Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónCN102336394 B
Tipo de publicaciónConcesión
Número de solicitudCN 201110328910
Fecha de publicación28 May 2014
Fecha de presentación26 Oct 2011
Fecha de prioridad26 Oct 2011
También publicado comoCN102336394A
Número de publicación201110328910.9, CN 102336394 B, CN 102336394B, CN 201110328910, CN-B-102336394, CN102336394 B, CN102336394B, CN201110328910, CN201110328910.9
Inventores李勇, 李文平, 朱效谷
Solicitante清华大学
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos:  SIPO, Espacenet
Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering
CN 102336394 B
Resumen  traducido del chino
本发明公开一种柔性MEMS减阻蒙皮的制造方法,主要是为了提供一种改进的制造工艺而设计。 It discloses a drag reducing skin flexible MEMS manufacturing method of the present invention is intended to provide an improved manufacturing process and design. 本发明所述的减阻蒙皮的制造方法,包括:步骤1、在基底上制备一层中间夹层;步骤2、在完成步骤1的所述基底上制备一层柔性衬底;步骤3、在完成步骤2的所述基底上形成一层金属层,并采用MEMS平面微细工艺在所述金属层上形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线;步骤4、在完成步骤3的所述基底上制备一层柔性表层,并通过光刻或刻蚀形成微凹坑阵列以及连接外部供电导线的焊接部位;步骤5、将形成在所述中间夹层上方的结构从所述基底上剥离下来。 The manufacturing method of the present invention drag reducing the skin, comprising the steps of: 1. Preparation of the middle layer laminated on a substrate; step 2, on completion of step 1. Preparation of the base layer of flexible substrate; step 3, a metal layer forming step is completed on the substrate 2, and the use of an electrolytic process for forming a fine MEMS planar anode, cathode electrolysis, an anode lead terminal, the cathode lead terminal and internal wiring on the metal layer; step 4, the complete The preparation of the surface layer of flexible substrate having the step 3, and the formation of micro-pit array by photolithography or etching, and connect an external power supply wire welding site; Step 5, to be formed in the middle of the top of the sandwich structure from the peel off the substrate. 本发明采用正序方法,先制备柔性衬底,然后制备柔性表层,减少了工序,简化了制作工艺。 The method of the present invention uses the positive sequence first preparing a flexible substrate and then preparing a flexible surface, reducing the process, simplifying the production process.
Reclamaciones(4)  traducido del chino
1.一种柔性MEMS减阻蒙皮的制造方法,其特征在于,包括如下步骤: 步骤1、在基底上制备一层中间夹层; 步骤2、在完成步骤I的所述基底上制备一层柔性衬底; 步骤3、在完成步骤2的所述基底上形成一层金属层,并采用MEMS平面微细工艺在所述金属层上形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线; 步骤4、在完成步骤3的所述基底上制备一层柔性表层,并通过光刻或刻蚀形成微凹坑阵列以及连接外部供电导线的焊接部位; 步骤5、将形成在所述中间夹层上方的结构从所述基底上剥离下来; 其中,所述中间夹层的聚合物为PDMS,该聚合物固化前的预聚物中固化剂与PDMS单体的质量配比为0.05〜0.2:1 ;所述柔性表层的聚合物为SU-8光刻胶或聚酰亚胺; 上述步骤5的具体实现步骤如下: 使用薄刀片和尖头镊子将形成在所述中间夹层上方的结构从所述基底上机械剥离下来; 或是; 步骤5的具体实现步骤如下: 将完成步骤4的所述基底浸泡在有机化学溶剂中,以溶解所述中间夹层或改变所述中间夹层的性质,将形成在所述中间夹层上方的结构从所述基底上脱落。 A method of manufacturing a flexible MEMS drag reducing the skin, characterized in that it comprises the following steps: Step 1, an intermediate layer laminated on the substrate was prepared; Step 2, the step in the completion of the I layer of flexible substrate was prepared a substrate; step 3, on completion of the step of the substrate 2 is formed a metal layer, and the use of an electrolytic process for forming a fine MEMS planar anode, cathode electrolysis, an anode lead terminal, and the cathode lead terminal connected to the inside of the metal layer line; Step 4 on the substrate 3 to complete the step of preparing a flexible skin layer, and forming a micro-array of pits and the connection of external supply conductors welded portions by photolithography or etching; Step 5, formed in the intermediate structural sandwich peeled off from the top down on the substrate; wherein the interlayer of polymer PDMS, the quality of the polymer before curing prepolymer curing agent PDMS monomer ratio of 0.05~0.2: 1 ; the surface of the flexible polymer SU-8 photoresist or polyimide; concrete implementation steps above step 5 as follows: Using a thin blade and pointed tweezers will form a structure in the middle of the top of the sandwich from the the substrate mechanically peeled; or; step implementation of step 5 as follows: the completion of step 4 of the substrate was immersed in a solvent in organic chemistry, to dissolve the mid sole or change the nature of the mid sole will be formed in The structural interlayer off from the top of the substrate.
2.根据权利要求1所述的柔性MEMS减阻蒙皮的制造方法,其特征在于,所述柔性衬底的聚合物为聚酰亚胺。 2. The method of manufacturing a flexible MEMS drag reducing skin according to claim 1, wherein said polymer is a polyimide flexible substrate.
3.根据权利要求1所述的柔性MEMS减阻蒙皮的制造方法,其特征在于,所述金属层的金属材料为钼。 3. The method of manufacturing a flexible MEMS drag reducing skin according to claim 1, characterized in that the metal layer is a metallic material is molybdenum.
4.根据权利要求1所述的柔性MEMS减阻蒙皮的制造方法,其特征在于,所述的MEMS平面微细工艺包括:甩胶、光刻、溅射和超声剥离。 The method of manufacturing a flexible MEMS drag skinned according to claim 1, characterized in that said flat fine MEMS technology include: rejection glue, lithography, sputtering, and ultrasonic peeling.
Descripción  traducido del chino

