Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.


  1. Búsqueda avanzada de patentes
Número de publicaciónCN102811684 A
Tipo de publicaciónSolicitud
Número de solicitudCN 201180015518
Número de PCTPCT/US2011/022158
Fecha de publicación5 Dic 2012
Fecha de presentación21 Ene 2011
Fecha de prioridad22 Ene 2010
También publicado comoCN102811684B, CN104997587A, EP2525749A1, EP2525749B1, EP3138475A1, US8845625, US9495743, US20110202046, US20140341451, US20170027756, WO2011091326A1
Número de publicación201180015518.7, CN 102811684 A, CN 102811684A, CN 201180015518, CN-A-102811684, CN102811684 A, CN102811684A, CN201180015518, CN201180015518.7, PCT/2011/22158, PCT/US/11/022158, PCT/US/11/22158, PCT/US/2011/022158, PCT/US/2011/22158, PCT/US11/022158, PCT/US11/22158, PCT/US11022158, PCT/US1122158, PCT/US2011/022158, PCT/US2011/22158, PCT/US2011022158, PCT/US201122158
InventoresD·安杰莉, P·古丁, B·伍德利, G·马塞利诺
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos:  SIPO, Espacenet
Apparatus for automated placement of scanned laser capsulorhexis incisions
CN 102811684 A
Systems and methods are described for cataract intervention. In one embodiment a system comprises a laser source configured to produce a treatment beam comprising a plurality of laser pulses; an integrated optical system comprising an imaging assembly operatively coupled to a treatment laser delivery assembly such that they share at least one common optical element, the integrated optical system being configured to acquire image information pertinent to one or more targeted tissue structures and direct the treatment beam in a 3-dimensional pattern to cause breakdown in at least one of the targeted tissue structures; and a controller operatively coupled to the laser source and integrated optical system, and configured to adjust the laser beam and treatment pattern based upon the image information, and distinguish two or more anatomical structures of the eye based at least in part upon a robust least squares fit analysis of the image information.
Reclamaciones(15)  traducido del chino
1. 一种用于患者的眼睛的白内障手术的系统,所述系统包括: a.激光源,所述激光源被配置成产生包括多个激光脉冲的治疗光束; b.集成光学系统,所述集成光学系统包括成像组件,所述成像组件可操作地联接到治疗光束输送组件使得它们共用至少一个公共光学元件,所述集成光学系统被配置成采集与一个或多个目标组织结构相关的图像信息并且以三维图案引导治疗光束以导致目标组织结构中的至少一个的破坏;以及c.控制器,所述控制器可操作地联接到所述激光源和所述集成光学系统,并且被配置成: 1)基于所述图像信息调节激光束和治疗图案,并且2)至少部分地基于所述图像信息的鲁棒最小二乘拟合分析区分眼睛的两个或以上解剖结构。 A patient's eye for cataract surgery, the system comprising: a laser light source, the laser light source configured to generate a plurality of laser pulses including the treatment beam; b integrated optical systems, said. integrated optical systems includes an imaging assembly, the imaging assembly is operatively coupled to the treatment beam delivery components such that they share at least one common optical element, said integrated optical system is configured to acquire image information about one or more structurally related target tissue and the three-dimensional pattern to guide the treatment beam to cause the destruction of at least one target tissue structure; and c a controller operatively coupled to said laser source and said integrated optical systems, and configured to: 1) based on the image information and adjust the treatment pattern of the laser beam, and 2) based on the image information is at least partially Robust least squares fit analysis to distinguish between two or more eye anatomy.
2.根据权利要求I所述的系统,其中所述两个或以上解剖结构包括角膜。 2. The system of claim I, wherein said two or more anatomical structures including the cornea.
3.根据权利要求I所述的系统,其中所述两个或以上解剖结构包括巩膜。 3. The system of claim I, wherein the anatomical structure comprises two or more sclera.
4.根据权利要求I所述的系统,其中所述两个或以上解剖结构包括缘。 4. The system of claim I, wherein the anatomical structure comprises two or more edges.
5.根据权利要求I所述的系统,其中所述两个或以上解剖结构包括虹膜。 5. The system of claim I, wherein the anatomical structure comprises two or more of the iris.
6.根据权利要求I所述的系统,其中所述两个或以上解剖结构包括晶状体。 6. The system of claim I, wherein the anatomical structure comprises two or more lenses.
7.根据权利要求I所述的系统,其中所述两个或以上解剖结构包括晶状体囊。 7. The system of claim I, wherein the anatomical structure comprises two or more lens capsule.
8.根据权利要求I所述的系统,其中所述控制器被配置成进行一系列最小二乘拟合分析,并且在每个连续最小二乘拟合分析中迭代地包括更多数量的像素。 8. The system of claim I, wherein the controller is configured to perform a series of a least squares fit analysis, and in each successive iterative least squares fit analysis includes a larger number of pixels.
9.根据权利要求I所述的系统,其中所述控制器被配置成寻找紧密最小二乘拟合,其中相关的最小二乘拟合分析预期球形表面。 9. The system of claim I, wherein the controller is configured to look for a least squares fit tightly, which related to a least squares fit analysis expected spherical surface.
10.根据权利要求I所述的系统,其中所述控制器被配置成寻找紧密最小二乘拟合,其中相关的最小二乘拟合分析预期非球形表面。 10. The system of claim I, wherein the controller is configured to look for a least squares fit tightly, which related to a least squares fit analysis aspherical surface expected.
11.根据权利要求I所述的系统,其中所述控制器还被配置成定位所述两个或以上解剖结构之间的边界。 11. The system of claim I, wherein the controller is further configured to locate the boundaries of two or more anatomical structures.
12.根据权利要求11所述的系统,其中所述边界被限定为眼睛的角膜和眼睛的巩膜之间的交界。 12. The system of claim 11, wherein said boundary is defined as the junction of the cornea of the eye between the sclera and eye.
13.根据权利要求11所述的系统,其中所述边界被限定为眼睛的角膜和眼睛的虹膜之间的交界。 13. The system of claim 11, wherein said boundary is defined at the junction of the cornea of the eye between the iris and the eye.
14.根据权利要求11所述的系统,其中所述边界被限定为眼睛的晶状体和眼睛的虹膜之间的交界。 14. The system of claim 11, wherein said boundary is defined as the junction of the eye and the lens of the eye between the iris.
15.根据权利要求I所述的系统,其中所述控制器被配置成利用最小二乘拟合分析的拒绝点来识别眼睛的解剖结构。 15. The system of claim I, wherein the controller is configured to use the least squares fit analysis point of refusal to recognize the anatomical structure of the eye.
Descripción  traducido del chino

用于自动放置扫描激光撕囊切ロ的装置 For automatic placement scanning laser device capsularhexis cut ro

技术领域 Technical Field

[0001] 本发明涉及眼科手术程序和系统。 [0001] The present invention relates to ophthalmic surgical procedures and systems.

背景技术 Background

[0002] 眼内透镜植入是世界上最常用的手术程序之一,全世界毎年估计有1400万病例执ィ丁手术。 [0002] The intraocular lens implant is one of the most common surgical procedures worldwide Every year an estimated 14 million cases of execution ィ small surgery.

[0003] 典型地使用被称为超声乳化术的技术执行现代手术,其中在被称为前囊切开术或如今被称为撕囊术的执行晶状体前囊中的开ロ之后使用具有用于冷却的关联水流的超声尖端雕刻晶状体的较硬核。 [0003] Typically, using the technique called phacoemulsification perform modern surgery, after the execution of the anterior lens capsule is called the anterior capsular incision or now known as capsulorhexis in the open ro having used hard core cooling water flow associated with ultrasonic tip engraving lens. 在这些步骤以及在不碎裂的情况下通过抽吸移除残余较软晶状体皮质之后,通过小切ロ将人工可折叠眼内透镜(I0L)插入眼睛中。 In these steps, and then, without fragmentation residual softer lens cortex removal by suction, through a small cut ro inner foldable artificial intraocular lens (I0L) inserted into the eye.

[0004] 该程序中的最早和最关键步骤之一是执行囊切开(或撕囊)。 [0004] One of the earliest and most critical step in the program is to perform capsulotomy (or capsulorhexis). 该步骤从被称为开罐式囊切开术的早先技术演变而成,其中使用尖锐针头以圆形方式穿透晶状体前囊,之后移除直径典型地在5-8_的范围内的晶状体囊的圆形碎片。 This procedure evolved from previous incision technique is known as opener capsule becomes, in a circular manner using a sharp needle through the anterior lens capsule, after removing the lens diameter is typically in the range of 5-8_ round balloon debris. 由干与最初的开罐式技术关联的各种并发症,因此本领域的前沿专家试图开发更好的技术以用于在乳化步骤之前移除晶状体前囊。 Dry by a variety of complications with the original technology associated opener, therefore leading experts in the art of trying to develop better technology for use prior to the emulsification step before removing the lens capsule. 撕囊的概念是提供平滑连续圆形开ロ,通过该开ロ不仅可以安全地和容易地执行核的超声乳化,而且容易插入眼内透镜。 Capsularhexis concept is to provide a smooth continuous circular open ro, ro only through the opening can be safely and easily perform nuclear phacoemulsification, intraocular lens and easy to insert. 它既提供用于插入的明确的中心进路ー用于由患者将图像传输到视网膜的永久孔径,又提供剩余囊的内部的IOL的支撑,该支撑将限制脱位的可能性。 It provides the center for insertion of a clear approach ー used by the patient to transfer images to the retina permanent aperture, but also provide the remaining bag IOL internal support, the support would limit the possibility of dislocation. 使用开罐式囊切开术的旧式技术,乃至使用连续撕囊术,可能产生与下列相关的问题:外科医生由于红光反射而不能充分地可视化囊,不能以足够的安全性掌握它,不能撕裂适当尺寸的平滑圆形开ロ而没有放射裂口和延伸,或与初始开ロ之后保持前房深度、瞳孔的小尺寸或由于晶状体浑浊引起的红光反射的缺少相关的技术难题。 Opener capsulotomy using old technology, and the use of continuous capsulorhexis may occur with the following related issues: Surgeons Since the red reflex and not sufficiently visualize bag, adequate security can not grasp it, can not Tear open the appropriate size of a smooth circular ro without radiation gap and extend or maintain anterior chamber depth after the initial open ro and lack of technical problems related to the small size of the pupil or due to lens opacity caused by the red reflex. 已通过使用诸如亚甲蓝或吲哚菁绿的染料最小化一些可视化问题。 It has been such as methylene blue or indocyanine green dye to minimize the problem by using some of the visualization. 然而,囊的可视化只是ー个问题。 However, the capsule to visualize just ー problem.

[0005] 眼睛的取向也可以为外科医生造成难题,原因是如果由立体成像系统弓I入视差误差,则可能使撕囊切ロ偏离中心。 [0005] The orientation of the eye can also cause problems for the surgeon, because if I bow by the stereoscopic imaging system into a parallax error, you can make capsularhexis ro cut off center. 附加并发症在具有弱悬韧带的患者(典型地是老年患者)和具有很难机械地破裂的很软和弹性囊的年龄很小的儿童中产生。 Additional complications in patients with weak suspensory ligament (typically elderly patients), and having broken it is difficult to mechanically soft elastic capsule produced in very young children.

[0006] 需要改进精确和可靠放置眼切ロ(例如穿刺木、白内障器械进路、松弛和囊切开木)的医疗标准的眼科方法、技术和装置。 [0006] The need for accurate and reliable place to improve eye cut ro (eg puncture wood, cataract instrument approach, relaxation and capsulotomy wood) ophthalmic medical standard methods, techniques and equipment.


[0007] —个实施例涉及ー种用于患者的眼睛的白内障手术的系统,所述系统包括:激光源,所述激光源被配置成产生包括多个激光脉冲的治疗光束;集成光学系统,所述集成光学系统包括成像组件,所述成像组件可操作地联接到治疗光束输送组件使得它们共用至少ー个公共光学元件,所述集成光学系统被配置成采集与一个或多个目标组织结构相关的图像信息并且以三维图案引导治疗光束以导致目标组织结构中的至少ー个的破坏;以及控制器,所述控制器可操作地联接到所述激光源和所述集成光学系统,并且被配置成基于所述图像信息调节激光束和治疗图案,并且至少部分地基于所述图像信息的鲁棒最小ニ乘拟合分析区分眼睛的两个或以上解剖结构。 [0007] - Example relates to cataract surgery ー species of the patient's eyes, said system a comprising: a laser light source, the laser light source configured to generate a plurality of laser pulses including the treatment beam; integrated optical systems, The integrated optical system includes an imaging assembly, the imaging assembly is operatively coupled to the therapeutic beam delivery components such that they share at least one common optical element ー, the integrated optical system is configured to capture one or more structurally related target tissue image information and to guide the treatment beam three-dimensional pattern to the target tissue structure leads to at least one ー destruction; and a controller operatively coupled to said laser source and said integrated optical systems, and is configured based on image information to adjust the treatment pattern and the laser beam, and the image information based on at least in part, the minimum Ni Robust multiplier fit analysis to distinguish two or more eye anatomy. 所述两个或以上解剖结构中的ー个包括角膜、巩膜、缘、虹膜、晶状体或晶状体囊。 The two or more anatomical structures ー months including the cornea, sclera, edge, iris, lens or lens capsule. 所述控制器可以被配置成进行一系列最小ニ乘拟合分析,并且在每个连续最小ニ乘拟合分析中迭代地包括更多数量的像素。 The controller may be configured to take a series of minimum Ni fit analysis, and in each successive multiplication minimum Ni iterative fitting analysis comprises a greater number of pixels. 所述控制器可以被配置成寻找紧密最小ニ乘拟合,其中相关最小ニ乘拟合分析预期球形表面。 The controller may be configured to look for the smallest ni ride close fitting, which related to the expected minimum ni multiply spherical surface fitting analysis. 所述控制器可以被配置成寻找紧密最小ニ乘拟合,其中相关最小ニ乘拟合分析预期非球形表面。 The controller may be configured to look for the smallest ni multiply closely fitting, where the writing is multiplied by the relevant minimum fitting analysis aspherical surface expected. 所述控制器还可以被配置成定位所述两个或以上解剖结构之间的边界。 The controller may also be configured to locate the boundaries of two or more anatomical structures. 所述边界可以被限定为眼睛的角膜和眼睛的巩膜之间的交界。 The boundary may be defined at the junction of the cornea of the eye and the eye between the sclera. 所述边界可以被限定为眼睛的角膜和眼睛的虹膜之间的交界。 The boundary may be defined as the junction of the cornea and of the eye between the iris of the eye. 所述边界可以被限定为眼睛的晶状体和眼睛的虹膜之间的交界。 The boundary may be defined as the boundary of the lens and the iris of the eye between the eyes. 所述控制器可以被配置成利用最小ニ乘拟合分析的拒绝点来识别眼睛的解剖结构。 The controller may be configured to take advantage of the smallest ni refused point fitting analysis to identify the anatomical structure of the eye.

[0008] 另ー个实施例涉及ー种系统,所述系统还包括允许视网膜的成像的可调节聚焦组件,所述可调节聚焦组件提供关于小凹(fovea)和/或中心凹(foveola centralis)的位置的信息以确定患者的视轴线。 [0008] Another embodiment relates ー ー species, the system also includes allowing the retinal imaging component can adjust the focus, the focus can be adjusted components offer pits (fovea) and / or the fovea (foveola centralis) information to determine the position of the patient's visual axis. 这样的视网膜特征可以经由来自成像设备的图像信息识别并且与关于晶状体的几何信息结合使用以提供增强的囊切开图案放置。 Such a feature may be used to provide a retinal enhanced capsulotomy pattern placed and combined with information about the geometry of the lens via the image recognition information from the imaging apparatus. 成像设备可以提供3D或2D图像或两者。 The image forming apparatus may be provided either 3D or 2D images or both.

