CN102369259A - 恒定比重热量最小化 - Google Patents

恒定比重热量最小化 Download PDF

Info

Publication number
CN102369259A
CN102369259A CN2010800105018A CN201080010501A CN102369259A CN 102369259 A CN102369259 A CN 102369259A CN 2010800105018 A CN2010800105018 A CN 2010800105018A CN 201080010501 A CN201080010501 A CN 201080010501A CN 102369259 A CN102369259 A CN 102369259A
Authority
CN
China
Prior art keywords
water
ore
oil sands
sands ore
mix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800105018A
Other languages
English (en)
Other versions
CN102369259B (zh
Inventor
J·怀特
M·E·布鲁
D·T·厄雷斯曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Corp
Harrier Inc
Original Assignee
Harrier Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harrier Inc filed Critical Harrier Inc
Publication of CN102369259A publication Critical patent/CN102369259A/zh
Application granted granted Critical
Publication of CN102369259B publication Critical patent/CN102369259B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/008Controlling or regulating of liquefaction processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • C10G1/047Hot water or cold water extraction processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water

Abstract

公开一种在水流体化的油砂矿石的处理期间调整所述矿石的水含量的方法。确定具有松散体积(Vt)的油砂矿石的样本料的重量(m0)。然后,用水填充样本料的粒间空隙,并且确定所添加的粒间水的重量(ma)。为流体化的油砂矿石选择目标比重值(SGmix)。对于每松散体积Vt的要被处理的油砂矿石,向该油砂矿石添加所确定的体积ΔV的附加的水,从而产生水流体化的油砂矿石。然后,处理该矿石以浓缩沥青。