柔性MEMS减阻蒙皮的制造方法 Manufacturing a flexible MEMS drag skinned

技术领域 Technical Field

[0001] 本发明涉及微制造和柔性MEMS技术领域,尤其涉及一种柔性MEMS(MicroElectro-Mechanical Systems)减阻蒙皮的制造方法。 [0001] The present invention relates to a MEMS micro-fabrication technology and flexible, and in particular relates to a method of manufacturing a flexible MEMS (MicroElectro-Mechanical Systems) drag skinning.

背景技术 Background

[0002] 水面及水下航行体行驶时所受到的行进阻力包括压差阻力、行波阻力和表面摩擦阻力等,其中表面摩阻通常占据最大比重,对于长度和长宽比/长径比较大的航行体尤其如此。 [0002] surface and underwater vehicle body during running including suffered by the running resistance pressure resistance, traveling wave resistance and surface friction, etc., which typically account for the largest proportion of surface friction, and the aspect ratio of the length / diameter ratio greater sailing body in particular. 因此,降低航行体表面摩擦阻力能够有效地提高航速、增加航程、降低能耗,具有巨大的经济价值。 Therefore, reducing the sail surface friction can improve the speed, increased range, reducing energy consumption, it has great economic value.

[0003]目前摩阻减阻技术的理论和应用研究主要集中在湍流边界层,涉及多种技术方案,例如表面形貌减阻(如肋条减阻)、仿生减阻(如柔顺壁减阻)等无源减阻方式,以及聚合物添加剂减阻、注入气泡减阻等需要注入物质或消耗能量的减阻方式。 [0003] The present theoretical and applied research focused on friction drag reduction in turbulent boundary layers, involving a variety of technical solutions, such as surface topography drag (drag reduction, such as ribs), bionic drag (drag reduction as supple wall) and other passive drag reduction mode, as well as drag reducing polymer additives injected bubble drag reduction, etc. need to inject substances or drag reducing energy consumption mode. 在航行体表面形成一层气膜是现今理论减阻率最高的减阻方式之一,近年来受到了广泛的关注。 Sailing in the surface layer of the film-forming gas is now one of the highest rates of drag drag theoretical way, in recent years has been widespread concern. 主要思想为:以气膜将航行体大部分外表面包裹,从而变液-固界面为液-气-固界面,大大减小摩擦阻力。 The main idea is: the gas film will sail most of the outer surface of the body wrap, which becomes liquid - solid interface of liquid - gas - solid interface, greatly reducing the frictional resistance. 目前主要以超空化和喷入气体两种方式形成气膜。 At present, ultra cavitation and injected gas are two ways to form a gas film. 对于喷气方式,需要额外的气体喷射系统,并且该系统必需持续工作,这对航行体的动力系统是较大负担。 For the jet way, the need for additional gas injection system, and the system must continue to work, which sailed body power system is a big burden. 对于超空化方式,存在空化噪声,而且需要采用特殊的发动机,且功耗极大。 For ultra-cavitation mode, there are cavitation noise, and require the use of special engines, and the power consumption is enormous.

