Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónCN102603005 B
Tipo de publicaciónConcesión
Número de solicitudCN 201210057610
Fecha de publicación4 Dic 2013
Fecha de presentación7 Mar 2012
Fecha de prioridad7 Mar 2012
También publicado comoCN102603005A
Número de publicación201210057610.6, CN 102603005 B, CN 102603005B, CN 201210057610, CN-B-102603005, CN102603005 B, CN102603005B, CN201210057610, CN201210057610.6
Inventores赵龙飞, 赵维保, 赵维根
Solicitante洛阳开拓者投资管理有限公司
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos:  SIPO, Espacenet
Method for preparing nanometer molybdenum trioxide
CN 102603005 B
Resumen  traducido del chino
本发明涉及有色金属冶金技术领域,尤其是涉及一种以纯三氧化钼为原料制备纳米三氧化钼的方法。 The present invention relates to the field of non-ferrous metallurgy, in particular to a pure molybdenum trioxide as raw material preparation method of nanometer molybdenum trioxide. 以纯三氧化钼为原料,通过等离子体升华制备纳米三氧化钼,将纯三氧化钼粉末通过加料装置送入等离子体升华炉中,在等离子体流中进行升华,操作时间10~100ms,获得的气态三氧化钼采用骤冷介质骤冷,收料装置收集,得到纳米三氧化钼,MoO3>99.80%。 Pure molybdenum trioxide as raw material by plasma sublimation Nano trioxide, pure molybdenum trioxide powder into the furnace through a charging device in plasma sublimation, sublimation in a plasma stream, operation time 10 ~ 100ms, obtained molybdenum trioxide gas quench using quench medium, receiving means to collect, obtain nanometer molybdenum trioxide, MoO3> 99.80%. 本发明采用等离子体升华法制备三氧化钼,可以在超短时间内得到粒度在80nm以内的高纯纳米三氧化钼,并且真正实现了自动化、连续化生产。 The present invention is prepared using plasma sublimation of molybdenum trioxide, can be obtained in a short time in the ultra high purity nano-80nm particle size of less than molybdenum trioxide, and truly automated, continuous production.
Reclamaciones(3)  traducido del chino
1.一种制备纳米三氧化钥的方法,以纯三氧化钥为原料,通过等离子体升华制备纳米三氧化钥,该方法通过以下设备实现:等离子体升华炉(I),收杂装置(2);水冷收集装置(3);真空系统⑷;等离子气体(5);冷却系统(6);电源接口(7);加料装置⑶;收料装置(9);反吹气体(10); 将纯三氧化钥原料粉末通过加料装置(8)送入等离子体升华炉(I)中,在等离子气体(5)喷焰产生的2000〜10000°C等离子体流中进行升华,操作时间10〜IOOms ;将升华产生的三氧化钥引入水冷收集装置(3),用水作骤冷剂骤冷,收料装置(9)收集,得到纳米三氧化钥;其中,真空系统⑷控制系统真空度在IO3〜IO5Pa,冷却系统(6)设有进水口和出水口;水冷收集装置(3)采用水冷脉冲反吹过滤器,工作状态下不断通入反吹气体(10)实现气固分离。 1. A process for preparing nanometer trioxide key way to pure trioxide key as raw material by plasma sublimation Nano trioxide key, the method to achieve the following devices: plasma sublimation furnace (I), miscellaneous income means (2) ; cooling collecting device (3); vacuum system ⑷; plasma gas (5); cooling system (6); Power Interface (7); feeding means ⑶; receipt means (9); Blowback gas (10); Pure key raw material trioxide powder through the charging device (8) into the plasma sublimation furnace (I), the plasma gas (5) plume generated plasma flow 2000~10000 ° C sublimation, operating time 10~IOOms; trioxide key to introducing the resultant water-cooled sublimation collecting device (3), using water as the quench quench, receiving means (9) to collect, obtain nanometer trioxide key; wherein the vacuum system ⑷ control the degree of vacuum in IO3~IO5Pa , cooling system (6) is provided with inlet and outlet; cooling collecting device (3) water-cooled pulse counter-blowing filter working condition continuously fed to purge gas (10) to achieve solid separation.
2.根据权利要求1所述的制备纳米三氧化钥的方法,其特征在于:进一步地,产生所述等离子体流的等离子气体为氩气、氮气、空气或者氧气。 2. Preparation of Nano trioxide key method according to claim 1, characterized in that: Furthermore, the plasma flow generated plasma gas is argon, nitrogen, air or oxygen.
3.根据权利要求1所述的制备纳米三氧化钥的方法,其特征在于:进一步地,所述纳米三氧化钥粒度< 80nm。 3. Preparation of Nano trioxide key method according to claim 1, characterized in that: Furthermore, the key size of the nano-oxide <80nm. . .
Descripción  traducido del chino