[0009] 另ー个实施例涉及ー种系统,所述系统还被配置成使得用户能够选择使用上述拟合中的任何ー个来放置激光制造切ロ。 [0009] Another embodiment relates ー ー types, the system is further configured to enable a user to select any of the above-mentioned fitting to place a laser manufacturer ー cut ro. 例如,视频系统可以显示覆盖有缘、几何和视觉定心结果的患者眼睛的正面图像(en-face)。 For example, the video system can display cover destined, geometric and visual results of the patient's eye centered frontal image (en-face). 用户然后可以基于关于视频图像的它的外观选择方法。 Users then can be based on a video image of its appearance selection. 类似地,系统可以显示角膜切ロ的(ー个或多个)预期位置供用户进行选择。 Similarly, the system can display (ー or more) is expected to cut the cornea ro location for users to choose.

[0010] 在又个实施例中,所述系统还包括弟_■成像系统,例如视频系统。 [0010] In yet another embodiment, the system further comprises a brother _ ■ imaging systems, such as video systems. OCT和视频系统都可以用于引导激光切ロ。 OCT and video systems can be used to guide the laser cut ro. 例如,可以通过同时考虑OCT和视频系统数据确定像素或眼睛位置是瞳孔还是非瞳孔像素而确定瞳孔的中心。 For example, OCT and video system data to determine the position of pixels or eye pupil or non-pupil pixel is determined by taking into account the center of the pupil. 对于认为在瞳孔内的位置,可能需要两个系统独立地辨别该结论。 For that the position within the pupil, may require the two systems independently identify the conclusions. 备选地,如果至少一个系统得出该结论,则位置可以在瞳孔内。 Alternatively, if at least one system that conclusion, the location may be within the pupil.

[0011] 另ー个实施例涉及ー种光学系统,所述光学系统包括:可调节光源,用于将患者的眼睛暴露于可变照明条件或亮度的水平;以及成像设备,例如摄像机,所述成像设备捕获眼睛的图像以确定瞳孔的尺寸、形状、位置和对准标记或解剖基准以便最佳地确定用于制造激光囊切开切ロ的合适侧向位置。 [0011] Another embodiment relates ー ー kinds of optical systems, the optical system comprising: a light source can be adjusted for the patient's eye is exposed to variable lighting conditions or brightness level; and an imaging device, such as a camera, the the imaging device to capture an image of the eye pupil to determine the size, shape, location or anatomical reference alignment mark and in order to best determine the appropriate lateral position of manufacturing the laser capsulotomy cut ro.

[0012] 本文中所述的技术和系统提供胜过当前的医疗标准的许多优点。 [0012] The techniques and systems described herein provide current medical standards than many advantages. 具体地,撕囊切ロ的图像引导对准。 Specifically, image-guided capsule tear cut ro alignment. 本文中所述的技术可以用于便于植入眼内透镜(I0L),包括镜中袋(bag-in-lens)和袋中镜(lens-in-bag)类型。 The techniques described herein may be used to facilitate implantation of an intraocular lens (I0L), comprising mirror bags (bag-in-lens) and the lens bag (lens-in-bag) type. 切ロ不仅仅限于圆形,而是可以是有助于接着进行诸如复杂或高级IOL装置或固定适应IOL的注入或形成的程序的任何形状。 Ro circular cut is not limited, but may be helpful followed IOL complex or advanced devices such as fixed or adapted to any shape or form of the IOL implantation procedure. 通过回顾说明书、权利要求和附图,本发明的其它目的和特征将变得明显。 By reviewing the specification, claims and drawings, other objects and features of the present invention will become apparent.

附图说明 Brief Description

[0013] 图I是光束扫描系统的示意图。 [0013] Figure I is a schematic view of a beam scanning system.

[0014] 图2是显示备选的光束组合方案的光图。 [0014] FIG. 2 is a diagram of an alternative light beam combination regimen.

[0015] 图3是具有备选的OCT配置的光束扫描系统的示意图。 [0015] FIG. 3 is a schematic configuration having alternative OCT light beam scanning system.

[0016] 图4是具有另ー个备选的OCT组合方案的光束扫描系统的不意图。 [0016] Figure 4 is not the intention of having another ー beam scanning OCT system is a combination of alternative solutions.

[0017] 图5是眼睛的横截面示意图,描绘了角膜、虹膜、晶状体和晶状体囊。 [0017] FIG. 5 is a cross-sectional schematic view of the eye, depicting the cornea, iris, lens and lens capsule.

[0018] 图6显示了对应于切割激光器、OCT和视频子系统的光束路径相对于眼睛的关系。 [0018] Figure 6 shows the corresponding cutting laser, OCT beam path and with respect to the relationship between the video subsystem eye. [0019] 图7是眼睛的正面示意图,描绘了虹膜、虹膜边界、目标囊切开切口位置和切口的中心。 [0019] FIG. 7 is a front schematic view of the eye, depicting the iris, iris boundary, the target center capsulotomy incision site and the incision.

[0020] 图8是从系统的用户接口捕获的正面图像,描绘了覆盖有检测到的虹膜边界和预期囊切开切口的患者的眼睛的视频图像。 [0020] FIG. 8 is a frontal system from the user interface image capture, depicting the cover have detected iris boundary and expected capsulotomy incision in the patient's eye video images.

[0021] 图9是具有带标记的结构和特征的OCT复合图像。 [0021] FIG. 9 is a composite image with OCT structure and characteristics of tagged.

[0022] 图10是指示具有目标表面的校准透镜的光学设计。 [0022] Figure 10 is indicative of the optical design having a target surface of the collimating lens.

[0023] 图11是用于校准视频的分划板目标的视频图像。 [0023] FIG. 11 is a video of a video image for calibration reticle targets.

[0024] 图12是将视频像素映射到眼睛中的相应物理尺度的视频校准曲线的例子。 [0024] FIG. 12 is an example of the video pixels are mapped to the corresponding physical dimensions of the eye video calibration curve.

[0025] 图13是由切割激光器在用于配准切割激光器放置、OCT检测和眼睛的物理尺度的校准目标中制造的标记或烧灼图案的视频图像。 [0025] FIG. 13 is cut by the laser cutting laser for registering placed, and eye video image detection OCT physical dimensions of the mark produced calibration target patterns or burning.

[0026] 图14是用于将切割激光器、OCT和视频图像配准到眼睛的物理尺度的包括像素缩放、中心定位和旋转的关键校准因素的表。 [0026] FIG. 14 is a cutting laser, OCT image registration and video to the physical dimensions of the eye including the pixel scaling, centering and rotating table key calibration factors.

[0027] 图15是眼睛的横截面示意图,显示了倾斜囊切开切口平面。 [0027] FIG. 15 is a cross-sectional schematic view of the eye showing the inclined plane capsulotomy incision.

[0028] 图16显示了视网膜图像的示意性表示。 [0028] Figure 16 shows a schematic representation of the retinal image.

[0029] 图17是显示在虹膜的前表面上看到的特征的图形。 [0029] FIG. 17 is displayed on the front surface of the iris pattern feature viewed.

[0030] 图18是用于在环境照明条件下测量患者的瞳孔的装置的图形。 [0030] FIG. 18 is used to measure the patient's pupil in ambient lighting conditions the graphics device.

[0031] 图19是照明水平坡道的例子。 [0031] FIG. 19 is an example of the ramp lighting levels.

[0032] 图20是从虹膜图像收集的瞳孔直径数据的例子。 [0032] FIG. 20 is the diameter of the pupil of the iris image data collected examples.

[0033] 图21是从虹膜图像收集的瞳孔形心数据的例子。 [0033] FIG. 21 is an iris from the pupil centroid image data collected examples.


[0034] 本发明可以由将光束投射或扫描到患者的眼睛68中的系统(例如图I中所示的系统2)实现,该系统包括超快激光器(UF)光源4 (例如飞秒激光器)。 [0034] The present invention may be (e.g., the system shown in FIG. 2 I) or realized by projecting a light beam to scan the patient's eye 68 in the system, the system comprising ultrafast lasers (UF) a light source 4 (e.g., femtosecond laser) . 使用该系统,可以在三个维度X、Y、Z中在患者的眼睛中扫描光束。 Using this system, in three dimensions X, Y, Z of the scanning beam in the patient's eye. 在该实施例中,UF波长可以在IOlOnm至IlOOnm之间变化并且脉冲宽度可以在IOOfs至IOOOOfs之间变化。 In this embodiment, UF wavelength and pulse width can vary between IOOfs to IOOOOfs may vary between IOlOnm to IlOOnm. 脉冲重复频率也可以在IOkHz至250kHz之间变化。 Pulse repetition frequency can also be varied between IOkHz to 250kHz. 关于对非目标组织的非预期损伤的安全极限限制关于重复率和脉冲能量的上限;而阈值能量、完成程序的时间和稳定性限制脉冲能量和重复率的下限。 With regard to the safety limit unintended damage to non-target tissues restrict the upper limit of the repetition rate and pulse energy; the threshold energy, completion time and the stability limit pulse repetition rate and lower energy program. 在眼睛68中并且具体地在眼睛的晶状体69和前囊中的焦斑的峰值功率足以产生光破坏并且启动等离子介导消融过程。 In the eyes of 68 and in particular the peak power of the lens 69 and the anterior capsule of the eye of the focal spot is sufficient to produce light damage and start the plasma-mediated ablation procedure. 近红外波长是优选的,原因是生物组织中的线性光吸收和散射在该光谱范围内减小。 Near-infrared wavelengths are preferred, because the biological tissue decreases linear optical absorption and scattering in the spectral range. 作为例子,激光器4可以重复脉动1035nm装置,其以IOOkHz的重复率产生500fs脉冲和在十微焦耳范围内的单独脉冲能量。 As an example, the laser pulse of 1035nm device 4 can be repeated, which produces a repetition rate IOOkHz 500fs pulse and pulse energy alone within ten microjoules range.

[0035] 激光器4由控制电子装置300、经由输入和输出装置302控制以产生光束6。 [0035] The laser 4 by the control electronics 300, 302 via the control input and output device for generating a light beam 6. 控制电子装置300可以是计算机、微控制器等。 Control electronic device 300 may be a computer, micro-controllers. 在该例子中,整个系统由控制器300控制,并且数据通过输入/输出装置IO 302移动。 In this example, the entire system is controlled by the controller 300, and data input / output means IO 302 move. 图形用户界面⑶I 304可以用于设置系统操作参数、处理⑶I 304上的用户输入(UI) 306并且显示收集信息,例如眼结构的图像。 Graphical user interface ⑶I 304 can be used to set the system operating parameters, processing user input on ⑶I 304 (UI) 306 collects and displays information such as an image of the eye structure.

[0036] 生成的UF光束6朝着患者眼睛68前进,穿过半波片8和线性偏振器10。 [0036] UF beam 6 generated 68 forward toward the patient's eye through the half-wave plate 8 and the linear polarizer 10. 可以调节光束的偏振状态使得期望的光量穿过一起用作UF光束6的可变衰减器的半波片8和线性偏振器10。 The polarization state of the light beam can be adjusted such that a desired amount of light passing through the beam together as UF 6 variable attenuator 8 of the half-wave plate 10 and linear polarizer. 另外,线性偏振器10的取向确定入射在光束组合器34上的入射偏振状态,由此优化光束组合器处理量。 In addition, the orientation of the linear polarizer 10 is incident on the determined beam combiner 34 incident polarization state, thereby optimizing the beam combiner processing amount. [0037] UF光束前进通过遮光器12、孔径14和选截装置16。 [0037] UF forward beam 12, aperture 14 and pickoff device 16 through the chopper. 系统控制遮光器12出于程序和安全原因保证激光的开/关控制。 System control shutter 12 for procedural reasons and to ensure the safety of the laser on / off control. 孔径设置激光束的可使用外径并且选截器监视可使用光束的输出。 Aperture can be used to set the outer diameter of the laser beam and can be used to monitor pickoff beam output. 选截装置16包括部分反射镜20和检测器18。 Pickoff apparatus 16 includes a partial mirror 20 and the detector 18. 可以使用检测器18测量脉冲能量、平均功率或组合。 You can use the detector 18 measuring pulse energy, average power, or a combination thereof. 信息可以用于反馈到用于衰减的半波片8并且检验遮光器是打开还是关闭。 Information can be used for feedback to decay half-wave plate 8 and inspection shutter is open or closed. 另外,遮光器12可以具有位置传感器以提供冗余状态检测。 In addition, the shutter 12 may have a position sensor to provide redundancy status detection.

[0038] 光束穿过光束调节级22,其中可以修改光束参数,例如光束直径、发散度、圆度和散光。 [0038] beam passes through the beam adjustment stage 22, which can be modified beam parameters such as beam diameter and divergence, roundness and astigmatism. 在该示例性例子中,光束调节级22包括由球面光学器件24和26组成的二元光束扩展望远镜以便获得预期光束尺寸和准直。 In this illustrative example, beam adjustment stage 22 includes a spherical optics 24 and the beam expander 26 consisting of a binary telescope to obtain the desired beam size and collimation. 尽管未在这里示出,但是变形系统或其它光学系统可以用于获得期望的光束参数。 Although not shown here, but the deformation system or other optical system may be used to obtain a desired beam parameters. 作为另一个例子,可以使用变焦或反转长焦透镜系统。 As another example, you can use the zoom or reverse telephoto lens system. 用于确定这些光束参数的因素包括激光器的输出光束参数、系统的总放大率和治疗位置处的期望数值孔径(NA)。 Beam parameters used to determine these factors include the expected total magnification and numerical aperture at the treatment site (NA) output beam parameters of the laser, the system. 这些调节光学元件可以是动态的或可调节的,要么是一次性手动的,要么是自动的。 These optical elements can be dynamically adjusted or adjustable, either a one-time manual or automatic. 动态元件的例子可以是将能够调节焦距和放大率的变焦光束扩展器。 Examples of dynamic elements can be will be able to adjust the focus and zoom magnification beam expander. 这样的变焦可以用于减小或增加进入最后聚焦物镜的激光束的光束直径并且因此增加和减小治疗位置处的NA。 Such a zoom can be used to reduce or increase the final focusing lens beam diameter of the laser beam and therefore increasing and decreasing NA treatment position. 诸如此的可变特征可以有用于确定等离子阈值水平并且还可以用作影响阈值的其它参数的补偿。 This feature such as a variable can have other parameters to compensate for determining the threshold plasma levels and may also be used as Threshold. 这些其它参数可以是激光器的光束品质(M2)、激光器的脉冲持续时间以及光束串的传输。 These other parameters may be the laser beam quality (M2), the transmission pulse duration and laser beam string. 改变NA并且因此改变阈值水平的能力有利于在在整个预期切割体积上制造有效切口。 Changing the NA and thus the ability to change the threshold level is conducive to producing effective cutting an incision in the entire volume of the expected. 阈值的该调拨可以是每个系统的每个激光器的一次性调节以在整个体积上制造切口中产生额外裕量或者它可以飞速地(即,以足够高的速率)进行调节使得在切割图案的同时阈值可以变化并且例如取决于切口的位置。 The threshold may allocate each laser tuned to each system disposable on the entire volume of the incision produce additional manufacturing margin or it can be rapidly (i.e., at a sufficiently high rate) is adjusted so that the cutting pattern At the same time, and for example, the threshold may be varied depending on the location of the cut.