[0004] 中国发明专利“柔性MEMS减阻蒙皮及其制造方法”(专利号ZL200910079713.0,授权公告日2011年I月26日)公开了一种利用驻留微气泡实现减阻的减阻蒙皮及其制造方法。 [0004] Chinese patent "flexible MEMS drag the skin and its manufacturing methods" (Patent No. ZL200910079713.0, authorized announcement 26 February 2011 I) discloses a resident microbubble drag reduction of drag achieve skin and its manufacturing method. 其制造方法不足之处在于:采用了逆序方法制备减阻蒙皮,即先制备柔性材料薄膜表层,然后制备柔性材料薄膜衬底。 The downside is that the production method: A method of preparing a reverse drag the skin, that first film was prepared surface of a flexible material, and the preparation of a flexible film substrate materials. 从而带来了以下两个问题:①、需要存在中间工序采用体硅刻蚀工艺将硬质基底硅片完全去除,增加了工艺的难度以及成本、需要存在单独的工序以加工形成连接外部供电导线的焊接部位。 Leading to the following two questions: ①, a need exists for an intermediate step of the etching process using a bulk silicon wafer removed completely rigid substrate, increasing the difficulty and cost of the process requires the presence of a separate process step to connect an external current supply conductors are formed welded portions.

发明内容 DISCLOSURE

[0005] 针对上述问题,本发明提供一种改进的柔性MEMS减阻蒙皮的制造方法,其采用正序方法并简化了制造工艺。 [0005] In response to these problems, the present invention provides an improved method of manufacturing a flexible MEMS drag the skin, which uses the positive sequence method and simplify the manufacturing process.

[0006] 为达到上述目的,本发明所述柔性MEMS减阻蒙皮的制造方法,包括如下步骤: [0006] To achieve the above object, the present invention is the method for manufacturing a flexible MEMS drag skin, comprising the steps of:

[0007] 步骤1、在基底上制备一层中间夹层; [0007] Step 1. Preparation of the intermediate layer laminated on a substrate;

[0008] 步骤2、在完成步骤I的所述基底上制备一层柔性衬底; [0008] Step 2, on the substrate through the steps I layer flexible substrate preparation;

[0009] 步骤3、在完成步骤2的所述基底上形成一层金属层,并采用MEMS平面微细工艺在所述金属层上形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线; [0009] Step 3 on the substrate 2 to complete the step of forming a metal layer, and the use of an electrolytic process for forming a fine MEMS planar anode, cathode electrolysis, an anode lead terminal, and the cathode lead terminal connected to the inside of the metal layer line;

[0010] 步骤4、在完成步骤3的所述基底上制备一层柔性表层,并通过光刻或刻蚀形成微凹坑阵列以及连接外部供电导线的焊接部位; [0010] Step 4 on the substrate 3 to complete the step of preparing a flexible skin layer, and forming a micro-array of pits and the connection of external supply conductors welded portions by photolithography or etching;

[0011] 步骤5、将形成在所述中间夹层上方的结构从所述基底上剥离下来。 [0011] Step 5, will form peeled from the base in the middle of the sandwich structure above.

[0012] 进一步地,所述中间夹层的聚合物为PDMS (聚二甲基硅氧烷),该聚合物固化前的预聚物中固化剂与PDMS单体的质量配比为0.05〜0.2: I。 [0012] Further, the interlayer of polymer PDMS (polydimethylsiloxane), the mass of the polymer before curing prepolymer curing agent PDMS monomer ratio of 0.05~0.2: I.

[0013] 进一步地,所述柔性衬底的聚合物为聚酰亚胺。 [0013] Further, the polymer is a polyimide flexible substrate.