Description

恒定比重热量最小化
技术领域
本发明涉及用于提炼或以其它方式处理油砂矿石(例如油砂、焦油砂和油页岩)的工艺,包含在处理期间将矿石与水混合以将其流体化。
背景技术
油砂矿床或矿石主要包含沥青,其是与砂、黏土和水组合的非常粘的一种油。在油砂矿床中,沥青封装砂粒并且捕获砂粒和沥青之间的水薄膜。被称为原生水(connate water)的这种水在重量方面大约为矿石的5%,并且表示典型的最小粒间水含量。另外的水存在于矿石的粒间孔隙空间中,并且在质量方面可改变为高达矿石的20%。
可通过将油砂矿石从矿床中开采、将矿石与水组合以形成浆料、并且将浆料水力运输到用于浓缩沥青并且将沥青从尾矿中分离的设备,处理油砂矿石。“水力运输”被定义为将诸如浆料之类的固体/液体混合物传送到处理设备中或者传送通过处理设备。然后,例如通过砸碎和蒸馏,沥青被进一步处理,以产生石油产品。
一种用于浓缩沥青的已知工艺(原本作为公知的Clarke工艺被开发)是泡沫浮选工艺,在该工艺中,用碱液(氢氧化钠)处理浆料,并且对浆料加热,这使得沥青从砂粒中分离并且浮到顶部。在该工艺中产生的泡沫是富含沥青的并且是易上浮的,并且从浆料的顶部被移除,同时,尾矿(诸如砂)沉到浆料的底部并且被移除。浆料被加热以有助于泡沫浮选工艺。
先前,恒定水流被添加到恒定矿石流,以便为水利运输做准备。
发明内容
本发明的一个方面涉及在对水流体化的(water-fluidized)油砂矿石进行处理期间调整矿石的水含量的工艺。
在该工艺中,具有松散体积(Vt)和粒间空隙的粉碎油砂矿石的样本料被放置在容器中。确定样本料的重量(m0)。然后,用水填充样本料的粒间空隙。ρw是水的密度。然后,确定粒间水的重量(ma)。
为流体化油砂矿石选择目标比重值(SGmix)。为了有意地实现目标比重值,需要确定要另外添加多少水。通过求解以下方程来计算要添加到松散体积为Vt的样本料以实现目标比重值(SGmix)的附加的水的体积ΔV:
ΔV = V t · ( ( m o + m a ρw · V t ) - SG mix SG mix - 1 ) + m a ρw
对于每松散体积Vt的要被处理的油砂矿石,所确定的体积ΔV的附加的水被添加到该油砂矿石。这产生水流体化的油砂矿石。然后,水流体化的油砂矿石被处理以浓缩沥青。
本发明的另一方面还涉及用于在对水流体化油砂矿石进行处理期间调整所述矿石的水含量的工艺。在该工艺中,如确定油砂矿石中的沥青的质量分数那样,油砂矿石中的粒间水和原生水的质量分数被确定。参照基准,该基准示出矿石中起初的水的质量分数、矿石中起初的沥青的质量分数、对每质量的矿石要添加的水的质量之间的对应。由该基准指示的水的质量被添加到矿石中,以产生水流体化的油砂矿石。然后,该水流体化的油砂矿石被处理以浓缩沥青。
附图说明
图1是可采用所公开的技术的实施例来对油砂矿石流体化的示例性水处理(hydrotreating)的示意图。
图2是可用于浓缩油砂矿石中的沥青的示例性泡沫浮选工艺的示意性剖面图。
图3是容器中的油砂矿石样本的示意图。
图4是其中已添加粒间水的与图3类似的视图。
图5是与图4类似的视图,其中,附加的水已被添加以形成具有用于处理的所期望的水量的浆料。
图6是用于形成具有所期望的水量的浆料的方法的实施例的工艺流程图。
图7是用于形成具有所期望的水量的浆料的方法的替代性实施例的工艺流程图。
图8是油砂矿石中的起初的水和沥青的分数对要被添加到矿石中的水量的参考图。
具体实施方式
现在将在以下参照附图更加充分地描述本发明,在图中示出了本发明的一个或更多个实施例。然而,本发明可以以多种不同形式实施,并且不应被解释为限于在此阐述的实施例。相反,这些实施例是本发明的例子,本发明具有由权利要求的语言所指示的全部范围。类似的标号始终指示类似的要素。
图1和2示出其中可使用本技术的示例性环境。
首先参照图1,例如可通过使用掘凿机开采油砂底层而获得油砂矿石10。被开采的油砂矿石10包含被覆有水和沥青的砂。矿石10可被堆积到运输工具(例如自卸车(dump truck)12或其他交通工具)中,以将矿石10运载到处理场所。在处理场所,矿石10可被倾卸到料斗14中,在料斗14处,矿石10由诸如螺旋给料器16之类的适当的装置传送到分析站18并且传送通过分析站18,所述分析站18用于确定要添加到矿石10以有助于进一步处理的水量。对于一些类型的矿石,在油砂矿石已被粉碎以用于处理(由站19表示)之后分析矿石可能是有用的。
在水添加站20处,水22被添加到矿石10以有助于水处理或将油砂/水浆料传送到由24一般地表示的进一步的处理设备。矿石与水组合并且被搅动,以产生包含在砂上被承载的沥青的砂/水浆料。诸如碱液(氢氧化钠)之类的添加剂被添加以乳化所述水和沥青。
现在参照图2,示例性的进一步的处理设备24被示出为包括用于容纳材料的一次分离槽或罐112。槽112还包括流槽122、给料口124和排泄口126。这些特征使槽112适于用作用于将泡沫128与材料114分离的分离罐。
浆料经由给料口124被引入槽112,加入到材料114的主体。在槽112中,材料114的砂粒粒组180比水介质更重。砂粒粒组下降到槽112的底部,以形成砂浆料180,所述砂浆料180通过排泄口或沉沙池126而被移除。设置浆料泵182以积极地移除砂浆料80。
材料114中的沥青本身比水介质更重,但是附着于槽112中的气泡以形成富含沥青的泡沫。沥青泡沫从砂浮出,并且上升到浆料的顶部。可以至少在槽112的上部任选地设置搅动,从而形成使富含沥青的粒组向上浮动的气泡。顶部粒组128是包含在水中分散的富含沥青的粒组的泡沫,其转而具有分散在其中的空气。该泡沫比下层的材料114具有更丰富的沥青,这是用于分离的技术基础。
富含沥青的泡沫128由于进入的材料114而被强制向上,直到其表面184上升到高于槽112的堰或边缘186。堰186可环绕整个槽112或者被限于槽112的周长的一部分。上升到高于堰186的水平的泡沫128径向地向外流过堰186并且向下进入流槽122,并且通过泡沫排泄部188从流槽122被移除以用于进一步的处理。
所开采的油砂矿石10的比重典型地被给出为1.2g/cm3,尽管特定的矿床可具有更高或更低的比重。一般来说,比重与矿石中的水的比例反向相关。诸如矿石中黏土的比例之类的矿床的其他特性也将影响比重。
从水添加站20传送浆料的水力运输设备将水添加到矿石,以使得能够将矿石运输通过管道以用于处理。以前,恒定的水流被添加到恒定矿石流以为水力运输做准备,而不考虑矿石中的水的量。
本发明的发明人确定,如果矿石10包含多于最小量的水(这由较低的比重反映),则添加均匀附加量的水以用于水处理引入对于水处理所不需要的过量的水(考虑到粒间水),但是在随后的对矿石浆料加热的处理期间必须仍然被加热。例如,假设对具有5%的粒间水的每公吨(1000kg)矿石添加600kg的水导致1.2的混合比重(SG),并且假设1.2的SG低得足以在特定的设备中水力运输矿石。如果相同量的水被添加到具有20%的粒间水的矿石,则所得的浆料具有250kg的对于使得能够进行水处理所不需要的过量的水。将该过量的水加热到工艺温度浪费能量。此外,比必需量多的水从工艺中输出,并且需要废物处理或其他处理。
发明人确定,可通过根据矿石10的一个或更多个特性来测量被添加到矿石10的水处理水22的量而解决他们所发现的该问题。油砂矿石10的各种特性在矿石10的不同样本中改变,并且也可由于矿中的环境因素(例如,降水量、湿度或地下水位)或运输期间的环境因素或者其他因素而改变。如打包紧实度(packing degree)之类的工艺条件也影响矿石的比重。
为了解决这些问题,发明人开发了用于在矿石的处理期间调整水流体化的油砂矿石的水含量的工艺。图3~6示出该工艺的实施例。特别地,参照图6概述该实施例。
可通过将具有松散体积(Vt)和粒间空隙的粉碎油砂矿石的样本料放置在容器中来执行步骤200。可通过确定样本料的重量(m0)来执行步骤202。可通过用粒间水填充样本料的粒间空隙来执行步骤204,其中,ρw是水的密度。可通过确定粒间水的重量(ma)来执行步骤206。可通过为流体化油砂矿石选择目标比重值(SGmix)来执行步骤208。可通过借助求解以下方程来计算要添加到松散体积为Vt的样本料以实现目标比重值(SGmix)的附加的水的体积ΔV而执行步骤210:
ΔV = V t · ( ( m o + m a ρw · V t ) - SG mix SG mix - 1 ) + m a ρw
可通过对于要被处理的每松散体积Vt的油砂矿石添加体积ΔV的附加的水来执行步骤212,这产生水流体化的油砂矿石。可通过处理水流体化的油砂矿石以浓缩沥青来执行步骤24。