一种制备纳米三氧化钼的方法 A process for preparing nanometer molybdenum trioxide

技术领域 Technical Field

[0001] 本发明涉及有色金属冶金技术领域,尤其是涉及一种以纯三氧化钥为原料制备纳米三氧化钥的方法。 [0001] The present invention relates to the field of non-ferrous metallurgy, in particular, it relates to a pure oxide key raw material for the preparation of nano-oxide-key approach.

背景技术 Background

[0002] 三氧化钥是钥冶金中最重要的中间体,大多数钥的化合物都是直接或间接以它为原料制得的,三氧化钥在催化剂、显示装置、传感器、电机电池等领域都有广泛的应用。 [0002] key trioxide is the most important key metallurgical intermediate compounds are most key to it directly or indirectly, for raw materials, the three key oxidation catalyst, display devices, sensors, electrical batteries and other fields There are a wide range of applications.

[0003] 工业上一般用锻烧钥酸铵的方法制取三氧化钥,随着材料科学与应用技术的不断发展,该方法制得的三氧化钥由于颗粒粗、呈团聚状态而不能满足特殊使用要求,如郭光华等在CN102198958中公开了一种石油加氢精制催化剂用高纯三氧化钥的制备方法,将四钥酸铵干燥、过筛后送入回转管电炉进行焙烧,一次成品率达98.5%。 [0003] The methods generally used in the industry to take ammonium calcined key trioxide key, with the continuous development of materials science and applied technology, the method obtained trioxide key because the particles are thick, was reunited state can not meet the special requirements, such as 郭光华 et al. discloses a petroleum hydrotreating catalyst used in the preparation of high purity CN102198958 trioxide key will four key ammonium sulfate, sieved into the rotary tube furnace is fired, a yield 98.5%.

[0004] 由于三氧化钥在较低的温度下即具有显著的蒸汽压,所以可以用升华法对三氧化钥进行净化,在升华的操作条件下,通常与之共生的杂质或不具有挥发性(如硅酸盐等)或不能冷凝而被除去。 [0004] As the three keys at a lower oxidation temperature at which significant vapor pressure, so you can use the sublimation method of purification key trioxide in the sublimation of operating conditions, generally symbiosis with impurities or not volatile (such as silicates, etc.), or condensation can be removed.