[0014] 进一步地,所述金属图案的金属材料为钼。 [0014] Further, the metallic material is molybdenum metal pattern.

[0015] 进一步地,所述的MEMS平面微细工艺包括:甩胶、光刻、溅射和超声剥离。 [0015] Further, the plane of MEMS micro-processes include: rejection glue, lithography, sputtering, and ultrasonic peeling.

[0016] 进一步地,所述柔性表层的聚合物为SU-8光刻胶或聚酰亚胺。 [0016] Further, the surface of the flexible polymer SU-8 photoresist or polyimide.

[0017] 进一步地,其中,步骤5的具体实现步骤如下: [0017] Further, where the specific implementation of step 5 step as follows:

[0018] 使用薄刀片和尖头镊子将形成在所述中间夹层上方的结构从所述基底上机械剥离下来。 [0018] using a thin blade and pointed tweezers will be formed in the middle of the sandwich structure above peeled from the substrate mechanically.

[0019] 进一步地,其中,步骤5的具体实现步骤如下: [0019] Further, where the specific implementation of step 5 step as follows:

[0020] 将完成步骤4的所述基底浸泡在有机化学溶剂中,以溶解所述中间夹层或改变所述中间夹层的性质,将形成在所述中间夹层上方的结构从所述基底上脱落。 [0020] The completion of step 4 of the base of the organic chemistry soaked in solvent to dissolve the interlayer or change the nature of the interlayer will be formed in the middle of the top of the sandwich structure of the fall from the substrate.

[0021] 本发明的有益效果是: [0021] The beneficial effects of the present invention are:

[0022] 1.本发明采用正序方法,先制备柔性衬底,然后制备柔性表层,减少了工序,简化了制作工艺。 [0022] 1. The present invention uses the positive sequence method, first preparing a flexible substrate and then preparing a flexible surface, reducing the process, simplifying the production process.

[0023] 2.选用PDMS (聚二甲基硅氧烷)作为中间夹层。 [0023] 2. Use PDMS (polydimethylsiloxane) as the interlayer. PDMS薄膜具有高度的柔性以及较小的表面能,便于使用薄刀片和尖头镊子对形成在所述中间夹层上方的蒙皮结构与基底进行机械分离。 PDMS film having a high degree of flexibility and a smaller surface energy, thin blades and ease of use of the forceps tip is formed above the middle of the sandwich structure and the skin separated from the substrate mechanically. 同时,PDMS对有机溶剂,如丙酮、四氢呋喃等等,具有吸胀作用,吸胀后的PDMS表面粘性变得极弱,并且会发生变形,产生内应力,便于实现蒙皮结构的自然脱落。 Meanwhile, PDMS organic solvent, such as acetone, tetrahydrofuran, etc., have imbibition, PDMS surface tack after imbibition become very weak, and deformation will occur, resulting in stress, easy to implement natural shedding skin structure.

[0024] 3.选用SU-8光刻胶作为表层材料。 [0024] 3. Use SU-8 photoresist material as a surface layer. SU-8光刻胶光刻性能好,能够实现小尺寸,大深宽比、高陡直度的凹坑结构。 SU-8 photoresist good lithographic performance, to achieve small size, high aspect ratio, high steepness of the pit structure. 同时,SU-8光刻胶物理化学性能稳定,制备的减阻蒙皮能够满足不同环境下的使用要求。 Meanwhile, SU-8 photoresist stable physical and chemical properties, drag the skin prepared to meet the requirements of different environments.

附图说明 Brief Description

[0025] 图1是本发明所述柔性MEMS减阻蒙皮的制造方法的一具体实施例的流程图; [0025] FIG. 1 is a flow chart of the method of manufacturing a flexible MEMS drag the skin of a specific embodiment of the present invention;

[0026] 图2是本发明所述的硬质基底的结构示意图; [0026] FIG. 2 is a schematic view of a rigid substrate of the present invention;

[0027] 图3是本发明在所述硬质基底上制备一层中间夹层的结构示意图; [0027] FIG. 3 is a block diagram of the present invention are prepared intermediate layer laminated on said rigid substrate;

[0028] 图4是本发明在所述中间夹层上制备一层柔性衬底的结构示意图; [0028] FIG. 4 is laminated on the intermediate layer of the present invention is the preparation of a schematic structure of a flexible substrate;

