CN102811684A - 用于自动放置扫描激光撕囊切口的装置 - Google Patents

用于自动放置扫描激光撕囊切口的装置 Download PDF

Info

Publication number
CN102811684A
CN102811684A CN2011800155187A CN201180015518A CN102811684A CN 102811684 A CN102811684 A CN 102811684A CN 2011800155187 A CN2011800155187 A CN 2011800155187A CN 201180015518 A CN201180015518 A CN 201180015518A CN 102811684 A CN102811684 A CN 102811684A
Authority
CN
China
Prior art keywords
eyes
oct
iris
light beam
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800155187A
Other languages
English (en)
Other versions
CN102811684B (zh
Inventor
D·安杰莉
P·古丁
B·伍德利
G·马塞利诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eye health development Co.,Ltd.
Original Assignee
Optimedica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optimedica Corp filed Critical Optimedica Corp
Priority to CN201510490331.2A priority Critical patent/CN104997587B/zh
Publication of CN102811684A publication Critical patent/CN102811684A/zh
Application granted granted Critical
Publication of CN102811684B publication Critical patent/CN102811684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/145Arrangements specially adapted for eye photography by video means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/0084Laser features or special beam parameters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/009Auxiliary devices making contact with the eyeball and coupling in laser light, e.g. goniolenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00851Optical coherence topography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00865Sclera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00876Iris
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • A61F2009/00889Capsulotomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic

Abstract

本发明描述了用于白内障手术的系统和方法。在一个实施例中一种系统包括:激光源,所述激光源被配置成产生包括多个激光脉冲的治疗光束;集成光学系统,所述集成光学系统包括成像组件,所述成像组件可操作地联接到治疗光束输送组件使得它们共用至少一个公共光学元件,所述集成光学系统被配置成采集与一个或多个目标组织结构相关的图像信息并且以三维图案引导治疗光束以导致目标组织结构中的至少一个的破坏;以及控制器,所述控制器可操作地联接到所述激光源和所述集成光学系统,并且被配置成基于所述图像信息调节激光束和治疗图案,并且至少部分地基于所述图像信息的鲁棒最小二乘拟合分析区分眼睛的两个或以上解剖结构。