[0005] 目前,工业上升华法生产纯三氧化钥的主要原料为工业氧化钥即钥焙砂,根据钥焙砂中氧化钥熔点、沸点低,在温度低于其熔点795°C时开始升华,以三聚合氧化钥的形态进入气相,三氧化钥蒸气连同空气一同进入收尘风罩中并在抽力作用下进入布袋收集,而大多数杂质化合物因熔点、沸点高很多留在固相中,升华在旋转电炉中进行,升华温度一般控制在900〜1100°C,制取的三氧化钥一般纯度可达到Mo0399.8% (张启修,赵秦生主编,《钨钥冶金》,2005年9月);南韩研究人员发明一种新型升华炉,该炉比带旋转炉底的升华炉生产能力大,能耗低(张文钲,氧化钥研发进展,《中国钥业》,2006年第I期);US4551313公开了一种含成渣成分(硅、铝及重金属)的三氧化钥的快速升华方法,第一步:通过气动悬浮流输送的氧化钥颗粒、通过喷嘴输送的燃料和含氧气体混合流进入一个封闭炉腔内,燃料气体混合物点燃产生温度在1600 士200°C〜1800°C的足以使三氧化钥升华、融化成渣成分的火焰,收集炉腔内的液态渣,第二步:将产生的包括升华的三氧化钥在内的气体和悬浮固体通过上述炉腔进入一冷凝室,冷凝室的温度(850〜950°C)高于升华的三氧化钥的冷凝温度、低于挥发性金属杂质的挥发温度,然后冷凝(150〜500°C)、收集固态三氧化钥,分离废气,从而实现三氧化钥和杂质的分离,结果显示,混入渣中的钥低于1%,得到产品三氧化钥纯度达Mo0399.95%。 [0005] Currently, the industrial production of major raw materials increased warfarin pure trioxide key is the key that is key industrial oxide calcine, according to key oxide calcine key melting point, boiling point lower, at temperatures below the melting point of 795 ° C starts to sublime , in the form of three key into the gas phase polymerization oxide, trioxide vapor along with key air into the dust collection hood together and pumping into the bag to collect in force under, and because most of the impurities compound melting point, boiling point, remain much higher in the solid phase sublimation in a rotary furnace carried sublimation temperature control in 900~1100 ° C, trioxide key preparation generally purity can reach Mo0399.8% (Zhang Qi Xiu, Zhao Qinsheng editor, "tungsten metallurgy key", September 2005) ; South Korean researchers invented a new kind of sublimation furnace which is greater than the sublime with a rotary hearth furnace production capacity, the power consumption is low (Zhang Zheng, oxidative key R & D progress, "China's key industry", 2006 Stage I); US4551313 discloses a composition containing a residue (silicon, aluminum and heavy metals) trioxide key fast sublimation method, the first step: pneumatic suspension particles by oxidation key stream fed by the fuel and oxygen-containing gas stream enters the mixing nozzle delivered a closed furnace chamber, the fuel gas mixture is ignited to produce a temperature of 1600 persons 200 ° C~1800 ° C is sufficient to allow trioxide key sublimation, melting into flame slag component, collecting in the cavity of liquid slag, Step two: including sublimation generated key trioxide gases and suspended solids, including through said cavity enters a condensation chamber, a condensation chamber temperature (850~950 ° C) higher than the sublimation key trioxide condensation temperature, below volatile volatilization temperature of metal impurities and condensation (150~500 ° C), collected solid trioxide key, gas separation, separation of enabling key trioxide and impurities, the results show that the mixed slag key less than 1%, to give the product trioxide key purity Mo0399.95%.

[0006] 尽管采用上述这些方法可以获得较高纯度的三氧化钥,但仍然存在下述几个问题:1、钥回收率明显低于75%,抵消了产品纯度提高带来的优势;2、由于往炉内通入大量空气流,大部分热量不是用来升华产品,而是被用来提高引入空气的温度;3、制得的产品三氧化钥平均粒度在微米级,不能满足材料科学等领域的特定要求。 [0006] Despite the use of these methods can be obtained with high purity oxide key, but there are still the following questions: 1, key recovery rate significantly lower than 75 percent, offsetting the benefits of improving product purity; 2, Due to the large amount of air flow introduced into the furnace, most of the heat is not used to sublimate products, but is used to raise the temperature of incoming air; 3, the resulting product key trioxide micron average particle size, can not meet the materials science areas of specific requirements.

[0007] 已有研究发现,具有各向异性的纳米三氧化钥,更显示出其特殊的催化性能,可广泛用作催化剂,常规升华法采用收尘风罩及布袋收集三氧化钥,因粒子聚凝仅得到微米级产品,为了制取纳米三氧化钥,必须将升华的三氧化钥气体急骤冷却,防止三氧化钥粒子聚凝或团聚,从而得到纳米级产品。 [0007] It has been found that anisotropic oxide nano-key, but also shows its special catalytic properties can be widely used as a catalyst, conventional sublimation method using dust collection hood and bag to collect trioxide key, because the particles polybrene received only micron-level products, to the preparation of nano-oxide-key, key trioxide gas must be cooled quickly sublimated prevent trioxide key polybrene or agglomerated particles, resulting in nanoscale products.