[0039] 另外,光学系统22可以用于将孔径14成像到期望位置(例如下述的双轴线扫描装置50之间的中心位置)。 [0039] Further, the optical system 22 may be used to image the aperture 14 to a desired position (e.g., center position 50 between the following two-axis scanning apparatus). 以该方式,保证通过孔径14的光量通过扫描系统。 In this way, ensure that the aperture 14 by the amount of light by the scanning system. 选截装置16然后是可使用光的可靠量度。 Pickoff device 16 can then be measured reliably using light. 备选地,如果孔径处的光束位置是可靠且稳定的,则孔径可以置于选截装置之后。 Alternatively, if the beam position at the aperture is reliable and stable, the aperture can be placed after the cut-off device selected. 以该方式系统可能被制造得更短,减小光束路径轨迹。 In this way the system can be made shorter, reducing the beam path of the trajectory. 在离开调节级22之后,光束6从折叠镜28、30和32反射。 After leaving the regulation of stage 22, the beam 6 from 28, 30 and 32 the folding mirror reflection. 为了对准这些镜可以是可调节的。 In order to align the mirror may be adjustable. 光束6然后入射在光束组合器34上。 6 Then beam incident on the beam combiner 34. 光束组合器34反射UF光束6(并且透射下述的OCT 114和瞄准202光束)。 The reflected beam combiner 34 UF beam 6 (and transmits the following OCT 114 and 202 aiming beam). 为了高效的光束组合器操作,入射角优选地保持在45度以下并且在可能的情况下光束的偏振是固定的。 For efficient operation of the beam combiner, the incident angle is preferably kept below 45 degrees and in the possible polarization of the light beam is fixed. 对于UF光束6,线性偏振器10的取向提供固定偏振。 For UF beam 6, the orientation of the linear polarizer 10 to provide a fixed polarization.

[0040] 在光束组合器34之后,光束6继续进入z调节或Z扫描装置40。 [0040] After the beam combiner 34, the light beam 6 continues into z adjustment or Z scanning device 40. 在该示例性例子中z调节包括具有两个透镜组42和44 (每个透镜组包括一个或多个透镜)的伽利略望远镜。 In this exemplary example includes a two adjusting z lens group 42 and 44 (each lens group includes one or more lenses) Galileo telescope. 透镜组42沿着关于望远镜的准直位置的z轴移动。 Collimating lens group 42 along the telescope's position on the z-axis movement. 以该方式,患者的眼睛68中的焦斑的焦点位置沿着z轴移动,如图所示。 In this manner, the focal position of the patient's eye 68 to move the focal spot along the z-axis, as shown in FIG. 一般而言在透镜42的运动和焦点的运动之间有固定关系。 In general motion between the lens 42 and the focus of the movement have a fixed relationship. 在该情况下,z调节望远镜具有大约2x光束扩展比和透镜42的运动与焦点的运动的大约I: I关系。 In this case, z adjustment telescope beam expander ratio of about 2x and the lens movement and the focus of the movement of about 42 I: I relationships. 透镜的运动和因此眼睛内的焦斑的z运动的实际关系取决于透镜42、44、60、62、64、66的焦距、眼睛中的材料的折射率、这些透镜中的至少两个之间的分离以及焦点的位置。 Movement of the lens within the eye and so the actual relationship of the focal spot of the lens 42,44,60,62,64,66 z movement depends on the focal length of the eye refractive index material between at least two of these lenses Isolation and focus position. 在示例性实施例中,该关系在靠近角膜的焦点位置为大约I. 2:1并且在靠近晶状体的后表面的焦点位置为I. 5: I。 In an exemplary embodiment, the relationship between the focal position near the cornea of about I. 2: 1 and the rear surface of the lens is near the focal position I. 5: I. 备选地,透镜组44可以沿着z轴移动以启动z调节并且扫描。 Alternatively, the lens group 44 can be moved along the z-axis z to adjust and start scanning. z调节是用于眼睛68中的治疗的z扫描装置。 z z scanning device is used to adjust the eye 68 of treatment. 它可以由系统自动地并且动态地控制并且被选择成是独立的或者与接着描述的XY扫描装置相互作用。 It can be controlled dynamically and automatically by the system and is selected to be independent, or interact with the XY scanning device then described. 镜36和38可以用于使光轴与z调节装置40的轴线对准。 Mirrors 36 and 38 may be used to adjust the z axis aligned with the optical axis 40 of the apparatus. 在穿过z调节装置40之后,光束6由镜46和48引导到xy扫描装置。 After passing through the z adjusting means 40, the light beam 6 by the mirror 46 and directed to the xy scanning device 48. 为了对准镜46和48可以是可调节的。 In order to align the lens 46 and 48 may be adjustable. 在控制电子装置300的控制下由优选地使用两个镜52和54的扫描装置50实现XY扫描,所述控制电子装置使用马达、检流计或任何其它公知的光学器件移动装置在正交方向上旋转。 Optics mobile device under control of the control electronic device 300 is used by a scanning device preferably two mirrors 52 and 54, 50 to achieve XY scanning, the control electronics using a motor, a galvanometer or any other known in the orthogonal direction the rotation. 镜52和54靠近下述的物镜58和接触透镜66的组合的远心位置定位。 Location targeting telecentric lens 52 and 54 close to the following combination of lens 58 and the contact lens 66. 倾斜这些镜52/54导致它们偏转光束6,导致位于患者的眼睛68中的UF焦点的平面的侧向位移。 Causing them to tilt the mirror 52/54 deflected beam 6, leading to a lateral displacement of the patient's eye 68 is located in the focal plane UF. 物镜58可以是复杂多元透镜元件,如图所不并且由透镜60、62和64表不。 58 objective lens elements can be complex and diverse, and not as shown by the table lens 60, 62 and 64 do not. 透镜58的复杂性将由扫描场尺寸、焦斑尺寸、物镜58的近侧和远侧上的可用工作距离以及像差控制量决定。 Complexity scan field size by lens 58, focal spot size, working distance, and can be used to control the amount of the aberration of the objective lens 58 is decided on the proximal and distal. 焦距为60mm、在IOmm的场内用15mm直径的输入光束尺寸生成IOum的光斑尺寸的扫描透镜58是例子。 A focal length of 60mm, generate IOum spot size of the scanning lens with 15mm diameter input beam size of the venue in IOmm 58 is an example. 备选地,由扫描器50进行的XY扫描可以使用一个或多个可移动光学元件(例如透镜、光栅)实现,所述一个或多个可移动光学元件也可以由控制电子装置300、经由输入和输出装置302控制。 Alternatively, XY scanning by the scanner 50 may be performed using one or more moveable optical elements (e.g., a lens, a grating) to realize, one or more of the movable optical element may also be controlled by the electronic device 300, via the input and output means 302 controls.

[0041] 瞄准和治疗扫描图案可以在控制器300的控制下由扫描器50自动生成。 [0041] The targeting and treatment scanning pattern may be automatically generated by the scanner 50 under the control of the controller 300. 这样的图案可以包括单一光斑、多个光斑、连续光图案、多个连续光图案和/或这些的任何组合。 Such a pattern may include a single spot, a plurality of spots, continuous light pattern, a plurality of light patterns and continuous / or any combination of these. 另夕卜,瞄准图案(使用下述的瞄准光束202)不需要与治疗图案(使用光束6)相同,但是优选地至少限定它的边界以便保证为了患者安全仅仅在期望目标区域内输送治疗光。 Another Bu Xi, aiming pattern (using the following aiming beam 202) does not need treatment pattern (using a light beam 6) the same, but preferably it is defined at least in order to ensure patient safety boundaries only in a desired therapeutic light delivery within the target area. 这例如可以通过使瞄准图案提供预期治疗图案的轮廓线而完成。 This can be accomplished, for example to provide the desired therapeutic pattern contour by aiming pattern. 这样可以使用户知道治疗图案的空间范围,即使不知道单独的光斑自身的实际位置,并且因此可以在速度、效率和精度方面优化扫描。 This allows users to know the spatial extent of treatment patterns, even if the individual does not know the actual position of the spot itself, and thus can optimize scan speed, efficiency and accuracy. 也可以使瞄准图案作为闪光被察觉以便进一步增强它对用户的可见性。 Aiming pattern may also be perceived as a flash in order to further enhance the visibility of its users. 可以通过使用输入装置(例如操纵杆或定位患者和/或光学系统的任何其它合适的用户输入装置(例如⑶I 304))进一步控制光束6和/或光束6在眼睛68上形成的扫描图案的定位和特性。 Can (for example ⑶I 304) such as a joystick or position the patient and / or any other suitable user input device optical system () to further control the light beam by using the input device 6 and / or location beam 6 68 formed in the eye scanning patterns and features.

[0042] 可以是任何合适的眼科透镜的接触透镜66可以用于帮助将光束6进一步聚焦到患者的眼睛68中,同时帮助稳定眼睛位置。 [0042] The contact lens 66 may be any suitable ophthalmic lens 6 can be used to help further focus the beam to a patient's eye 68, while helping to stabilize the eye position. 接触透镜可以是玻璃、塑料或其它合适的光学材料,具有接触眼睛的角膜的固体表面。 Contact lenses may be glass, plastic or other suitable optical material having a contact surface of the cornea of the eye solid. 接触表面可以是弯曲的,从而匹配角膜的前部的表面形状。 Contact surface may be curved to match the shape of the front surface of the cornea portion. 接触表面也可以是平坦的或不符合角膜的表面形状的其它形状并且由此变形眼睛的前部以符合接触透镜接触表面形状。 The contact surfaces may be flat or otherwise shaped surface shape does not conform to the deformation of the cornea of the eye and thereby to conform to the front portion of the contact surface of the contact lens shape. 接触透镜也可以包括接触透镜的固体材料和角膜的前部之间的流体层。 Contact lens may also include a fluid layer of the contact lens and the front portion of the solid material between the cornea. 该流体可以是水或其它合适的光学流体。 The fluid may be water or other suitable optical fluid. 该流体将提供合适的光学匹配而不变形角膜。 The fluid will provide suitable optical matching without distortion of the cornea. 最后,可以在没有接触透镜的情况下使用该系统。 Finally, you can use the system in the absence of a contact lens. 该操作模式可以适合于聚焦角膜处或附近的光束,其中角膜的屈光力对光束的影响是可忽略的。 This mode of operation may be adapted to focus the beam at or near the cornea, which affect the corneal refractive power of the light beam is negligible.

[0043] UF激光器4和控制器300可以被设置成靶向眼睛68中的目标结构的表面并且保证光束6将视情况被聚焦并且不意外地损害非目标组织。 [0043] UF laser 4 and the controller 300 may be set to target the eye surface 68 of target structure and ensure the beam 6 as the case may be focused and not accidentally harm non-target tissue. 本文中所述的成像模态和技术(例如光学相干断层摄影(0CT)、Purkinje成像、Scheimpflug成像或超声)可以用于确定晶状体和晶状体囊的位置并且测量厚度以为激光聚焦方法(包括2D和3D图案化)提供更大精度。 Herein imaging modalities and techniques (such as optical coherence tomography (0CT), Purkinje imaging, Scheimpflug imaging or ultrasound) may be used to determine the position of the lens and the lens capsule and measure the thickness of that laser focus method (including 2D and 3D patterned) to provide greater precision. 激光聚焦也可以使用一种或多种方法实现,包括瞄准光束的直接观察、光学相关断层摄影(0CT)、Purkinje成像、Scheimpf lug成像、超声或其它已知的眼科或医疗成像模态和/或它们的组合。 Focusing the laser can also be used to achieve one or more methods, including direct observation of the aiming beam, optical correlation tomography (0CT), Purkinje image, Scheimpf lug imaging, ultrasound, or other known ophthalmic or medical imaging modality and / or a combination thereof. 在图I的实施例中,描述了OCT装置100。 In the embodiment of FIG. I, described OCT apparatus 100. 眼睛的OCT扫描将提供关于晶状体前囊和后囊的轴向位置以及前房的深度的信息。 OCT eye scan will provide information on the axial position of the anterior capsule and posterior capsule and anterior chamber depth. 该信息然后被装载到控制电子装置300中,并且用于安排和控制后续激光辅助手术程序。 This information is then uploaded to the electronic device 300, and used to schedule and control the subsequent laser-assisted surgical procedures. 该信息也可以用于确定与程序相关的多种多样的参数,尤其是例如用于切割晶状体囊和分割晶状体皮质和核的的焦面的轴向上限和下限,以及晶状体囊的厚度。 This information can also be used to determine a variety of parameters associated with the procedure, particularly for example for cutting the lens capsule and axial upper and lower limits, and the thickness of the focal plane of the lens capsule of the lens cortex and nucleus segmentation of.

[0044] 图I中的OCT装置100包括宽带或扫频光源102,该光源由光纤耦合器104分成参考臂106和样本臂110。 [0044] Figure I the OCT apparatus 100 includes a broadband light source 102 or sweep the light from the fiber coupler 104 into a reference arm 106 and sample arm 110. 参考臂106包括模块108,该模块包含参考反射以及合适的分散和路径长度补偿。 Reference arm 106 includes a module 108, the module containing the reference reflector and a suitable dispersion and path length compensation. OCT装置100的样本臂110具有用作UF激光系统的剩余部分的接口的输出连接器112。 OCT apparatus 100 has a sample arm 110 as the remainder of the UF laser system output connector interface 112. 来自参考和样本臂106、110的返回信号然后由耦合器104引导到检测装置128,该检测装置利用时域、频率或单点检测技术。 From the reference and sample arm 106, 110 of the return signal is then directed by coupler 104 to the detector 128, the detector time-domain, frequency or single-point detection techniques. 在图I中,频域技术用于920nm的OCT波长和IOOnm的带宽。 In Figure I, the frequency-domain techniques for 920nm wavelength of the OCT and IOOnm bandwidth. 备选地,OCT源可以用于具有IOnm至IOOnm的带宽的790nm_970nm波长范围内。 Alternatively, OCT source can be used within the wavelength range 790nm_970nm IOnm to IOOnm bandwidth.

[0045] 离开连接器112,OCT光束114使用透镜116进行准直。 [0045] away from the connector 112, OCT beam 114 is collimated using a lens 116. 准直光束114的尺寸由透镜116的焦距确定。 The collimated light beam 114 is determined by the size of the zoom lens 116. 光束114的尺寸由眼睛中的焦点处的期望NA和通往眼睛68的光束串的放大率决定。 114 beam size is determined by the desired NA and 68 leading to a string of eye beam magnification in the eye at the focal point. 一般而言,OCT光束114不需要NA与焦平面中的UF光束6—样高并且因此OCT光束114在直径上小于光束组合器34位置处的UF光束6。 In general, OCT beam 114 does not need to NA and the focal plane UF beam 6- kind OCT beam 114 is high and therefore less than UF beam position at the beam combiner 34 6 in diameter. 在准直透镜116之后的是孔径118,该孔径进一步修改眼睛处的OCT光束114的最终产生的NA。 After the collimator lens 116 is aperture 118, which aperture NA OCT beam further modified at the eye 114 of the final generation. 孔径118的直径被选择成优化入射在目标组织上的OCT光和返回信号的强度。 The diameter of the aperture 118 is selected to optimize the intensity of the incident light on the target tissue OCT return signal. 可以是有源的或动态的偏振控制元件120用于补偿可能例如由角膜双折射的个体差异引起的偏振状态变化。 It may be an active or dynamic polarization control element 120 may be used to compensate for changes in the polarization state of individual differences, for example caused by the birefringence of the cornea. 镜122和124然后用于朝着光束组合器126和34引导OCT光束114。 Mirrors 122 and 124 are then used to move the beam combiner 126 and 34 guide OCT beam 114. 为了对准并且特别是为了将OCT光束114覆盖到光束组合器34之后的UF光束6,镜122和124可以是可调节的。 And in particular in order to align the cover to the OCT beam 114 UF beam 34 after the beam combiner 6, the mirror 122, and 124 may be adjustable. 类似地,光束组合器126用于组合OCT光束114和下述的瞄准光束202。 Similarly, the beam combiner 126 for combining the OCT beam 114 and the aiming beam 202 below.

