CN102600518B - 有多槽转子的轴流泵 - Google Patents

有多槽转子的轴流泵 Download PDF

Info

Publication number
CN102600518B
CN102600518B CN201210073420.3A CN201210073420A CN102600518B CN 102600518 B CN102600518 B CN 102600518B CN 201210073420 A CN201210073420 A CN 201210073420A CN 102600518 B CN102600518 B CN 102600518B
Authority
CN
China
Prior art keywords
rotor
blood
pump
axial flow
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210073420.3A
Other languages
English (en)
Other versions
CN102600518A (zh
Inventor
杰弗里·A·拉罗斯
查理·R·山宝奇
卡蒂科晔·屈奇
理查德·A·马库什
丹尼尔·G·怀特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heartware Inc
Original Assignee
Heartware Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2005/035964 external-priority patent/WO2006118600A2/en
Priority claimed from PCT/US2005/042495 external-priority patent/WO2006060260A2/en
Application filed by Heartware Inc filed Critical Heartware Inc
Publication of CN102600518A publication Critical patent/CN102600518A/zh
Application granted granted Critical
Publication of CN102600518B publication Critical patent/CN102600518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/196Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body replacing the entire heart, e.g. total artificial hearts [TAH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/804Impellers
    • A61M60/806Vanes or blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0476Bearings hydrostatic; hydrodynamic for axial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/02Axial-flow pumps of screw type

Abstract

一个用于泵送血液的轴流式血泵,它具有一个大致是圆柱形外围包壳和一个与该外围包壳同中心的且位于该外围包壳之中的管状壳,管状壳的一端有输入口另一端有输出口。一个电机定子与上述的外围包壳和管状壳同中心且位于它们之间。一个叶轮与上述管状壳同中心且位于该管状壳之中。在运作中上述叶轮被位于叶轮中的磁体或被磁化的区域和上述电机定子之间的消极磁力的综合作用所悬浮,同时,当血液在上述管状壳和位于叶轮上的多个动压推力轴承表面之间流动时会产生液体推动力。一个蜗壳可以液密式地连接于上述管状壳的输出口,用以在轴向接受血液并将血液导流到一个垂直于轴的方向。该蜗壳具有一个改善液流的元件,此元件从蜗壳沿轴向伸出,延伸入上述管状壳之中且与该管状壳共轴。