[0008] US6468497公开了一种纳米三氧化钥的生产方法,将工业氧化钥采用升华_骤冷法生产出纳米三氧化钥,生产工艺如下:将粒度大约24〜260 μ m的工业氧化钥粉体(通常由三氧化钥和二氧化钥组成)经可控螺旋运输机送入升华炉中,经入口鼓入空气使二氧化钥氧化为三氧化钥,升华炉用电力加热,用热电偶检测炉内温度,当炉温达到1100°C时,三氧化钥开始升华并沉积在似膜状进料管中;已升华的纳米三氧化钥用液氮流骤冷,进入料斗,然后流入过滤器,经风机吸出冷气,纳米三氧化钥产品经漏斗排出,反应升华温度为1093〜1260°C,升华炉的作业时间为120min,可产出约长lOOnm、宽25nm、高20nm的呈条状纳米级三氧化钥。 [0008] US6468497 discloses a nano-oxide-key production methods, industrial oxidation key sublimation _ quenching method to produce nanometer trioxide key, the production process is as follows: The particle size of about 24~260 μ m key industrial oxide powder body (usually made trioxide key and key dioxide composition) controlled by a screw conveyor into the sublimation furnace, blowing air through the inlet so that key dioxide is oxidized to trioxide key, sublimation furnace heated electrically, stove with thermocouple detection the temperature, when the furnace temperature reached 1100 ° C, trioxide key start sublimation and deposited like a film feed tube; nanometer trioxide has been sublimated key with liquid nitrogen flow quenched into the hopper, and then flows into the filter, After the fan sucked out air-conditioning, Nano trioxide key product hopper discharge, the reaction sublimation temperature 1093~1260 ° C, sublimation furnace operating time 120min, can produce about long lOOnm, width 25nm, 20nm high was strip nanoscale trioxide key.

[0009] 上述方法虽然可以制得纳米级产品,但存在的问题在于:升华时间长,一般在120min以上,不能进行连续化生产。 [0009] Although these methods can be obtained nano-products, but the problem is that: sublimation long time, usually more than 120min, can not be continuous production.

[0010] 赵秦生等提出一种氧化钥等离子物理气相沉积法制取高纯三氧化钥的方法,以空气等离子处理工业纯的氧化钥(即钥焙砂),利用三氧化钥沸点比大多数杂质低的特点,令其在空气等离子焰中迅速挥发,然后在等离子焰外引入大量冷空气使气态三氧化钥骤冷,获得超细高纯三氧化钥粉末。 [0010] 赵秦生 put forward an oxidizing key plasma physical vapor deposition method of high purity oxide-key approach to air plasma treatment of industrial pure oxygenated key (ie key calcine), use trioxide key lower boiling point than most impurities features, make it evaporate quickly in air plasma flame, and then the plasma flame introduce a lot of cold air outside the gaseous quench trioxide key, get key trioxide superfine powder of high purity. 因为采用等离子方法,预计生产时间可大大缩短,但该方法: Because the use of a plasma method, estimated production time can be greatly shortened, but the method:

1、为保证在等离子体条件下三氧化钥的迅速挥发,等离子焰必须保持较高温度(2000°C以上),致使原料钥焙砂中的大多数杂质也挥发进入气相,最终冷凝并伴随三氧化钥进入产品中,影响产品纯度;2、该方法仅仅只是一个设想,无工业应用,甚至无实验装置(张启修,赵秦生主编,《钨钥冶金》,2005年9月)。 1, in order to ensure rapid evaporation under plasma conditions trioxide key, the plasma flame must maintain a high temperature (2000 ° C or more), resulting in key raw material calcine most volatile impurities into the gas phase and eventually condensed and accompanied by three Oxidation keyless entry product, the impact of product purity; 2, which is just an idea, no industrial application, or no test equipment (repair Zhang Qi, Zhao Qinsheng editor, "tungsten metallurgy key", September 2005).

发明内容 DISCLOSURE

[0011] 在现有技术的基础上,本发明的目的在于提供一种以纯三氧化钥为原料采用等离子体升华制备纳米三氧化钥的方法,超短时间,可以实现自动化、连续化生产。 [0011] On the basis of the prior art, the object of the present invention is to provide a key to the pure oxide as raw material by plasma Nano trioxide key sublimation method, short of time, can be automated, continuous production.