[0046] 一旦与光束组合器34之后的UF光束6组合,OCT光束114沿着与UF光束6相同的路径通过系统的剩余部分。 [0046] Once the beam 34 after the beam combiner UF 6 combination, OCT beam 114 along the same UF beam path 6 through the remainder of the system. 以该方式,OCT光束114指示UF光束6的位置。 In this manner, OCT beam 114 indicates the beam position UF 6. OCT光束114穿过z扫描装置40和xy扫描装置50,然后穿过物镜58、接触透镜66并且进入眼睛68。 OCT beam 114 passes through a scanning device 40 and the xy z scanning device 50, and then through the objective lens 58, the contact lens 66 and enters the eye 68.

[0047] 从眼睛内的结构的反射和散射提供返回光束,该返回光束通过光学系统折回连接器112中,通过耦合器104,并且到达OCT检测器128。 [0047] from reflection and scattering within the eye structure provides a return beam, the return beam folded connector 112 through the optical system, through the coupler 104, and reaches the detector 128 OCT. 这些返回反射提供OCT信号,所述OCT信号又由系统关于UF光束6焦点位置的X、Y、Z位置进行判读。 The retroreflective provide OCT signal, the OCT signal and by the system on UF beam 6 focal position X, Y, Z position interpretation.

[0048] OCT装置100根据测量它的参考臂和样本臂之间的光学路径长度的差异的原理工作。 [0048] OCT apparatus 100 according to the measuring principle of the optical path length difference between the work of its reference arm and the sample between the arms. 所以,使OCT穿过Z调节40不延长OCT系统100的Z范围,原因是光学路径长度不取决于42的运动而改变。 So that OCT 40 does not extend through the Z adjustment range 100 Z OCT system, because the optical path length is not dependent on movement 42 is changed. OCT系统100具有与检测方案相关的固有z范围,并且在频域检测的情况下它具体地与分光计和参考臂106的位置相关。 OCT system 100 has an inherent detection scheme associated with the z range, and in the case where it is detected by the frequency domain associated with the particular location and reference arm 106 spectrometers. 在图I中所使用的OCT系统100的情况下,在水性环境下z范围可以为大约l_2mm。 In the case of FIG. I OCT system 100 used in an aqueous environment z may range from about l_2mm. 将该范围延长到至少6mm涉及OCT系统100内的参考臂的路径长度的调节。 The range was extended to at least 6mm involved within 100 OCT reference arm path length adjustment system. 使OCT光束114在样本臂中穿过z调节40的z扫描允许OCT信号强度的优化。 Enable OCT beam 114 passes through z z adjustment allows the optimization of scanning 40 OCT signal intensity in the sample arm. 这通过将OCT光束114聚焦到目标结构上并且同时通过相应地增加OCT系统100的参考臂I 06内的路径适应延长的光学路径长度而实现。 This is achieved by OCT beam 114 is focused onto the target structure and at the same time by a corresponding increase in the system path OCT reference arm 100 I 06 adapted to extend within the optical path length is achieved.

[0049] 由于诸如浸没指数、折射和像差(多色的和单色的)的影响所引起的关于UF聚焦装置的OCT测量的根本差异,必须仔细分析关于UF光束焦点位置的OCT信号。 UF focusing on the fundamental differences between OCT measuring device must be carefully analyzed [0049] Due to such immersion index, refraction and aberration (multi-color and monochrome) effects caused by the position of the beam focus on UF OCT signal. 应当进行取决于X、Y、Z的校准或配准程序以便使OCT信号信息匹配UF焦点位置并且也匹配相对和绝对尺度量。 Should be dependent on X, Y, Z calibration or registration procedures to enable OCT signal information matches the UF focus position and also to match the amount of the relative and absolute scale. 瞄准光束的观察也可以用于帮助用户引导UF激光焦点。 Observation aiming beam may also be used to help guide the user UF laser focus. 另外,代替红外OCT和UF光束由肉眼可见的瞄准光束可以有助于对准,只要瞄准光束精确地表示红外光束参数。 In addition, instead of the infrared beam from the OCT and UF visible aiming beam may help align, as long as the aiming beam accurately represent infrared beam parameters. 在图I所示的配置中利用瞄准子系统200。 Use the configuration shown in FIG. I aim at the subsystem 200. 瞄准光束202由瞄准光束光源201生成,例如在633nm的波长下操作的氦氖激光器。 Aiming beam 202 generated by the aiming beam light source 201, such as He-Ne laser operating at a wavelength of 633nm. 备选地可以使用在630_650nm范围内的激光二极管。 Alternatively, you can use within the range of the laser diode 630_650nm. 使用氦氖630nm光束的优点是它的长相干长度,这将能够使用瞄准路径作为激光不等程干涉计(LUPI)来测量例如光束串的光学品质。 The advantage of using helium-neon 630nm beam is its long coherence length, which will be used as the laser ranging process aimed path interferometer (LUPI) to measure the optical quality of the beam such as strings. [0050] 一旦瞄准光束光源生成瞄准光束202,瞄准光束202使用透镜204进行准直。 [0050] Once the aiming beam generating an aiming light beam 202, 202 aiming beam is collimated using a lens 204. 准直光束的尺寸由透镜204的焦距确定。 Collimated beam size is determined by the focal length of the lens 204. 瞄准光束202的尺寸由眼睛中的焦点处的期望NA和通往眼睛68的光束串的放大率决定。 202 aiming beam size is determined by the desired NA and 68 leading to a string of eye beam magnification in the eye at the focal point. 一般而言,瞄准光束202应当具有与焦平面中的UF光束6近似相同的NA并且因此瞄准光束202具有与光束组合器34位置处的UF光束相似的直径。 In general, the aiming beam 202 should have a focal plane UF beam 6 at approximately the same NA and therefore targeting a similar position at the UF beam beam 202 has a diameter of the beam combiner 34. 由于在系统对准到眼睛的目标组织期间瞄准光束意味着替换UF光束6,因此主路径的大部分类似于UF路径,如先前所述。 Since the system is aligned to the target tissues of the eye during aiming beam means beam replace UF 6, UF and therefore most similar path of the main path, as previously described. 瞄准光束202继续通过半波片206和线性偏振器208。 Aiming beam 202 continues through the half-wave plate 206 and the linear polarizer 208. 可以调节瞄准光束202的偏振状态使得期望的光量穿过偏振器208。 Aiming the light amount can be adjusted such that the polarization state of the light beam 202 passes through the polarizer 208 desired. 元件206和208因此用作瞄准光束202的可变衰减器。 Elements 206 and 208 as thus aiming beam of the variable attenuator 202. 另外,偏振器208的取向确定入射在光束组合器126和34上的入射偏振状态,由此固定偏振状态并且允许优化光束组合器的处理量。 Further, to determine the orientation of the polarizer 208 is incident on the beam combiner 126 and the incident polarization state 34, whereby the fixed state of polarization of the beam combiner and allows optimization of the processing amount. 当然,如果半导体激光器用作瞄准光束光源200,则可以改变驱动电流以调节光功率。 Of course, if a semiconductor laser is used as the aiming beam light source 200, the drive current can be varied to adjust the optical power. [0051] 瞄准光束202继续通过遮光器210和孔径212。 [0051] aiming beam 202 continues through the shutter 210 and the aperture 212. 系统控制遮光器210提供瞄准光束202的开/关控制。 System control aiming beam chopper 210 202 ON / OFF control. 孔径212设置瞄准光束202的可使用外径并且可以适当地进行调节。 Aperture 212 is provided aiming beam 202 may use an outer diameter and may be suitably adjusted. 测量眼睛处的瞄准光束202的输出的校准程序可以用于经由偏振器206的控制设置瞄准光束202的衰减。 Measure aiming at the eye of the output beam 202 calibration procedures can be used to aim the beam attenuator 202 via the polarization control set 206.

[0052] 瞄准光束202接着穿过光束调节装置214。 [0052] aiming beam 202 then passes through the beam adjustment means 214. 可以使用一个或多个公知的光束调节光学元件修改光束参数,例如光束直径、发散度、圆度和散光。 You can use one or more known to modify the optical element beam adjustment beam parameters such as beam diameter and divergence, roundness and astigmatism. 在瞄准光束202从光纤发出的情况下,光束调节装置214可以简单地包括具有两个光学元件216和218的光束扩展望远镜以便获得预期光束尺寸和准直。 In aiming beam 202 emitted from the optical fiber case, the beam adjusting means 214 may simply comprise two optical elements 216 and 218 of the beam expander telescope in order to obtain the desired beam size and collimation. 用于确定诸如准直度的瞄准光束参数的最终因素由匹配眼睛68的位置处的UF光束6和瞄准光束202所必需的因素决定。 Aiming beam is used to determine the parameters of the final factors such as the degree of collimation of the match at the 68 position of the eyes of the UF beam 6 and aiming beam 202 necessary factors. 可以通过光束调节装置214的适当调节考虑色差。 Appropriate color adjustment device 214 can be adjusted by considering the beam. 另外,光学系统214用于将孔径212成像到期望位置,例如孔径14的共轭位置。 Further, the optical system 214 for imaging the aperture 212 to a desired position, for example, the position of the aperture 14 of the conjugate. 瞄准光束202接着从折叠镜222和220反射,所述折叠镜优选地是可调节的以用于对准配准到光束组合器34之后的UF光束6。 Aiming beam 202 from the folding mirror 222 and is then reflected 220, the folding mirror is preferably adjustable in order for the registration to align the beam combiner 34 after the UF beam 6. 瞄准光束202然后入射到光束组合器126上,在所述光束组合器处瞄准光束202与OCT光束114组合。 Aiming beam 202 is then incident on a beam combiner 126, and the aiming beam 202 in the OCT beam 114 combination at the beam combiner. 光束组合器126反射瞄准光束202并且透射OCT光束114,这允许在两个波长范围的光束组合功能的有效操作。 Aiming beam combiner 126 reflected OCT beam 202 and transmits beam 114, which allows efficient operation in the wavelength range of the beam combining both functions. 备选地,光束组合器126的透射和反射功能可以反转并且配置可以反转。 Alternatively, the beam combiner transmission and reflection function 126 can be reversed and the configuration can be reversed. 在光束组合器126之后,瞄准光束202以及OCT光束114通过光束组合器34与UF光束6组合。 After the beam combiner 126, 202 and aiming beam OCT beam 114 by the beam combiner 34 and the UF beam 6 combinations.

[0053] 用于成像眼睛68上或内的目标组织的装置在图I中示意性地显示为成像系统71。 [0053] The target tissue of the imaging apparatus 68 or within the eye for schematically shown in Figure I as the imaging system 71. 成像系统包括用于产生目标组织的图像的照相机74和照明光源86。 The imaging system includes a camera 74 and illumination source 86 for generating an image of the target tissue. 成像系统71收集图像,所述图像可以由系统控制器300使用以提供以预定结构为中心或在预定结构内的图案。 The imaging system 71 collects image, the image can be used by the system controller 300 to provide a structure with a predetermined pattern in a center or a predetermined structure. 用于观察的照明光源86通常是宽带的和非相干的。 Lighting for observation and 86 typically broadband incoherent. 例如,光源86可以包括多个LED,如图所不。 For example, the light source 86 may include a plurality of LED, as shown in not. 观察光源86的波长优选地在700nm至750nm的范围内,但是可以是适合于光束组合器56的任何波长,所述光束组合器组合观察光和用于UF光束6和瞄准光束202的光束路径(光束组合器56反射观察波长,同时透射OCT和UF波长)。 Observation wavelength of the light source 86 is preferably in the range of 700nm to 750nm, but may be adapted to any wavelength beam combiner 56, a beam combiner combines the observation light beam for UF 6 and aiming the beam path of the light beam 202 ( reflective observation beam combiner 56 wavelengths while transmitting OCT and UF wavelength). 光束组合器56可以部分地透射瞄准波长使得瞄准光束202可以是观察照相机74可见的。 Beam combiner 56 may be partially transmissive so that the aiming beam aiming wavelength 202 observation camera 74 can be visible. 在光源86前面的可选的偏振元件84可以是线性偏振器、四分之一波片、半波片或任何组合,并且用于优化信号。 In front of the light source 86 optional polarizing element 84 may be a linear polarizer, a quarter wave plate, a half-wave plate or any combination thereof, and for optimizing the signal. 由近红外波长生成的假色图像是可接受的。 False-color image generated by the near-infrared wavelength is acceptable. 在又一个实施例中,通过使用可见光照明或波长范围和可以增强图像的实际或感觉诊断质量的彩色照相机生成全色图像。 In yet another embodiment, or by using visible light wavelength range and can enhance the image quality of the actual or perceived color camera generates diagnostic panchromatic image. 使用与UF和瞄准光束6、202相同的物镜58和接触透镜66朝着眼睛向下引导来自光源86的照明光。 UF and aiming beam using the same objective lens 58 and 6,202 contact lens 66 directed downwards toward the eye illumination light from the light source 86. 从眼睛68中的各种结构反射和散射的光由相同透镜58和66收集并且朝着光束组合器56向回引导。 Reflecting the various structures of the eye 68 and scattered light from the same collection lens 58 and 66 and toward beam combiner 56 to return to boot from. 在那里,返回光经由光束组合器和镜82向回引导到观察路径中,并且引导到照相机74。 There, the returning light beam via a mirror 82 to a combination of back and guided to the observation path, and guided to the camera 74. 照相机74例如可以是、但不限于适当尺寸规格的任何硅基检测器阵列。 The camera 74 may be, for example, any silicon-based detector arrays are not limited to appropriate sizes. 视频透镜76在照相机的检测器阵列上形成图像,同时光学元件80和78分别提供偏振控制和波长过滤。 Video lens 76 forms an image on the camera's detector array, while the optical element 80 and 78 respectively control the polarization and wavelength filtering. 孔径或虹膜81提供成像NA的控制并且因此提供焦深和景深的控制。 Aperture or iris imaging NA 81 provides control and thus provide the depth of focus and depth of field control. 小孔径提供有助于患者对接程序的大景深的优点。 Small Aperture advantage of providing help patients docking program of large depth of field. 备选地,可以切换照明和照相机路径。 Alternatively, you can switch the lighting and the camera path. 此外,可以使瞄准光源200发出不直接可见、但是可以使用成像系统71捕获和显示的红外光。 Additionally, aiming the light source 200 can emit not directly visible, but you can use the imaging system 71 to capture and display of infrared light.

[0054] 通常需要粗调配准使得当接触透镜66与角膜接触时,目标结构处于系统的X、Y扫描的捕获范围内。 [0054] The crude formulations usually require prospective so that when the contact lens 66 in contact with the cornea, the structure of the target is within the capture range of the system X, Y scanning. 所以当系统接近接触条件(即,患者的眼睛68和接触透镜66之间的接触)时优选地考虑患者运动的对接程序是优选的。 So when the system is close to the contact conditions (ie, contact with the eyes between 68 and 66 contact lens patients) when considering patient movement preferably docking procedure is preferred. 观察系统71被配置成使得焦深足够大使得在接触透镜66与眼睛68接触之前可以看到患者的眼睛68和其它突出特征。 Viewing system 71 is configured such that the depth of focus is large enough so that prior to contacting the contact lens 66 and the eye 68 can see the patient's eye 68 and other salient features. 优选地,运动控制系统70被整合到总控制系统2中,并且可以移动患者、系统2或其兀件或两者,从而实现接触透镜66和眼睛68之间的精确和可靠接触。 Preferably, the motion control system 70 is integrated into the overall control system 2, and can move the patient, the system 2 or Wu member, or both, in order to achieve accurate and reliable contact with the contact lenses 66 and 68 between the eyes. 此外,真空抽吸子系统和法兰可以包含到系统2中,并且用于稳定眼睛68。 Furthermore, vacuum suction subsystem and the system may comprise two flanges, and for stabilizing the eye 68. 眼睛68经由接触透镜66对准到系统2可以在监测成像系统71的输出的同时实现,并且通过借助于控制电子装置300经由IO 302电子地分析由成像系统71产生的图像手动地或自动地执行。 Eye lens 66 via the contact 68 is aligned to the system 2 may be implemented at the same time monitoring the output of the imaging system 71, and by means of the electronic control device 300 via the IO 302 analyzed by the electronic imaging system 71 generates images manually or automatically execute . 力和/或压力传感器反馈也可以用于分辨接触,以及启动真空子系统。 Force and / or pressure sensor feedback can also be used to distinguish the contact, and initiate a vacuum subsystem.