Description

用于自动放置扫描激光撕囊切口的装置
技术领域
本发明涉及眼科手术程序和系统。
背景技术
眼内透镜植入是世界上最常用的手术程序之一,全世界每年估计有1400万病例执行手术。
典型地使用被称为超声乳化术的技术执行现代手术,其中在被称为前囊切开术或如今被称为撕囊术的执行晶状体前囊中的开口之后使用具有用于冷却的关联水流的超声尖端雕刻晶状体的较硬核。在这些步骤以及在不碎裂的情况下通过抽吸移除残余较软晶状体皮质之后,通过小切口将人工可折叠眼内透镜(IOL)插入眼睛中。
该程序中的最早和最关键步骤之一是执行囊切开(或撕囊)。该步骤从被称为开罐式囊切开术的早先技术演变而成,其中使用尖锐针头以圆形方式穿透晶状体前囊,之后移除直径典型地在5-8mm的范围内的晶状体囊的圆形碎片。由于与最初的开罐式技术关联的各种并发症,因此本领域的前沿专家试图开发更好的技术以用于在乳化步骤之前移除晶状体前囊。撕囊的概念是提供平滑连续圆形开口,通过该开口不仅可以安全地和容易地执行核的超声乳化,而且容易插入眼内透镜。它既提供用于插入的明确的中心进路—用于由患者将图像传输到视网膜的永久孔径,又提供剩余囊的内部的IOL的支撑,该支撑将限制脱位的可能性。使用开罐式囊切开术的旧式技术,乃至使用连续撕囊术,可能产生与下列相关的问题:外科医生由于红光反射而不能充分地可视化囊,不能以足够的安全性掌握它,不能撕裂适当尺寸的平滑圆形开口而没有放射裂口和延伸,或与初始开口之后保持前房深度、瞳孔的小尺寸或由于晶状体浑浊引起的红光反射的缺少相关的技术难题。已通过使用诸如亚甲蓝或吲哚菁绿的染料最小化一些可视化问题。然而,囊的可视化只是一个问题。
眼睛的取向也可以为外科医生造成难题,原因是如果由立体成像系统引入视差误差,则可能使撕囊切口偏离中心。附加并发症在具有弱悬韧带的患者(典型地是老年患者)和具有很难机械地破裂的很软和弹性囊的年龄很小的儿童中产生。
需要改进精确和可靠放置眼切口(例如穿刺术、白内障器械进路、松弛和囊切开术)的医疗标准的眼科方法、技术和装置。
发明内容
一个实施例涉及一种用于患者的眼睛的白内障手术的系统,所述系统包括:激光源,所述激光源被配置成产生包括多个激光脉冲的治疗光束;集成光学系统,所述集成光学系统包括成像组件,所述成像组件可操作地联接到治疗光束输送组件使得它们共用至少一个公共光学元件,所述集成光学系统被配置成采集与一个或多个目标组织结构相关的图像信息并且以三维图案引导治疗光束以导致目标组织结构中的至少一个的破坏;以及控制器,所述控制器可操作地联接到所述激光源和所述集成光学系统,并且被配置成基于所述图像信息调节激光束和治疗图案,并且至少部分地基于所述图像信息的鲁棒最小二乘拟合分析区分眼睛的两个或以上解剖结构。所述两个或以上解剖结构中的一个包括角膜、巩膜、缘、虹膜、晶状体或晶状体囊。所述控制器可以被配置成进行一系列最小二乘拟合分析,并且在每个连续最小二乘拟合分析中迭代地包括更多数量的像素。所述控制器可以被配置成寻找紧密最小二乘拟合,其中相关最小二乘拟合分析预期球形表面。所述控制器可以被配置成寻找紧密最小二乘拟合,其中相关最小二乘拟合分析预期非球形表面。所述控制器还可以被配置成定位所述两个或以上解剖结构之间的边界。所述边界可以被限定为眼睛的角膜和眼睛的巩膜之间的交界。所述边界可以被限定为眼睛的角膜和眼睛的虹膜之间的交界。所述边界可以被限定为眼睛的晶状体和眼睛的虹膜之间的交界。所述控制器可以被配置成利用最小二乘拟合分析的拒绝点来识别眼睛的解剖结构。
另一个实施例涉及一种系统,所述系统还包括允许视网膜的成像的可调节聚焦组件,所述可调节聚焦组件提供关于小凹(fovea)和/或中心凹(foveolacentralis)的位置的信息以确定患者的视轴线。这样的视网膜特征可以经由来自成像设备的图像信息识别并且与关于晶状体的几何信息结合使用以提供增强的囊切开图案放置。成像设备可以提供3D或2D图像或两者。
另一个实施例涉及一种系统,所述系统还被配置成使得用户能够选择使用上述拟合中的任何一个来放置激光制造切口。例如,视频系统可以显示覆盖有缘、几何和视觉定心结果的患者眼睛的正面图像(en-face)。用户然后可以基于关于视频图像的它的外观选择方法。类似地,系统可以显示角膜切口的(一个或多个)预期位置供用户进行选择。