Description

有多槽转子的轴流泵
技术领域:
本发明涉及轴流泵,尤其是轴流式血泵,它具有一个通常是圆柱形的转子悬浮于一个相应的圆柱形外壳中,外壳的一端有血液入口,另一端有血液出口;同时,该血泵设有电机部件,用来提供转动能量以旋转转子和泵送血液由泵壳的入血口到泵壳的出血口轴向地通过泵壳。
背景技术:
与离心式血泵相比,已知的轴流式血泵具有狭窄径向宽度的优点。因此,它们可被用于协助血管内或心脏内的血液泵送。轴流式血泵通常有一个圆柱形外壳,外壳的一端有一入口,其对面的另一端有一出口,泵壳内有一转子,转子上连有径向地从转子向外突起的薄叶片或叶轮。因此,当转子旋转动,叶片对液体施加功,推动流体从泵壳的入口通过泵壳到泵壳的出口。泵设有一个悬浮装置用来维持转子位于泵壳内设定的位置,还有一个电磁马达来旋转转子。转子可以是以机械式,磁性式,或液体动力式悬浮于血液流通通道内。也可利用以上悬浮技术的组合。
在先前的技术中,转子通常由机械轴承或套筒悬浮,有些具有一个从泵壳伸出到电机驱动装置的转子轴。磁性悬浮也是大家所知的,如在美国专利号6,368,083和5,840,070中的记载。从血泵排出的血液沿与转子旋转的轴平行的方向流动。
迄今为止轴流式血泵运用的是一种薄叶片的设计,在该设计中电机磁体被置于在转子轴上,相对远离环绕的定子,如在贾维克(Jarvik)和英科(Incor)所制造的泵中;或使用安置于薄叶片内的小磁体,如在MicroMed制造的一种泵中。以上两种设计通常会降低电机的转矩负荷和效率,且它们需要使用涉及毗邻表面的机械定子支持,毗邻表面在旋转中彼此移动互相摩损。
理想的血泵,不论是内置式的还是外置式的,都要比之前的薄叶片的设计更能容忍流量的变化并展示低溶血,高抗血栓性,足够的系统效率,且要在仪器预计使用期限内具有极高的可靠性。内置式血泵还要考虑到到解剖兼容性的设计约束和消除机械磨损及关联故障模式的需要,以便提供成功的、持久的、可植入的装置。
虽然在此是从血泵的角度来描此发明中的泵,可用预料的是本发明中的泵也可用于泵送具有难处理化学性质的液体,或非磁性的液体。这些场合特别需要非密封的设计,且由于各种的原因必须谨慎地处理这些液体。例如,由于液体在机械压力下变得不稳定而导致其分解甚至引起爆炸,或因为液体是除血液外的另一种具有苛刻的稳定性参数的复杂生物液体。
发明内容:
本发明提供了一种轴流式非密封且无磨损的血泵,它包括一个管状泵壳,该泵壳的一个开口端上设有血液入口,在另一个与其相对的开口端上设有血液出口。一个圆柱形的转子悬浮于壳管内,该转子含有多个周边和径向表面,用来引发压力以协助血液从入血口端流过泵壳到出血口端。泵设有一个电机以驱动转子在泵壳内旋转。在一种实施方式中,电机定子是由置于壳管外或壳管内的导电线圈构成的。转子上设置有多个磁电机驱动磁极,它们间隔分布于转子的外围表面附近。电机定子线圈提供磁通造成转子旋转。
转子由一个圆柱体构成,该圆柱体有一个用来促使血液从入血口进入壳体的前橼部分和一个用来增强从壳体出血口排血的尾橼部分。转子包含有一个或多个从位于转子前橼部分的进口通道延伸至位于转子尾橼部分的出口通道的凹槽,以此在转子的表面上界定出多个拱形的外周接触面区域(peripherallandareas)。构成每个凹槽的侧壁的外表面径向地延伸到转子的外表面,但它们并不一定是彼此平行的。在有些实施方式中,每个凹槽具有一个至少是局部绕着转子旋转轴的、界定流通通道的中心部分,其在液体的流动过程中于与一个位于转子尾橼部分、大致是沿着轴向定向的通道相通。当转子旋转时,凹槽的侧壁向血液施以轴向推力,并将旋转动量传递给转子下游的血流。在有些实施方式中,每个凹槽的中心部分界定了一个比设定的进口通道和出口通道都窄的流动通道。在有些实施方式中,每个凹槽的出口通道都比其进口通道宽,以提高排出血流的特性。在有些实施方式中,凹槽流动通道的中心部分的集合总宽度大致相当于或小于位于凹槽流动通道之间的外周接触面区域的拱形集合总宽度。沿着转子的流动通道在转子的某些部位可以是螺旋状的,而在转子的其它部位它们通常是沿着轴的方向。
每一个转子外周接触面区域的表面上都设有多个流体动力推力轴承(hydrodynamicthrustbearing)表面。这些轴承表面在转子的外周产生液压,由此将径向对称力传给转子,从而在转子旋转时维持它在泵壳内的径向位置,并对其外围的泵壳起到良好的清洁作用,提高抗血栓能力。
每个在凹槽流动通道间的转子接触面的外表面都比之前设计的轴流式血泵的薄叶片更宽更长。这样就可在转子外围或其附近安置或建立较大的电机驱动磁体。转子中的大驱动磁体能提高磁力,同时,把它们安置在转子的外围减少了转子磁极与产生磁通的电机定子线圈之间的间隙。这样的设置可改善电机的转矩能力和提高泵的电磁效率。由径向通量差距设计(radialfluxgapdesign)的电机所产生的轴向磁刚度也可用来协助维持转子在泵壳内的轴向位置。
磁性轴承系统和流体推动轴承都可被用来径向或轴向地协助维持转子在管状壳体中的位置。用于辅助转子悬浮于壳内的磁极可置于位于外周接触面表面中(peripherallandsurfaces),而该外周接触面位于由位于围绕泵壳中的或邻近位置的相应的磁极吸引或相斥的转子凹槽之间。
在一个实施方式中,可用磁性轴承代替动压推力轴承来构成一个全磁悬浮系统。这样的磁性轴承可被安置或构建于转子外周接触面区域中,在电机驱动磁体的前方或后部位置。因此,依照本发明制成的转子,其上游或下游不需要机械支持结构。动压推力轴承,无论其是否含有磁性轴承,或单一的磁性轴承,都足以使转子在运作时保持在所需的位置上。
在有些实施方式中,管状泵壳的结构可包含一个位于转子前橼或尾橼部分附近的环形斜坡式的内表面,以此为转子的轴向运动提供一个机械制动。这样的一个结构为转子提供了额外的轴向支持,因为在发生冲击负荷的情况下,必须确保转子保持在泵壳内正确的位置。另一方面,一种在转子前橼和尾橼部分都置有环形斜坡式内表面的分裂泵壳结构可用于提供径向支持和沿轴两端方向的轴向支持。血泵还可以利用一个或多个上游和下游液流矫直装置(flowstraighteners)或扩散器(diffusers)来改善血液在流入或流出泵时的流动特性。
泵设有一个控制器,用来操纵电机以一个设定的转速运行。例如,这可以是一个由操作医师制定的转速。或者,电机可以以随一种生理控制算法而改变转速的方式运行。
和以往使用径向薄叶片叶轮的轴流泵设计不同,在此那些可用作液流矫直装置或扩散器的上游和下游支柱或定子元件也许是有帮助的,但不是必需的。由于减少了安置它们时需要考虑的容许轴向偏差问题,没有这些上游和下游液流矫直装置允许一种比较简单的机械设计。此外,没有上游液流矫直装置或扩散器可使上游血流模式具备前涡流,这可提高抗血栓性。
在有些实施方式中,一个蜗壳(volute)可被用于泵壳的输出端以改善输出血液的流动特性。例如,蜗壳可来用于将血液流动的方向改变到一个与泵的旋转轴垂直的方向上。通过把轴流泵输出液流中的旋转动能转换成一个具有充分适合于排入血管系统压力的较小输出速度,蜗壳可改善轴流式血泵输出血液的流动特性。
此发明中的血泵可通过类似起搏器植入的方式植入血管系统或安置于患者的胸腔,如心包空间,腹腔,或靠近皮下的位置。同样地,泵也可被置于体外用作较短期的血管循环支持。另外,具有多个在此描述的泵沿轴向排列而组成的多转子或联动转子泵可用来提供单心室或双心室支持,甚至以全人工心脏的方式为患者提供完全的血液循环。此外,这样的多级泵可由较小直径的管状外壳构建,可用于血管内的植入。
附图说明:
为了更全面地评价本发明及其所具有的许多优势,参照所附图纸可以更好地理解以下的详细描述。其中:
图1是一个依照本发明的可植入非密封式轴轴向旋转血泵的纵向剖面图。
图2是图1所示旋转泵的转子侧面正视图。
图3和图4是图2所示转子的两个不同侧面的正视图。
图5是沿着图2中5-5线的断面图,省略了其内部零件。
图6是可用于本发明所提供泵中的另一种转子实施方式的立体图。
图7是图1所示实施方式中的转子后视立体图。
图8是图7所示转子的俯视立体图。
图8A是图7所示转子的局部不完整的放大立体图。
图8B是图7所示转子实施方式的立体解析图。
图9是图1所示泵的一个替代实施方式的纵向剖面图。
图10示出本发明所提供的多转子血泵部分纵向断面的平面图。
图10A是图10所示血泵另一个实施方式的平面图。
图11是本发明所提供的轴流式血泵的另一个实施方式的分解图。
图11A是图11所示实施方式中电机定子的立体图。
图12是依照本发明所提供的一个实施方式的一个有蜗壳血泵的剖面示意图。
图13是图12所示的有蜗壳血泵的立体图。
图14是图12所示的有蜗壳血泵的分解图。
图15是依照本发明所提供的一个实施方式的蜗壳内部的立体图。
图16是图15中所示的蜗壳内部的俯视平面图。
图17是依照本发明所提供的另一个实施方式的蜗壳内部的立体图。
图18是依照本发明所提供的再一个实施方式的蜗壳内部的立体图。
图19是依照本发明所提供的又一个实施方式的蜗壳内部的立体图。
图20是依照本发明所提供的另一个实施方式的下游液流矫直装置的立体图。
图20A是图20所示下游液流矫直装置的仰视图。
图21是依照本发明所提供的再一个实施方式的下游液流矫直装置的立体图。
图22是依照本发明所提供的又一个实施方式的下游液流矫直装置的立体图。
图22A是图22所示的下游液流矫直装置的底部正视图。
图22B是图22所示的下游液流矫直装置的侧部正视图。
图23是依照本发明所提供的又一个实施方式的下游液流矫直装置的立体图。
图23A是图23所示的下游液流矫直装置的底部平面图。
图24是一个利用本文中所展示和描述的轴流式旋转泵而构造的人工心脏的立体图。
实施方式:
在描述图纸中展示的本发明最佳实施方式时,为了内容的清晰起见,我们将使用专门术语。但是,所披露的内容并不是只局限于所选用的专门术语。同时要明白的是,每一个特定的要素都包括所有的以类似方式运作的技术等同物。
现在参照图纸,特别是图1-5,它们披露了一种适于协助泵送血液通过病人血管系统的血泵10,它含有一个空心的、通常为管状的泵壳12。泵壳12是非磁性的,由适当的生物相容性材料制成,如钛或合适的陶瓷材料,它们具有非致血栓性,刚硬且呈现最小的涡流损失(eddycurrentlosses)。壳体12限定有一个血液入口端11和一个血液口出端11A,因此,血液从壳体中流过时是沿着箭头18所显示的方向。在一种实施方式中,壳体12具有等外径,但是,它的内径入口的部位先如13所示收敛其后如13A所示扩散,由此界定一个如图1中标号52所示的环状峰丘或环。
壳体12的内腔中有一个大体上是圆柱形的转子14,它是用来作为在壳内泵送液体的叶轮。在一种实施方式中,转子14有一个与壳体内径扩散部位13A轮廓相吻合的斜切前橼14A。收敛和扩散的内径部位13和13A可充当机械制动,使转子14在管状壳体内保持适当的轴向位置,如在外界的冲击可能将转子振出其工作的轴向位置的情况下。在某些实施方式中,转子的斜切前缘14A设置有一个如下所述的流体动力推力轴承表面(hydrodynamicthrustbearingsurface),以配合壳体12中内径扩散部位13A的表面,在转子遭受轴向冲击负荷时提供额外的保护。类似于以下的关于转子尾橼的描述,壳体内径扩散部位13A和转子斜切前橼14A的相互定位也可被用来在转子的前橼提供轴向磁预载(preload),以协助维持转子在壳体内处于悬浮和无磨损位置。
转子14含有一个或多个凹槽22,每个凹槽从一个位于斜切前橼14A的入口部分或进口通道22A延伸至一个位于转子尾橼14B的出口部分或出口通道22B。凹槽22界定了跨越转子的液体流动通道。在有些实施方式中,多个形成于转子14中的凹槽22彼此分离,界定出多个位于它们之间的外周接触面区域35。每个凹槽由一对大致上沿转子的旋转轴径向延伸侧壁16界定,但是这些侧壁不一定是彼此平行的。
如图1-4和图6所示,每个凹槽22都有一个中央流动通道30,此通道至少部分绕着转子的旋转轴弯曲,并通到至一个大致沿轴向延伸的出口通道22B。此弯曲的中央部分30要比入口通道22A或出口通道22B狭窄。相对较宽的出口通道及其沿轴向的定位便于更容易地从转子排出血液,改善释放血流特性。当转子14旋转时(在图1的实施方式中,沿顺时针方向),凹槽22及其侧壁16能朝轴的方向推动血液,如箭头18所示。
在一种实施方式中,凹槽22的数量可介于2个至8个之间,典型的是4个。撇开凹槽的数量不论,其在转子14的外周边23(图5)的集合宽度是等于或大大小于所有位于同一外周边23、介于凹槽之间的接触面区域35的集合总圆周宽度。作为例子,如图5中的实施方式所示,在沿图2中的5-5线所截取的转子断面上,一个凹槽22的外缘宽度以箭头26表示出。箭头26比用来表示毗邻接触面区域35宽度的弧形28的长度短。总体说来,沿着凹槽22,在其中央部分,凹槽22的总宽度小于或等于与之相应的接触面区域35的集合总宽度。
在这种实施方式中,每个凹槽22的深度都比与之具有可比性的常规薄叶片轴流泵设计中叶片的径向长度大。例如,对于用于心脏的泵,从其外周测量的凹槽22的平均深度可介于1毫米到5毫米间。在有些实施方式中,凹槽的平均深度约为转子直径的1/3,但小于转子半径。在另一些实施方式中,凹槽在位于转子前橼(leadingedge)的进口通道22A处较深而在位于转子尾橼(trailingedge)的出口通道22B处较浅。
参照图2,该血泵10还含有一个转子,此转子含有多个相对较大的永久性驱动磁体34(如虚线所示),它们被构造于转子14宽阔的接触面区域35中。依照本发明的一种实施方式,转子中的永久性驱动磁体34可通过磁化接触面区域35的外周选定部位而产生。例如,这可通过用各向同性的磁性合金构造转子,然后磁化所选外周部分以形成多个有不同几何定位的磁极来实现。在此首选的材料是有生物相容性的磁性合金,这样就不需额外的涂层。这样的转子比由多个部件组成的叶轮更容易制造也更便宜。
参照图1,电机还含有一个有导电线圈38的电机定子36。导电线圈被放置在一个围绕管状外壳12和转子14的外壳40中。通过常规的利用线圈38将电力转化为磁通的方法,电机定子36起到旋转转子14的作用。合并在转子宽阔接触面区域35的永久性驱动磁体的选择要根据磁学性质、长度和横断面面积,以便与电机定子产生的磁通有良好的电磁耦合。由于接触面区域具有较大的表面面积,转子磁体的特性和位置相对容易被改变。这种设置能提供强电磁耦合及用以维持转子位置所必需的轴向磁刚度。在一种实施方式中,定子磁通和转子中驱动磁体之间的磁耦合产生扭矩,使转子14旋转顺时针方向旋转。对本领域的技术人员而言,转子沿逆时针方向旋转也是可以理解的,这并不偏离本发明的范围,。
电机可以是一个三相无刷直流电动机。在一种实施方式中,电机可以是具有螺旋管形线圈,三相wye连接(wyeconnected)的设计。定子可采用与典型的径向通量差距电机(radialfluxgapmotor)一致的回铁设计(backirondesign)。如有需要,电机定子可含有一个可由管状外壳12滑到指定位置的上的单独的密封外壳40。一个在外壳40的外表面的焊缝圈(braisedweldring)可用于固定该电机定子外壳的位置。激光焊接是一种可用来将电机定子外壳40固定于泵壳并具密封接口的方式,其具体的实施细节已在之前的技术中为大家所知。
参照图6,它披露了另一种为本发明提供的血泵而设计的转子14b的实施方式。转子14b具有位于具有中央部位30的流动通道22之间的六个外周接触面部位(peripherallandsections)35b。除此之外,转子14b的特征和结构与在此披露的其他实施方式中的转子类似。
参照图7,8和8A,此处展示了一个类似图1-5的实施方式中的转子的转子14。转子14的每一个外周接触面区域35上都构造有一个或多个流体动力推力轴承表面(hydrodynamicthrustbearingsurfaces)44和46。每个流体推力轴承表面44,46是沿着相联的、有预定外周半径的接触面区域的表面分布(配置)。从转子14的(顺时针)旋转角度看,轴承表面的每个前沿47在相联的接触面断面的外表面下都被制成凹下一个预定量,如图8和8A中标号45所示。此凹下的表面逐渐变浅,并沿着一个弧形,以渐进弯曲的方式横过接触面区域,凹面的曲率轴并不一定是与转子旋转轴同轴。此逐渐变浅的轴承表面中止于后端48,在此处每个轴承表面44,46边沿被刨薄平稳过渡到接触面区域的外表面,且相对于接触面区域连续的下游表面,它不再是凹陷的。
当转子旋转时,每个接触面区域35上的对应的推力轴承44,46,将血液舀到轴承表面,由此血液在轴承表面和管状泵壳的内壁之间流动。推力轴承表面的逐渐缩小的结构的效果是迫使血液流过一个构造于轴承表面和管状泵壳内壁之间的渐减的或渐窄的区域,因此增加了该狭窄区域中上游液体的压力。此压力作用于轴承的表面部分,并产生一个净对称力,以径向支持转子旋转。动压推力轴承以这种方式在转子上产生轴向压力是众所周知的,如在美国专利号5840070中。由此产生在转子接触面区域表面的液压动力能使转子以图1所示的方式悬浮定位于管状外壳12的内腔正中,并可对抗动态径向冲击力,无需转子与轴承表直接接触。推力轴承的表面44和46可直接构建于接触面区域35的外周表面中,也可置于在接触面区域圆周形表面的外围形成的适当空腔中,用适当的覆盖物把它固定。
在有的实施方式中,流体动力推力轴承表面被构建在转子前橼或尾橼部分。如参照图1-3位于转子前沿14A的表面20逐渐缩小成一个适当的推力轴承结构以与管状泵壳逐渐扩散的内表面13A相配合。如图1所示,这样的推力轴承能对抗转子朝左的纵向移动。此外,如有需要,构成环形圈52一部分的逐渐扩散部分13A可由流体动力推动轴承组成,以配合与之相邻的转子表面。在转子沿顺时针旋转时,防止转子14和环状圈52的相互接触。
流体动力推力轴承的表面也可被设置在转子上,靠近其后橼14B。在这种设计中,位于管状泵壳输出端11A附近的内径可构造成如图1中虚线所示的形状,以此构成一个与入口端11附近的环形圈52类似的环形圈53。这种置于转子上或构建于环形圈53一侧的推动轴承,可达到类似于替代或补充以下所述磁体56和57的相斥磁极的目的。这样的推力轴承可给转子提供一个径向或轴向的支持,或同时提供径向和轴向的支持,增加转子抗冲击负荷的能力从而提高其稳定性。
位于转子圆柱体外表面的流体动力推力轴承可提供良好表面清洗。推力轴承所产生的离心力具有将液体推向泵壳内部的表面,提高血流量,从而提高该泵的抗血栓性。相比之下,在先前技术中使用的靠近旋转轴的流体动力轴承具有较小的表面清洗作用,导致血液凝固的可能性增大。因此,本发明为减少血液凝固的提供了条件,降低了血泵和患者所需使用的抗凝血剂量,从而可减少对患者的不良副作用。如有需要,流体动力推动轴承表面可以螺旋式排列于转子的表面,通过在转子旋转时移动血液来提高表面清洗效果。
作为一种轴向作用于转子的动压推力轴承的替代装置,永久性转子固定磁体(permanentrotorretainingmagnet)可放置在位于转子前端、或后端、或前后两端之中的每一接触面区域35中。可将一个或多个相对应的永磁体置于管状泵壳之中或之上,毗邻转子固定磁体,利用互相排斥的磁力来维持转子在泵壳内的轴向定位。在此仅举一例,在图1和图2中位于转子14尾端接触面区域表面上的虚线代表了一个永磁体56。一个与之相对应的永久性定子磁体57被安置在环绕管状泵壳12的外壳40中。转子磁体56由可合适被磁化的转子材料构成。如图1所示,如果转子磁体56的北极和定子磁体57的北极毗邻或彼此相对,磁排斥力将会协助将转子固定于正确的轴向位置。转子的纵向或向右方的轴向运动被磁体56和57间的排斥力所限制。当然,也可将磁体的南极以类似的方式彼此面对,从而达到类似的效果。可以的是,磁体57可由环形磁铁或电磁线圈构成。