[0055] 在图2的备选实施例中显示了备选的光束组合配置。 [0055] In an alternative embodiment of FIG. 2 shows an alternative configuration of the beam combiner. 例如,图I中的无源光束组合器34可以用图2中的有源组合器140代替。 For example, Figure I is a passive beam combiner 34 in Figure 2 may be an active combiner 140 instead. 有源光束组合器34可以是移动或动态控制元件,例如检流扫描镜,如图所示。 Active beam combiner 34 may be a mobile or dynamic control element, e.g., the scanning galvanometer mirror, as shown in FIG. 有源组合器140改变它的角取向以便每次一个地朝着扫描器50并且最终朝着眼睛68引导UF光束6或组合瞄准和OCT光束202、114。 Active combiner 140 in order to change the angular orientation of the scanner one at a time toward the 50 and 68 guide the eye toward the final UF 6 or a combination of beam pointing and beam OCT 202,114. 有源组合技术的优点在于它避免了使用无源光束组合器组合具有类似波长范围或偏振状态的光束的困难。 Advantages active combination technology is that it avoids the difficulty of using passive beam combiner with similar wavelength range or the polarization state of the light beam. 该能力与具有在时间上同时的光束的能力以及由于有源光束组合器140的位置公差引起的可能较小准确度和精度相权衡。 The ability and capacity of the beam simultaneously in time and may have less accuracy and precision due to the active position tolerance beam combiner 140 caused weighed against.

[0056] 在图3中显示了另一个备选实施例,该实施例类似于图I的实施例,但是利用OCT100的替代方法。 [0056] is shown in Figure 3, another alternative embodiment, this embodiment is similar to the embodiment of FIG. I, but the use of alternative methods OCT100. 在图3中,OCT 101与图I中的OCT 100相同,区别在于参考臂106由参考臂132代替。 In Figure 3, OCT 101 in FIG OCT 100 same as I, except that the reference arm 106 is replaced by a reference arm 132. 通过在透镜116之后包括光束分裂器130实现该自由空间OCT参考臂132。 After the lens 116 by the beam splitter 130 includes a free-space realization of the OCT reference arm 132. 参考臂132然后继续通过偏振控制元件134并且然后进入参考返回模块136。 A reference arm 132 and then continue through the polarization control element 134 and then into the reference-back module 136. 参考返回模块136包含适当的分散和路径长度调节和补偿元件并且生成用于与样本信号干涉的适当的参考信号。 Returns a reference module 136 contains the appropriate dispersion and path length adjustment and compensation components and generates a suitable reference signal and sample signal interference. OCT 101的样本臂现在产生于光束分裂器130之后。 Sample arm OCT 101 is now being after the beam splitter 130. 该自由空间配置的可能优点包括参考和样本臂的单独偏振控制和维护。 The advantage of this free space configuration may include polarization control and maintain separate reference and sample arms. OCT 101的基于光纤的光束分裂器104也可以由基于光纤的循环器代替。 OCT fiber-based beam splitter 104 may be replaced by a fiber-based loop 101. 备选地,相比于参考臂136,OCT检测器128和光束分裂器130可以一起移动。 Alternatively, as compared to the reference arm 136, OCT detector 128 and the beam splitter 130 can be moved together.

[0057] 图4显示了用于组合OCT光束114和UF光束6的另一个备选实施例。 [0057] Figure 4 shows another for combining OCT beam 114 and beam UF 6 an alternative embodiment. 在图4中,OCT 156(其可以包括OCT 100或101的配置)被配置成使得在使用光束组合器152的ζ扫描40之后它的OCT光束154耦合到UF光束6。 In Figure 4, OCT 156 (which may comprise 100 or 101 configured OCT) is configured such that ζ scan using a beam combiner 152 after 40 OCT beam 154 which is coupled to the beam UF 6. 以该方式,OCT光束154避免使用ζ调节。 In this manner, OCT beam 154 avoided ζ adjustment. 这允许OCT 156可能更容易地收束成光束并且缩短路径长度以用于更稳定的操作。 This allows the OCT 156 may be more easily pack into the beam path length and shortened for a more stable operation. 该OCT配置以优化信号返回强度为代价,如关于图I所述。 The OCT configured to optimize signal strength at the expense of return, as I described with respect to FIG. 存在OCT干涉计的配置的许多可能性,包括时域和频域法、单光束和双光束方法、扫频源等,如美国专利Nos. 5,748,898 ;5,748,352 ;5,459,570 ;6,111,645 ;和6,053,613 中所述。 OCT interferometer configuration exist many possibilities, including time domain and frequency domain method, a single beam and dual-beam method, sweep sources, etc., as described in U.S. Patent Nos 5,748,898;. 5,748,352; 5, 459,570; 6,111,645; and 6,053,613 described. [0058] 图5是具有各种指示结构的眼睛的横截面示意图。 [0058] FIG. 5 is a cross-sectional schematic view indicating the structure having various eye. 这些结构的每一个可以用作引导囊中的激光切口的定位的标志。 Each of these structures can be used as a boot bag positioning laser incision mark. 这些候选标志结构包括角膜416的前表面418、角膜的后表面420、虹膜414、晶状体412、晶状体的后部410、晶状体的前部401以及围绕晶状体的囊的前部分408。 These candidate markers structures includes a front surface 416 of the cornea 418, the rear surface of the cornea 420, the iris 414, lens 412, the rear lens 410, the lens 401 and the front portion of the capsule surrounding the lens front portion 408. 也可以使用这些结构的特征,例如角膜和晶状体的曲率半径、这些表面的相对位置或虹膜的直径。 Characteristics of these structures may also be used, e.g., the radius of curvature of the cornea and lens, the relative positions of these surfaces or iris diameter.

[0059] 可以直接测量或经由分析确定结构和结构的特征。 [0059] can be directly measured or determined via a characteristic structure and structural analysis. 例如,可以从检测器阵列或视频上的虹膜的图像检测虹膜边界。 For example, iris boundary detection from the image of the iris of the detector array or video on. 从该边界和成像系统的适当校准,眼睛尺度中的虹膜直径可以被确定并且用于确定囊的中心位置,如轴线422与囊408的交界所示。 From the boundary and properly calibrated imaging system, the diameter of the iris of the eye scales can be determined and used to determine the center position of the balloon, such as the axis of the capsule 422 and the junction 408 of FIG.

[0060] 另一个例子是使用扫描OCT系统100检测角膜的前表面418。 [0060] Another example is the use of the front surface of the cornea scanning OCT system 100 detects 418. 然后可以确定该表面的曲率半径。 You can then determine the radius of curvature of the surface. 类似地可以找到角膜的后表面420以及晶状体的前表面401和后表面410的曲率半径。 Similarly, the radius of curvature can be found 420 and 401 and the rear surface 410 of the front surface of the lens of the rear surface of the cornea. 选择通过这些曲率半径的中心的最佳拟合轴线422可以被确定并且该轴线用于确定囊切口的位置。 Select the best fit through the central axis of the radius of curvature 422 may be determined and used to determine the axial position of capsular incision. 备选地并且类似于视频系统,OCT系统也可以检测虹膜边界位置并且计算切口的中心。 Alternatively, and similar video systems, OCT system can also detect and calculate the position of the center of the iris boundary incision. 该系统的目标是能够检测这些标志或标志的适当特征以便作出导致将切口有效地置于囊408中的选定位置的决定。 The goal of the system is able to detect the proper characteristics of these signs or flags cause the incision to be made effectively placed in the bladder 408 determines the selected location.

[0061] 图6是简化示意图,显示了对应于系统2的切割激光器4、0CT 100和视频71子系统的光束路径相对于眼睛68的关系。 [0061] FIG. 6 is a simplified schematic diagram showing a laser cutting system 2 corresponding to the beam path 4,0CT 100 and video subsystem 71 with respect to the relationship between the eye 68. UF光束路径6、OCT光束路径114、视频光束路径81和视频照明光束路径86理想地覆盖在眼睛中的目标切口位置处或者至少目标切口位置处的路径之间的相对空间关系经由校准、模型、测量或某个其它方法而获知。 The relative spatial relationship of the target UF incision beam path 6, OCT beam path 114, the video beam path of the illumination beam path 81 and video 86 desirably covers the eye, or at least the target path at a location between the incision through calibration, model, or some other measurement methods learned. 用作系统和晶状体之间的接口的接触透镜66也是已知的。 The interface 66 as a contact lens between the lens system and is also known. 所有四个光束路径接近眼睛内的体积。 All of the four beam paths near the volume within the eye. 对于UF光束6,例如经由检流计52、54实现侧向运动。 For UF beam 6, for example to achieve lateral movement via the galvanometer 52, 54. UF光束的焦点的轴向或ζ运动经由检流机构40实现。 Or axial movement of the focal point ζ UF beam 40 via a galvanometer mechanism to achieve. 由此在眼睛内的整个体积上三维地扫描UF光束的焦点。 Whereby the three-dimensional scanning of the entire volume of the UF beam focus in the eye. 考虑到大范围的生物学差异该扫描体积允许UF激光接近并且切割囊。 Taking into account the wide range of biological differences that allow UF laser scanning volume close and the cutting balloon. 类似地对于OCT光束114 ;可以使用检流计52、54和40在整个体积上三维地扫描它的焦点。 Similarly, the OCT beam 114; You can use the galvanometer 52, 54 and 40 over the entire volume of the three-dimensional scan of its focus. 与图I和2中一样系统2具有在整个体积上扫描OCT光束的焦点以增加信噪比的能力。 I and in FIG. 2 as system OCT scanning beam 2 has the ability to increase the entire volume of the focus signal to noise ratio. OCT的焦点也可以轴向固定(B卩,在Z上),与图4的OCT系统I 56中一样。 Focus OCT can also be axially fixed (B Jie, the Z), and FIG. 4 OCT system I 56 the same. 在该情况下,OCT在Z上的操作范围的深度大。 In this case, OCT on Z operating range of great depth. 在任一情况下,OCT可以检测结构,该结构包括在整个体积上的接触透镜、角膜、虹膜、晶状体。 In either case, OCT can detect structure that includes a contact lens over the entire volume, the cornea, iris, crystalline lens.

[0062] 对于包括视频照明路径86和照相机光路径74的视频或观察子系统71,眼睛内的平面的图像被转到检测器阵列,优选2D检测器阵列。 [0062] For video illumination path 74 includes a video camera 86 and the observation optical path subsystem 71 or the image plane of the eye to be transferred within the detector array, preferably 2D detector array. 眼睛体积内的特定平面可以在检测器平面对好焦点。 Eye specific plane within the volume can better focus planes in the detector. 该聚焦能力可以是固定的或可调节的。 The ability to focus can be fixed or adjustable. 例如包含虹膜的内径的平面可以对好视频焦点。 Such as the inner diameter of a plane containing the iris can focus on the good videos. 图像处理然后可以用于确定虹膜的边界。 Image processing can then be used to determine the boundaries of the iris. 使用适当的校准、建模或其它方法,该图像分析可以转化为眼睛内的虹膜的直径和中心位置。 Using the appropriate calibration, or other modeling methods, the image analysis can be converted to the inner diameter and the center position of the iris of the eye. 可以借助于视频系统的焦深或通过调节视频系统的焦平面类似地确定在眼睛内的整个体积上的其它平面的其它结构。 By means of a video system or the like, to determine the depth of focus in the other eye of the volume of other structures on the entire plane by adjusting the focal plane of the video system.

[0063] 图7是眼睛的正面示意图,描绘了虹膜414、虹膜边界404、撕囊切口位置400和虹膜的中心406。 [0063] FIG. 7 is a schematic view of the front of the eye, depicting the iris 414, iris boundary 404, capsularhexis central cut position 400 and iris 406. 图7显示了患者的眼睛68的图像的示意性表示,该图像可以用成像系统71捕获、显示在⑶I 304上并且由控制电子装置300用于图像处理以自动地对准囊401上的切口400。 Figure 7 shows the image of the patient's eye 68 a schematic representation of the image can be captured by the imaging system 71, is displayed on the ⑶I 304 and 300 by the control electronics for image processing to automatically align capsular incision 401 400 . 图8是在如图I中所示的系统2的执行中从⑶I显示器捕获的实际图像帧。 Figure 8 is a real picture frame in the implementation of the system shown in Figure I 2 captured from ⑶I display. 图8中的眼睛图像在照相机的视野内偏移(即,眼睛的图像不居中)使得可以更容易地看到缘407。 Figure 8 eye image shift within the field of vision of the camera (that is, the eye image is not centered) makes it easier to see the edge 407. 在图8中,覆盖在视频图像上的缘407A、虹膜边界404A和虹膜的中心406A的分界已经由检测和应用算法由系统生成并且被提供以引导用户。 In Figure 8, the covering edge on the video image of 407A, 404A and iris center iris boundary demarcation 406A has been generated by the system and application by the detection algorithm and is provided to guide the user. 也就是说,在图8中这些分界由系统2生成并且这些分界相对于图像的位置已自动化。 That is, the boundaries generated by the system 2 in FIG. 8 and the boundary with respect to the position of the image has been automated. 经由⑶I呈现的这些分界位置可以由用户经由光标、触摸屏、滑杆或其它用户可访问手段手动地操作,在开始或作为自动寻找的修改。 These boundary position via ⑶I presented by the user via the cursor, touch screen, slider, or other means of operating the manual that users can access, modify, automatically find at the beginning or as. 囊中的撕囊切口位置400也可以被确定并且作为分界400A呈现给用户。 Capsule capsulorhexis incision 400 may also be determined and presented to the user as the boundary 400A. ⑶I与用户的相互作用因此可以是双向的:一方面系统将自动结果呈现给用户供查看;另一个方面用户操作或输入信息供系统处理。 ⑶I interaction with the user and therefore can be two-way: on the one hand the results of the system will automatically presented to the user for viewing; the other aspects of the user operating system or input information for processing. 例如,通过将撕囊的指示位置移动到新位置,用户能够重新定位撕囊切口的期望位置。 For example, by capsularhexis indication location to the new location, the user can reposition capsulorhexis incision desired position. 在又一个实施例中,用户能够通过平移表示虹膜的系统检测位置的符号修改虹膜的指示位置。 In yet another embodiment, a user can pan through the system detects the position of the symbol indicates the iris Iris modified position indication. 在又一个实施例中其它切割位置(例如白内障切口、松弛切口和/或分割切口)的图形显示可以指示在屏幕上和/或由用户重新定位以修改预期治疗位置。 In another case, an embodiment other cutting positions (such as cataract incision, loose cut and / or split incision) may indicate graphical display on the screen and / or re-positioned by the user to modify the intended treatment position.