在又一个实施例中,所述系统还包括第二成像系统,例如视频系统。OCT和视频系统都可以用于引导激光切口。例如,可以通过同时考虑OCT和视频系统数据确定像素或眼睛位置是瞳孔还是非瞳孔像素而确定瞳孔的中心。对于认为在瞳孔内的位置,可能需要两个系统独立地辨别该结论。备选地,如果至少一个系统得出该结论,则位置可以在瞳孔内。
另一个实施例涉及一种光学系统,所述光学系统包括:可调节光源,用于将患者的眼睛暴露于可变照明条件或亮度的水平;以及成像设备,例如摄像机,所述成像设备捕获眼睛的图像以确定瞳孔的尺寸、形状、位置和对准标记或解剖基准以便最佳地确定用于制造激光囊切开切口的合适侧向位置。
本文中所述的技术和系统提供胜过当前的医疗标准的许多优点。具体地,撕囊切口的图像引导对准。本文中所述的技术可以用于便于植入眼内透镜(IOL),包括镜中袋(bag-in-lens)和袋中镜(lens-in-bag)类型。切口不仅仅限于圆形,而是可以是有助于接着进行诸如复杂或高级IOL装置或固定适应IOL的注入或形成的程序的任何形状。通过回顾说明书、权利要求和附图,本发明的其它目的和特征将变得明显。
附图说明
图1是光束扫描系统的示意图。
图2是显示备选的光束组合方案的光图。
图3是具有备选的OCT配置的光束扫描系统的示意图。
图4是具有另一个备选的OCT组合方案的光束扫描系统的示意图。
图5是眼睛的横截面示意图,描绘了角膜、虹膜、晶状体和晶状体囊。
图6显示了对应于切割激光器、OCT和视频子系统的光束路径相对于眼睛的关系。
图7是眼睛的正面示意图,描绘了虹膜、虹膜边界、目标囊切开切口位置和切口的中心。
图8是从系统的用户接口捕获的正面图像,描绘了覆盖有检测到的虹膜边界和预期囊切开切口的患者的眼睛的视频图像。
图9是具有带标记的结构和特征的OCT复合图像。
图10是指示具有目标表面的校准透镜的光学设计。
图11是用于校准视频的分划板目标的视频图像。
图12是将视频像素映射到眼睛中的相应物理尺度的视频校准曲线的例子。
图13是由切割激光器在用于配准切割激光器放置、OCT检测和眼睛的物理尺度的校准目标中制造的标记或烧灼图案的视频图像。
图14是用于将切割激光器、OCT和视频图像配准到眼睛的物理尺度的包括像素缩放、中心定位和旋转的关键校准因素的表。
图15是眼睛的横截面示意图,显示了倾斜囊切开切口平面。
图16显示了视网膜图像的示意性表示。
图17是显示在虹膜的前表面上看到的特征的图形。
图18是用于在环境照明条件下测量患者的瞳孔的装置的图形。
图19是照明水平坡道的例子。
图20是从虹膜图像收集的瞳孔直径数据的例子。
图21是从虹膜图像收集的瞳孔形心数据的例子。
具体实施方式
本发明可以由将光束投射或扫描到患者的眼睛68中的系统(例如图1中所示的系统2)实现,该系统包括超快激光器(UF)光源4(例如飞秒激光器)。使用该系统,可以在三个维度X、Y、Z中在患者的眼睛中扫描光束。在该实施例中,UF波长可以在1010nm至1100nm之间变化并且脉冲宽度可以在100fs至10000fs之间变化。脉冲重复频率也可以在10kHz至250kHz之间变化。关于对非目标组织的非预期损伤的安全极限限制关于重复率和脉冲能量的上限;而阈值能量、完成程序的时间和稳定性限制脉冲能量和重复率的下限。在眼睛68中并且具体地在眼睛的晶状体69和前囊中的焦斑的峰值功率足以产生光破坏并且启动等离子介导消融过程。近红外波长是优选的,原因是生物组织中的线性光吸收和散射在该光谱范围内减小。作为例子,激光器4可以重复脉动1035nm装置,其以100kHz的重复率产生500fs脉冲和在十微焦耳范围内的单独脉冲能量。
激光器4由控制电子装置300、经由输入和输出装置302控制以产生光束6。控制电子装置300可以是计算机、微控制器等。在该例子中,整个系统由控制器300控制,并且数据通过输入/输出装置IO 302移动。图形用户界面GUI 304可以用于设置系统操作参数、处理GUI 304上的用户输入(UI)306并且显示收集信息,例如眼结构的图像。
生成的UF光束6朝着患者眼睛68前进,穿过半波片8和线性偏振器10。可以调节光束的偏振状态使得期望的光量穿过一起用作UF光束6的可变衰减器的半波片8和线性偏振器10。另外,线性偏振器10的取向确定入射在光束组合器34上的入射偏振状态,由此优化光束组合器处理量。
UF光束前进通过遮光器12、孔径14和选截装置16。系统控制遮光器12出于程序和安全原因保证激光的开/关控制。孔径设置激光束的可使用外径并且选截器监视可使用光束的输出。选截装置16包括部分反射镜20和检测器18。可以使用检测器18测量脉冲能量、平均功率或组合。信息可以用于反馈到用于衰减的半波片8并且检验遮光器是打开还是关闭。另外,遮光器12可以具有位置传感器以提供冗余状态检测。