参照图8A,在一个实施方式中,每个推力轴承表面的每一个横向侧边都设置有沿着该侧边的隔离套(shrouds)49。这些由每个轴承表面凹下部分产生的逐渐减少高度的侧壁所形成的隔离套能减少从轴承表面渗漏液体的数量,并能产生较高的径向压力水平。利用这种隔离套将渗漏减少到可接受水平能使轴承的承载量增加近一倍。
在每个转子推力轴承表面的下游可设置一个非必需的压力缓解表面用来减少溶血。此压力缓解表面由与推动轴承表面的后端48相连的外周接触面区域的一部分构成,并且略微朝远离壳壁的方向发散。在此附近,流过推动轴承表面的血液可沿压力缓解表面流入转子中的与之相邻的一个凹槽22中。在图7和图8中可见的位于转子前端的圆形表面54使血液容易进入转子的流动通道。因此,本发明提供了一种具有宽阔外接触面区域且利用带有护套的流体动力推动轴承来提供径向和轴向支持的轴流血泵,它比各类已知的轴流血泵具有显著的优势。
在有些实施方式中,转子14可由机械加工,模具或铸造一块强磁性材料的方式生产,例如,强磁性材料可以是压缩接合的钕或Alnico(铝镍合金),或一种含大约70%按重量计的铂和大约20%-30%按重量计的的钴构成的合金。在有些实施方式中,合金中大致含有76%-79%按重量计的铂。在另些实施方式中,合金中大致含有21%-24%按重量计的钴。在一种实施方式中,一个集成的一体型转子含有77.6%按重量计的铂和22.4%按重量计的钴。这样的转子通常是通过热加工获得良好的磁学性质,也可通过被磁化,获得南北磁极。
这种转子的优点是:一个由铂钴合金制成的一体集成型的元件可由常规的金属加工和铸造方式很容易地加工成复杂的形状;同时,这种合金是磁各项同性的,因此它的构成部分易被磁化,可在任何几何方位生成多个磁极。这些特征使转子可由一块合金实体构成,无需制造如先前的心辅助装置所涉及到磁体及支持结构的组装元件,从而降低了生产成本。此外,本发明所用的合金具生物相容性和高耐腐蚀性,且具有约为31Rc的洛氏硬度因而无需坚硬外涂层。可以理解的是,根据需要,转子的材料可以是各项同性的或是各项异性的。
在转子制造成型后,可用敷形保护性聚合物涂料处理其表面,例如聚对二甲基苯(Parylene)或有机硅,以在转子外周形成气密密封层来防止氧化。除此之外,可在敷形聚合物涂层上覆盖一层保护涂层以防止磨损和擦伤。此处所用的涂料可以是氮化络,氮化钛或其它商业涂料例如ME92,MedCo2000,或DLC。或者如上所述,使用生物相容的磁等方向性合金,如铂钴合金,可省略使用保护层。这些作为用于永久心脏心室辅助装置中的转子可以是一个具有10毫米外径和20毫米长度的圆柱形装置,它能对抗生理血压差提供每分钟2-10升的流率。磁化转子接触面部位可在覆盖涂层之前或之后进行。
参照图8B,一种转子14的实施方式含有位于每一个接触面区域35上的凹进之处35A,在每一个这样的凹进之处中又含有一个凹坑55,用以容纳一个离散的永久性驱动磁体73。永久性驱动磁体73具有和以上图2中所描述的磁化区域34相同的作用。在此实施方式中,接触面区域凹进之处35A包含有与凹坑55相邻的槽腔74。槽腔74是用以容纳离散的永久性定位磁体75,此磁体具有和以上所述的图1和图2中涉及的转子定位磁体56相同功能。接触面区域凹进之处35A还包含有钻孔76用于在需要时减轻重量和实现转子的动态旋转平衡。一个可嵌入接触面区域凹进之处35A的特定形状的保护盖77被用于保持离散的驱动磁体73和定位磁体75在转子上的位置。在此实施方式中,保护盖77含有为图7,8和8A中所述的转子而设置的动压推力轴承表面44和46。
参照图9,这里披露了一种图1所提供的泵的实施方式,该泵具有一个套管70插入泵壳12的出口端之中。套管70内的内径缩减区域71具有充当制动装置的功能,可以机械式地阻止转子14朝一个轴向的方向移动,如在图9中向右的方向,因此,磁体56和57不再是必需的了。此外,套管70所具有的内径缩减结构使这种构造适合作为本发明所提供血泵的儿科版(pediatricversion)。因为与无套管的构造相比它降低了流率。
参照图10,一个轴流血泵联动系列60有一个共同的圆柱形的外壳62,壳内有多个固定在同一个轴64上、沿轴向彼此分开的转子14C。在此实施方式中,转子都由共同轴64驱动如同一个转子般一起旋转。在和本发明一起审核的专利申请系列号11/118,551中描述了这样的装置,在此引用其内容作为参考。与之前的实施方式中的接触面区域35类似,在此每一个转子14C都具有外周接触面区域35C。通过这种串联转子方式可以达到以多级泵的形式来增强泵的功率,从而获得小直径高容量泵。
每一个转子都配有一个含导电线圈的电机定子36C,因此每一个转子都以类似于之前的实施方式中所描述的方式工作,除了它们有一个共同的主轴的特点。转子14C和定子36C可以是和之前的实施方式相同的设计,但是,每一个转子并不需要具有相同数量的凹槽或相同数量的位于凹槽之间的接触面断面。
尽管本发明所提供的轴流泵通常不需要这样的叶片,但是传统薄叶片设计的定子叶片66可安装在三个联动转子中至少两个转子的下游,从泵壳62的内壁径向地向内延伸。定子叶片66的作用是将从转子排出的轴向液流的旋转动量在液体到达下一个转子之前降低。这样的设计可给血液或其它液体施加更多的液压功。如有需要,可设有将所需要数量的这类径向伸出的叶片66。此外,还可在定子叶片66的前端或尾端设置适当动压推力轴承表面以给转子提供额外的轴向支持。定子叶片66还可含有集合的永磁体用以构成磁性轴承以支持转子。安置于每个转子的适当前橼或后橼中或之上的永磁体可提供与定子内磁体相排斥的磁极,以协助提高转子的轴向稳定性。
在图10所示的实施方式中,每一个电机定子36C和与之相对应的转子在轴向对准。也可改变这种定位方式以达到更好的磁耦合式磁相斥以提供额外的轴向磁场支持。
图10A涉及另一个多转子轴流泵,它含有多个血泵60,每个血泵60含有一个具有和以上描述的转子14特征相同的转子14C,这些转子彼此分开沿轴向对准,通过一个由具有生物相容性,具有低涡流损失材料构成的共同圆柱形外壳62达到泵送血液或其它液体的作用,如同之前描述的单一转子泵。在这种实施方式中,每一个转子14C是独立地工作,而不需使用连接轴。与之前所述的实施方式一样,每个电机定子36C都含有一个与每个转子对应的导电线圈,因此每个转子都以与之前描述的实施方式类似的方式工作。定子36c也可是之前描述的设计。多个转子14c同步工作提供额外的抽吸功率,因此可构建一个比单级泵直径小的高容量泵,可直接植入患者的血管系统减少其开放性外伤。
在一种实施方式中,所有可独立旋转转子14C都以相同旋转率旋转。可以理解的是,如有需要多转子系统中转子的旋转率可以是彼此不同的。在有些实施方式中,其中一个转子可顺时针旋转并且其定位是使槽能推动血液式或其它液体沿箭头63的方向通过管状外壳62。一个相邻的转子的定位可以是在沿逆时针方向旋转时同样地使凹槽沿着箭头63的方向推动血液。因此,在此多个转子同时沿箭头63的方向推动液体,即使它们旋转的方向相反。这种设计方案的一个优点是:位于顺时针旋转下游的沿逆时针旋转的转子可抵消由其上游转子施加给被泵送液体的旋转动量,这样允许给液体施加更多的液压动力。取决于施加于各个定子36C的动力,与之相对应的转子可根据需要以彼此相似或不同的旋转率被驱动。因此,它减少了由不同步的电机驱动波形而产生的不利影响。
在有些实施方式中,多转子泵无需位于壳内和转子之间的静止的旋流抑制叶片。相应转子的反相旋转特性消除了对这种叶片的需求。
有些实施方式使用两个以上的转子,相邻的转子以彼此相反的方向旋转,就是说在泵壳内顺时针旋转的转子和逆时旋转的转子的轴向定位是交替着的。
一个以上所述的多级结构的永久性心室辅助装置具有6毫米的外径和15毫米的长度,如前所述它能对抗生理血压差提供每分钟2-8升的流率。这种多级泵可作为在体外工作的外周血管插入血泵,或提供双心室支持甚至完全的人工心脏作用。可以理解的是,在此多个转子不需要固定于用一个共同的轴上,可给与每个转子相关的电机定子通电,使每个转子的顺时针或逆时针的旋转而不受其毗邻转子的影响。
图11是体现本发明实施方式的另一种血泵构造的分解图。该泵包含一个初级外周套管状套子102a和一个次级或释放部件102b,它们配置在一起用以密封在组装保护壳内的管状外壳104和环绕此管状外壳的电机定子110。一个0型圈可用来防止血液渗漏于内部管状外壳104和该附件102a之间。在此实施方式中,整个管状外壳和环绕它的电机定子都被罩在套管状结构中,该结构具有缩小直径的入口端105,如同一个子弹般的构造。
电机定子110具有为电机线圈的三相操作而设的三个电线103(最好见图11A中电机定子的放大图)。电线可置于一个有三节120,120a和120b的电缆管道内。可以理解的是,其它电机设计可选择来用于需要高速通信或高效率的应用中而不明显偏高本发明的范围。
图12-16展示了一种血泵的实施方式,在此轴流血泵排出的血液的轴向液流旋转动能在泵的出口处被蜗壳转化为液压流,如标号106所示。蜗壳的引入对本发明所提供的轴流泵并不是必需的,但它是一种用于改善血流特性以进一步减少血栓形成和提高抽送到血管系统的血液压力的可选性实施方式。
参照图12和13,一个血泵100含有一个大致上是圆柱形的外包壳或套管102a。该套管102a可含有缩减直径的微圆形或子弹形前端或入口端105,其上有一个让血液进入泵腔的入口116。泵腔由大体是圆柱形,其外径小于套管内径的内罩104界定。如前所述套管102a和管状内罩104可由具生物相容性非磁性材料构成,如钛金属式陶瓷。
电机定子环110可安置于内罩104之外和套管102a之内空间位置上。以上描述过的定子环110线圈的三相控制电线是通过电力和控制电缆管道120k连接。电缆管道120K通过构成蜗壳106的一部分的出口118退出泵。一个如前所述的转子108,可以磁力悬浮或流体动力悬浮的方式在内罩104内工作,该转子被置于定子环110的中心以使从入口116进入的血液或液体轴向流动。
蜗壳106以流体密封连接于套管102a和管状内罩104,因此,被转子108抽送的血液被输送到蜗壳106的中央腔114(图12)。参照图12和14,一个O型圈124B可用来确保蜗壳和管状内罩104之间的液体密封连接。可用一个或多个螺丝126来确保密封连接。
如图15和16所示,蜗壳腔的截面可以是环形的,它由一个从蜗壳的底部沿转子108旋转轴的方向向泵内突出的下游中心柱112确定。中心柱112朝转子108的下游端延伸,但不与转子的下游端接触,它可以是具圆柱体(如图12,14和15所示)或是其它可用于影响血液从转子中排出的形状,如以下所详细描述的。
由转子108从轴流泵的泵腔推入蜗壳腔的血液具有围绕转子旋转轴旋转的旋转动量或螺旋式动量。液体的旋转动量在转子的正下方血液中心部位产生了一个低压区域。在某种程度上此低压区域被一个位于转子尾橼14B的锥形轴向延伸物24(图1)缓和。中心柱112也具有填充血液进入蜗壳114时所产生的出现在下游旋转血液特征中的低压区作用。其后血液注满环形的蜗壳腔114,系统中的液体压力导致血流以基本上沿离心的方向流过蜗壳腔114到达蜗壳释放口或出口122,如图13-16所示,从而产生输出压力。在这个实施方式中,蜗壳是无叶片的,同时其所排出的血流与血管系统中血流的纵向性特征一致。通常这种实施方式血泵被植入体内时,其管状部分横贯心室的顶点而其蜗壳部分位于心脏之外,一个接合物(未显示)被用于将蜗壳的释放口或出口连接到患者的动脉系统。
现参照图17,它展示了一个具有替代结构液流矫直装置的离心式蜗壳123的实施方式,该液流矫直装置大致是轴向地伸入到相连轴流泵的泵腔。在此实施方式中蜗壳123有一个通常是环形截面的流动腔133,一个双脚定子元件125从此处伸出蜗壳腔并沿着轴流泵腔的轴的方向延伸,如上所述,相对于轴流泵腔的轴言它是向内延伸的(未显示)。此定子元件具有一对平行的脚126和128,它们大致上是沿着与泵的旋转轴同轴方向伸出。每一个脚126和128的接近内部端部分被制成弯的或曲线形的,具体地说脚128的末端部分130被弯曲成与定子元件125的纵向轴及与相连泵腔中心线都成大约45度的角度。支撑脚126的接近内部端部分132也被弯曲成与泵轴成45度的角度。末端部分130的曲率轴与末端部分132的曲率轴垂直。这个双脚定子125起到将从轴流泵输出血流所具有的动态旋转动量,在血液进入蜗壳123的离心腔133之后及从蜗壳的径向出口134排出之前,转化为有压流。
参照图18,它展示了蜗壳136的另一实施方式;该蜗壳有一个大致为圆形截面的离心流动腔137,该离心流动腔137内有一个在此描述的,大致是轴向地伸入到相连轴流泵的泵腔中心轴流矫直装置或定子元件135。该定子元件135含有一个与轴流泵的中心轴线(未显示)对准的中心柱部分138,该中心柱部分138具有一个通常是长方形的顶端或末端部分139。该长方形的定子顶端的短轴被定位于与中心柱部位138的中心线及轴流泵的中心线平行的位置。如之前其他的蜗壳实施方式所涉及的,这个定子元件的作用是将从轴流泵排出液体中的动力旋转动量,在液体填注蜗壳腔及由径向出口141排出的过程中,转化为有压流。
参照图19,此外展示了另一种具有圆形截面离心流腔143的离心蜗壳142的实施方式。一个液流矫直装置或定子元件144从蜗壳腔的底部沿着一个与蜗壳相连的轴流泵的中心线(末显示)轴向地朝内延伸且基本上是与此中心线对齐。定子元件144有一个具有宽的双叉型末端的中心柱部分147。每个叉通常沿着与中心柱146的轴平行的方向延伸,在轴的两边一边一个。具有动力旋转动量的由轴流泵排出的血液在进入蜗壳腔之前被定子元件144转化成有压流,并以离心式从出口147排出。
依照本发明,从轴流泵流出血液的特性可被改变而不需位于泵下游的突出的叶片柱子,而改为使用为改善液流特性而设计的具有特定形状的通道。参考图20和20A,它们展示了依照本发明所提供的一个直通式液流矫直装置的实施方式。该液流矫直装置具有一个基座部分148用以将其固定于血泵上。一个直的圆柱形管149由基座部分148伸出。一个具有圆形开口151的通道可被制成具有椭圆形的截面并有一个在圆柱形管149内形成的椭圆形出口152的形状,如图20A所示。这个被制成特定形状的通道的开口151可以是任何可改善液流特性的形状。界定椭圆形出口152的特型通道161逐步地引导具旋转动量的血液通过椭圆形的约束结构,将其转化为大致上沿轴向流动的液流。此外,特型通道151也可是部分锥形的,它可具有圆形、椭圆形或其它形状的出口,且出口的直径在某种程度上小于入口端的开口以达到同样的目的。在此处的实施方式中,通道151是直线型的且它与轴流泵同轴。
参照图21,它展示了依照本发明所提供的另一个液流矫直装置的实施方式。在此实施方式中液流矫直装置具有一个基座部分用以将其固定于轴流血泵上。同时,它具有一个弯曲管153,管上含有一个用于减少从血泵排出血流的轴向旋转动量的狭窄部分156。通过弯管153的轴向血流被从一个开口157排出,在此处一个适当的接合物被用来将血流导入血管系统。
参照图22,22A和22B,在此展示了依照本发明所提供的下游液流矫直装置的又一实施方式。该液流矫直装置具有一个含有一个流动腔158A和一个基座159的笔直的圆柱形管158。一个叶片携带中心柱161沿轴向延伸过至少部分的流动腔158A并沿轴向深入到与该装置相连的轴流泵的泵腔。在一个实施方式中,中心柱161在一个连接点162(图22A)处被附着于流动腔158A的内侧壁。中心柱的支持结构162可以是一个沿径向延伸的、不需完全横穿流动腔直径的连接杆161A。中心柱161可以是任何形状的,但在此展示的是一个具圆形顶的圆柱体,该圆柱体上有一对对称且截然对立的、有相同形状的尖顶叶片部件163,它们沿着至少部分的圆柱体长度纵向延伸并超出圆柱体一个预定的量。叶片部件163可以超过中心柱的顶端象兔耳朵一样向外突出,也可如图22B所示的那样朝远离中心柱161的轴线的方向、向相反的方向弯曲。这种构造的目的也是为了减少从轴流泵流出液体的旋转动量。
参照图23和23A,它们展示了依照本发明所提供的另一具有简化的液流矫直叶片部件164的下游液流矫直装置的实施方式。在此实施方式中,一个笔直的圆柱形管状部件166和一个基座167连接在一起。此管状部件166被附着于轴流泵的输出端界定一个内部流动腔168。它的液流矫直叶片部件164从流动腔168的内侧壁径向地向内突出。该叶片部件164可通过适当的焊接方式焊接到流动腔的侧壁上,也可作为管状部件166的一部分与其一起制造。叶片部件164是以其横向轴和流动腔168的轴平行或共轴的方式成形。在一种实施方式中,叶片元件164终止于流动腔168的纵向中心线附近(图23A)。但是,它也可以沿着流动腔的直径完全横跨流动腔,这并不偏离本发明的范围。纵向管状部件166的轴与轴流泵的轴同轴。叶片164可以大致上是楔形的并可以是短的(如图所示)或更长的。例如,它可以轴向地延伸跨越整个管状部件166的长度,甚至也可延伸超过管状部件166的长度。根据本发明的一种实施方式,可合并两个在此描述的旋转泵形成一个可用于完全替代心力衰竭患者天然心脏的人工心脏。
参照图24,它展示了一个使用在此描述的旋转轴流血泵的人工心脏。在一种实施方式中,此人工心脏含有一个用于抽送血液到患者主动脉的初级单元(firstsection)181和一个用于抽送血液到患者肺动脉的次级单元(sectionsection)182。每一个单元181和182含有一个如前所述的血泵10,初级单元181含有一个初级流入道183和一个初级流出道185,次级单元182含有一个次级流入道184和次级流出道186。
流入道183和184可由一种可刺穿的材料构成,如软的聚酯纤维质地的材料,这样的话,它们可以很容易地缝合到患者的循环系统。流入道183和184具有连接到患者的循环系统那端比连接到血泵10的那端宽的形状。流入道183和184可以以肘形弯曲,从而邻近流出道185和186。
初级单元181和次级单元182可由一个连接部件180连接在一起,如一个固定夹或类似的部件。
在此实施方式中,人工心脏中不需要人工心脏瓣膜,因此提高了装置的可靠性。
在初级流入道183和次级流入道184之间可非强制性地连接一个平衡部件或心室并联器或分流器用以使流过初级流入道183和次级流入道184的血液大致相等或保持平衡。因此,当初级和次级流入道成员中的血液压力不平衡时,血液可在两个流入道成员之间分流。此分流器具有两个终端,其中一端连接于初级流入道183而相反端连接于次级流入道184。分流器124可与流入道183和184之一整体地形成,它能自动地调整或平衡通过每个初级单元181和次级单元182的液压血流,由此防止对人工心脏的一侧的泵送作用超过另外一侧。
初级单元181可设计为能够比部件184抽送更多的血液。依照一种实施方式,初级单元183被设计成比次级单元182多泵送15%的血液。
电力和控制电线120K可用来驱动和控制每个血泵10.
以上的特殊的实施方式只是例证性的,许多变化可引入到这些实施方式中而不偏高所披露内容的本质或附加的权利要求书的范围。例如,不同的例证性实施方式中的元件或特征在本文披露内容和附加的权利要求的范围内可相互组合或互相替代。