[0064] 确定如图8中所示的切口位置400A的一种方法的例子是使用OCT系统确定虹膜直径。 [0064] determine the position as shown in Fig. 8 cut a method 400A of the example is the use of OCT system determines the iris diameter. 在体积中扫描OCT光束从OCT信号生成复合OCT图像。 OCT OCT scanning beam to generate a composite image signal from the OCT in volume. 在图9中显示了从OCT导出的复合图像的例子。 It shows an example of a composite image derived from the OCT in FIG. 9. 虹膜414出现在横截面图的两侧。 Iris 414 appear on both sides of the cross-sectional view. 一般而言,可以确定虹膜的内径404B并且因此确定虹膜的中心406。 In general, the inner diameter of the iris may be determined and 404B thus determines the center of the iris 406. OCT可以用于检测并且显示囊401的表面的位置。 OCT can be used to detect and display surface 401 of the balloon position. 使用虹膜直径、虹膜的中心和囊表面的位置,可以确定整个撕囊切口的位置。 Location using iris diameter, and the center of the iris surface of the capsule, capsular incision can determine the position of the entire tear. [0065] 在又一个实施例中,通过在已知光照条件下成像眼睛和瞳孔确定撕囊切口的位置。 [0065] In yet another embodiment, the light under known conditions by imaging to determine the position of the eye and the pupil capsulorhexis incision. 在治疗期间,然后将图像重叠在眼睛的实时图像上,并且然后平移、缩放、旋转和/或扭曲固定图像和/或实时图像以补偿透镜成像系统的失真的差异,使得两个图像大致重叠。 During the treatment, then the image is superimposed on the real-time image of the eye, and then you pan, zoom, rotate and / or fixed image distortion and / or real-time images to the difference distortion compensation lens imaging system, such that the two images overlap substantially. 然后能够相对于固定图像中的瞳孔定位撕囊和/或任何其它疗法的预期位置。 Then with respect to a fixed image of the pupil locating capsulorhexis and / or any other treatments intended position.

[0066] 图17是虹膜414的前表面的图形,其中乳头区从瞳孔600延伸到环状领610,并且睫状区从环状领610延伸到虹膜的周缘,在所述周缘处它接合睫状体。 [0066] FIG. 17 is a graphical front surface of the iris 414, which extends from the nipple area to ruff 610 600 pupils, and ciliary zone extends from the annular collar 610 to the periphery of the iris, in the periphery it engages eyelashes like body. 更具体地,虹膜414是具有中心孔径(瞳孔600)的有色隔膜。 More specifically, the iris diaphragm 414 is colored with a central aperture (pupil 600). 虹膜悬浮在角膜和晶状体之间的房水中。 Iris suspended between the cornea and lens of humor. 附连到睫状体的前表面的虹膜的周边被称为虹膜的睫状缘或睫状根。 Peripheral attached to the front surface of the iris ciliary body is called ciliary iris or ciliary margin roots. 瞳孔由睫状缘围绕或者在虹膜边界404的内部,如图7中所示。 Surrounded by the ciliary margin of the pupil or iris boundary 404 inside, as shown in FIG. 虹膜的外径是基本固定的并且尺寸为大约12mm。 The outer diameter of the iris is substantially fixed and the size is approximately 12mm. 瞳孔600在直径上在Imm至9. 5_之间变化,这取决于许多因素,包括进入眼睛的光量。 Pupil diameter between 600 to 9. Imm 5_ change, depending on many factors, including the amount of light entering the eye. 一般而言瞳孔决不是固定的并且总是响应括约肌和扩大乳头肌在尺寸上变化。 Generally speaking pupils never be fixed and always respond to changes in the papillary muscle sphincter and expand in size. 在一部分人口中左右瞳孔在尺寸上略有不同。 In the part of the population around the pupil is slightly different in size.

[0067] 虹膜的颜色不同,例如从浅蓝色到深褐色:该颜色在同一个人的两只眼睛之间可能不同并且在相同虹膜的不同部分中可能不同。 [0067] different color of the iris, for example, from light blue to dark brown: The color may be different and may be different in different parts of the same iris in both eyes between the same person. 虹膜的前表面被分成中心乳头区和周边睫状区。 The front surface of the iris is divided into the central area and the surrounding ciliary nipple area. 分界线由位于离睫状缘大约2mm处的圆形脊(环状领610)形成。 Located off the line by a circular ridge at the ciliary margin of about 2mm (ruff 610) is formed. 环状领可以形成波浪线。 Ruff form wavy lines. 虹膜的前表面没有上皮并且具有天鹅绒外观。 The front surface of the iris epithelium and has no velvet appearance. 它显示了由封闭卵形隐窝620 (也被称为Fuch' s隐窝)的小梁或结缔组织带导致的一系列放射条痕。 It shows the trabecular or connective tissue by a closed oval recess 620 (also known as Fuch 's crypt) leads to a series of radiation with streaks. 小梁在环状领的区域中是最显著的。 Trabecular is the most significant in the ruff area.

[0068] 靠近睫状区的外部分的是许多同心沟,它们当瞳孔扩张时变得更深。 [0068] ciliary region near the outer part of the plurality of concentric grooves, becomes darker when they when the pupil dilation. 它们一般看上去像黑线并且被称为收缩沟630,并且当瞳孔扩张时由虹膜的折叠导致。 They generally look like black lines and is called systolic groove 630, and when the pupil dilation caused by the iris folding. 在睫状缘处,有色后上皮在前面围绕瞳孔的边缘延伸一小段距离。 In the ciliary edge, after pigmented epithelial around the edge of the pupil in front extends a short distance. 上皮具有放射褶,该放射褶赋予它的边界钝锯齿状外观,有时被称为环皱640。 Epithelium has a radial pleat, fold the radiation given its border blunt jagged appearance, sometimes referred to as ring wrinkled 640. 虹膜的任何或所有这些特征可以在已知条件(例如已知环境照明)下用作基准以标记将由系统用于定位撕囊切口的虹膜的位置。 Any or all of these features of the iris can be used as a benchmark under known conditions (such as ambient lighting are known) are marked by the system for locating capsularhexis cut iris position. 这些特征包括颜色、颜色变化、隐窝、环状领、环皱、沟、收缩沟、小梁、放射条痕、结缔组织带以及任何其它可分辨特征。 These features include color, color change, crypt, ruff, ring wrinkle, groove, shrink ditch, trabecular, radiation streak, with connective tissue as well as any other distinguishing characteristics. 全部被认为是解剖基准。 All are considered the anatomical reference. [0069] 可以使用离线系统或系统的(一个或多个)成像子系统记录这些基准。 [0069] You can use off-line systems or system (s) the imaging subsystem records these benchmarks. 在除了在预治疗或治疗条件下由系统强加的条件以外的条件下利用眼睛的前部分的生理图像的能力允许使用关于自然条件下的眼睛的信息进行撕囊切口的定位引导。 In addition to the ability to pre-treatment or treatment under the conditions imposed by the system conditions as the use of an image of the front eye portion physiological allowed under natural conditions of the eye on the information capsulorhexis incision positioning guide. 由这样的方法提供的优点是避免由于系统或程序所强加的条件引起的眼睛的对准偏移和扭曲。 The advantages offered by this approach is to avoid the alignment shift and distortion due to system or program imposed conditions that cause eye. 这些偏移和扭曲可以是瞳孔扩张、环境光条件、患者用药和头部取向(例如旋转、扭转)的结果;并且由治疗和预治疗照明条件、引起扩张的药物、局部或全身麻醉和患者身体取向引起。 These distortions can be offset and pupil dilation, ambient light conditions, patient medication and head orientation (such as rotating, twisting) results; and by the treatment and pre-treatment of lighting conditions, caused by the expansion of the drug, local or general anesthesia and the patient's body Orientation cause. 基准可以由系统使用以通过利用许多变换(包括平移、缩放、旋转、倾斜和其它图像扭曲)将自然状态图像叠加到治疗(或预治疗)图像上。 Reference may be used by the system by using a number of transformations (including pan, zoom, rotate, tilt and other image distortions) natural state of the image is superimposed on the treatment (or pretreatment) image. 使用OCT系统定位瞳孔的中心和整个囊切口的更详细自动方法概括如下。 OCT systems use a more detailed automatic positioning of the pupil center and the entire capsular incision method are summarized below. 如上所述,OCT系统产生人眼的前段的三维图像或图。 As described above, OCT system to produce the human eye preceding three-dimensional image or map.

[0070] 该图像信息由任何空间低通滤波器(例如有限核平均、中值滤波等)处理以减小眼睛中的结构的假性检测。 [0070] The image information of any spatial low-pass filter (such as limited nuclear average, median filtering) treatment to reduce false detection of the eye structure. 最后产生的滤波图像进行阈值处理以便将图像转换成二进制图像。 Finally, the filtered images generated by thresholding to convert the image into a binary image. 备选地,原始图像首先进行阈值处理以将它转换成二进制图像,并且然后用空间低通中值滤波器或任何其它滤波器进行滤波。 Alternatively, the original image is first thresholding to convert it into a binary image, and then use the spatial low-pass filter or a median filter to filter any other.

[0071] 考虑最后产生的二进制图像中的每个A扫描(指定XY位置的Z上的OCT像素的线、 序列或列)。 [0071] Finally, consider the resulting binary image for each A-scan (OCT pixels Z specified XY position on the line, sequence or column). 此外,考虑A扫描包括在相同XY位置进行的若干A扫描的级联,其中不同的深度用于产生A扫描。 In addition, considering the A-scan comprises a plurality of A-scans at the same XY position of the cascade, wherein for producing different depths A scanning. 由于A扫描相对于光学系统配准,并且由于眼睛相对于光学系统定位在一定范围内,因此能够具有ζ位置(深度)的先验范围,眼睛的各种特征将位于该先验范围内(考虑到人口中的眼睛结构的几何形状的生理变化的已知范围)。 Since A scanning optical system with respect to registration, and due to the optical system relative to the eye positioned in a certain range, it is possible to have ζ location (depth) of the prior range, various features of the eye will be located within the range priori (Consider physiological changes to the geometry of the population structure of the eye of the known range). 如果待检测的特征或结构在该特征的支撑结构之上(例如角膜的前表面),则二进制图像的体积或A扫描中的像素的每个范围内的第一非零像素(最负Z位置像素)被当成该表面的边缘像素。 If the feature or structure to be detected in the support structure of the above features (e.g., the front surface of the cornea), the first non-zero binary pixels within each range image volume or A scan pixels (most negative Z position pixels) is treated as an edge pixel of the surface. 备选地,如果待检测的期望表面在该特征的支撑结构之下(例如角膜的后表面),则最后非零像素(最正Z位置像素)被当成边缘像素。 Alternatively, if desired to be detected at the surface of the support structure below the feature (e.g., the rear surface of the cornea), the last non-zero pixel (the pixel n Z position) is treated as an edge pixel. 在又一个实施例中,在以上两种情况的每一个中,如果像素是第一非零像素并且后续η个像素(例如η=9)也为非零,则该像素被认为是边缘像素。 In yet another embodiment, in each of the two cases above, if the first non-zero pixels and the pixel subsequent η pixels (e.g., η = 9) is also non-zero, then the pixel is considered to be an edge pixel. 在任何情况下,它的XYZ位置被记录,因此图像被还原成XYZ三元组的集合(即,该集合中的每个点具有X坐标、Y坐标和Z坐标),每个表示三维OCT图像中的边缘像素的位置。 In any case, its XYZ position is recorded, so that the image is reduced to a collection of XYZ triples (i.e., each point in the set having X coordinate, Y coordinate and Z coordinate), each representing a three-dimensional OCT image The position of the edge pixels.

[0072] 这些XYZ三元组可以拟合到球面或者任何其它这样的数学表面。 [0072] The XYZ triples can be fitted to the spherical or any other such mathematical surface. 我们将在以下非限定性例子中使用球面拟合。 We will use the sphere fit in the following non-limiting examples. 每个XYZ三元组可以表示前晶状体或晶状体囊上的有效“像素”;或者每个“像素”可以表示OCT系统中的系统或随机噪声源。 Each XYZ triplet may represent an effective "pixel" on the front of the lens or lens capsule; or each "pixel" OCT system can represent a system or random noise source. 所以为了减小该不确定性,XYZ三元组使用迭代鲁棒最小二乘法拟合到球面。 Therefore, in order to reduce the uncertainty, XYZ triples using an iterative robust least squares fit to the sphere. 执行迭代,其中初始使用经典最小二乘法将眼睛的中心部分拟合到球面(在一个实施例中包括相对于XYZ三元组的XY方向上的扫描半径的中心15%)。 Performing an iterative, wherein the initial use of the classical least squares fit to the center of the spherical part of the eye (in one embodiment comprises 15% with respect to the center of the radius of the XY scanning direction of the XYZ triplet embodiment). 任何公知的鲁棒最小二乘(LS)法可以用于根据每个边缘像素与最后产生的拟合的接近性加权边缘,例如双平方、最小修剪平方、M估计、丽估计、S估计。 Any well-known robust least squares (LS) method can be used close to the edge of the weighting according to each edge pixel and the last generation of fitting, such as a double square, trim the smallest squares, M estimation, Lai estimate, S estimates. 重复鲁棒LS法直到鲁棒LS拟合解收敛。 Repeat until the robust robust method LS LS fitting solution converges. 最后,加入来自正在识别的特征或结构的更多边缘(在一个实施例中,附加5%的边缘像素),并且重复鲁棒拟合算法。 Finally, adding more edges from being recognized feature or structure (in one embodiment, an additional 5% of the edge pixels), and repeats the robust fitting algorithm. 重复加入附加边缘像素并且执行附加鲁棒LS拟合的步骤直到所有XYZ三元组已包括在拟合中。 Repeat adding additional edge pixels and additional steps until all the robust LS fitting XYZ triples have been included in fitting. 在所有拟合完成之后,在前表面的情况下,具有位置在球面外部的很小权重(在一个实施例中,零权重)并且具有比球面的表面上的所有点更负的Z分量的XYZ三元组可以被认为是虹膜集合的成员,而具有较大权重(在一个实施例中,非零权重)的边缘像素可以被认为是瞳孔集合的成员。 After all the fitting is complete, the front surface of the case with a small right position in the sphere of external weights (in one embodiment, a zero weight) and XYZ have more negative than all points on the surface of the sphere of the Z component triplet may be considered a member of the set of the iris, while having a large weight (in one embodiment, the non-zero weights) of the edge pixel may be considered a member of the collection pupil. 在一个实施例中,瞳孔和非瞳孔像素之间的区分由三个或以上相邻非瞳孔像素所在的位置限定。 In one embodiment, the non-pupil and pupil pixel distinguish between three or more locations where the non-pupil defining adjacent pixels. 以该方式,OCT系统可以三维地确定瞳孔的位置,允许UF治疗系统安排治疗(即,切口),同时避开非瞳孔(虹膜)位置。 In this manner, OCT system can determine the three-dimensional position of the pupil, allowing treatment system arranged UF treatment (i.e., notches), while avoiding non-pupil (iris) position.