可任选地,以相等的间隔,以某种里程碑性的事件间隔(诸如开始轮班、在处理中断之后、在递送了新鲜矿石供应时、或者在环境温度改变的情况下),根据操作员的选择,或者在以任何其它方式确定的时间,定期地执行图6的工艺。在一个实施例中,在矿石处理期间,定期地执行放置200、确定202和206、填充204以及计算210,从而定期地更新ΔV的值。
在已进行了给定计算210并且经过了时间间隔ΔT(由步骤214表示)之后,可以重复该工艺。例如,可每分钟、每10分钟、每小时、每当新的一货车矿石10被递送到料斗14(图1)并且前进到分析站18、或者基于其它准则,重复该工艺。
以下是各种实施例的一些其它细节。
将量为Vt的样本220放置在容器222中的步骤200由图3示出,图3示出诸如224之类的油砂矿石的颗粒以及诸如224之类的颗粒之间的诸如226之类的粒间空间。为使图示清晰,在图3~5中夸大了诸如224之类的颗粒之间的间隔和粒间空间226的尺寸。
能够以各种方式执行对样本称重的步骤202。例如,在手动确定中,可对空的容器222进行称重,然后样本220可被放置在容器中,然后容器22可在具有样本220的情况下被再次称重,并且通过减去空容器的重量而被去掉皮重。作为替换方案,样本220可在其它地方被称重,然后被传送到容器222,由此颠倒放置和称重步骤200和202的次序。
可如图4所示的那样执行用水填充空隙或粒间空间226的步骤204。可手动进行该步骤,例如,可通过将水放置在容器22中直到水的表面228与样本220的顶部齐平来执行该步骤,如图4所示。填充空隙所需要的水是ΔV的一个分量。可通过使用细高的容器(诸如有刻度的圆筒或滴定管)作为容器222来增大此步骤的精度。
可任选地,在填充步骤204期间或之后,样本料220可被振动以把粒间气体驱赶出去。在一个实施例中,可通过使样本料经受超声能量,通过搅动样本料,或者通过敲拍容器,执行所述振动。也可在填充步骤204之前振动所述容器,以例如在用水填充空隙之前对样本均匀地打包。
如图6的步骤206所提倡的那样,能够以各种方式确定粒间水的重量。作为一个例子,可从如图4所示的填充粒间空间之后的容器222及其容纳物的重量减去如图3所示的填充粒间空间之前的容器222和料220的重量。在另一实施例中,可通过测量添加到容器222以填充粒间空间的水的体积或重量来确定粒间水的重量。
通过选择SGmix,即添加水之后的油砂矿石/水浆料的期望的比重,执行图6中所示的步骤208。在一个实施例中,SGmix可被选择为最大比重或者大约为最大比重,即,使得油砂矿石能够被处理的最小的水量。使所添加的水的量最小化(与使工艺运行良好相一致)具有减小要在工艺期间被加热、从工艺移除、并且在回收或丢弃之前被处理的水的量的优点。适当的SGmix的例子是从1.42到1.6g/cm3,作为替换方案,从1.45到1.55g/cm3,作为替换方案,约1.5g/cm3。对于特定情形的最优的SGmix可取决于例如所使用的处理设备、矿石的特性以及处理温度。
对于流体化油砂矿石的所希望的总水含量(包括所提供的矿石中的原生水和粒间水以及添加到矿石以用于处理的水)是重量从大约4%到大约20%的范围中的值,作为替换方案,重量从大约4%到大约8%的范围中的值,作为替换方案,重量大约5%的值。
能够在各种时间执行选择步骤。例如,可基于工艺日志或关于工艺运行得多好的其它信息,在每次处理矿石样本时选择比重。作为替换方案,对于工艺的多次迭代,流体化油砂矿石的目标比重(SGmix)可被维持在恒定水平。作为替换方案,SGmix可在处理设备被设计时被选择并且从不改变。对SGmix的选择可被体现在对提供SGmix的处理设备的选择中。在另一个实施例中,可由机器操作员或管理者基于对工艺的观察而执行该选择步骤。例如,如果做出工艺可在更少的水的情况下运行的评估,则SGmix可被增大以提供更干的混合,而如果SGmix在当时看上去太高则反之。
能够以各种方式执行该选择步骤。作为一个例子,可以通过采用公布值(published value)对于流体化油砂矿石选择目标比重(SGmix)。作为另一个例子,可以通过分析矿石样本以确定需要添加多少水以实现期望的总水含量,将该量的水添加到矿石样本,并且确定具有所添加的水的矿石样本的比重,对于流体化油砂矿石选择目标比重(SGmix)。这例如可在机器的试运行中进行,其中,以设定的添加的水的比例来运行该工艺,评估该运行,并且调整所添加的水的量以实现所期望的结果(诸如用于成功处理的最小能量输入)。然后,可取浆料的样本,并且其比重被测量以选择用于该工艺的SGmix
图6所示的步骤210是计算对于要被处理的每松散体积Vt的油砂矿石要添加到该油砂矿石的附加的水的量ΔV。此计算可使用油砂矿石样本220的体积Vt、砂矿石的重量m0、粒间水的重量ma以及所选择的SGmix的值作为输入值。可通过将样本的输入值代入以下方程并且求解该方程以获得ΔV来执行该计算:
ΔV = V t · ( ( m o + m a ρw · V t ) - SG mix SG mix - 1 ) + m a ρw
对于每松散体积Vt的油砂矿石要被添加的附加的水的量可在要被添加的水的体积或重量方面被表达。
步骤212是将量为ΔV的水添加到油砂矿石(其尚未被淋水以填充空隙;其是如被开采的油砂矿石)。可分批地或连续地将水添加到矿石。在油砂矿石被提供以被处理时的分批处理的例子是将矿石的载荷10从自卸车12(图1)倾卸到料斗14中,将全部载荷运送到水添加站20,并且将所期望的量的水22换算到矿石的全部载荷。在油砂矿石被运送以被处理时连续地执行添加步骤的一个例子是小的水添加站20,诸如具有被分离地并且连续地馈送矿石和水的两条腿以及连续地输出矿石和水的混合物的一条腿的Y形管或者槽。
在对矿石的处理期间调整水流体化的油砂矿石的水含量的另一种工艺考虑附加的因素:油砂矿石中的沥青的质量分数。此方法也可采用确定要被添加到矿石的水的量的不同方法。可如图7和8中所示的那样执行此工艺。
参照图7,在一个实施例中,步骤240是确定在水被添加到油砂矿石之前的该矿石中的粒间水和原生水的质量分数;步骤242是确定油砂矿石中的沥青的质量分数;步骤244是基于矿石中的沥青以及粒间水和原生水的质量分数,参考一个基准以确定要被添加到油砂矿石的水的量;步骤246是如基准指示的那样将一定量的水添加到油砂矿石,从而产生水流体化的油砂矿石;以及步骤24是处理水流体化的油砂矿石以浓缩沥青。
能够例如通过在基本上不干扰沥青的条件下从样本中移除水(例如通过和缓的加热),并且对加热前后的样本进行称重以确定被驱赶出去的水的量,以重量分析方式执行确定油砂矿石中的粒间水和原生水的质量分数的步骤242。
确定油砂矿石中的沥青的质量分数的步骤240通常被执行以分析油砂矿床并且确定开采和处理是否具有经济价值。可使用已知的方法。一种示例性方法是研磨矿石样本并且用诸如石脑油之类的溶解沥青的有机溶剂提取它。然后,从溶剂中移除沥青(例如通过蒸发该溶剂),并且,可通过对包含沥青的溶剂进行称重、蒸发该溶剂以及对所得的沥青进行称重,以重量分析方式确定剩余的沥青的量。
能够以各种方式执行基于油砂矿石中的沥青以及粒间水和原生水的质量分数来参考基准以确定要添加到油砂矿石的水的量的步骤244。在这里,“基准”被广义地使用以指示关于样本的初始沥青和水含量与用于处理的浆料中的所期望的水的总量之间的关系的任何信息源。所述基准可以是绘图、数值查找表、用于确定特定矿石样本的最优水含量的试验、文献参考或者对具有类似特性的矿石先前成功使用的水的量的记录。任何种类的其它基准也可被使用。
在图8中,例如,基准250是代表矿石中的各种沥青分数的一族曲线的绘图。该族中的最上方的曲线表示重量为0.100或10%的沥青分数,该族中的中间的曲线表示重量为0.125或12.5%的沥青分数,该族中的最下方的曲线表示重量为0.150或15%的沥青分数。基准250的横轴是矿石中的水(矿石中的原生水和粒间水两者)的质量分数,基准250的纵轴表明要对每吨(1000kg)矿石添加多少水。
通过找到最接近地表示矿石的沥青分数的曲线,在所选的曲线上找到在矿石中测量的水的质量分数上方的点,并且水平地对纵轴进行读取以确定要向矿石添加多少附加的水,参考图8的基准。可通过在两条沥青曲线之间、在矿石中的水的两个质量分数之间或者在要添加到矿石的水的两个量之间进行内插,使所述确定更加精确。
可以按照与图6的相应步骤相同的方式执行如基准指示的那样将一定量的水添加到油砂矿石从而产生水流体化的油砂矿石的步骤212。
可以按照与图1、2或6的相应步骤相同的方式执行处理水流体化的油砂矿石以浓缩沥青的步骤24。