[0012] 一种制备纳米三氧化钥的方法,以纯三氧化钥为原料,通过等离子体升华制备纳米三氧化钥,其特征在于: [0012] A method for preparing nano oxide key to key as pure oxide starting material, prepared by a plasma sublimation oxide nano key, characterized in that:

[0013] 将纯三氧化钥粉末通过加料装置送入等离子体升华炉中,在等离子体流中进行升华,操作时间10〜100ms,获得的气态三氧化钥采用骤冷介质骤冷,收料装置收集,得到纳米三氧化钥,MoO3 > 99.80%ο [0013] The pure oxide powder is fed through a feeding device key plasma sublimation oven sublimation in a plasma stream, the operating time 10~100ms, gaseous trioxide key obtained using quench quenching medium, receiving means collect, obtain nanometer trioxide key, MoO3> 99.80% ο

[0014] 升华条件为:温度2000〜10000°C、真空度为IO3〜IO5Pa的微负压。 [0014] Sublimation conditions: Temperature 2000~10000 ° C, vacuum degree IO3~IO5Pa micro vacuum.

[0015] 进一步地,所述骤冷介质为水、空气或者液氮。 [0015] Further, the quench medium is water, air or liquid nitrogen.

[0016] 进一步地,所述纳米三氧化钥粒度< 80nm。 [0016] Further, the nano-size keys trioxide <80nm.

[0017] 进一步地,产生所述等离子体流的等离子气体为氩气、氮气、空气、氧气或其他合适气体。 [0017] Further, the plasma generating plasma gas flow is argon, nitrogen, air, oxygen or other suitable gas.

[0018] 本发明所称纯三氧化钥,指采用钥酸铵热解或其他方法制得的纯三氧化钥,其化学组成符合相应行业标准。 [0018] The present invention is called pure trioxide key, key refers to the use of ammonium pyrolysis or other methods to obtain pure trioxide key, its chemical composition comply with relevant industry standards.

[0019] 采用如上所述的技术方案,本发明至少具有如下有益效果: [0019] The technical solutions described above, the present invention has at least the following beneficial effects:

[0020] 1、超高温带来超短时间 [0020] 1, bring ultra-high temperature short time

[0021] 本发明中,由于等离子体的超高温加热,当三氧化钥粉料进入等离子体升华炉时,在极短的时间内即完成热量的传递及对粉料的充分加热,升华操作可瞬间完成(< 100ms),超高温带来超短时间,明显优于现有的升华或升华-骤冷技术; [0021] The present invention, since the ultra-high temperature plasma heating, when the three key oxide powder into the plasma sublimation furnace, in a very short period of time to complete the transfer of heat and adequate heating of the powder, the sublimation operation may instantaneous (<100ms), ultra-high temperature short time to bring much better than existing distillation or sublimation - quenching technology;

[0022] 2、实现自动化、连续化生产 [0022] 2, automated, continuous production

[0023] 由于本发明用等离子体升华炉取代现有的旋转电炉或新型升华炉,能够一次、快速完成三氧化钥的挥发升华,形成不断加料、不断收集成品的连续化生产过程,与现有各种升华方法制取三氧化钥操作时间长、不能连续化生产相比,本方法真正实现了自动化、连续化生产,年产纳米三氧化钥400吨以上; [0023] Since the present invention uses a plasma sublimation furnace to replace the existing rotary furnace or new sublimation oven, capable of a quick completion of key volatile trioxide sublimation, the constantly feeding, continue to collect continuous production process of the finished product, and existing Preparation of various sublimation method trioxide key operating for a long time, not continuous production compared to this method truly automated, continuous production, with an annual output nanometer trioxide key 400 tons or more;

[0024] 3、产品粒度细 [0024] 3, fine granularity

[0025] 本发明采用骤冷收集制备三氧化钥,避免了三氧化钥粒子的聚凝或团聚,从而获得纳米级产品,产品粒度可控制在80nm以内,与现有技术相比,可以满足材料科学领域的特定要求。 [0025] The present invention was prepared using the quench collector trioxide key, avoiding trioxide key polybrene or agglomerated particles to obtain nanoscale products, product size can be controlled at 80nm or less, compared with the existing technology to meet the material the specific requirements of science.