Claims (23)

1.一种轴流血泵,它包括:
一个管状泵壳(12),血流沿方向(18)从该管状泵壳(12)中流过,所述管状泵壳具有一个壳入口(11)和一个壳出口(11A);
一个转子(14),其具有在所述管状泵壳(12)内,位于所述壳入口(11)和所述壳出口(11A)之间的一个前橼(14A)和一个尾橼(14B),所述转子装备有多个彼此分离的凹槽(22),该凹槽(22)从位于所述前橼(14A)的进口通道(22A)延伸至位于所述尾橼(14B)的出口通道(22B),并界定多个位于它们之间的外周接触面区域(35),每个所述凹槽由相对于所述转子的旋转轴大致上径向延伸作为所述外周接触面区域的边界的侧壁(16)界定,所述凹槽界定所述进口通道(22A)和所述出口通道(22B),所述凹槽具有相对于所述凹槽的所述进口和出口通道(22A)、(22B)弯曲的中央液体流动部分(30),中央液体流动部分(30)比所述出口通道(22B)窄,以增强液流方向(18)上的血流特征,和
所述外周接触面区域(35)与一个电机定子(36)磁耦合以使所述转子能够在预定的旋转方向上旋转,
其中一间隙存在于所述转子(14)的外周上的每个外周接触面区域(35)和所述管状泵壳(12)的相邻内部壁表面之间,
其中一个或更多的流体动力推力轴承表面(44)、(46)沿着相联的外周接触面区域大体上圆形地分布,每个所述推力轴承表面在它的前缘(47)处具有一个凹下的部位(45),从前缘(47)开始这样的推力轴承表面以渐进弯曲的方式变浅横过相联的接触面区域,并且终止在这样的推力轴承表面的后端(48)以过渡到相联的接触面区域的外周,
并且,其中为了使流体动力推力控制所述转子在所述管状泵壳内的径向位置,位于每个所述凹下的部位(45)的所述间隙比位于每个所述动力推力轴承表面(44)、(46)的后端(48)的大。
2.如权利要求1所述的轴流血泵,其中,所述外周接触面区域(35)包含驱动磁体(34),所述电机定子(36)包括围绕所述驱动磁体(34)的导电线圈(38),从而通过向所述线圈(38)通电对所述驱动磁体(34)产生磁通,以使所述转子旋转。
3.如权利要求1所述的轴流血泵,包括位于所述转子(14)的尾橼(14B)在接触面区域(35)上的定位磁体(56),和毗邻所述定位磁体(56)固定的相应定子磁体(57),以致定位磁体(56)和定子磁体(57)的邻近磁极相排斥以对所述转子提供磁性轴向支持。
4.如权利要求1所述的轴流血泵,其中,所述管状泵壳(12)由具生物相容性的钛或陶瓷制成,所述转子(14)由包括70-80%按重量计的铂和20-30%按重量计的钴的铂和钴合金的铁磁性材料制成。
5.如权利要求1所述的轴流血泵,其中,所述进口通道(22A)比所述凹槽(22)的所述中央液体流动部分(30)宽,位于轴向位置,在所述转子径向外周上所述凹槽(22)的集合宽度基本上等于或小于所述外周接触面区域(35)的集合总宽度。
6.如权利要求1所述的轴流血泵,其中,一个间隙存在于所述转子(14)的外周和所述管状泵壳(12)的内部壁表面之间。
7.如权利要求6所述的轴流血泵,其中,一个所述内部壁表面的部位(13)邻近所述管状泵壳(12)的所述壳入口(11),限定至少一个在液流方向(18)上朝向所述管状泵壳的外部直径扩散的向内扩散的部位(13A)以限定一个内部的环形壳壁圈(52),位于所述转子的前橼(14A)的外周接触面区域(35)的外周被加工成与所述扩散部位(13A)的下游形状相吻合的轮廓,从而充当一个机械制动,使转子(14)在管状泵壳内保持合适的轴向位置。
8.如权利要求7所述的轴流血泵,其中,所述转子(14)的所述轮廓的前橼(14A)装备有一个表面(20),该表面(20)逐渐缩小成一个适当的推力承轴结构以与所述管状泵壳(12)的所述扩散部位(13A)配合以提供当所述转子旋转时使所述转子(14)在管状泵壳内保持合适的轴向位置的额外功能。
9.如权利要求6所述的轴流血泵,其中,所述一个或更多的流体动力推力轴承表面包括第一和第二大体上平行的流体动力推力轴承表面(44)、(46)。
10.如权利要求1所述的轴流血泵,其中,每个推力轴承表面(44)、(46)沿着一个弧形变浅向转子的预定的旋转方向倾斜,并包括沿着它的每个横向侧边的隔离套(49)以减少从每个所述推力轴承表面渗漏液体,每个推力轴承表面的所述隔离套由从所述凹下的部位(45)逐渐减少高度的侧壁限定。
11.如权利要求10所述的轴流血泵,其中,与每个推力轴承表面(44),(46)的所述后端(48)相连的每个所述接触面区域的一部分被设置,以略微朝远离内部壁表面发散,从而减少流过这样的推力轴承表面的血液压力,并指导血液进入一个形成于转子(14)中与一个相应的接触面区域相邻的所述凹槽(22)中。
12.如权利要求1所述的轴流血泵,其包括多个在所述管状泵壳(12)、(62)内的所述转子(14)、(14c),所述多个转子在所述管状泵壳(12)内沿轴向彼此分开。
13.如权利要求12所述的轴流血泵,其中所述多个转子(14)、(14c)在一个共同轴(64)上一起联动,作为一个整体朝相同的方向上共同旋转。
14.如权利要求13所述的轴流血泵,其包括至少两个所述一起联动的转子。
15.如权利要求12所述的轴流血泵,其中,每一个所述转子独立地工作,没有一个连接轴。
16.如权利要求15所述的轴流血泵,其中,所述多个转子的旋转速率各自不同。
17.如权利要求16所述的轴流血泵,其中,一个所述转子在一个方向上旋转,在方向(18)、(63)上推动血液,而相邻的一个所述转子在所述一个方向上相反的旋转,在所述方向(18)、(63)上推动血液。
18.如权利要求12所述的轴流血泵,其包括安装在至少两个所述分开的转子的下游,从所述管状泵壳(62)的内壁径向地向内延伸的定子叶片(66),以降低从所述两个转子排出的轴向液流的旋转动量。
19.如权利要求1所述的轴流血泵,其中,位于所述转子(14)的所述前橼(14A),限定所述进口通道(22A)的所述侧壁(16)包括一个圆形表面(54),以促进血液进入所述彼此分离的凹槽(22)。
20.如权利要求1所述的轴流血泵,其中,所述转子(14)具有一层构成一个密封的封层以防止氧化的敷形聚合物涂层和一层位于所述敷形聚合物涂层之上用于防止磨损和擦伤的坚硬光滑的保护涂层。
21.如权利要求1所述的轴流血泵,其中,所述转子(14)由一个磁性合金制成。
22.如权利要求6所述的轴流血泵,其中,所述管状泵壳(12)的内径在邻近所述壳出口(11A)处收缩以限定一个环形圈(53),所述转子具有一个流体动力推力轴承毗邻它的尾橼(14B)以在所述转子旋转时给所述转子提供一个径向或轴向支持。
23.如权利要求1所述的轴流血泵,其中所述外周接触面区域(35)的外周选定部分被磁化,以提供与所述电机定子(36)产生的磁通的电磁耦合。
CN201210073420.3A 2005-10-05 2006-06-02 有多槽转子的轴流泵 Active CN102600518B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US11/243,722 US8419609B2 (en) 2005-10-05 2005-10-05 Impeller for a rotary ventricular assist device
US11/243,722 2005-10-05
USPCT/US2005/035964 2005-10-06
PCT/US2005/035964 WO2006118600A2 (en) 2005-04-29 2005-10-06 Multiple rotor, wide blade, axial flow pump
USPCT/US2005/042495 2005-11-22
PCT/US2005/042495 WO2006060260A2 (en) 2004-12-03 2005-11-22 Wide blade axial flow pump
CNA2006800370888A CN101282748A (zh) 2005-10-05 2006-06-02 有多槽转子的轴流泵

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800370888A Division CN101282748A (zh) 2005-10-05 2006-06-02 有多槽转子的轴流泵

Publications (2)

Publication Number Publication Date
CN102600518A CN102600518A (zh) 2012-07-25
CN102600518B true CN102600518B (zh) 2016-01-13

Family

ID=37902729

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201210244769.9A Active CN102935249B (zh) 2005-10-05 2006-06-02 有多槽转子的轴流泵
CNA2006800370888A Pending CN101282748A (zh) 2005-10-05 2006-06-02 有多槽转子的轴流泵
CN201210073420.3A Active CN102600518B (zh) 2005-10-05 2006-06-02 有多槽转子的轴流泵