Claims (10)

1.一种在水流体化的油砂矿石的处理期间调整所述矿石的水含量的方法,包括:
将具有松散体积(Vt)和粒间空隙的粉碎的油砂矿石的样本料放置在容器中;
确定所述样本料的重量(m0);
用粒间水填充所述样本料的粒间空隙,其中ρw是水的密度;
确定粒间水的重量(ma);
为流体化的油砂矿石选择目标比重值(SGmix);
通过求解以下方程来计算要添加到松散体积为Vt的样本料以实现目标比重值(SGmix)的附加的水的体积ΔV:
ΔV = V t · ( ( m o + m a ρw · V t ) - SG mix SG mix - 1 ) + m a ρw
对于每松散体积Vt的要被处理的油砂矿石添加体积为ΔV的附加的水,从而产生水流体化的油砂矿石;以及
处理所述水流体化的油砂矿石以浓缩沥青。
2.一种在水流体化的油砂矿石的处理期间调整所述矿石的水含量的方法,包括:
确定油砂矿石中的粒间水和原生水的质量分数;
确定油砂矿石中的沥青的质量分数;
基于矿石中的所述沥青的质量分数以及所述粒间水和原生水的质量分数,参考基准以确定要添加到油砂矿石的水的量;
如所述基准所指示的那样将所述量的水添加到油砂矿石,从而产生水流体化的油砂矿石;以及
处理所述水流体化的油砂矿石以浓缩沥青。
3.根据权利要求1的方法,其中,SGmix被选择为使得能够处理油砂矿石的最大比重或约为该最大比重。
4.根据权利要求1或3的方法,其中,在矿石处理期间定期地执行所述放置、确定、填充和计算,从而定期地更新ΔV的值。
5.根据权利要求1、3或4的方法,其中,对于该方法的多次迭代,流体化的油砂矿石的所述目标比重(SGmix)被维持在恒定水平。
6.根据权利要求1、3、4或5的方法,其中,通过采用公布值,对于流体化的油砂矿石选择所述目标比重(SGmix)。
7.根据权利要求1、3、4、5或6的方法,其中,通过分析矿石样本以确定需要添加多少水以实现期望的总水含量,将该量的水添加到矿石样本,以及确定具有所添加的水的矿石样本的比重,对于流体化的油砂矿石选择所述目标比重(SGmix)。
8.根据前述任一项权利要求的方法,其中,流体化的油砂矿石的所述期望的总水含量是重量从约4%到约20%的范围中的值,优选是重量从约4%到约8%的范围中的值。
9.根据权利要求1、3、4、5、6或7的方法,还包括:在填充的步骤期间或之后,振动所述样本料以将粒间气体驱赶出去。
10.根据前述任一项权利要求的方法,该方法是在油砂矿石已被粉碎以用于处理之后被执行的。
CN201080010501.8A 2009-03-02 2010-03-01 调整油砂矿石的水含量的方法 Expired - Fee Related CN102369259B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/396,192 US8101068B2 (en) 2009-03-02 2009-03-02 Constant specific gravity heat minimization
US12/396,192 2009-03-02
PCT/US2010/025767 WO2010101828A2 (en) 2009-03-02 2010-03-01 Constant specific gravity heat minimization