附图说明 Brief Description

[0026] 图1:本发明的制备纳米三氧化钥的工艺设备示意图。 [0026] FIG. 1: Preparation of nanometer trioxide key process equipment schematic of the present invention.

[0027] 图中主要编号说明:1等离子体升华炉;2收杂装置;3水冷收集装置;4真空系统;5等离子气体;6冷却系统;7电源接口;8加料装置;9收料装置;10反吹气体。 [0027] FIG main number: 1 plasma sublimation furnace; 2 admission miscellaneous equipment; 3 cooling collection device; 4 vacuum system; 5 plasma gas; 6 cooling systems; 7 power connector; 8 charging device; 9 Receipt means; 10 blowback gas.

具体实施方式 DETAILED DESCRIPTION

[0028] 以下结合附图1及实施例详细说明本发明的技术方案,但本发明的保护范围包括但是不限于此: [0028] The following embodiments of the drawings and detailed description of a technical solution of the present invention, but the scope of the present invention include, but are not limited to:

[0029] 本发明的制备纳米三氧化钥的工艺设备布置如图1所示,升华在等离子体升华炉I中进行,生产设备还包括加料装置8、收料装置9、收杂装置2、真空系统4、冷却系统6及水冷收集装置3等;将纯三氧化钥原料粉末通过加料装置8送入等离子体升华炉I中,在等离子气体5喷焰产生的2000-10000°C等离子体流中进行升华,操作时间10-100ms ;将升华产生的三氧化钥引入水冷收集装置3,用水作骤冷剂骤冷,收料装置9收集,得到纳米三氧化钥;真空系统4控制系统真空度在103-105Pa,冷却系统6设有进水口和出水口;水冷收集装置3采用水冷脉冲反吹过滤器,工作状态下不断通入反吹气体10实现气固分离。 [0029] Nano trioxide key process equipment arrangements of the invention shown in Figure 1, sublimation sublimation in a plasma furnace I, the production equipment also includes a charging device 8, rewinding device 9, miscellaneous income unit 2, vacuum System 4, 6, and water-cooled cooling system collecting device 3 and the like; pure trioxide key raw material powder into a plasma by the charging device 8 I sublimation furnace, the plasma gas 5 jet flame generated by the plasma stream 2000-10000 ° C sublimation, operating time 10-100ms; trioxide key to introducing the resultant water-cooled sublimation collecting device 3, water as quench quench, rewinding device 9 to collect, obtain nanometer trioxide key; vacuum system vacuum level 4 control system 103-105Pa, cooling system 6 is provided with inlet and outlet; the water-cooled water-cooled pulse collecting device 3 anti-blowing filter, constantly working condition through the purge gas 10 to achieve solid separation.

[0030] 本发明中,真空度控制在103-105Pa的微负压,能够取得非常好的升华效果;在升华三氧化钥的过程中,由于等离子体产生的超高温度,升华速度很快,在超短时间即毫秒级的时间内完成。 [0030] The present invention, vacuum control in 103-105Pa micro vacuum, sublimation can be achieved very good results; key trioxide in the sublimation process, due to the ultra-high-temperature plasma generated by sublimation fast, completed within the short time that is time milliseconds.

[0031] 具体操作实施过程如下: [0031] Specific embodiments operate as follows:

[0032] 1、打开供水系统6的冷却水; [0032] 1, open the cooling water supply system 6;

[0033] 2、关闭进料阀,将原料三氧化钥加入加料装置8 ; [0033] 2, close the inlet valve, the raw material charging device trioxide key added 8;

[0034] 3、真空系统4抽真空到设定真空度; [0034] 3, 4 vacuum system was evacuated to a vacuum degree setting;

[0035] 4、通入等离子气体5,由电源接口7接入等离子电源产生设定温度的等离子体流; [0035] 4, 5 pass into the plasma gas generated by the power supply connector 7 access plasma power set temperature plasma flow;