[0029] 图5是本发明在所述柔性衬底上形成一层含有电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线的金属图案的结构示意图; [0029] FIG. 5 is a schematic view of the structure of a layer containing an electrolytic anode, cathode electrolysis, an anode lead terminal, and the cathode lead terminal interconnector of the present invention is a metal pattern formed on the flexible substrate;

[0030] 图6是本发明在所述金属图案层上制备一层柔性表层的结构示意图; [0030] FIG. 6 is a block diagram of the present invention is the preparation of a flexible surface layer on the metal pattern layer;

[0031] 图7是本发明通过对所述柔性表层进行光刻或刻蚀,形成微凹坑阵列以及引线端子焊接部位的结构示意图; [0031] FIG. 7 of the present invention is a flexible surface layer by the photolithography or etching, the micro-pit array structure and a schematic view of a lead terminal welding portion is formed;

[0032] 图8是本发明从硬质基底上分离后的减阻蒙皮的结构示意图。 [0032] FIG. 8 is a block diagram of the present invention is separated from the substrate after a hard drag skinning.

[0033] 附图标记: [0033] Reference numeral:

[0034] 1-基底;2_中间夹层;3_柔性衬底;4_电解阳极;5_电解阴极; [0034] 1- substrate; 2_ interlayer; 3_ flexible substrate; 4_ electrolysis anode; 5_ electrolysis cathode;

[0035] 6-阳极引线端子;7_阴极引线端子;8_柔性表层;9_微凹坑。 [0035] 6- anode lead terminal; 7_ cathode lead terminal; 8_ flexible surface; 9_ micropits.

具体实施方式 DETAILED DESCRIPTION

[0036] 下面结合说明书附图对本发明做进一步的描述。 [0036] below in conjunction with the accompanying drawings of the present invention is further described below. [0037] 如图1所示,本发明所述的柔性MEMS减阻蒙皮的制造方法,包括如下步骤: [0037] As shown in Figure 1, the manufacturing method of the present invention, a flexible MEMS drag reducing skin, comprising the steps of:

[0038] 步骤1、准备基底I。 [0038] Step 1. Prepare substrate I. 该基底最好选为硬质基底,如:单抛硅片或经抛光后的金属薄板,如图2所示。 The substrate is preferably selected to a rigid substrate, such as: single sheet metal by polishing or wafer after polishing, as shown in Figure 2.

[0039] 步骤2、在所述基底I上旋涂聚合物的预聚物,固化后形成中间夹层2,如图3所述。 [0039] Step 2, in the spin-coated substrate I a prepolymer of the polymer, after curing the middle sole 2 is formed, as described in Figure 3. 所述聚合物为PDMS,该聚合物固化前的预聚物中固化剂与PDMS单体的质量配比为 The polymer is PDMS, the quality of the polymer before curing the prepolymer with a curing agent ratio of PDMS monomer

0.05 〜0.2: I。 0.05 ~0.2: I.

[0040] 步骤3、在完成步骤2的所述基底I上旋涂聚合物的预聚物,固化后形成柔性衬底3,如图4所述。 [0040] Step 3, the substrate 2 at the completion of step I a prepolymer was spin-coated on the polymer, after curing, flexible substrate 3 is formed, as shown in Figure 4. 所述聚合物为聚酰亚胺。 The polymer is a polyimide.

[0041] 步骤4、在完成步骤3的所述基底I上形成一层金属层,并采用MEMS平面微细工艺在所述金属层上形成电解阳极4、电解阴极5、阳极引线端子6、阴极引线端子7和内部连线,如图5所示。 [0041] Step 4, on completion of step I 3 formed on the substrate a metal layer, and is formed using MEMS technology fine planar anode electrolysis on the metal layer 4, the electrolysis cathode 5, an anode lead terminal 6, a cathode lead Terminals 7 and internal wiring, as shown in FIG. 其中,所述的金属图案优选材料为钼,以便电解电极在电解水反应中稳定不损耗。 Wherein, the metal pattern material is preferably molybdenum, in order to stabilize the electrolysis electrodes in the electrolytic water without loss reaction. 所述的MEMS平面微细工艺具体包括:甩胶、光刻、溅射和超声剥离。 The plane of MEMS micro technology include: rejection of glue, lithography, sputtering, and ultrasonic peeling.