Publications (2)

Publication Number Publication Date
CN102369259A true CN102369259A (zh) 2012-03-07
CN102369259B CN102369259B (zh) 2014-12-31

Family

ID=42562474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080010501.8A Expired - Fee Related CN102369259B (zh) 2009-03-02 2010-03-01 调整油砂矿石的水含量的方法

Country Status (8)

Country Link
US (1) US8101068B2 (zh)
EP (1) EP2403924A2 (zh)
CN (1) CN102369259B (zh)
AU (1) AU2010221563B2 (zh)
BR (1) BRPI1005958A2 (zh)
CA (1) CA2753601C (zh)
RU (1) RU2011136175A (zh)
WO (1) WO2010101828A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486950B2 (en) 2018-08-01 2022-11-01 General Electric Company Systems and methods for automated graphical prescription with deep neural networks

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034176B2 (en) 2009-03-02 2015-05-19 Harris Corporation Radio frequency heating of petroleum ore by particle susceptors
US8932435B2 (en) 2011-08-12 2015-01-13 Harris Corporation Hydrocarbon resource processing device including radio frequency applicator and related methods
CN105883247A (zh) * 2016-06-12 2016-08-24 张春梅 一种米重量确定方法及米桶

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530041A (en) * 1968-02-01 1970-09-22 Great Canadian Oil Sands Continuous settled density analyses
US3558469A (en) * 1968-07-09 1971-01-26 Great Canadian Oil Sands Hot water process
US5143598A (en) * 1983-10-31 1992-09-01 Amoco Corporation Methods of tar sand bitumen recovery