[0073] 以上概念可以扩展到包括其它表面、特征或结构的识别。 [0073] the above concept can be extended to include other surface recognition, feature or structure. 定义为从角膜至巩膜的过渡区或角膜巩膜接合部的缘可以在角膜前部的拟合期间被识别:群集在中心拟合区域的外部并且最接近中心区域的异常值可以被认为在角膜和巩膜之间的过渡区域中。 Defined from the edge of the cornea to the sclera or corneal scleral junction transition zone can be identified in the front part of the cornea during fitting: fitting outside the cluster in the center of the area and the area closest to the center of outliers can be considered in the cornea and the transition region between the sclera. 类似地,如果球面拟合在眼睛的(缘之上的巩膜的)眼球上,则群集在眼睛的眼球的中心的异常值可以被认为是非眼球族的成员,并且眼球和中心族之间的边界可以被定义为缘。 Similarly, if spherical fit (top edge of the sclera) of the eye of the eye, the cluster of outliers in the center of the eye of the eye may be considered members of the family of non-eyeball, and the boundary between the eye and the center of the family It can be defined as the edge. 当拟合角膜后部时,前房角(在此处虹膜接合巩膜突)可以被识别为角膜后部的球面拟合中的周边异常值。 When fitting rear cornea, anterior chamber angle (here engaged scleral iris) can be recognized as a spherical cornea fitted in the rear of the peripheral outliers. 该信息可以用于引导囊切口和/或角膜切口(例如白内障器械、穿刺以及散光松弛或校正切口)的放置。 This information can be used to guide the capsular incision and / or corneal incision (eg cataract instruments, puncture and astigmatism correction loose or cut) in place. 以该方式我们也可以定位由相邻结构的交界限定的边界;例如由前角膜和巩膜的接合部确定的缘、由晶状体和虹膜的接合部确定的瞳孔、由后角膜和虹膜的接合部确定的缘。 In this way we can locate the junction of adjacent structures defining a boundary; e.g., by the cornea and sclera front edge of the joint is determined by determining the joint portion of the lens and iris pupil, cornea and iris is determined by the joint portion after edge.

[0074] 一般而言,使用其它因素(例如预期IOL的直径)预先确定撕囊切口直径。 [0074] In general, the use of other factors (such as diameter expected IOL) is pre-determined diameter capsulorhexis incision. 但是该预先确定的撕囊直径可以针对如先前所述自动寻找的虹膜直径进行检查。 However, the predetermined tear sac diameter can be checked as previously described for automatic iris looking diameter. 切口可以通过不通过方式继续或者相对于自动寻找的虹膜边界执行期望缩放裕量。 You can not cut through or by way of continuing with respect to automatically find the iris boundary to perform the desired scaling margin. 来自OCT的三维信息优于二维(例如XY)系统,该二维系统必须通过假设虹膜的标称深度或从另一个成像模态导出虹膜的深度而近似第三维度(例如Z)。 OCT is superior to the three-dimensional information from two-dimensional (eg XY) system, the two-dimensional system must be nominal depth or another imaging modality derived from iris approximate depth of the third dimension (for example, Z) by assuming the iris.

[0075] 一般而言在实践中,整个撕囊切口不限于Z上的单平面或单层。 [0075] Generally, in practice, the entire capsulorhexis incision is not limited to a single plane or a single Z on. 切口可以被描述为具有圆柱形(挤出圆或椭圆)而不是平面圆形。 Slit may be described as having a cylindrical (circular or elliptical extrusion) instead of a circular plane. 如图9中所示,整个切口限定具有Z位置417和深度厚度419的体积。 As shown in Figure 9, the entire volume of the notch 417 defines a Z position and depth of the thickness of 419. 切口在Z上有一定范围,即,深度厚度419,以便在整个切割程序期间考虑目标囊切口位置的深度的变化。 Z has a notch on a certain range, i.e., the depth of the thickness of 419, so that during the entire cutting process considering changes in the depth of the target position of the capsular incision. 这些变化可以产生于囊的倾斜、囊的偏心、结构的运动以及UF、OCT和视频系统的公差。 These changes can arise from the inclined capsule, the capsule eccentric motion and tolerance UF, OCT and the configuration of the video system. 切割囊的过程包括步进在深度上的量419以保证囊由UF光束所生成的切割机构(例如等离子)交叉。 The process involves cutting balloon step size in the depth of 419 to ensure that the bag UF beam generated by the cutting mechanism (such as plasma) cross. OCT生成侧向(XY)和深度(Z)信息(三维)。 OCT generates lateral (XY) and depth (Z) information (three-dimensional). 使用具有大约IOOnm波长带宽的普通OCT配置,Z信息的分辨率可以在IOum的水平。 Use ordinary OCT approximately IOOnm wavelength band configuration, the resolution Z information may level IOum of. 来自OCT的高分辨率深度信息允许最小化切口的深度厚度419。 High-resolution OCT allows depth information from the depth of the cut to minimize the thickness of 419. 这又减小切割处理时间。 This in turn reduces the cutting processing time. 来自OCT的较高分辨率三维信息优于二维系统。 High-resolution three-dimensional information from the OCT is superior to 2D systems. 二维系统必须通过假设虹膜的标称深度、囊的深度、囊的倾斜、囊的偏心和囊的曲率半径或者从其它测量模态导出这些和类似量以大裕量近似第三维度Z。 2D systems must be assumed that the iris nominal depth, the depth of the capsule, the capsule is inclined eccentric radius and bursa sac curvature or from other measuring modes to export these and similar large margin amounts to approximately a third dimension Z. 来自OCT的三维信息可以用于将期望撕囊的二维圆形路径投影到表示晶状体的前表面的球面的表面上以便产生用于切割撕囊的三维路径。 Three-dimensional information from the OCT may be used to route a desired two-dimensional circular capsulorhexis is projected onto the surface of the front surface of the representation of the spherical surface of the lens to produce a three-dimensional path for cutting capsulorhexis.

[0076] 系统也提供例如由术前AC 0CT、超声或任何其它这样的诊断试验采集的、与患者解剖结构相关的诊断信息的用户输入,所述诊断试验提供关于患者的中心晶状体厚度、晶状体曲率、前房深度、角膜厚度等的信息。 [0076] The system is also provided, for example by the preoperative AC 0CT, ultrasound or any other diagnostic tests such acquisition, associated with the anatomy of the patient's diagnostic information the user input, the diagnostic tests offer patients the central lens thickness, lens curvature , anterior chamber depth, corneal thickness and other information. 系统可以使用这些值作为预期值和/或替换或增加它自身的3D信息的采集。 The system can use these values as the expected value and / or replace or increase its own 3D information acquisition. 作为非限定性例子,当利用术前获得的前房深度和中心晶状体厚度时该信息可以用于晶状体和/或囊图案深度设置。 As a non-limiting example, when the anterior chamber depth and lens thickness center preoperative use of this information can be used to obtain the lens and / or bag pattern depth setting. 该信息允许系统增加它自身的内部成像结果和/或检验它们。 This information allows the system to increase its own internal imaging results and / or test them. 例如,通过已知患者的前房深度并且确定他们的角膜的位置,系统可以限制撕切开图案的轴向范围。 For example, patients with anterior chamber depth by known and cornea to determine their position, the system can limit the axial extent of the tear cut pattern. 类似地,输入晶状体厚度允许系统计划晶状体超声粉碎图案轴向范围。 Similarly, an input lens thickness allows the system to plan the axial extent of the lens pattern sonication. 将前房深度加入晶状体厚度进一步允许系统确定图案深度放置。 The anterior chamber depth, lens thickness and added further depth to allow the system to determine the pattern placement. 将这与晶状体表面曲率或它们的保守估计(例如对于晶状体前表面半径为8mm并且对于晶状体后表面半径为5. 5mm)组合可以用于完全限定图案和它的放置。 With this lens surface curvature or a conservative estimate (for example, the front surface of the lens and the radius of the posterior surface of 8mm radius of 5. 5mm) composition may be used to fully define the pattern and its placement. 当然,图案的轴向(深度)范围将需要大的前和后表面安全裕量。 Of course, the axial pattern (depth) range would require a large safety margin front and rear surfaces. 一体化成像将提供改善的结果。 Integrated Imaging will provide improved results. 然而,在成像数据不足以用于更自动特征检测的情况下上述技术可以提供应急。 However, in the case where the imaging data is not sufficient for a more automatic feature detection techniques can provide the above-described emergency.

[0077] 尽管在拟合晶状体的前表面的背景下教导了迭代鲁棒最小二乘球面拟合的以上描述,但是它也可以用于确定以下结构的每一个的最佳拟合球面:角膜前部、角膜后部和晶状体后部。 [0077] Although the front surface of the lens fitting background of the teachings of the robust iterative least squares fitting sphere described above, but it can also be used to determine the best fit for each of the spherical configuration of the following: the front of the cornea Ministry of the cornea and lens rear rear. 在这三个附加结构的情况下,使用权重确定虹膜位置可能是不适用的。 In the case of these three additional structures, using the weights determined iris position may not be applicable. 换句话说,OCT可以用于检测除了与虹膜相关的以外的结构或特征以用于引导切割激光的定位。 In other words, OCT can be used to detect except associated with iris structure or feature for guiding the positioning cutting laser. 不同于使用虹膜的中心定心切口,晶状体的轴线可以用作定心的引导。 Instead of using the iris center centered incision lens axis may be used as a boot-centering. 可以通过使用OCT检测晶状体的前和后表面、计算靠近这些表面的顶点的曲率半径、然后连接这些半径的中心以建立轴线而确定晶状体的轴线。 By using the front and rear surfaces of the lens detected OCT, calculating the radius of curvature near the apex of the surface, and then connect the center of these radii is determined to establish the axis of the lens axis. 该轴线与囊的表面的交界然后可以被选择作为囊切开(或撕囊)切口的中心。 The axis of the junction surface of the capsule can then be selected as capsulotomy (or capsulorhexis) center cuts. 类似地角膜的表面可以用于确定该轴线或者可以使用通过2个以上表面的半径的中心的最佳拟合匹配。 Similarly, the surface of the cornea can be used to determine the axis through the center or you can use two or more surfaces of the radius of the best fitting match. 也可以不同地选择撕囊切口的直径。 You can also select different diameter capsulorhexis incision. 切口的直径可以是虹膜直径的简单比率。 The slit may be a simple ratio of the diameter of the iris diameter. 切口也可以具有在XY方向上的非圆形状。 Incision may also have a non-circular shape in the XY direction. 它可以例如沿着虹膜直径的轮廓。 It may, for example along a diameter of the iris contour.

[0078] 备选地,可以使用视频系统确定撕囊切口400的位置。 [0078] Alternatively, you can use the video system to determine the location of the capsulorhexis incision 400. 可以使用例如图8中所示·的视频图像寻找诸如虹膜的特征。 You can use the example shown in Figure 8 · video search features, such as the iris. 例如,有定位虹膜414的中心406的许多图像处理方法,例如:Canny、Laplacian和/或Sobel边缘检测方案、自适应阈值处理和后续形态解释(包括二进制确定)。 For example, there is a lot of positioning center of the iris image processing method 414 406, for example: Canny, Laplacian and / or Sobel edge detection scheme, adaptive threshold processing and the subsequent interpretation forms (including binary OK). 可以由一维或二维图像滤波技术减小感测系统中的噪声,例如高斯(Gaussian)开窗、Bartlett开窗或简单移动平均开窗。 May consist of a one-dimensional or two-dimensional image filtering technique reduces noise sensing system, such as a Gaussian (Gaussian) window, Bartlett window or simple moving average window. 具体地,使用视频图像的例子如下。 In particular, the following examples using the video image. 我们将瞳孔定义为虹膜边界404的内部的区域。 We will pupil is defined as the area inside the border of the iris 404. 用于确定瞳孔的中心的方法包括对虹膜边界404执行边缘检测并且将圆、椭圆或其它闭合曲线拟合到瞳孔和虹膜之间的边界;将像素分割成瞳孔和非瞳孔像素,并且寻找瞳孔的形心,然后最大化可以拟合在瞳孔的内部的圆和/或椭圆;将像素再次分割成瞳孔和非瞳孔像素,寻找瞳孔的形心,然后交替地a)最大化可以拟合在瞳孔的内部的圆和/或椭圆,并且b)在与相对于圆/椭圆的中心最近的非瞳孔像素的方向相反的方向上移动圆的中心。 The method for determining the center of the pupil, including 404 on the iris boundary edge detection is performed and the circle, ellipse or other closed curve fit to the boundary between the pupil and iris; pupil dividing the pixels into pixels and non-pupil and pupil search centroid, and then maximize the pupil can fit inside the circle and / or oval; the pixel is divided again into pupils and non pupils pixels, looking for pupil centroid, then alternately a) can be fitted to maximize pupil internal circular and / or oval, and b) moving the center of the circle with respect to the nearest pixel in the direction of the non-pupil circle / ellipse center opposite direction. 重复该迭代过程直到不能进行圆或椭圆尺寸的进一步改善。 This iterative process is repeated until no further improvement be round or oval size. 一旦找到虹膜边界和中心,可以继续囊切割过程。 Once you find the iris boundary and the center can continue cutting balloon. 切口直径可以由IOL要求预先确定并且针对相对于通过视频信息的边缘检测的图像处理确定的虹膜直径的拟合进行检查。 Slit diameter may be determined in advance by the IOL and a check is requested with respect to determining the video information through the edge detection image processing for iris diameter fitting. 类似地对于切口的中心;可以使用由先前所述的视频图像的处理确定的虹膜边界的中心确定它。 Similarly, the center of the notch; center may be used by a previous processing of the video image to determine the boundaries of the iris to determine it. 如图9中所示,切口的绝对深度位置417和深度厚度419可以由视频系统的焦深或视频系统的主动聚焦或由基于使虹膜与囊相关的统计解剖数据的推测进行确定。 Shown in Figure 9, the absolute depth position and depth of the thickness of the cut of 417 419 can take the initiative to focus on making the estimated iris or by a balloon-related statistics and anatomical data were determined by the depth of focus of the video system or video system. 可以使用这些技术增加深度厚度419以解决更大的预期变化范围。 You can use these technologies increase the depth of the thickness of the 419 expected to address a larger range. 更大的深度厚度可以导致切割时间的更长持续时间。 Greater thicknesses may lead to a longer depth cutting time duration.

[0079] 患者常常具有偏心瞳孔,并且在视频图像中可以清楚识别的缘407也被认为是分辨囊401的几何中心的手段。 [0079] Patients often has an eccentric pupil, and in the video image can be clearly identified edge 407 is also considered resolved geometric center 401 of the bladder means. 囊401由小带(未显示)保持就位,小带连接到在缘407正下方的睫状器(未显示)。 Bag 401 from small belt (not shown) is held in place, small band to connect to just below the edge of the ciliary 407 (not shown). 然而,当虹膜414大范围扩张时,它在标称上与缘407同心,因此产生等价测度。 However, when the iris 414 large-scale expansion, it is nominally concentric edge 407, thus producing the equivalent measure. 包括切口直径、切口的中心、深度417和深度厚度419的如图10中所述的撕囊切口的方面可以使用通过缘识别导出的视频信息获得。 Consisting cut diameter, cut, aspects 10 was 417 and 419 in FIG depth depth thickness tear capsular incision can be used to export video through edge identification information obtained.

[0080] 在又一个实施例中,OCT和视频系统都可以用于引导囊切割。 [0080] In yet another embodiment, OCT and video systems can be used to guide the cutting balloon. 例如,可以通过同时考虑OCT和视频系统数据以确定像素或眼睛位置是瞳孔像素还是非瞳孔像素而确定瞳孔的中心。 For example, consider OCT data and video systems simultaneously to determine the position of the pupil of the eye pixels or pixel or non-pupil pixels to determine the center of the pupil. 对于将被视为在瞳孔内的位置,可能需要两个系统单独地分辨该结论。 It will be considered for a position within the pupil may need to distinguish between the two systems separately conclusion. 备选地,如果至少一个系统得出该结论则位置可以在瞳孔内。 Alternatively, if at least one system that conclusion then the position may be in the pupil. 在任一情况下,考虑来自两个系统的信 In either case, consider a letter from the two systems

肩、O Shoulder, O

[0081] 必须配准成像系统和UF光束6。 [0081] Registration must beam imaging systems and UF 6. 成像系统可以是视频系统、OCT系统100或两者的组合。 The imaging system may be a video system, OCT system 100, or a combination of both. 因此,必须实现系统2的空间校准以精确地放置切口。 Therefore, we must realize spatial calibration system 2 to accurately place the incision. 这可以以各种方式实现。 This can be achieved in various ways. 图10是指示具有目标表面510的校准透镜505的光学示意图。 Figure 10 is an indication of the target surface 510. The collimating lens 505 has an optical schematic. 校准透镜505由已知折射率、厚度515和光功率的材料制造。 Collimating lens 505 manufactured by the known refractive index, the thickness of the material 515 and optical power.