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201210244769.9A Active CN102935249B (zh) 2005-10-05 2006-06-02 有多槽转子的轴流泵
CNA2006800370888A Pending CN101282748A (zh) 2005-10-05 2006-06-02 有多槽转子的轴流泵

Country Status (6)

Country Link
US (8) US8419609B2 (zh)
JP (1) JP5038316B2 (zh)
KR (1) KR101277183B1 (zh)
CN (3) CN102935249B (zh)
CA (2) CA2841675C (zh)
IL (1) IL190337A (zh)

Families Citing this family (305)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
US7972122B2 (en) 2005-04-29 2011-07-05 Heartware, Inc. Multiple rotor, wide blade, axial flow pump
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
US7699586B2 (en) 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
JP5155186B2 (ja) 2006-01-13 2013-02-27 ハートウェア、インコーポレイテッド 回転式血液ポンプ
US8672611B2 (en) 2006-01-13 2014-03-18 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
CA2646277C (en) 2006-03-23 2016-01-12 The Penn State Research Foundation Heart assist device with expandable impeller pump
JP5442598B2 (ja) * 2007-04-30 2014-03-12 ハートウェア、インコーポレイテッド 遠心回転血液ポンプ
US20100148515A1 (en) * 2007-11-02 2010-06-17 Mary Geddry Direct Current Brushless Machine and Wind Turbine System
US8376926B2 (en) * 2007-11-29 2013-02-19 Micromed Technology, Inc. Rotary blood pump
US20090204205A1 (en) * 2008-02-08 2009-08-13 Larose Jeffrey A Platinum-cobalt-boron blood pump element
EP3434227A1 (en) * 2008-02-08 2019-01-30 HeartWare, Inc. Ventricular assist device for intraventricular placement
US10117981B2 (en) 2008-02-08 2018-11-06 Heartware, Inc. Platinum-cobalt-boron blood pump element
WO2009157408A1 (ja) 2008-06-23 2009-12-30 テルモ株式会社 血液ポンプ装置
EP3906963A1 (en) * 2008-10-10 2021-11-10 Medical Tree Patent Ltd Heart help pump
US8550974B2 (en) 2008-11-13 2013-10-08 Robert Jarvik Sub-miniature electromechanical medical implants with integrated hermetic feedthroughs
EP2372160B1 (en) 2008-12-08 2014-07-30 Thoratec Corporation Centrifugal pump device
US8517699B2 (en) * 2008-12-16 2013-08-27 Cleveland Clinic Foundation Centrifugal pump with offset volute
JP5378010B2 (ja) 2009-03-05 2013-12-25 ソラテック コーポレーション 遠心式ポンプ装置
US8770945B2 (en) 2009-03-06 2014-07-08 Thoratec Corporation Centrifugal pump apparatus
EP2229965A1 (de) * 2009-03-18 2010-09-22 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit besonderer Gestaltung eines Rotorblattes
US9347300B2 (en) * 2009-08-31 2016-05-24 Michael D Anter Method and thermal-electrical generating apparatus to transport subterranean oil to the surface
US8251149B2 (en) * 2009-08-31 2012-08-28 Michael D Anter Method and apparatus to transport subterranean oil to the surface
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
EP2319552B1 (de) * 2009-11-06 2014-01-08 Berlin Heart GmbH Blutpumpe
EP2333514A1 (de) 2009-11-30 2011-06-15 Berlin Heart GmbH Einrichtung und Verfahren zur Messung von strömungsmechanisch wirksamen Materialparametern eines Fluids
JP5443197B2 (ja) 2010-02-16 2014-03-19 ソラテック コーポレーション 遠心式ポンプ装置
JP5572832B2 (ja) 2010-03-26 2014-08-20 ソーラテック コーポレイション 遠心式血液ポンプ装置
CN102247628B (zh) * 2010-05-17 2013-05-22 北京天高智机技术开发公司 可植入式磁液悬浮型离心血泵
WO2011160056A1 (en) * 2010-06-18 2011-12-22 Heartware, Inc. Hydrodynamic chamfer thrust bearing
JP5681403B2 (ja) 2010-07-12 2015-03-11 ソーラテック コーポレイション 遠心式ポンプ装置
EP3248628B1 (en) * 2010-08-20 2019-01-02 Tc1 Llc Implantable blood pump
JP5577506B2 (ja) 2010-09-14 2014-08-27 ソーラテック コーポレイション 遠心式ポンプ装置
US9265870B2 (en) 2010-10-13 2016-02-23 Thoratec Corporation Pumping blood
WO2012060834A1 (en) * 2010-11-03 2012-05-10 Dietz Dan L Devices and methods for treating magnetic poisoning and/or magnetically induced rouleaux
US9138518B2 (en) 2011-01-06 2015-09-22 Thoratec Corporation Percutaneous heart pump
AU2012207146B2 (en) 2011-01-21 2016-10-06 Heartware, Inc. Flow estimation in a blood pump
US9492601B2 (en) 2011-01-21 2016-11-15 Heartware, Inc. Suction detection on an axial blood pump using BEMF data
EP2693609B1 (en) 2011-03-28 2017-05-03 Thoratec Corporation Rotation and drive device and centrifugal pump device using same
CN102743801A (zh) * 2011-04-19 2012-10-24 薛恒春 无轴端磁液悬浮轴流血泵
EP2704761B1 (en) 2011-05-05 2015-09-09 Berlin Heart GmbH Blood pump
US9492600B2 (en) 2011-05-13 2016-11-15 Heartware, Inc. Intravascular blood pump and method of implantation
US8864643B2 (en) 2011-10-13 2014-10-21 Thoratec Corporation Pump and method for mixed flow blood pumping
KR102025959B1 (ko) 2011-11-28 2019-09-26 미-바드, 아이엔씨. 심실 보조 장치 및 방법
WO2013082621A1 (en) 2011-12-03 2013-06-06 Indiana University Research And Technology Corporation Cavopulmonary viscous impeller assist device and method
JP6083929B2 (ja) 2012-01-18 2017-02-22 ソーラテック コーポレイション 遠心式ポンプ装置
DE102012202411B4 (de) * 2012-02-16 2018-07-05 Abiomed Europe Gmbh Intravasale blutpumpe
JP6034889B2 (ja) 2012-03-05 2016-11-30 ソーラテック コーポレイション モジュール式埋込型医療ポンプ
WO2013152309A1 (en) 2012-04-06 2013-10-10 Heartware, Inc. Ambulatory lung assist device with implanted blood pump and oxygenator
US8968437B2 (en) * 2012-05-02 2015-03-03 Michael J Kline Jet engine with deflector
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
GB2504176A (en) 2012-05-14 2014-01-22 Thoratec Corp Collapsible impeller for catheter pump
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
WO2013183060A2 (en) 2012-06-06 2013-12-12 Magenta Medical Ltd. Prosthetic renal valve
WO2013185073A1 (en) * 2012-06-08 2013-12-12 Cameron International Corporation Artificial heart system
WO2014008078A1 (en) * 2012-07-02 2014-01-09 The Cleveland Clinic Foundation Two-stage rotodynamic blood pump
EP4186557A1 (en) 2012-07-03 2023-05-31 Tc1 Llc Motor assembly for catheter pump
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
WO2014018967A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Self-tuning resonant power transfer systems
EP4257174A3 (en) 2012-07-27 2023-12-27 Tc1 Llc Thermal management for implantable wireless power transfer systems
US9805863B2 (en) 2012-07-27 2017-10-31 Thoratec Corporation Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
WO2014018972A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Computer modeling for resonant power transfer systems
US10383990B2 (en) 2012-07-27 2019-08-20 Tc1 Llc Variable capacitor for resonant power transfer systems
US9825471B2 (en) 2012-07-27 2017-11-21 Thoratec Corporation Resonant power transfer systems with protective algorithm
US10251987B2 (en) 2012-07-27 2019-04-09 Tc1 Llc Resonant power transmission coils and systems
US10525181B2 (en) 2012-07-27 2020-01-07 Tc1 Llc Resonant power transfer system and method of estimating system state
US9579436B2 (en) 2012-08-31 2017-02-28 Thoratec Corporation Sensor mounting in an implantable blood pump
EP2890419B1 (en) 2012-08-31 2019-07-31 Tc1 Llc Start-up algorithm for an implantable blood pump
JP6268178B2 (ja) 2012-09-05 2018-01-24 ハートウェア, インコーポレイテッドHeartware, Inc. Vadに一体化された流量センサ
US9217435B2 (en) 2012-10-23 2015-12-22 Nidec Motor Corporation Axial flow pump with integrated motor
CN102949758A (zh) * 2012-11-15 2013-03-06 杨爱民 管轴式离心血泵
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
EP4233702A3 (en) 2013-03-13 2023-12-20 Magenta Medical Ltd. Manufacture of an impeller
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
EP4122520A1 (en) 2013-03-13 2023-01-25 Tc1 Llc Fluid handling system
US10583231B2 (en) * 2013-03-13 2020-03-10 Magenta Medical Ltd. Blood pump
US9144638B2 (en) 2013-03-14 2015-09-29 Thoratec Corporation Blood pump rotor bearings
US9680310B2 (en) 2013-03-15 2017-06-13 Thoratec Corporation Integrated implantable TETS housing including fins and coil loops
EP3797810A1 (en) 2013-03-15 2021-03-31 Tc1 Llc Catheter pump assembly including a stator
EP2984731B8 (en) 2013-03-15 2019-06-26 Tc1 Llc Malleable tets coil with improved anatomical fit
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10111994B2 (en) 2013-05-14 2018-10-30 Heartware, Inc. Blood pump with separate mixed-flow and axial-flow impeller stages and multi-stage stators
DE102013211848A1 (de) 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pumpengehäuse aus mindestens zwei unterschiedlichen versinterbaren Materialien
DE102013211844A1 (de) * 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pumpengehäuse aus einem magnetischen und einem nichtmagnetischen Material
WO2015023850A1 (en) * 2013-08-14 2015-02-19 Heartware, Inc. Impeller for axial flow pump
US11506190B2 (en) * 2013-10-15 2022-11-22 Baker Hughes Esp, Inc. Multi-stage high pressure flanged pump assembly
EP3069358B1 (en) 2013-11-11 2019-06-12 Tc1 Llc Hinged resonant power transfer coil
EP3072210B1 (en) 2013-11-11 2023-12-20 Tc1 Llc Resonant power transfer systems with communications
JP6521992B2 (ja) 2013-11-11 2019-05-29 ティーシー1 エルエルシー 通信を有する共振電力伝送システム
EP3077018B1 (en) * 2013-12-04 2021-10-27 Heartware, Inc. Molded vad
JP5663124B1 (ja) * 2013-12-21 2015-02-04 一穂 松本 容積可変軸流ネジポンプ、流体機関並びに熱機関
WO2015130768A2 (en) 2014-02-25 2015-09-03 KUSHWAHA, Sudhir Ventricular assist device and method
WO2015134871A1 (en) 2014-03-06 2015-09-11 Thoratec Corporation Electrical connectors for implantable devices
DE102014004121A1 (de) 2014-03-24 2015-09-24 Heraeus Deutschland GmbH & Co. KG Pumpengehäuse aus mindestens drei unterschiedlichen versinterbaren Materialien
US9526818B2 (en) 2014-04-15 2016-12-27 Thoratec Corporation Protective cap for driveline cable connector
WO2015160992A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for lvad operation during communication losses
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
WO2015160991A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for controlling a blood pump
US9786150B2 (en) 2014-04-15 2017-10-10 Tci Llc Methods and systems for providing battery feedback to patient
US10363349B2 (en) * 2014-04-15 2019-07-30 Tc1 Llp Heart pump providing adjustable outflow
EP3131597B1 (en) 2014-04-15 2020-12-02 Tc1 Llc Catheter pump introducer systems
EP3131598B1 (en) 2014-04-15 2020-10-21 Tc1 Llc Systems for upgrading ventricle assist devices
EP3131615B1 (en) 2014-04-15 2021-06-09 Tc1 Llc Sensors for catheter pumps
US9849224B2 (en) 2014-04-15 2017-12-26 Tc1 Llc Ventricular assist devices
EP3131599B1 (en) 2014-04-15 2019-02-20 Tc1 Llc Catheter pump with access ports
CA2948121C (en) * 2014-05-19 2023-05-02 Magenta Medical Ltd. Blood pump with first and second impellers shaped, sized or driven differently
EP3180050B1 (en) 2014-07-22 2018-02-28 Heartware, Inc. Cardiac support system and methods
US10029040B2 (en) 2014-08-08 2018-07-24 Heartware, Inc. Implantable pump with tapered diffuser region
US10449279B2 (en) 2014-08-18 2019-10-22 Tc1 Llc Guide features for percutaneous catheter pump
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9603984B2 (en) 2014-09-03 2017-03-28 Tci Llc Triple helix driveline cable and methods of assembly and use
JP6655071B2 (ja) 2014-09-22 2020-02-26 ティーシー1 エルエルシー 無線で電力が供給されるインプラントと体外の外部デバイスの間で通信するためのアンテナ設計
EP3204989B1 (en) 2014-10-06 2019-08-21 Tc1 Llc Multiaxial connector for implantable devices
CN104258481B (zh) * 2014-10-17 2017-02-15 山东科技大学 一种磁悬浮轴流式螺旋驱动装置
US11376151B2 (en) * 2014-11-13 2022-07-05 Maurice Marcel Garcia Gravity independent medical drainage systems
WO2016086137A1 (en) 2014-11-26 2016-06-02 Thoratec Corporation Pump and method for mixed flow blood pumping
WO2016085985A1 (en) 2014-11-26 2016-06-02 Heartwre, Inc. Fiducial point optimization
JP2017538519A (ja) 2014-12-17 2017-12-28 ハートウェア、インコーポレイテッド 植込み可能なコネクタ
US9770543B2 (en) 2015-01-22 2017-09-26 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
EP3804797A1 (en) 2015-01-22 2021-04-14 Tc1 Llc Motor assembly with heat exchanger for catheter pump
US9675738B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Attachment mechanisms for motor of catheter pump
EP3256183A4 (en) 2015-02-11 2018-09-19 Tc1 Llc Heart beat identification and pump speed synchronization
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
EP3256063B1 (en) 2015-02-13 2019-08-28 Heartware, Inc. Combined tunneling tools
CN104707194B (zh) * 2015-03-30 2017-11-17 武汉理工大学 一种基于血流动压和Pivot支承的可植入轴流式血泵
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
CN104740704A (zh) * 2015-04-21 2015-07-01 傅风荣 一种治疗心血管疾病的医疗器械微动力泵
CN104888294A (zh) * 2015-05-08 2015-09-09 淮海工业集团有限公司 用无槽无刷永磁直流电机的心脏泵
WO2016187057A1 (en) 2015-05-15 2016-11-24 Thoratec Corporation Improved axial flow blood pump
US11291824B2 (en) 2015-05-18 2022-04-05 Magenta Medical Ltd. Blood pump
EP3313471A4 (en) 2015-06-29 2019-02-20 Tc1 Llc HEART CHAMBER ASSISTANCE DEVICES WITH A HOLLOWED ROTOR AND METHOD OF USE
WO2017015268A1 (en) 2015-07-20 2017-01-26 Thoratec Corporation Flow estimation using hall-effect sensors
US10722630B2 (en) 2015-07-20 2020-07-28 Tc1 Llc Strain gauge for flow estimation
EP3325036B1 (en) 2015-07-21 2021-02-24 Tc1 Llc Cantilevered rotor pump for axial flow blood pumping
US10177627B2 (en) 2015-08-06 2019-01-08 Massachusetts Institute Of Technology Homopolar, flux-biased hysteresis bearingless motor
WO2017040317A1 (en) 2015-08-28 2017-03-09 Thoratec Corporation Blood pump controllers and methods of use for improved energy efficiency
US10148126B2 (en) 2015-08-31 2018-12-04 Tc1 Llc Wireless energy transfer system and wearables
EP3141271A1 (de) 2015-09-11 2017-03-15 Berlin Heart GmbH Blutpumpe, vorzugsweise zur unterstützung eines herzens
EP3141270A1 (de) 2015-09-11 2017-03-15 Berlin Heart GmbH Blutpumpe, vorzugsweise zur unterstützung eines herzens
EP3360233B1 (en) 2015-10-07 2021-08-04 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance
EP3374642B1 (de) * 2015-11-10 2022-03-02 Pierburg Pump Technology GmbH Elektrische kfz-axial-flüssigkeitspumpe
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
EP3377136B1 (en) 2015-11-20 2020-05-06 Tc1 Llc Energy management of blood pump controllers
EP3677226B1 (en) 2015-11-20 2021-12-22 Tc1 Llc Improved connectors and cables for use with ventricle assist systems
EP3711788B1 (en) 2015-11-20 2022-08-03 Tc1 Llc Blood pump controllers having daisy-chained batteries
EP3377133B1 (en) 2015-11-20 2021-07-14 Tc1 Llc System architecture that allows patient replacement of vad controller/interface module without disconnection of old module
CN108367107B (zh) 2015-12-14 2020-09-29 心脏器械股份有限公司 具有重启锁定的血泵
WO2017112695A1 (en) 2015-12-21 2017-06-29 Heartware, Inc. Implantable mechanical circulatory support devices
CN108541223A (zh) * 2015-12-21 2018-09-14 心脏器械股份有限公司 具有出口蜗壳的轴流式可植入机械循环支持设备
US10732583B2 (en) 2015-12-28 2020-08-04 HeartWave, Inc. Pump motor control with adaptive startup
EP3397299B1 (en) 2015-12-28 2023-02-22 Heartware, Inc. Vad controller tester
CN105688298B (zh) * 2016-01-13 2018-02-27 山东大学 新式内叶轮轴流式血泵
US10539147B2 (en) 2016-01-13 2020-01-21 Wisconsin Alumni Research Foundation Integrated rotor for an electrical machine and compressor
CN105477706B (zh) * 2016-01-14 2018-01-26 山东大学 双定子混合支承人工心脏泵
WO2017136718A1 (en) 2016-02-04 2017-08-10 Heartware, Inc. Pump capacity work index
EP3436105B1 (en) 2016-03-30 2021-04-28 Heartware, Inc. Flanged heart tissue blocker
EP3436104B1 (en) 2016-03-31 2021-04-28 Heartware, Inc. Crenellated inflow cannula
WO2017173217A1 (en) 2016-04-01 2017-10-05 Heartware, Inc. Axial flow blood pump with radially offset rotor
CN109414533B (zh) 2016-05-02 2021-07-06 韦德威申思有限公司 心脏辅助装置
US9985374B2 (en) 2016-05-06 2018-05-29 Tc1 Llc Compliant implantable connector and methods of use and manufacture