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371459A (en) * 1941-08-30 1945-03-13 Mittelmann Eugen Method of and means for heat-treating metal in strip form
US2685930A (en) * 1948-08-12 1954-08-10 Union Oil Co Oil well production process
US3004544A (en) * 1955-12-29 1961-10-17 Texaco Inc Continuously measuring slurry density
US3497005A (en) * 1967-03-02 1970-02-24 Resources Research & Dev Corp Sonic energy process
FR1586066A (zh) 1967-10-25 1970-02-06
US3991091A (en) * 1973-07-23 1976-11-09 Sun Ventures, Inc. Organo tin compound
US3848671A (en) * 1973-10-24 1974-11-19 Atlantic Richfield Co Method of producing bitumen from a subterranean tar sand formation
CA1062336A (en) * 1974-07-01 1979-09-11 Robert K. Cross Electromagnetic lithosphere telemetry system
US3988036A (en) * 1975-03-10 1976-10-26 Fisher Sidney T Electric induction heating of underground ore deposits
JPS51130404A (en) * 1975-05-08 1976-11-12 Kureha Chem Ind Co Ltd Method for preventing coalking of heavy oil
US3954140A (en) * 1975-08-13 1976-05-04 Hendrick Robert P Recovery of hydrocarbons by in situ thermal extraction
US4035282A (en) * 1975-08-20 1977-07-12 Shell Canada Limited Process for recovery of bitumen from a bituminous froth
US4136014A (en) * 1975-08-28 1979-01-23 Canadian Patents & Development Limited Method and apparatus for separation of bitumen from tar sands
US4196329A (en) * 1976-05-03 1980-04-01 Raytheon Company Situ processing of organic ore bodies
US4487257A (en) * 1976-06-17 1984-12-11 Raytheon Company Apparatus and method for production of organic products from kerogen
US4301865A (en) * 1977-01-03 1981-11-24 Raytheon Company In situ radio frequency selective heating process and system
US4140179A (en) * 1977-01-03 1979-02-20 Raytheon Company In situ radio frequency selective heating process
US4140180A (en) * 1977-08-29 1979-02-20 Iit Research Institute Method for in situ heat processing of hydrocarbonaceous formations
US4144935A (en) * 1977-08-29 1979-03-20 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4146125A (en) * 1977-11-01 1979-03-27 Petro-Canada Exploration Inc. Bitumen-sodium hydroxide-water emulsion release agent for bituminous sands conveyor belt
NL7806452A (nl) * 1978-06-14 1979-12-18 Tno Werkwijze voor de behandeling van aromatische polya- midevezels, die geschikt zijn voor gebruik in construc- tiematerialen en rubbers, alsmede aldus behandelde vezels en met deze vezels gewapende gevormde voort- brengsels.
US4457365A (en) * 1978-12-07 1984-07-03 Raytheon Company In situ radio frequency selective heating system
FR2449187A1 (fr) * 1979-02-16 1980-09-12 Bourlier Claude Dispositif passe-monnaie, notamment pour les banques, gares, grands magasins ou autres
US4300219A (en) * 1979-04-26 1981-11-10 Raytheon Company Bowed elastomeric window
JPS5650119A (en) 1979-09-29 1981-05-07 Toshiba Corp Microwave heat denitrating apparatus
US4410216A (en) * 1979-12-31 1983-10-18 Heavy Oil Process, Inc. Method for recovering high viscosity oils
US4295880A (en) * 1980-04-29 1981-10-20 Horner Jr John W Apparatus and method for recovering organic and non-ferrous metal products from shale and ore bearing rock
US4508168A (en) * 1980-06-30 1985-04-02 Raytheon Company RF Applicator for in situ heating
US4396062A (en) * 1980-10-06 1983-08-02 University Of Utah Research Foundation Apparatus and method for time-domain tracking of high-speed chemical reactions
US4373581A (en) * 1981-01-19 1983-02-15 Halliburton Company Apparatus and method for radio frequency heating of hydrocarbonaceous earth formations including an impedance matching technique
US4456065A (en) * 1981-08-20 1984-06-26 Elektra Energie A.G. Heavy oil recovering
US4425227A (en) * 1981-10-05 1984-01-10 Gnc Energy Corporation Ambient froth flotation process for the recovery of bitumen from tar sand
US4531468A (en) * 1982-01-05 1985-07-30 Raytheon Company Temperature/pressure compensation structure
US4449585A (en) * 1982-01-29 1984-05-22 Iit Research Institute Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations
US4485869A (en) * 1982-10-22 1984-12-04 Iit Research Institute Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ
US4514305A (en) * 1982-12-01 1985-04-30 Petro-Canada Exploration, Inc. Azeotropic dehydration process for treating bituminous froth
US4404123A (en) * 1982-12-15 1983-09-13 Mobil Oil Corporation Catalysts for para-ethyltoluene dehydrogenation
US4524827A (en) * 1983-04-29 1985-06-25 Iit Research Institute Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations
US4470459A (en) * 1983-05-09 1984-09-11 Halliburton Company Apparatus and method for controlled temperature heating of volumes of hydrocarbonaceous materials in earth formations
JPS60501862A (ja) * 1983-07-15 1985-10-31 ザ ブロ−クン ヒル プロプライエタリイ カンパニ− リミテツド 燃料、特にジエツトおよびデイ−ゼル燃料の製造方法およびその組成物
CA1211063A (en) 1983-09-13 1986-09-09 Robert D. De Calonne Method of utilization and disposal of sludge from tar sands hot water extraction process
US4703433A (en) * 1984-01-09 1987-10-27 Hewlett-Packard Company Vector network analyzer with integral processor
US5055180A (en) * 1984-04-20 1991-10-08 Electromagnetic Energy Corporation Method and apparatus for recovering fractions from hydrocarbon materials, facilitating the removal and cleansing of hydrocarbon fluids, insulating storage vessels, and cleansing storage vessels and pipelines
US4620593A (en) * 1984-10-01 1986-11-04 Haagensen Duane B Oil recovery system and method
US4583586A (en) * 1984-12-06 1986-04-22 Ebara Corporation Apparatus for cleaning heat exchanger tubes
US4678034A (en) * 1985-08-05 1987-07-07 Formation Damage Removal Corporation Well heater
US4622496A (en) * 1985-12-13 1986-11-11 Energy Technologies Corp. Energy efficient reactance ballast with electronic start circuit for the operation of fluorescent lamps of various wattages at standard levels of light output as well as at increased levels of light output
US4892782A (en) * 1987-04-13 1990-01-09 E. I. Dupont De Nemours And Company Fibrous microwave susceptor packaging material
US4817711A (en) * 1987-05-27 1989-04-04 Jeambey Calhoun G System for recovery of petroleum from petroleum impregnated media
US4790375A (en) * 1987-11-23 1988-12-13 Ors Development Corporation Mineral well heating systems
JPH03505124A (ja) * 1988-06-20 1991-11-07 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション 水分含有量及び電気伝導度の測定
US4882984A (en) * 1988-10-07 1989-11-28 Raytheon Company Constant temperature fryer assembly
JPH02246502A (ja) 1989-02-18 1990-10-02 Du Pont Japan Ltd アンテナ
FR2651580B1 (fr) 1989-09-05 1991-12-13 Aerospatiale Dispositif de caracterisation dielectrique d'echantillons de materiau de surface plane ou non plane et application au controle non destructif de l'homogeneite dielectrique desdits echantillons.
US5251700A (en) * 1990-02-05 1993-10-12 Hrubetz Environmental Services, Inc. Well casing providing directional flow of injection fluids
CA2009782A1 (en) * 1990-02-12 1991-08-12 Anoosh I. Kiamanesh In-situ tuned microwave oil extraction process
US5199488A (en) * 1990-03-09 1993-04-06 Kai Technologies, Inc. Electromagnetic method and apparatus for the treatment of radioactive material-containing volumes
US5065819A (en) * 1990-03-09 1991-11-19 Kai Technologies Electromagnetic apparatus and method for in situ heating and recovery of organic and inorganic materials
US6055213A (en) * 1990-07-09 2000-04-25 Baker Hughes Incorporated Subsurface well apparatus
US5046559A (en) * 1990-08-23 1991-09-10 Shell Oil Company Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers
US5370477A (en) * 1990-12-10 1994-12-06 Enviropro, Inc. In-situ decontamination with electromagnetic energy in a well array
US5233306A (en) * 1991-02-13 1993-08-03 The Board Of Regents Of The University Of Wisconsin System Method and apparatus for measuring the permittivity of materials
US5293936A (en) * 1992-02-18 1994-03-15 Iit Research Institute Optimum antenna-like exciters for heating earth media to recover thermally responsive constituents
US5322984A (en) 1992-04-03 1994-06-21 James River Corporation Of Virginia Antenna for microwave enhanced cooking
US5506592A (en) * 1992-05-29 1996-04-09 Texas Instruments Incorporated Multi-octave, low profile, full instantaneous azimuthal field of view direction finding antenna
US5236039A (en) * 1992-06-17 1993-08-17 General Electric Company Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale
US5304767A (en) * 1992-11-13 1994-04-19 Gas Research Institute Low emission induction heating coil
US5378879A (en) * 1993-04-20 1995-01-03 Raychem Corporation Induction heating of loaded materials