[0036] 5、向水冷收集装置3通入脉冲气体10 ; [0036] 5, to collect water-cooling device 3 through the pulsed gas 10;

[0037] 6、打开进料阀,持续将加料装置8中的料粉加入等离子体升华炉I中进行升华操作; [0037] 6, open the inlet valve, continue the charging device 8 feed powder into the plasma sublimation sublimation furnace operation I performed;

[0038] 7、从收料装置9收取产品三氧化钥,从收杂装置2收取杂质。 [0038] 7, charged trioxide product key from receipt means 9, charged impurities from the miscellaneous income means 2.

[0039] 实践中还可以用空气或液氮作骤冷介质。 [0039] In practice can also be used for air or liquid nitrogen quenching medium. [0040] 实施例1: [0040] Example 1:

[0041] 原料:纯三氧化钥粉末,其化学组成见表I。 [0041] Raw material: pure key trioxide powder whose chemical composition shown in Table I.

[0042] 实施过程:将纯三氧化钥原料送入等离子体升华炉中,控制等离子体流的温度为2000〜10000°C、真空度为IO3〜IO5Pa,用水作骤冷剂,骤冷收集,得到三氧化钥,取样检测。 [0042] The process: the pure oxide sublimation key raw material into a plasma furnace, the temperature of the plasma flow control 2000~10000 ° C, vacuum degree of IO3~IO5Pa, water as a quench, quench collector, get trioxide key, sample testing.

[0043] 实施参数与结果列于表2。 [0043] The parameters and results are shown in Table 2.

[0044] 从表2可以看出: [0044] As can be seen from Table 2:

[0045] 1、以Mo0399.82%的纯三氧化钥为原料,采用等离子体升华法可以在IOOms以内的超短时间制得纯度在99.80%以上、粒度在SOnm以下的高纯纳米三氧化钥; [0045] 1 to Mo0399.82% pure oxide as raw key, using plasma sublimation can be obtained in a purity of more than 99.80% IOOms within short time, high-purity nano-size oxide in SOnm following key ;

[0046] 2、随着等离子体升华温度的升高,升华速度加快,真空度降低,产能提高。 [0046] 2, with plasma sublimation temperature, the sublimation speed, the vacuum was reduced, productivity can be improved.

[0047] 最后所应说明的是:以上说明仅用以说明本发明而非限制,尽管参照较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围,其均应涵盖在本发明的保护范围当中。 [0047] Finally, should be noted that: The instructions above are only intended to illustrate the invention without limiting, although the present invention has been described in detail with reference to preferred embodiments, one of ordinary skill in the art will appreciate that the present invention may be modified or equivalents, without departing from the spirit and scope of the present invention, which should be covered by the scope of the present invention.

[0048] 表I原料化学组成 [0048] Table I chemical composition of raw materials

[0049] [0049]

Figure CN102603005BD00061

[0050] 表2实施例1参数与结果 [0050] Table 2 Example 1 Parameters and Results

[0051] [0051]

Figure CN102603005BD00062
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
CN101092249A27 Abr 200726 Dic 2007中山大学Method for preparing Nano structure and thin film of molybdenum trioxide by using infrared sintering furnace
US64684979 Nov 200022 Oct 2002Cyprus Amax Minerals CompanyMethod for producing nano-particles of molybdenum oxide
Otras citas
Referencia
1A.H.泽列克曼等.《稀有金属冶金学》.《稀有金属冶金学》.冶金工业出版社,1982,(第1版),第109-112页.
2阎建伟等.《钼化学品导论》.《钼化学品导论》.冶金工业出版社,2008,(第1版),第184-185页.
3马兵等."高频等离子体固相分解仲钼酸铵制备MoO3、MoO2超微细粉".《化工冶金》.1996,第17卷(第2期),第168-172页.
Clasificaciones
Clasificación internacionalB82Y40/00, C01G39/02
Eventos legales
FechaCódigoEventoDescripción
25 Jul 2012C06Publication
26 Sep 2012C10Entry into substantive examination
4 Dic 2013C14Grant of patent or utility model
20 May 2015LICCEnforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model