[0082] 它用作眼睛的代替物或替代物。 [0082] It is used as a substitute for the eyes or substitutes. 厚度、材料和形状被选择成使得在目标位置510处的尺度和眼睛中的尺度之间有已知关系。 Thickness, material and shape are chosen so that there is a known relationship between the scale at the target position 510 scales and eyes. 表面510可以包括具有已知校准尺度的分划板或掩模。 Surface 510 may comprise a known calibration scale reticle or mask. 经由光学设计代码(例如ZemaX、0SL0和CODE V)的光学计算可以用于进一步细化校准透镜和分划板尺度相对于眼睛之间的关系。 Via an optical design codes (for example ZemaX, 0SL0 and CODE V) optical computing can be used to further refine the calibration of the lens and the reticle scale with respect to the relationship between the eyes. 可以包括在该细化中的因素包括校准透镜505的指数、厚度、形状和预期眼睛光学因素,例如角膜厚度、角膜指数、角膜表面半径、房水指数、房水厚度以及晶状体指数、晶状体厚度和晶状体表面半径。 Factors that may be included in the refinement includes calibration lens index, thickness, shape and intended eye optical element 505, such as corneal thickness, corneal index, the corneal surface radius, aqueous index, aqueous humor and lens thickness index, lens thickness and the radius of the lens surface.

[0083] 使用该分划板,像素可以映射到眼睛尺度,与视频情况中一样,并且被扫描OCT信号可以与眼睛尺度相关,与OCT情况中一样。 [0083] using the reticle, the eye can be mapped to the pixel dimensions, as with the case of video, and can be scanned OCT signal associated with eye scale, as in the case with OCT. 图11是使用视频系统看到的分划板图像的例子。 FIG. 11 is an example of a video system sees the reticle image. 在该情况下分划板是具有已知直径的圆520的铬掩蔽玻璃表面。 In this case, a chrome mask reticle glass surface with a known diameter circle 520. 在图11的图像中圆以毫米标记。 Mm image circle mark in FIG. 11. 然后可以将视频像素校准到分划板毫米。 Then the video pixels can be calibrated to the reticle mm. 图像毫米可以与眼睛中的指定平面处的等价眼睛尺度相关。 Images can be associated with millimeter scale equivalent to the eye in the eye of the specified plane. 可以经由光学建模帮助该关系。 This relationship can help via optical modeling. 在图12中给出了使视频像素与眼睛尺度相关的曲线的例子。 It gives the curve of the video pixels associated with eye-scale example in Figure 12. 类似地可以在分划板表面510上校准UF光束,与图10中一样。 Similarly UF beam can be calibrated on the reticle surface 510, as in Figure 10. 视频和UF光束的眼睛空间中的远心性允许如图12中的校准曲线有效地应用于眼睛内的整个切割体积。 Video and UF beam eye space telecentricity allow calibration curve shown in Figure 12 effectively applied to the entire cutting volume within the eye.

[0084] 图13是将成像系统配准到UF光束的校准技术的另一个例子。 [0084] The imaging system 13 is registered to another example of the UF beam calibration techniques. 在图13中,目标表面由材料530 (例如聚酯薄膜的薄片)制造,其可以被标记535或者由聚焦UF光束烧灼。 In Figure 13, the surface of the target material 530 (e.g., a sheet of polyester film) manufacturing, which may be labeled or 535 UF beam focused by the burning. 一旦标记,OCT可以检测标记位置。 Once marked, OCT can detect the marker position. OCT由此配准到UF光束。 OCT thus registered to UF beam.

[0085] 另外如果使用如图13中的视频系统观察该标记材料,则视频像素可以配准到UF和因此OCT光束位置。 [0085] In addition to observe if you use 13 video system is shown in the marking material, the video pixels can be registered to UF and therefore OCT beam position. 可以通过使用如关于图11中使用的校准目标所述的校准技术和如图12中的校准曲线获得与实际眼睛尺度的联系。 It can be used as a calibration target on the calibration technique of Fig. 11 and 12 in contact with a calibration curve obtained by using actual eye scale. 使用可以由UF光束标记、由OCT和视频系统读取并且校准到实际眼睛尺度的目标材料不仅产生如图12中的曲线斜率所示的缩放信息,而且产生UF光束标记图案相对于成像(视频和0CT)系统的定心和旋转。 Use may, by the OCT and video systems read by UF beam eye marked and calibrated to the actual scale of the target material not only from the slope of the curve in Figure 12 shows the zoom information, and generating a marker pattern with respect to the UF beam imaging (video and 0CT) Centering and rotation system. 来自这样的校准技术的校准信息的完整集合在图13的表中给出。 Complete calibration technique comes from the collection of calibration information in Table 13 below.

[0086] 图14是用于将切割激光器、OCT和视频图像配准到眼睛中的实际尺度的包括像素缩放、中心位置和旋转的关键校准因素的表。 [0086] FIG. 14 is a cutting laser, OCT and video image registration into the eye of the actual scale include pixel zoom, table center position and rotation of key calibration factors. 将有用于切割激光器和用于OCT的一组值,但是理想地OCT和切割激光器重叠使得仅仅一组是必要的,如图14中所示。 There will be a set of values for the laser and the OCT for cutting, but desirably OCT and laser cutting overlapping so that only one group is necessary, shown in Figure 14.

[0087] 图15是眼睛的横截面示意图,显示了倾斜撕囊切口平面。 [0087] FIG. 15 is a cross-sectional schematic view of the eye, showing the inclined plane capsulorhexis incision. 它显示了倾斜晶状体并且理想地囊的切口将跟随该倾斜。 It shows the inclination of the lens capsule and ideally cut will follow the tilt. 在这里图I的OCT系统100用于通过检测晶状体412的表面408和410分辨囊401。 Here Figure I of OCT system 100 by detecting the surface of the lens 412 408 and 410 401 resolution sac. OCT系统可以通过寻找连接前和后晶状体表面的曲率的中心的轴线424检测该倾斜。 OCT system 424 can be detected by looking for the center axis of the front connector and posterior curvature of the inclined surface. 可以相对于由虹膜的中心限定并且与系统的光轴重合的轴线422看到该轴线424的倾斜。 With respect to the center of the iris is defined and coincides with the axis of the optical axis of the system to see the inclination of the axis 422 424. 类似地,也可以使用OCT系统100解决系统2和眼睛68之间的失配。 Similarly, the system 100 may be used to solve the system OCT mismatch between 2 and 68 eyes. 相比于可以具有较大焦深并且因此难以区分倾斜分量的视频系统,OCT系统通常在检测眼睛和系统之间的相对倾斜信息方面是出色的。 Compared may have a greater depth of focus and therefore indistinguishable inclination component video system, OCT systems generally detect the relative inclination between the eyes and to information systems is excellent. [0088] 图16显示了视网膜图像的示意性表示。 [0088] Figure 16 shows a schematic representation of the retinal image. 视网膜结构(例如小凹或中心凹)的包括允许关于它指定的视轴线的更好定心。 Retinal structures (such as a small depression or foveal) include permit specified depending on its axis centered better. 为此,可调节焦点系统可以置于成像系统71中以允许成像虹模和视网膜。 To do this, you can adjust the focus of the system can be placed in the imaging system 71 to allow the imaging rainbow mode and the retina. 虹膜和视网膜的图像之间的焦点偏移将描述眼睛的长度,并且这还可以用于计算晶状体中心或其它点(例如晶状体的光学基点)和视网膜配准特征之间的角以及囊401上的切口400的偏移。 Focus shift between the images of the iris and the retina of the eye length will be described, and it can also be used to calculate the lens center or other point (such as an optical lens bp) and retinal registration as well as the angle between the characteristics of the capsule 401 cut offset 400. 可以通过使用类似于图I的描述中的ζ调节40的校准ζ调节实现这样的调节。 By using similar to Figure I of the description ζ ζ calibration adjustment regulator 40 to achieve such regulation. 此外,增加成像系统71中的孔径81的直径将减小它的焦深,并且因此更好地定位眼结构(例如视网膜426和虹膜402)的实际位置。 In addition, the imaging system 71 to increase the diameter of the aperture 81 to reduce its depth of focus, and thus better positioned ocular structures (e.g., retina 426 and iris 402) of the actual position. 再次地,图像处理然后可以定位瞳孔404(或虹膜402或缘407)内的中心406和小凹430内的中心428,配准它们并且因此分辨眼睛的视轴线。 Again, the image processing can then locate the center and the center 406 430 404 within the pits pupil (or the iris 402 or edge 407) 428, the registration and therefore they distinguish the visual axis of the eye. 这然后可以代替中心线422用作撕囊定心的轴线。 This can then be used instead of the centerline 422 capsularhexis centering axis. 类似地,为了这样的确定可以使OCT系统分辨虹膜和视网膜结构。 Similarly, in order to make such a determination OCT system can distinguish between the iris and the retina structure. 固定灯也可以用于帮助所述视网膜/眼对准。 Fixed lamp can also be used to help the retina / eye aligned.

[0089] 尽管晶状体412的厚度(3_5mm)和几何轴线和视轴线之间的角差异(3-7° )的典型值仅仅产生飞00 μ m的中心406的最差位移,但是它完全在本发明的精度内,如本文中所述。 [0089] Although the thickness of the lens 412 (3_5mm) and geometric angle difference between the axis and the visual axis (3-7 °) typical values only produce center fly 00 μ m of the worst displacement 406, but it is completely in the present within the accuracy of the invention, as described herein. 此外,成像系统71的近红外光的使用通过提供否则可能由于光学不透明白内障的存在而更加衰减的增强返回信号而简化检测。 In addition, near-infrared imaging system 71 light use optically opaque or may be due to the presence of cataracts more enhanced return signal attenuation by providing simplified testing.

[0090] 系统也可以为用户提供使用上述拟合中的任何一种放置激光产生的切口的选择。 [0090] system may also be used to provide any of the above-mentioned fitting lasing incision placement options. 例如,视频系统可以显示覆盖有缘、几何和视觉定心结果的患者的眼睛的正面图像。 For example, the video system can display a positive image overlay destined, the centering geometry and visual results of the patient's eye. 用户然后可以基于关于视频图像的它的外观选择方法。 Users then can be based on a video image of its appearance selection. 类似地,系统可以显示供用户选择的角膜切口的(一个或多个)预期位置。 Similarly, the system can be displayed for the user to select a desired position of the corneal incision (s).

[0091] 图18显示了用于测量生理瞳孔的装置的实施例,该装置响应变化的照明条件。 [0091] FIG. 18 illustrates an embodiment of the apparatus for measuring physiological pupil, the device responds to changes in lighting conditions. 由照明源提供的光量可以由漫射器漫射以提供入射在试验中的患者的眼睛上的更均匀的光分布。 The amount of light provided by the illumination source may be provided in the test incident light more uniform distribution of the patient's eye by the diffuser on the diffusion. 光束分裂器经由光电检测器提供照明光的水平的主动反馈,同时使用照相机成像眼睛的虹膜。 Active feedback beam splitter providing illumination light via the photodetector level, while the eye of the iris image using the camera. 所有这些电子元件可以经由I/o端口连接到CPU。 All of these electronic components can be connected to the CPU via the I / o port. 该配置提供很灵活的仪器以根据照明水平测量瞳孔尺寸、形状和形心。 This configuration provides a very flexible instrument to measure pupil size according to light levels, shapes, and centroid. 因而,它可以被校准以在对应于典型环境照明条件的范围上调节照明水平,所述环境照明条件是不同的,从黑夜到阳光明媚的白天,通过典型的800勒克斯的办公室环境。 Thus, it can be calibrated to the ambient lighting conditions corresponding to the typical range adjustment lighting levels, the ambient lighting conditions are different from night to day and sunny, 800 lux for typical office environment. 也可以使照明源提供光的变化光谱分量以增加测量。 It is also possible to provide the illumination light source in order to increase the spectral components of the measurement changes. 可以使照明强度的变化率以适应生理瞳孔反应的一定速度改变以便精确地捕获瞳孔反应,如图19中示意性地所示。 Rate of change of illumination intensity allows to adapt certain physiological pupillary response speed changes so as to accurately capture pupillary response, as shown in FIG. 19 schematically. 可以使包含瞳孔尺寸(图20)和形心位置(图21)与照明水平的比较的数据提供最佳地定位囊切开切口的侧向或横向位置所必需的信息。 Can comprise pupil size (Fig. 20) and the centroid position (FIG. 21) provides the best positioned capsulotomy incision lateral or transverse position of the information necessary to compare the data with the illumination level. 在示例性图中,由标记a_h标识的水平对应于实际情况,例如晨光等。 In an exemplary figure, identified by the mark a_h level corresponds to the actual situation, such as dawn and the like. 线I连接数据cf,该照明水平被视为适合于试验中的患者。 I connect the data cable cf, the illumination level is considered suitable for the trial patients. 瞳孔反应可能具有一定的滞后量,如图20和21中所示。 Pupillary response may have a certain amount of hysteresis, 20 and 21 as shown in FIG. 因此,线I的中心点(点P)用于限定该环境光水平的中值囊切开切口中心位置。 Therefore, the line I of the center point (point P) is used to define the level of ambient light value capsulotomy incision in the center position. 本发明也将捕获扩张瞳孔的图像以用于术中配准,如上面详细地所述。 The present invention also capture an image of the pupil dilation for intraoperative registration, as described in detail above.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
CN1610522A *16 Dic 200227 Abr 2005皇家飞利浦电子股份有限公司Medical viewing system having means for image adjustment
CN101057777A *1 Jun 200724 Oct 2007南开大学Method for improving optical coherent tomographic imaging quality
CN101631522A *13 Mar 200820 Ene 2010眼科医疗公司Apparatus for creating ocular surgical and relaxing incisions
CN201320219Y *26 Dic 20087 Oct 2009天津医科大学Self-controlling laser surgical equipment
US6053613 *15 May 199825 Abr 2000Carl Zeiss, Inc.Optical coherence tomography with new interferometer
US6111645 *15 May 199829 Ago 2000Massachusetts Institute Of TechnologyGrating based phase control optical delay line
US20070292037 *3 Ene 200720 Dic 2007Ophthalmic Imaging Systems Inc.Device, method and system for automatic stabilization of a series of retinal images
Otras citas
1 *YIHENG LIU, YANMEI LIANG, ZHENGRONG TONG, XIAONONG ZHU: "Contrast enhancement of optical coherence tomography images", 《OPTICS COMMUNICATIONS》, vol. 279, no. 1, 1 November 2007 (2007-11-01), XP002634236, DOI: doi:10.1016/J.OPTCOM.2007.07.003
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
CN105473055A *4 Jun 20146 Abr 2016拜尔普泰戈恩公司Optical coherence tomography imaging system and optical laser scanning system comprising beam shaping optical system with a lens triplet, where second and third lens are movable
CN105491981A *17 Abr 201413 Abr 2016光学医疗公司Laser fiducials for axis alignment in cataract surgery
CN105517514A *18 Abr 201420 Abr 2016光学医疗公司Corneal topography measurement and alignment of corneal surgical procedures
Eventos legales
5 Dic 2012C06Publication
30 Ene 2013C10Entry into substantive examination
19 Sep 2013REGReference to a national code
Ref country code: HK
Ref legal event code: DE
Ref document number: 1178776
Country of ref document: HK
9 Sep 2015C14Grant of patent or utility model