US10377097B2 (en) * 2016-06-20 2019-08-13 Terumo Cardiovascular Systems Corporation Centrifugal pumps for medical uses
WO2018017716A1 (en) 2016-07-21 2018-01-25 Tc1 Llc Rotary seal for cantilevered rotor pump and methods for axial flow blood pumping
WO2018017683A1 (en) 2016-07-21 2018-01-25 Thoratec Corporation Gas-filled chamber for catheter pump motor assembly
EP3487549B1 (en) 2016-07-21 2021-02-24 Tc1 Llc Fluid seals for catheter pump motor assembly
CN112177938B (zh) 2016-08-10 2023-05-26 可克斯塔特国际股份有限公司 模块化多级泵组件
US10660998B2 (en) 2016-08-12 2020-05-26 Tci Llc Devices and methods for monitoring bearing and seal performance
WO2018039479A1 (en) 2016-08-26 2018-03-01 Tc1 Llc Prosthetic rib with integrated percutaneous connector for ventricular assist devices
EP3497775B1 (en) 2016-09-21 2022-07-13 Tc1 Llc Systems and methods for locating implanted wireless power transmission devices
EP3515526A1 (en) 2016-09-23 2019-07-31 Heartware, Inc. Field-oriented control for control of blood pump motor
WO2018057732A1 (en) 2016-09-23 2018-03-29 Heartware, Inc. Blood pump with sensors on housing surface
EP3515527A4 (en) 2016-09-26 2020-05-13 Tc1 Llc POWER MODULATION FOR HEART PUMP
WO2018064437A1 (en) * 2016-09-29 2018-04-05 Heartware, Inc. Implantable pump impeller thermal knockdown
WO2018075780A1 (en) 2016-10-20 2018-04-26 Tc1 Llc Methods and systems for bone conduction audible alarms for mechanical circulatory support systems
US10549019B2 (en) 2016-10-28 2020-02-04 Heartware, Inc. Single-piece volute
RU2637605C1 (ru) * 2016-11-09 2017-12-05 Алексей Васильевич Коротеев Микроаксиальный насос поддержки кровообращения (варианты)
WO2018096531A1 (en) 2016-11-23 2018-05-31 Magenta Medical Ltd. Blood pumps
WO2018102360A1 (en) 2016-11-30 2018-06-07 Heartware, Inc. Patient behavior sensitive controller
US10851791B2 (en) 2016-12-19 2020-12-01 Okinawa Institute Of Science And Technology School Corporation Contactless magnetic couplings for microfluidic devices and nautical propulsion
US10364815B2 (en) * 2016-12-28 2019-07-30 Upwing Energy, LLC Downhole blower system with integrated construction
WO2018132708A1 (en) 2017-01-12 2018-07-19 Tc1 Llc Percutaneous driveline anchor devices and methods of use
US10894114B2 (en) 2017-01-12 2021-01-19 Tc1 Llc Driveline bone anchors and methods of use
US11197990B2 (en) 2017-01-18 2021-12-14 Tc1 Llc Systems and methods for transcutaneous power transfer using microneedles
WO2018195301A1 (en) 2017-04-21 2018-10-25 Tc1 Llc Aortic connectors and methods of use
WO2018200163A1 (en) 2017-04-25 2018-11-01 Heartware, Inc. Anti-thrombus surface potential ceramic element
US10888646B2 (en) 2017-04-28 2021-01-12 Nuheart As Ventricular assist device and method
US10537670B2 (en) 2017-04-28 2020-01-21 Nuheart As Ventricular assist device and method
EP3615104A1 (en) 2017-04-28 2020-03-04 Tc1 Llc Patient adapter for driveline cable and methods
EP3624867B1 (en) 2017-05-16 2022-03-30 Heartware, Inc. Blood pump
CN110621357A (zh) 2017-05-19 2019-12-27 心脏器械股份有限公司 中心杆磁体
EP3634528B1 (en) 2017-06-07 2023-06-07 Shifamed Holdings, LLC Intravascular fluid movement devices, systems, and methods of use
EP3651822B1 (en) 2017-07-13 2022-03-30 Heartware, Inc. Hvad circadian tracker (phi+)
US10561774B2 (en) 2017-07-13 2020-02-18 Heartware, Inc. HVAD circadian tracker (PHI+)
EP3651824A1 (en) 2017-07-13 2020-05-20 Heartware, Inc. Pump homeostasis indicator (phi)
US10543302B2 (en) 2017-08-16 2020-01-28 Heartware, Inc. Map measurement on VAD patients with low pulsatility
EP3668559A1 (en) 2017-08-16 2020-06-24 Heartware, Inc. Map measurement on vad patients with low pulsatility
WO2019036198A1 (en) 2017-08-18 2019-02-21 Heartware, Inc. DETECTION AND REMOVAL OF THROMBUS USING A FLEXIBLE ELECTRONIC SENSOR AND A TRANSMITTER
CN111032111A (zh) 2017-08-18 2020-04-17 心脏器械股份有限公司 血泵中的治疗性紫外线血液处理
CN109555707A (zh) * 2017-09-27 2019-04-02 陈海水 聚合式抽水泵
US10806840B2 (en) 2017-10-13 2020-10-20 Heartware, Inc. Dynamic HQ for closed loop control
US11110265B2 (en) 2017-11-03 2021-09-07 Heartware, Inc. Updating a VAD system without stopping the pump
US11058863B2 (en) 2017-11-06 2021-07-13 Heartware, Inc. VAD with intra-housing fluid access ports
CN111556763B (zh) 2017-11-13 2023-09-01 施菲姆德控股有限责任公司 血管内流体运动装置、系统
EP3720520A1 (en) 2017-12-05 2020-10-14 Heartware, Inc. Blood pump with impeller rinse operation
WO2019125999A1 (en) 2017-12-19 2019-06-27 Heartware, Inc. Heart rate measurement using blood pump impeller location
WO2019125718A1 (en) 2017-12-22 2019-06-27 Massachusetts Institute Of Technology Homopolar bearingless slice motors
CN108194374B (zh) * 2017-12-29 2020-02-07 李少龙 一种磁悬浮内流式转子管道泵
EP3735280B1 (en) 2018-01-02 2022-05-04 Tc1 Llc Fluid treatment system for a driveline
WO2019135890A1 (en) 2018-01-04 2019-07-11 Tc1 Llc Systems and methods for elastic wireless power transmission devices
EP4275737A3 (en) 2018-01-10 2023-12-20 Tc1 Llc Bearingless implantable blood pump
US10701043B2 (en) 2018-01-17 2020-06-30 Tc1 Llc Methods for physical authentication of medical devices during wireless pairing
DE102018201030A1 (de) 2018-01-24 2019-07-25 Kardion Gmbh Magnetkuppelelement mit magnetischer Lagerungsfunktion
CN111655306A (zh) 2018-01-26 2020-09-11 心脏器械股份有限公司 Lvad血栓形成的早期警告
CN111655307B (zh) 2018-01-31 2023-12-12 心脏器械股份有限公司 具有叶轮冲洗操作的轴向血泵
WO2019152652A1 (en) 2018-02-01 2019-08-08 Heartware, Inc. A system for automated analysis of mcs log files
JP7410034B2 (ja) 2018-02-01 2024-01-09 シファメド・ホールディングス・エルエルシー 血管内血液ポンプならびに使用および製造の方法
US11529508B2 (en) 2018-03-02 2022-12-20 Tc1 Llc Wearable accessory for ventricular assist system
JP2021514787A (ja) 2018-03-09 2021-06-17 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 止血ロータシール用磁気カプラ
CN111867673A (zh) 2018-03-14 2020-10-30 美敦力公司 用于植入式vad泵的rf功率传递线圈
WO2019183126A1 (en) 2018-03-20 2019-09-26 Tc1 Llc Mechanical gauge for estimating inductance changes in resonant power transfer systems with flexible coils for use with implanted medical devices
US11389641B2 (en) 2018-03-21 2022-07-19 Tc1 Llc Modular flying lead cable and methods for use with heart pump controllers
US10953145B2 (en) 2018-03-21 2021-03-23 Tci Llc Driveline connectors and methods for use with heart pump controllers
WO2019190998A1 (en) 2018-03-26 2019-10-03 Tc1 Llc Methods and systems for irrigating and capturing particulates during heart pump implantation
EP3545983A1 (de) 2018-03-28 2019-10-02 Berlin Heart GmbH Blutpumpe
US10376623B1 (en) * 2018-04-05 2019-08-13 Raif Tawakol Subclavian diastolic augmentation device
WO2019194976A1 (en) 2018-04-06 2019-10-10 Heartware, Inc. Multi-input speed response algorithm for a blood pump
EP3787707B1 (en) 2018-04-30 2023-12-27 Tc1 Llc Improved blood pump connectors
US11446481B2 (en) 2018-05-10 2022-09-20 Heartware, Inc. Axial pump pressure algorithm with field oriented control
US11235139B2 (en) 2018-05-17 2022-02-01 Heartware, Inc. Current-speed relationship for instantaneous suction detection algorithm in LVADS
US11177719B2 (en) * 2018-05-18 2021-11-16 Levitronix Gmbh Electromagnetic rotary drive and rotational device
RU185434U1 (ru) * 2018-05-28 2018-12-05 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Насос
US11224736B2 (en) 2018-05-31 2022-01-18 Tc1 Llc Blood pump controllers
CN108744096B (zh) * 2018-06-04 2020-07-31 上海市杨浦区市东医院 一种磁力驱动高流量搏动式血泵
EP3581216A1 (en) * 2018-06-11 2019-12-18 Universität Zürich Blood pump for mechanical circulatory support for fontan patients
DE102018211327A1 (de) 2018-07-10 2020-01-16 Kardion Gmbh Laufrad für ein implantierbares, vaskuläres Unterstützungssystem
US11241570B2 (en) 2018-07-17 2022-02-08 Tc1 Llc Systems and methods for inertial sensing for VAD diagnostics and closed loop control
CN110944690B (zh) * 2018-07-24 2022-04-08 卡迪亚卡西斯特股份有限公司 旋转式血液泵
US11202900B2 (en) * 2018-07-31 2021-12-21 Cardiovascular Systems, Inc. Intravascular pump with controls and display screen on handle
US11255339B2 (en) 2018-08-28 2022-02-22 Honeywell International Inc. Fan structure having integrated rotor impeller, and methods of producing the same
US11632015B2 (en) * 2018-08-28 2023-04-18 Boston Scientific Scimed, Inc. Axial flux motor for percutaneous circulatory support device
EP3856274B1 (en) 2018-09-25 2024-04-17 Tc1 Llc Adaptive speed control algorithms and controllers for optimizing flow in ventricular assist devices
CN109350787B (zh) * 2018-09-25 2021-04-23 中南大学 一种用于轴流式人工心脏内部流场粒子图像测速系统及方法
CN111980955A (zh) * 2018-12-27 2020-11-24 六安微领时代工业智能科技有限公司 一种塑料泵泵轴组装机
CN109648318B (zh) * 2018-12-27 2020-10-09 安徽绿环泵业有限公司 塑料泵泵轴组装机
US11318295B2 (en) 2019-02-28 2022-05-03 Heartware, Inc. HVAD rinse via a non-uniform thrust bearing gap
US11666281B2 (en) 2019-02-28 2023-06-06 Medtronic, Inc. Detection of hypertension in LVAD patients using speed change
CN109821084B (zh) * 2019-03-22 2019-10-29 河海大学 一种基于流道渐变的可植入无轴心脏泵
US20200384174A1 (en) 2019-06-07 2020-12-10 Medtronic, Inc. Shield optimization for maximizing heat dissipation at the device tissue interface and improving fixation
RU192621U1 (ru) * 2019-07-12 2019-09-24 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Насос
WO2021016372A1 (en) 2019-07-22 2021-01-28 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
KR102054888B1 (ko) * 2019-09-17 2019-12-11 김충호 마모방지 기능이 향상된 바이오 중유용 스크루펌프 및 이의 제조방법
EP4034192A4 (en) 2019-09-25 2023-11-29 Shifamed Holdings, LLC INTRAVASCULAR BLOOD PUMP SYSTEMS AND METHODS OF USE AND CONTROL THEREOF
US20210093762A1 (en) 2019-09-26 2021-04-01 Heartware, Inc. Blood pump algorithm for preventing and resolving left ventricular suction through dynamic speed response
US20210113751A1 (en) 2019-10-17 2021-04-22 Heartware, Inc. Pulsatile blood pump with active element and thrombus rinse
US11707617B2 (en) 2019-11-22 2023-07-25 Heartware, Inc. Method to extract and quantify the cardiac end diastolic point/mitral valve closing point from the HVAD estimated flow waveform
US11617877B2 (en) 2019-12-11 2023-04-04 Medtronic, Inc. Detecting pump suction, pump thrombus, and other adverse VAD motor events
CN111097077B (zh) * 2020-01-08 2022-09-23 上海市东方医院(同济大学附属东方医院) 一种体外磁驱动液悬浮轴流式血泵
US11534596B2 (en) 2020-01-09 2022-12-27 Heartware, Inc. Pulsatile blood pump via contraction with smart material
US11806518B2 (en) 2020-01-10 2023-11-07 Heartware, Inc. Passive thrust bearing angle
US11617878B2 (en) 2020-01-21 2023-04-04 Medtronic, Inc. Diagnostic metric for cumulative presence of suction conditions
US20210228790A1 (en) 2020-01-29 2021-07-29 Medtronic, Inc. Ventricular geometric and hemodynamic control by heart rate modulation in lvad therapy
DE102020102474A1 (de) 2020-01-31 2021-08-05 Kardion Gmbh Pumpe zum Fördern eines Fluids und Verfahren zum Herstellen einer Pumpe
US20210260263A1 (en) 2020-02-20 2021-08-26 Medtronic, Inc. Speed change algorithm to resolve suction conditions in lvads
US11504520B2 (en) 2020-02-20 2022-11-22 Medtronic, Inc. Cost function for response algorithm
US11547847B2 (en) 2020-03-12 2023-01-10 Medtronic, Inc. Method for minimizing misalignment notifications for a transcutaneous energy transfer system
US20210283392A1 (en) 2020-03-12 2021-09-16 Medtronic, Inc. Tets coil alignment conditions algorithm
US11648393B2 (en) 2020-03-17 2023-05-16 Heartware, Inc. Implantable blood pump with thrombus diverter
US20210290940A1 (en) 2020-03-19 2021-09-23 Medtronic, Inc. Lvad fixation and infection management
US20210322758A1 (en) 2020-04-21 2021-10-21 Medtronic, Inc. Use of graphite to spread heat inside device
US20210330961A1 (en) 2020-04-27 2021-10-28 Medtronic, Inc. Implantable lvad pump controller header
US20210346682A1 (en) 2020-05-11 2021-11-11 Medtronic, Inc. External wireless power transfer coil
CN111632217A (zh) * 2020-05-15 2020-09-08 孙英贤 一种设有中间叶轮的心室循环辅助装置
US11931561B2 (en) 2020-05-26 2024-03-19 Medtronic, Inc. Body position and activity based flow control for ventricular assist device (VAD) with fully implantable controller
US11694539B2 (en) 2020-06-16 2023-07-04 Heartware, Inc. Notification system for low-level preventative LVAD alerts
US20220023515A1 (en) 2020-07-22 2022-01-27 Medtronic, Inc. Thermal stimulation and subsequent cooling for fully implantable lvad controller
US20220026391A1 (en) 2020-07-24 2022-01-27 Medtronic, Inc. Estimating coil implant depth for wireless power transfer
US11452860B2 (en) 2020-07-31 2022-09-27 Medtronic, Inc. Power source selection for a fully implantable LVAD system
US20220032038A1 (en) 2020-07-31 2022-02-03 Medtronic, Inc. Managing pump speed when power constrained in a fully implanted lvad system
US20220062514A1 (en) 2020-09-01 2022-03-03 Medtronic, Inc. Method for pump start in a fully implanted lvad system when multiple power sources may be present
US20220062516A1 (en) 2020-09-01 2022-03-03 Medtronic, Inc. Method of estimating power dissipated in foreign object
US20220133965A1 (en) 2020-11-02 2022-05-05 Medtronic, Inc. Interconnect design for joining dissimilar materials
US20240017054A1 (en) 2020-11-02 2024-01-18 Medtronic, Inc. Alignment garment for use with a fully implantable system
DE112021005772T5 (de) 2020-11-02 2023-09-21 Medtronic, Inc. Befestigungsmechanismus für Ausrichtungskleidungsstück zur Verwendung mit einem vollständig implantierbaren System
US20240001106A1 (en) 2020-11-02 2024-01-04 Medtronic, Inc. Alignment garment for use with a fully implantable system
US20230414926A1 (en) 2020-11-11 2023-12-28 Medtronic, Inc. Detecting heating of implanted coil hermetic package when misaligned
US20240009440A1 (en) 2020-11-17 2024-01-11 Medtronic, Inc. Locking feature for lvad connector
US20240060503A1 (en) * 2020-12-31 2024-02-22 Koc Universitesi A unibody axial pump
US11786721B2 (en) 2021-01-05 2023-10-17 Medtronic, Inc. Sleep mode and do-not-disturb mode for a left ventricular assist device
US20220331580A1 (en) 2021-04-15 2022-10-20 Tc1 Llc Systems and methods for medical device connectors
CN113153804B (zh) * 2021-04-27 2022-12-06 丰凯利医疗器械(上海)有限公司 一种泵血叶轮及心室辅助装置
DE112022002624T5 (de) 2021-05-18 2024-02-29 Heartware, Inc. Schlaganfallerkennung und schlaganfallrisikomanagement bei patienten mit mechanischer kreislaufunterstützungsvorrichtung
US11813468B2 (en) 2021-07-16 2023-11-14 Medtronic, Inc. Connector conditioning/bore plug
CN114432588B (zh) * 2022-01-18 2023-11-10 江苏大学 一种折边叶片结构的主动脉穿刺型轴流式血泵
WO2023158493A1 (en) 2022-02-16 2023-08-24 Tc1 Llc Real time heart rate monitoring for close loop control and/or artificial pulse synchronization of implantable ventricular assist devices
WO2023229899A1 (en) 2022-05-26 2023-11-30 Tc1 Llc Tri-axis accelerometers for patient physiologic monitoring and closed loop control of implantable ventricular assist devices
WO2023235230A1 (en) 2022-06-02 2023-12-07 Tc1 Llc Implanted connector booster sealing for implantable medical devices
CN115282470B (zh) * 2022-07-08 2023-08-18 深圳核心医疗科技股份有限公司 驱动装置和血泵
WO2024050319A1 (en) 2022-08-29 2024-03-07 Tc1 Llc Implantable electrical connector assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US6120537A (en) * 1997-12-23 2000-09-19 Kriton Medical, Inc. Sealless blood pump with means for avoiding thrombus formation
CN1278188A (zh) * 1997-09-05 2000-12-27 文特拉西斯特股份有限公司 一种具有流体动力悬浮叶轮的旋转泵
US6595743B1 (en) * 1999-07-26 2003-07-22 Impsa International Inc. Hydraulic seal for rotary pumps