US5315561A (en) * 1993-06-21 1994-05-24 Raytheon Company Radar system and components therefore for transmitting an electromagnetic signal underwater
US5582854A (en) * 1993-07-05 1996-12-10 Ajinomoto Co., Inc. Cooking with the use of microwave
EP0713445A1 (en) * 1993-08-06 1996-05-29 Minnesota Mining And Manufacturing Company Chlorine-free multilayered film medical device assemblies
GB2288027B (en) * 1994-03-31 1998-02-04 Western Atlas Int Inc Well logging tool
US6421754B1 (en) * 1994-12-22 2002-07-16 Texas Instruments Incorporated System management mode circuits, systems and methods
US5621844A (en) * 1995-03-01 1997-04-15 Uentech Corporation Electrical heating of mineral well deposits using downhole impedance transformation networks
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5746909A (en) * 1996-11-06 1998-05-05 Witco Corp Process for extracting tar from tarsand
US5923299A (en) * 1996-12-19 1999-07-13 Raytheon Company High-power shaped-beam, ultra-wideband biconical antenna
JPH10255250A (ja) * 1997-03-11 1998-09-25 Fuji Photo Film Co Ltd 磁気記録媒体およびその製造方法
US5910287A (en) * 1997-06-03 1999-06-08 Aurora Biosciences Corporation Low background multi-well plates with greater than 864 wells for fluorescence measurements of biological and biochemical samples
US6063338A (en) * 1997-06-02 2000-05-16 Aurora Biosciences Corporation Low background multi-well plates and platforms for spectroscopic measurements
US6229603B1 (en) * 1997-06-02 2001-05-08 Aurora Biosciences Corporation Low background multi-well plates with greater than 864 wells for spectroscopic measurements
US6923273B2 (en) 1997-10-27 2005-08-02 Halliburton Energy Services, Inc. Well system
US6360819B1 (en) 1998-02-24 2002-03-26 Shell Oil Company Electrical heater
US6348679B1 (en) * 1998-03-17 2002-02-19 Ameritherm, Inc. RF active compositions for use in adhesion, bonding and coating
JPH11296823A (ja) * 1998-04-09 1999-10-29 Nec Corp 磁気抵抗効果素子およびその製造方法、ならびに磁気抵抗効果センサ,磁気記録システム
US6097262A (en) * 1998-04-27 2000-08-01 Nortel Networks Corporation Transmission line impedance matching apparatus
JP3697106B2 (ja) 1998-05-15 2005-09-21 キヤノン株式会社 半導体基板の作製方法及び半導体薄膜の作製方法
US6614059B1 (en) 1999-01-07 2003-09-02 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device with quantum well
US6184427B1 (en) * 1999-03-19 2001-02-06 Invitri, Inc. Process and reactor for microwave cracking of plastic materials
US6303021B2 (en) 1999-04-23 2001-10-16 Denim Engineering, Inc. Apparatus and process for improved aromatic extraction from gasoline
US6649888B2 (en) * 1999-09-23 2003-11-18 Codaco, Inc. Radio frequency (RF) heating system
IT1311303B1 (it) 1999-12-07 2002-03-12 Donizetti Srl Procedimento ed apparecchiatura per la trasformazione di rifiuti ecascami tramite correnti indotte.
US6432365B1 (en) 2000-04-14 2002-08-13 Discovery Partners International, Inc. System and method for dispensing solution to a multi-well container
US20020038069A1 (en) 2000-04-24 2002-03-28 Wellington Scott Lee In situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons
DE10032207C2 (de) * 2000-07-03 2002-10-31 Univ Karlsruhe Verfahren, Vorrichtung und Computerprogrammprodukt zur Bestimmung zumindest einer Eigenschaft einer Testemulsion und/oder Testsuspension sowie Verwendung der Vorrichtung
US6967589B1 (en) 2000-08-11 2005-11-22 Oleumtech Corporation Gas/oil well monitoring system
US6603309B2 (en) 2001-05-21 2003-08-05 Baker Hughes Incorporated Active signal conditioning circuitry for well logging and monitoring while drilling nuclear magnetic resonance spectrometers
AU2002363073A1 (en) 2001-10-24 2003-05-06 Shell Internationale Research Maatschappij B.V. Method and system for in situ heating a hydrocarbon containing formation by a u-shaped opening
US20040031731A1 (en) 2002-07-12 2004-02-19 Travis Honeycutt Process for the microwave treatment of oil sands and shale oils
CA2471048C (en) * 2002-09-19 2006-04-25 Suncor Energy Inc. Bituminous froth hydrocarbon cyclone
SE523298C2 (sv) 2002-11-19 2004-04-06 Tetra Laval Holdings & Finance Sätt att överföra information från en anläggning för tillverkning av förpackningsmatrial till en fyllmaskin, sätt att förse ett förpackningsmaterial med information, samt förpackningsmaterial och användning därav 2805
US7046584B2 (en) 2003-07-09 2006-05-16 Precision Drilling Technology Services Group Inc. Compensated ensemble crystal oscillator for use in a well borehole system
US7079081B2 (en) * 2003-07-14 2006-07-18 Harris Corporation Slotted cylinder antenna
US7147057B2 (en) 2003-10-06 2006-12-12 Halliburton Energy Services, Inc. Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore
US6992630B2 (en) * 2003-10-28 2006-01-31 Harris Corporation Annular ring antenna
US7091460B2 (en) * 2004-03-15 2006-08-15 Dwight Eric Kinzer In situ processing of hydrocarbon-bearing formations with variable frequency automated capacitive radio frequency dielectric heating
US7363967B2 (en) 2004-05-03 2008-04-29 Halliburton Energy Services, Inc. Downhole tool with navigation system
US7228900B2 (en) 2004-06-15 2007-06-12 Halliburton Energy Services, Inc. System and method for determining downhole conditions
JP5028261B2 (ja) * 2004-07-20 2012-09-19 デイビッド アール. クリスウェル, 発電および配電のシステムおよび方法
US7205947B2 (en) * 2004-08-19 2007-04-17 Harris Corporation Litzendraht loop antenna and associated methods
US7441597B2 (en) 2005-06-20 2008-10-28 Ksn Energies, Llc Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (RAGD)
EP1969088A2 (en) 2005-12-14 2008-09-17 Mobilestream Oil Inc. Microwave-based recovery of hydrocarbons and fossil fuels
US8072220B2 (en) 2005-12-16 2011-12-06 Raytheon Utd Inc. Positioning, detection and communication system and method
US7461693B2 (en) * 2005-12-20 2008-12-09 Schlumberger Technology Corporation Method for extraction of hydrocarbon fuels or contaminants using electrical energy and critical fluids
US8096349B2 (en) * 2005-12-20 2012-01-17 Schlumberger Technology Corporation Apparatus for extraction of hydrocarbon fuels or contaminants using electrical energy and critical fluids
WO2007084763A2 (en) 2006-01-19 2007-07-26 Pyrophase, Inc. Radio frequency technology heater for unconventional resources
US7484561B2 (en) 2006-02-21 2009-02-03 Pyrophase, Inc. Electro thermal in situ energy storage for intermittent energy sources to recover fuel from hydro carbonaceous earth formations
US7623804B2 (en) 2006-03-20 2009-11-24 Kabushiki Kaisha Toshiba Fixing device of image forming apparatus
US7562708B2 (en) * 2006-05-10 2009-07-21 Raytheon Company Method and apparatus for capture and sequester of carbon dioxide and extraction of energy from large land masses during and after extraction of hydrocarbon fuels or contaminants using energy and critical fluids
US20080028989A1 (en) 2006-07-20 2008-02-07 Scott Kevin Palm Process for removing organic contaminants from non-metallic inorganic materials using dielectric heating
US7677673B2 (en) 2006-09-26 2010-03-16 Hw Advanced Technologies, Inc. Stimulation and recovery of heavy hydrocarbon fluids
US7486070B2 (en) 2006-12-18 2009-02-03 Schlumberger Technology Corporation Devices, systems and methods for assessing porous media properties
DE102007008292B4 (de) 2007-02-16 2009-08-13 Siemens Ag Vorrichtung und Verfahren zur In-Situ-Gewinnung einer kohlenwasserstoffhaltigen Substanz unter Herabsetzung deren Viskosität aus einer unterirdischen Lagerstätte
DE102007040606B3 (de) 2007-08-27 2009-02-26 Siemens Ag Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl
DE102008022176A1 (de) 2007-08-27 2009-11-12 Siemens Aktiengesellschaft Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl
WO2009043055A2 (en) 2007-09-28 2009-04-02 Bhom Llc System and method for extraction of hydrocarbons by in-situ radio frequency heating of carbon bearing geological formations
FR2925519A1 (fr) 2007-12-20 2009-06-26 Total France Sa Dispositif de degradation/transformation des huiles lourdes et procede.
CA2713584C (en) 2008-03-17 2016-06-21 Chevron Canada Limited Recovery of bitumen from oil sands using sonication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530041A (en) * 1968-02-01 1970-09-22 Great Canadian Oil Sands Continuous settled density analyses
US3558469A (en) * 1968-07-09 1971-01-26 Great Canadian Oil Sands Hot water process
US5143598A (en) * 1983-10-31 1992-09-01 Amoco Corporation Methods of tar sand bitumen recovery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486950B2 (en) 2018-08-01 2022-11-01 General Electric Company Systems and methods for automated graphical prescription with deep neural networks