[0042] 步骤5、在完成步骤4的所述基底I上旋涂聚合物的预聚物,固化后形成柔性表层8,如图6所示。 [0042] Step 5, after completing step 4 of the substrate was spin-coated on the prepolymer I polymer, the flexible surface layer 8 is formed after curing, as shown in Fig. 所述聚合物可光刻或刻蚀,本发明优先推荐聚酰亚胺和SU-8光刻胶。 The polymer can be photolithography or etching, the present invention is the first priority of polyimide and SU-8 photoresist.

[0043] 步骤6、在完成步骤5的所述基底I上对所述柔性表层8进行光刻或刻蚀,形成微凹坑9阵列以及连接外部供电导线的焊接部位,如图7所示。 [0043] Step 6, the substrate on completion of step I 5 of the flexible surface 8 photolithography or etching to form an array of micro-pits 9 and connecting the external supply conductors welded portion, as shown in Fig. 所述的阳极引线端子6和阴极引线端子7通过内部连接分别与每个微凹坑内的电解阳极4和电极阴极5导通。 The anode lead terminal 6 and the cathode lead terminal 7 are connected via an internal electrode 4 and the cathode 5 is turned slightly concave pits each electrolytic anode.

[0044] 步骤7、将形成在所述中间夹层2上方的结构从所述基底I上剥离下来,形成如图8所示结构的减阻蒙皮。 [0044] Step 7, formed in the mid sole 2 peeled from the top of the structure on the substrate I, form the structure shown in FIG. 8 drag the skin. 其中,该步骤可具体通过两种方式实现,方式一,采用机械方式将其分离,如使用薄刀片从中间夹层处将减阻蒙皮结构剃下来,或使用镊子将蒙皮结构从中间夹层处撕下。 Wherein the step may concretely achieved in two ways, a way, be separated by mechanical manner, such as using a thin blade from the middle of the sandwich structure of the shaved skin will drag down, or use the tweezers from the middle of the sandwich structure of the skin Remove. 方式二,采用化学方式将其分离,如将基底以及已经制备好的中间夹层、柔性衬底、金属薄膜层以及柔性表层作为整体浸泡在有机化学溶剂中,以溶解中间夹层,或改变中间夹层的性质,使得蒙皮结构自然脱落。 Second way, be separated by chemical methods, such as the substrate and good interlayer, flexible substrate, the flexible skin layer and a metal thin film as a whole has been immersed in the preparation of organic chemistry solvent to dissolve the interlayer, the interlayer or change nature, making the skin structure fall off naturally.

[0045] 实施例1: [0045] Example 1:

[0046] 制造方法包括如下步骤: [0046] The manufacturing method comprising the steps of:

[0047] 1.1、准备硬质基底:选用普通单抛硅片作为整个柔性减阻蒙皮加工的载体。 [0047] 1.1, prepare a rigid substrate: use an ordinary single-wafer polishing process as a whole, the flexible skin drag carrier.

[0048] 1.2、制备中间夹层:将PDMS单体与固化剂以单体的质量比为5: I〜20: I的比例混合,充分搅拌均匀并抽真空处理15min以去除混合液中的气泡。 [0048] 1.2, interlayer preparation: PDMS monomer and a curing agent to the monomer mass ratio of 5: I~20: I mixed in a ratio, stir well and vacuum treatment 15min to remove the mixture bubbles. 使用匀胶机将搅拌均匀的混合溶液旋涂在硬质基底上,然后置于烘箱,在90°C下加热60min使PDMS固化。 Using a spin coater Stir the mixture solution was spin-coated on a rigid substrate and then placed in an oven at 90 ° C under heating 60min make PDMS cured. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的PDMS薄膜。 In this step, by adjusting the speed of a spin coater, and choose a different spin coating - curing times can be obtained PDMS films of different thicknesses. 本实施例中PDMS薄膜的厚度为20 μ m。 PDMS film thickness embodiment of the present embodiment is 20 μ m.

[0049] 1.3、制备柔性衬底:在中间夹层上旋涂聚酰亚胺预聚体涂层胶,并加温固化。 [0049] 1.3, a flexible substrate preparation: In the middle of the sandwich was spin-coated polyimide prepolymer plastic coating and heat curing. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的聚酰亚胺薄膜。 In this step, by adjusting the speed of a spin coater, and choose a different spin coating - curing times can be obtained with different thickness of the polyimide film. 本实施例中聚酰亚胺薄膜的厚度为20 μ m。 The thickness of the polyimide film of the present case, the implementation of 20 μ m.

[0050] 1.4、制备金属图案层:在所述柔性衬底上形成一层金属层,并在所述金属层上采用MEMS平面微细工艺制备金属图案,形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线。 [0050] 1.4 Preparation of the metal pattern layer: forming a flexible substrate on the metal layer, and the use of MEMS process for the preparation of fine planar metal pattern on the metal layer to form an electrolytic anode, cathode electrolysis, an anode lead terminal, a cathode lead terminal and internal wiring. 即采用甩胶-光刻-溅射-超声剥离的工艺在聚酰亚胺层(即柔性衬底)上制备钼图形,钼层厚度为2000A。 Which uses rubber rejection - Lithography - Sputtering - ultrasonic peeling process for the preparation of molybdenum graphics polyimide layer (ie, the flexible substrate), a molybdenum layer thickness of 2000A.

[0051] 1.5、制备柔性表层:在所述柔性衬底和所述金属图案上旋涂SU-8光刻胶,然后置于烘箱内进行前烘。 [0051] 1.5 Preparation of the flexible surface layer: on the flexible substrate and the metal pattern SU-8 photoresist was spin-coated and then placed in the oven before baking. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的SU-8光刻胶薄膜。 In this step, by adjusting the speed of a spin coater, and choose a different spin coating - curing times can be obtained with different thicknesses SU-8 photoresist film. 本实施例中SU-8光刻胶薄膜的厚度为50 μ m。 Thickness example SU-8 photoresist film of the present embodiment is 50 μ m.

[0052] 1.6、光刻:对上述步骤中制备的SU-8光刻胶进行曝光、显影以及后烘,形成微凹坑以及引线端子焊接部位。 [0052] 1.6, lithography: prepared in the above step SU-8 photoresist is exposed and developed and post-baked to form a micro-pits and a lead terminal welding parts.

[0053] 1.7、分离蒙皮结构:将所述硬质基底以及已经制备好的中间夹层、柔性衬底、金属薄膜层以及柔性表层作为整体浸泡在盛有四氢呋喃溶液的烧杯中,并将烧杯置于超声清洗机中,辅助以超声振动,实现蒙皮结构的自然脱落。 [0053] 1.7, separating skin structure: the rigid substrate and good interlayer, flexible substrate, the flexible skin layer and a metal thin film as a whole has been prepared containing tetrahydrofuran solution was immersed in a beaker, and the beaker is set in ultrasonic cleaning machine, aided by ultrasonic vibration to achieve natural shedding skin structure.

[0054] 实施例2: [0054] Example 2:

[0055] 制造方法包括如下步骤: [0055] The manufacturing method comprising the steps of:

[0056] 2.1、准备硬质基底:选用经抛光后的金属薄板作为整个柔性减阻蒙皮加工的载体。 [0056] 2.1, prepare a rigid substrate: use by the metal sheet after polishing process as a whole, the flexible skin drag carrier.

[0057] 2.2、制备中间夹层:将PDMS单体与固化剂以质量比为5:1〜20:1的比例混合,充分搅拌均匀并抽真空处理15min以去除混合液中的气泡。 [0057] 2.2, intermediate prepared sandwich: the PDMS monomer and a curing agent mass ratio of 5: 1~20: 1 ratio, stir well and vacuum treatment 15min to remove the mixture bubbles. 使用匀胶机将搅拌均匀的混合溶液旋涂在硬质基底上,然后置于烘箱,在90°C下加热60min使PDMS固化。 Using a spin coater Stir the mixture solution was spin-coated on a rigid substrate and then placed in an oven at 90 ° C under heating 60min make PDMS cured. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的PDMS薄膜。 In this step, by adjusting the speed of a spin coater, and choose a different spin coating - curing times can be obtained PDMS films of different thicknesses. 本实施例中PDMS薄膜的厚度为200 μ m。 PDMS film thickness embodiment of the present embodiment is 200 μ m.