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US50714A (en) 1865-10-31 Improved propeller
US244835A (en) * 1881-07-26 Eeob w
US558812A (en) * 1896-04-21 Body-shield
US2941477A (en) 1959-03-16 1960-06-21 Arthur H Thomas Company Pump
GB1067054A (en) 1965-05-13 1967-04-26 Int Nickel Ltd Improvements in the heat treatment of platinum-cobalt magnets
FR1472099A (fr) 1965-11-30 1967-03-10 Dispositif à flotteur hélicoïde rotatif destiné à équiper des engins flottants de tout type
US3608088A (en) 1969-04-17 1971-09-28 Univ Minnesota Implantable blood pump
US3685059A (en) 1970-07-28 1972-08-22 Gulf General Atomic Inc Prosthetic blood circulation device having a pyrolytic carbon coated blood contacting surface
US3695059A (en) * 1971-01-14 1972-10-03 Wilburn B Laubach Adjustable torque limiting coupling
WO1981000888A1 (en) 1979-09-27 1981-04-02 J Mcmullen A pump,and an apparatus incorporating such a pump for infusing liquid medicine
US4688998A (en) 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
US5078741A (en) 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
US4615691A (en) 1983-12-08 1986-10-07 Salomon Hakim Surgically-implantable stepping motor
US4595390A (en) 1983-07-21 1986-06-17 Salomon Hakim Magnetically-adjustable cerebrospinal fluid shunt valve
US4625712A (en) 1983-09-28 1986-12-02 Nimbus, Inc. High-capacity intravascular blood pump utilizing percutaneous access
US4589822A (en) * 1984-07-09 1986-05-20 Mici Limited Partnership Iv Centrifugal blood pump with impeller
US4642036A (en) * 1984-09-17 1987-02-10 Young Niels O Magnet ball pump
US4753221A (en) 1986-10-22 1988-06-28 Intravascular Surgical Instruments, Inc. Blood pumping catheter and method of use
US4779614A (en) 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
US4846152A (en) 1987-11-24 1989-07-11 Nimbus Medical, Inc. Single-stage axial flow blood pump
US4817586A (en) 1987-11-24 1989-04-04 Nimbus Medical, Inc. Percutaneous bloom pump with mixed-flow output
US5061256A (en) 1987-12-07 1991-10-29 Johnson & Johnson Inflow cannula for intravascular blood pumps
US4994078A (en) 1988-02-17 1991-02-19 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US5092879A (en) 1988-02-17 1992-03-03 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US4863461A (en) 1988-03-21 1989-09-05 Symbion, Inc. Artificial ventricle
US4906229A (en) 1988-05-03 1990-03-06 Nimbus Medical, Inc. High-frequency transvalvular axisymmetric blood pump
US4908012A (en) 1988-08-08 1990-03-13 Nimbus Medical, Inc. Chronic ventricular assist system
US4919647A (en) 1988-10-13 1990-04-24 Kensey Nash Corporation Aortically located blood pumping catheter and method of use
US4957504A (en) 1988-12-02 1990-09-18 Chardack William M Implantable blood pump
US4944722A (en) 1989-02-23 1990-07-31 Nimbus Medical, Inc. Percutaneous axial flow blood pump
US4995857A (en) 1989-04-07 1991-02-26 Arnold John R Left ventricular assist device and method for temporary and permanent procedures
US4927407A (en) 1989-06-19 1990-05-22 Regents Of The University Of Minnesota Cardiac assist pump with steady rate supply of fluid lubricant
US5112200A (en) 1990-05-29 1992-05-12 Nu-Tech Industries, Inc. Hydrodynamically suspended rotor axial flow blood pump
US5209650A (en) 1991-02-28 1993-05-11 Lemieux Guy B Integral motor and pump
US5290236A (en) 1991-09-25 1994-03-01 Baxter International Inc. Low priming volume centrifugal blood pump
US5290227A (en) 1992-08-06 1994-03-01 Pasque Michael K Method of implanting blood pump in ascending aorta or main pulmonary artery
US5344443A (en) 1992-09-17 1994-09-06 Rem Technologies, Inc. Heart pump
US5376114A (en) 1992-10-30 1994-12-27 Jarvik; Robert Cannula pumps for temporary cardiac support and methods of their application and use
US5368438A (en) 1993-06-28 1994-11-29 Baxter International Inc. Blood pump
US5947892A (en) * 1993-11-10 1999-09-07 Micromed Technology, Inc. Rotary blood pump
US5957672A (en) 1993-11-10 1999-09-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Blood pump bearing system
US5527159A (en) 1993-11-10 1996-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotary blood pump
US5490768A (en) 1993-12-09 1996-02-13 Westinghouse Electric Corporation Water jet propulsor powered by an integral canned electric motor
WO1996008436A1 (en) * 1994-09-15 1996-03-21 Minnesota Mining And Manufacturing Company Hand applicator for adhesive sheeting
US5613935A (en) 1994-12-16 1997-03-25 Jarvik; Robert High reliability cardiac assist system
JP4076581B2 (ja) * 1995-04-03 2008-04-16 レビトロニクス エルエルシー 電磁式回転駆動装置を有する回転機器
US5588812A (en) 1995-04-19 1996-12-31 Nimbus, Inc. Implantable electric axial-flow blood pump
US5707218A (en) 1995-04-19 1998-01-13 Nimbus, Inc. Implantable electric axial-flow blood pump with blood cooled bearing
US5924848A (en) 1995-06-01 1999-07-20 Advanced Bionics, Inc. Blood pump having radial vanes with enclosed magnetic drive components
US5824070A (en) 1995-10-30 1998-10-20 Jarvik; Robert Hybrid flow blood pump
US5840070A (en) 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
US6162233A (en) 1996-02-23 2000-12-19 Cardiovascular Technologies, Llc Wire fasteners for use in minimally invasive surgery and means and methods for handling those fasteners
US5911685A (en) 1996-04-03 1999-06-15 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US5746709A (en) 1996-04-25 1998-05-05 Medtronic, Inc. Intravascular pump and bypass assembly and method for using the same
US6254359B1 (en) 1996-05-10 2001-07-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for providing a jewel bearing for supporting a pump rotor shaft
DE19625300A1 (de) 1996-06-25 1998-01-02 Guenter Prof Dr Rau Blutpumpe
US6244835B1 (en) 1996-06-26 2001-06-12 James F. Antaki Blood pump having a magnetically suspended rotor
US6015272A (en) 1996-06-26 2000-01-18 University Of Pittsburgh Magnetically suspended miniature fluid pump and method of designing the same
DE19629614A1 (de) 1996-07-23 1998-01-29 Cardiotools Herzchirurgietechn Linksherzassistpumpe
AT404318B (de) 1996-07-29 1998-10-27 Heinrich Dr Schima Zentrifugalpumpe bestehend aus einem pumpenkopf und einem scheibenläuferantrieb zur förderung von blut und anderen scherempfindlichen flüssigkeiten
WO1998011650A1 (de) 1996-09-10 1998-03-19 Sulzer Electronics Ag Rotationspumpe und verfahren zum betrieb derselben
US6488692B1 (en) 1996-09-16 2002-12-03 Origin Medsystems, Inc. Access and cannulation device and method for rapidly placing same and for rapidly closing same in minimally invasive surgery
US5868763A (en) 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US5851174A (en) 1996-09-17 1998-12-22 Robert Jarvik Cardiac support device
JP4104088B2 (ja) 1996-10-04 2008-06-18 ユナイテッド ステイツ サージカル コーポレイション 循環器支援システム
US5964694A (en) 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US6250880B1 (en) 1997-09-05 2001-06-26 Ventrassist Pty. Ltd Rotary pump with exclusively hydrodynamically suspended impeller
US6019722A (en) 1997-09-17 2000-02-01 Guidant Corporation Device to permit offpump beating heart coronary bypass surgery
US6889082B2 (en) 1997-10-09 2005-05-03 Orqis Medical Corporation Implantable heart assist system and method of applying same
UA56262C2 (uk) 1997-10-09 2003-05-15 Орквіс Медікел Корпорейшн Імплантовувана система підтримки серця
US6610004B2 (en) 1997-10-09 2003-08-26 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6390969B1 (en) 1997-10-09 2002-05-21 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6387037B1 (en) 1997-10-09 2002-05-14 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6176822B1 (en) 1998-03-31 2001-01-23 Impella Cardiotechnik Gmbh Intracardiac blood pump
US6234635B1 (en) 1998-07-30 2001-05-22 Michael R. Seitzinger Method for preventing laparoscope fogging
US6068588A (en) 1999-01-07 2000-05-30 International Business Machines Corporation Counterbalanced pump
WO2000064030A1 (de) 1999-04-20 2000-10-26 Berlin Heart Ag Vorrichtung zur schonenden förderung von ein- oder mehrphasigen fluiden
DE20007581U1 (de) 1999-04-20 2000-10-19 Mediport Kardiotechnik Gmbh Vorrichtung zur axialen Förderung von fluiden Medien
DE19944863A1 (de) * 1999-09-18 2001-04-19 Forschungszentrum Juelich Gmbh Magnetlager
US6234772B1 (en) 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
US6247892B1 (en) 1999-07-26 2001-06-19 Impsa International Inc. Continuous flow rotary pump
US6306116B1 (en) 1999-09-30 2001-10-23 Origin Medsystems, Inc. Method and apparatus for pressurizing the right atrium or right ventricle to assist cardiac function during beating heart surgery
US6227820B1 (en) 1999-10-05 2001-05-08 Robert Jarvik Axial force null position magnetic bearing and rotary blood pumps which use them
DE29921352U1 (de) 1999-12-04 2001-04-12 Impella Cardiotech Ag Intravasale Blutpumpe
JP2001207988A (ja) 2000-01-26 2001-08-03 Nipro Corp 磁気駆動型軸流ポンプ
WO2001054591A1 (en) 2000-01-28 2001-08-02 Idx Medical, Ltd. Non-kinking and non-tangling suture package
JP3562763B2 (ja) * 2000-01-31 2004-09-08 東芝テック株式会社 インライン型ポンプ
JP4056009B2 (ja) * 2000-01-31 2008-03-05 東芝テック株式会社 インライン型ポンプ
JP4368483B2 (ja) 2000-02-28 2009-11-18 富士重工業株式会社 バンパビーム構造
DE20004136U1 (de) 2000-03-04 2000-12-14 Krankenhausbetr Sgesellschaft Blutpumpe
US6439845B1 (en) 2000-03-23 2002-08-27 Kidney Replacement Services, P.C. Blood pump
US6530876B1 (en) 2000-04-25 2003-03-11 Paul A. Spence Supplemental heart pump methods and systems for supplementing blood through the heart
US6527699B1 (en) 2000-06-02 2003-03-04 Michael P. Goldowsky Magnetic suspension blood pump
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
JP2002186230A (ja) * 2000-10-06 2002-06-28 Chung Shan Inst Of Science & Technol 単一ステータ二重ロータ回転式モータ
DE10058669B4 (de) 2000-11-25 2004-05-06 Impella Cardiotechnik Ag Mikromotor
JP2002221181A (ja) * 2001-01-24 2002-08-09 Toshiba Tec Corp モータ
US6619291B2 (en) 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
US6717311B2 (en) 2001-06-14 2004-04-06 Mohawk Innovative Technology, Inc. Combination magnetic radial and thrust bearing
US6641378B2 (en) 2001-11-13 2003-11-04 William D. Davis Pump with electrodynamically supported impeller
US6716157B2 (en) 2002-02-28 2004-04-06 Michael P. Goldowsky Magnetic suspension blood pump
CA2374989A1 (en) 2002-03-08 2003-09-08 Andre Garon Ventricular assist device comprising a dual inlet hybrid flow blood pump
US6869567B2 (en) 2002-05-15 2005-03-22 Steven Kretchmer Magnetic platinum alloys
JP2004036532A (ja) * 2002-07-04 2004-02-05 Toshiba Tec Corp 電動ポンプ
JP2004278375A (ja) 2003-03-14 2004-10-07 Yasuhiro Fukui 軸流ポンプ
US20040241019A1 (en) 2003-05-28 2004-12-02 Michael Goldowsky Passive non-contacting smart bearing suspension for turbo blood-pumps
US7021905B2 (en) 2003-06-25 2006-04-04 Advanced Energy Conversion, Llc Fluid pump/generator with integrated motor and related stator and rotor and method of pumping fluid
JP2005063167A (ja) * 2003-08-13 2005-03-10 Canon Inc 位置決め装置及びその制御方法、並びに露光装置
US7070398B2 (en) 2003-09-25 2006-07-04 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
US7229258B2 (en) 2003-09-25 2007-06-12 Medforte Research Foundation Streamlined unobstructed one-pass axial-flow pump
WO2005030296A2 (en) 2003-09-25 2005-04-07 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
US7798952B2 (en) 2003-10-09 2010-09-21 Thoratec Corporation Axial flow blood pump
ES2421526T3 (es) 2004-08-13 2013-09-03 Delgado Reynolds M Iii Aparato para asistencia a largo plazo de un ventrículo izquierdo para bombear sangre
US7972122B2 (en) 2005-04-29 2011-07-05 Heartware, Inc. Multiple rotor, wide blade, axial flow pump
US7699586B2 (en) 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
CN1278188A (zh) * 1997-09-05 2000-12-27 文特拉西斯特股份有限公司 一种具有流体动力悬浮叶轮的旋转泵
US6120537A (en) * 1997-12-23 2000-09-19 Kriton Medical, Inc. Sealless blood pump with means for avoiding thrombus formation
US6595743B1 (en) * 1999-07-26 2003-07-22 Impsa International Inc. Hydraulic seal for rotary pumps