Also Published As

Publication number Publication date
CA2753601A1 (en) 2010-09-10
WO2010101828A3 (en) 2011-11-03
BRPI1005958A2 (pt) 2019-09-24
US20100219106A1 (en) 2010-09-02
RU2011136175A (ru) 2013-04-10
EP2403924A2 (en) 2012-01-11
AU2010221563A1 (en) 2011-09-08
AU2010221563B2 (en) 2013-03-14
US8101068B2 (en) 2012-01-24
CN102369259B (zh) 2014-12-31
WO2010101828A2 (en) 2010-09-10
CA2753601C (en) 2014-05-13

Similar Documents

Publication Publication Date Title
CA2713584C (en) Recovery of bitumen from oil sands using sonication
US6786941B2 (en) Methods of controlling the density and thermal properties of bulk materials
CN102369259B (zh) 调整油砂矿石的水含量的方法
NO333673B1 (no) Integrert enhet og fremgangsmate for behandling av borekaks samt anvendelse av den integrerte enheten
EP3199611A1 (en) Pellet preparation system and preparation method using biomass
Westover et al. Biomass handling and feeding
CN105492120B (zh) 用于高效地从尾矿中回收钻石、黄金的规程
Weindorf et al. Determining particle density in dairy manure compost
JP4072740B2 (ja) 泥水処理方法及び設備
EP1066114A1 (en) Controlled production and recovery of fine-coal agglomerates
US20190153327A1 (en) Water-based bitumen extraction processes based on primary separation vessel fines loading
US6422494B1 (en) Methods of controlling the density and thermal properties of bulk materials
CA2986399C (en) An improvement to water-based bitumen extraction processes based on primary separation vessel fines loading
CA2469326A1 (en) Oil sand conditioning process and apparatus
US3726786A (en) Process for integration of extraction processing streams
GB2472989A (en) Converting hydrocarbon waste into fuel for cement kilns
Landry Numerical modeling of machine-product interactions in solid and semi-solid manure handling and land application
Wells et al. MFT drying: Case study in the use of rheological modification and dewatering of fine tailings through thin lift deposition in the oil sands of Alberta
Matheri et al. Design modification and optimization of a sand wash plant
JP7187062B1 (ja) 生コンクリート製造プラント
Fu Hydrodynamics Studies of Air Dense Medium Fluidized Bed with Binary Mixtures for Dry Coal Beneficiation
Sharma et al. Rheological properties of tailings materials
CA3169705A1 (en) In-situ fines capture from fluid fine tailings
Clementson et al. Understanding bulk density variability of DDGS
Bundalli et al. Handling dewatered tailings: The three root causes of poor material discharge and bin hang-ups

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141231

Termination date: 20160301