[0058] 2.3、制备柔性衬底:在中间夹层上旋涂聚酰亚胺预聚体涂层胶,并加温固化。 [0058] 2.3, a flexible substrate preparation: In the middle of the sandwich was spin-coated polyimide prepolymer plastic coating and heat curing. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的聚酰亚胺薄膜。 In this step, by adjusting the speed of a spin coater, and choose a different spin coating - curing times can be obtained with different thickness of the polyimide film. 本实施例中聚酰亚胺薄膜的厚度为50 μ m。 The thickness of the polyimide film of the present case, the implementation of 50 μ m.

[0059] 2.4、制备金属图案层:在所述柔性衬底上形成一层金属层,并在所述金属层上采用MEMS平面微细工艺制备金属图案,形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线。 [0059] 2.4 Preparation of the metal pattern layer: forming a flexible substrate on the metal layer, and the use of MEMS process for the preparation of fine planar metal pattern on the metal layer to form an electrolytic anode, cathode electrolysis, an anode lead terminal, a cathode lead terminal and internal wiring. 即采用甩胶-光刻-溅射-超声剥离的工艺在聚酰亚胺层(即柔性衬底)上制备钼图形,钼层厚度为2000A。 Which uses rubber rejection - Lithography - Sputtering - ultrasonic peeling process for the preparation of molybdenum graphics polyimide layer (ie, the flexible substrate), a molybdenum layer thickness of 2000A.

[0060] 2.5、制备柔性表层:在所述柔性衬底和所述金属图案上旋涂聚酰亚胺预聚体涂层胶,并加温固化。 [0060] 2.5, a flexible surface preparation: on the flexible substrate and the metal pattern is spin-coated polyimide prepolymer plastic coating and heat curing. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的聚酰亚胺薄膜。 In this step, by adjusting the speed of a spin coater, and choose a different spin coating - curing times can be obtained with different thickness of the polyimide film. 本实施例中聚酰亚胺薄膜的厚度为50 μ m。 The thickness of the polyimide film of the present case, the implementation of 50 μ m.

[0061] 2.6、刻蚀:对上述步骤中制备的聚酰亚胺薄膜进行刻蚀,形成微凹坑以及引线端子焊接部位,刻蚀深度以露出金属图案为准。 [0061] 2.6, etching: The polyimide film prepared in the above step by etching, forming a micro dimple and a lead terminal welding parts, the etching depth to expose the metal pattern prevail.

[0062] 2.7、分离蒙皮结构:使用薄刀片和镊子将蒙皮结构从中间夹层处与硬质基底分离开来。 [0062] 2.7, separating skin structure: thin blades and tweezers from the middle of the sandwich structure of the skin and the hard substrate separated.

[0063] 以上实施例均采用本发明的方法,其中所列的具体工艺方法、参数以及尺寸仅是举例,而非对本发明方法适用范围的限制。 [0063] or more embodiments of the method of the present invention are used, the specific process methods, parameters and dimensions of which are listed only by way of example, and not limitation of the scope of application of the method of the present invention. 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 Anyone familiar with the technical field of the art within the technical scope of the present invention discloses, change or replacement can easily think of, should fall within the scope of the present invention. 因此,本发明的保护范围应该以权利要求所界定的保护范围为准。 Accordingly, the scope of the present invention should be the scope as defined by the claims prevail.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
CN1889251A21 Jul 20053 Ene 2007惠普开发有限公司Production of multi-thin film device
CN101138663A25 Oct 200712 Mar 2008上海交通大学Preparation method of biological microelectrode array based on flexible substrate
CN101486438A6 Mar 200922 Jul 2009清华大学Flexible MEMS resistance reducing covering and method of manufacturing the same
US546100327 May 199424 Oct 1995Texas Instruments IncorporatedMultilevel interconnect structure with air gaps formed between metal leads
Otras citas
Referencia
1JP特开平8-142333A 1996.06.04
Clasificaciones
Clasificación internacionalB81C1/00
Eventos legales
FechaCódigoEventoDescripción
1 Feb 2012C06Publication
28 Mar 2012C10Request of examination as to substance
28 May 2014C14Granted