Also Published As

Publication number Publication date
IL190337A (en) 2012-05-31
CA2624704C (en) 2014-04-22
KR101277183B1 (ko) 2013-06-20
CA2841675A1 (en) 2007-04-12
US20070100196A1 (en) 2007-05-03
US8419609B2 (en) 2013-04-16
US20180028734A1 (en) 2018-02-01
IL190337A0 (en) 2009-09-22
US20150038769A1 (en) 2015-02-05
CA2841675C (en) 2015-09-01
JP5038316B2 (ja) 2012-10-03
US20100069847A1 (en) 2010-03-18
CN102935249A (zh) 2013-02-20
CN102935249B (zh) 2016-03-30
US9339598B2 (en) 2016-05-17
KR20080056754A (ko) 2008-06-23
JP2009511802A (ja) 2009-03-19
US8790236B2 (en) 2014-07-29
US20110301403A1 (en) 2011-12-08
US8007254B2 (en) 2011-08-30
US20160271308A1 (en) 2016-09-22
US20150031936A1 (en) 2015-01-29
US9737652B2 (en) 2017-08-22
US20070078293A1 (en) 2007-04-05
CN101282748A (zh) 2008-10-08
CN102600518A (zh) 2012-07-25
US10251985B2 (en) 2019-04-09
CA2624704A1 (en) 2007-04-12
US8668473B2 (en) 2014-03-11
US9956332B2 (en) 2018-05-01

Similar Documents

Publication Publication Date Title
CN102600518B (zh) 有多槽转子的轴流泵
CN103432637B (zh) 旋转式血泵
US8152493B2 (en) Centrifugal rotary blood pump with impeller having a hydrodynamic thrust bearing surface
EP1931403B1 (en) Axial flow pump with multi-grooved rotor
AU2013257469B2 (en) Axial flow pump with multi-grooved rotor
AU2012261669B2 (en) Rotary blood pump

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant