积碳量为0. 47% (重量)。 The average temperature of the methanol conversion reaction zone is 500 ° C, vapor linear velocity of 2.0 m / sec, the spent catalyst mass flow rate than the inclined tube and the mass flow rate of methanol feed is 1.5, the average temperature of the regenerator 640 ° C , the regenerated catalyst coke amount 0.47% (by weight). 待生斜管与待生立管中催化剂质量流量之比为0. 8。 Inclined to be born and to be born riser pipe than the mass flow rate of the catalyst was 0.8. 石脑油转化反应器上段直径与下段直径的比值为1.2 : 1,石脑油转化反应器上段与下段的气相停留时间之比为1.5,提升管下段反应温度为583°C,下段气相线速为5米/秒,上段反应温度为71°C,上段气相线速为3. 0米/秒。 Naphtha reforming reactor upper section diameter ratio of the lower diameter is 1.2: 1, naphtha reforming section of the reactor and the gas phase section of the residence time ratio of 1.5, a riser lower reaction temperature was 583 ° C, under gas phase linear velocity 5 m / s, the upper reaction temperature is 71 ° C, the linear velocity of the gas phase section of 3.0 m / sec. 石脑油转化反应器上段进料包括质量分数82 %的混合碳四以上烃(其中烯烃含量为88 %, 碳四烃总量为91% )、18%水蒸气,保持催化剂流动控制的稳定性,反应器出口产物采用在线气相色谱分析,产品物流I的低碳烯烃碳基收率可达到53. 69%重量,产品物流II的低碳烯烃收率可达到32. 89%重量。 Naphtha reforming reactor comprises a mass fraction of the feed section of 82% or more of mixed C4 hydrocarbons (wherein the olefin content is 88%, the total amount of carbon four hydrocarbon 91%), 18% steam, to maintain the stability of the catalyst flow control , the product of the reactor outlet using online gas chromatographic analysis of the product stream I carbon-based lower olefins yield can reach 53.69% by weight, the yield of light olefins product stream II can reach 32.89% by weight.

[0024]【实施例4】 [0024] [Example 4]

[0025] 按照实施例1所述的条件,石脑油转化反应器上段进料包括质量分数70%的混合碳四以上烃(其中烯烃含量为88%,碳四烃总量为91% )、30%水蒸气,石脑油转化反应器下段进料包括质量分数50%的混合碳四以上烃(其中烯烃含量为88%,碳四烃总量为91% )、35%石脑油、15%水蒸气,产品物流I的低碳烯烃碳基收率可达到59. 95%重量,产品物流II的低碳烯烃收率可达到40. 42%重量。 [0025] according to the conditions described in Example 1, the naphtha reforming reactor upper section of the mass fraction of the feed comprising 70% or more of mixed C4 hydrocarbons (wherein the olefin content is 88%, the total amount of carbon four hydrocarbon 91%), 30% steam, naphtha reforming reactor lower section of the mass fraction of the feed comprising 50% or more of mixed C4 hydrocarbons (wherein the olefin content is 88%, the total amount of carbon four hydrocarbon 91%), 35% naphtha, 15 % water vapor, light olefins product stream I is carbon-based yield can reach 59.95% by weight, the yield of light olefins product stream II can reach 40.42% by weight.

[0026]【比较例】 [0026] [Comparison]

[0027] 按照实施例1所述的条件,不设石脑油转化反应器,产品物流I中的混合碳四以上烃也不返回进行再转化,再生催化剂直接返回到流化床反应区的下部,产品物流I的低碳烯烃碳基收率为57. 84%重量。 [0027] according to the conditions described in Example 1, no naphtha conversion reactor product stream I is mixed C4 hydrocarbon does not return above re-conversion, the regenerated catalyst returned directly to the lower zone of the fluidized bed reactor , lower olefins product stream I carbon-based yield 57.84% by weight.

[0028] 显然,采用本发明的方法,可以达到提高低碳烯烃收率的目的,具有较大的技术优势,可用于低碳烯烃的工业生产中。 [0028] Clearly, the use of the method of the present invention can achieve the purpose of improving the yield of light olefins, with great technology, can be used for the industrial production of light olefins.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
CN101104576A *13 Jul 200616 Ene 2008中国石油化工股份有限公司;中国石油化工股份有限公司石油化工科学研究院Combination catalysis conversion method for organic oxygen-containing compound and hydrocarbons
CN101270023A *11 Abr 200824 Sep 2008中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院Method for improving selectivity of light olefin hydrocarbon
CN101279875A *4 Abr 20078 Oct 2008中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院Method for increasing production of ethylene and propone
CN101279877A *4 Abr 20078 Oct 2008中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院Method for increasing yield of ethylene and propone in conversion process of oxocompound
CN101633593A *26 Jul 200827 Ene 2010中国石化集团洛阳石油化工工程公司Conversion method of C4 and heavier components
US6166282 *20 Ago 199926 Dic 2000Uop LlcFast-fluidized bed reactor for MTO process
WO2009065875A1 *19 Nov 200828 May 2009Shell Internationale Research Maatschappij B.V.Process for converting an oxygenate into an olefin-containing product, and reactor system
Clasificaciones
Clasificación internacionalC07C11/04, C07C4/06, C10G11/05, C07C11/06, C07C1/20
Clasificación cooperativaY02P20/52, Y02P30/42, Y02P20/584
Eventos legales
FechaCódigoEventoDescripción
14 Dic 2011C06Publication
1 Feb 2012C10Entry into substantive examination
16 Oct 2013C14Grant of patent or utility model