光束穿过光束调节级22,其中可以修改光束参数,例如光束直径、发散度、圆度和散光。在该示例性例子中,光束调节级22包括由球面光学器件24和26组成的二元光束扩展望远镜以便获得预期光束尺寸和准直。尽管未在这里示出,但是变形系统或其它光学系统可以用于获得期望的光束参数。作为另一个例子,可以使用变焦或反转长焦透镜系统。用于确定这些光束参数的因素包括激光器的输出光束参数、系统的总放大率和治疗位置处的期望数值孔径(NA)。这些调节光学元件可以是动态的或可调节的,要么是一次性手动的,要么是自动的。动态元件的例子可以是将能够调节焦距和放大率的变焦光束扩展器。这样的变焦可以用于减小或增加进入最后聚焦物镜的激光束的光束直径并且因此增加和减小治疗位置处的NA。诸如此的可变特征可以有用于确定等离子阈值水平并且还可以用作影响阈值的其它参数的补偿。这些其它参数可以是激光器的光束品质(M2)、激光器的脉冲持续时间以及光束串的传输。改变NA并且因此改变阈值水平的能力有利于在在整个预期切割体积上制造有效切口。阈值的该调拨可以是每个系统的每个激光器的一次性调节以在整个体积上制造切口中产生额外裕量或者它可以飞速地(即,以足够高的速率)进行调节使得在切割图案的同时阈值可以变化并且例如取决于切口的位置。
另外,光学系统22可以用于将孔径14成像到期望位置(例如下述的双轴线扫描装置50之间的中心位置)。以该方式,保证通过孔径14的光量通过扫描系统。选截装置16然后是可使用光的可靠量度。备选地,如果孔径处的光束位置是可靠且稳定的,则孔径可以置于选截装置之后。以该方式系统可能被制造得更短,减小光束路径轨迹。在离开调节级22之后,光束6从折叠镜28、30和32反射。为了对准这些镜可以是可调节的。光束6然后入射在光束组合器34上。光束组合器34反射UF光束6(并且透射下述的OCT 114和瞄准202光束)。为了高效的光束组合器操作,入射角优选地保持在45度以下并且在可能的情况下光束的偏振是固定的。对于UF光束6,线性偏振器10的取向提供固定偏振。
在光束组合器34之后,光束6继续进入z调节或Z扫描装置40。在该示例性例子中z调节包括具有两个透镜组42和44(每个透镜组包括一个或多个透镜)的伽利略望远镜。透镜组42沿着关于望远镜的准直位置的z轴移动。以该方式,患者的眼睛68中的焦斑的焦点位置沿着z轴移动,如图所示。一般而言在透镜42的运动和焦点的运动之间有固定关系。在该情况下,z调节望远镜具有大约2x光束扩展比和透镜42的运动与焦点的运动的大约1:1关系。透镜的运动和因此眼睛内的焦斑的z运动的实际关系取决于透镜42、44、60、62、64、66的焦距、眼睛中的材料的折射率、这些透镜中的至少两个之间的分离以及焦点的位置。在示例性实施例中,该关系在靠近角膜的焦点位置为大约1.2:1并且在靠近晶状体的后表面的焦点位置为1.5:1。备选地,透镜组44可以沿着z轴移动以启动z调节并且扫描。z调节是用于眼睛68中的治疗的z扫描装置。它可以由系统自动地并且动态地控制并且被选择成是独立的或者与接着描述的X-Y扫描装置相互作用。镜36和38可以用于使光轴与z调节装置40的轴线对准。在穿过z调节装置40之后,光束6由镜46和48引导到x-y扫描装置。为了对准镜46和48可以是可调节的。在控制电子装置300的控制下由优选地使用两个镜52和54的扫描装置50实现X-Y扫描,所述控制电子装置使用马达、检流计或任何其它公知的光学器件移动装置在正交方向上旋转。镜52和54靠近下述的物镜58和接触透镜66的组合的远心位置定位。倾斜这些镜52/54导致它们偏转光束6,导致位于患者的眼睛68中的UF焦点的平面的侧向位移。物镜58可以是复杂多元透镜元件,如图所示并且由透镜60、62和64表示。透镜58的复杂性将由扫描场尺寸、焦斑尺寸、物镜58的近侧和远侧上的可用工作距离以及像差控制量决定。焦距为60mm、在10mm的场内用15mm直径的输入光束尺寸生成10um的光斑尺寸的扫描透镜58是例子。备选地,由扫描器50进行的X-Y扫描可以使用一个或多个可移动光学元件(例如透镜、光栅)实现,所述一个或多个可移动光学元件也可以由控制电子装置300、经由输入和输出装置302控制。
瞄准和治疗扫描图案可以在控制器300的控制下由扫描器50自动生成。这样的图案可以包括单一光斑、多个光斑、连续光图案、多个连续光图案和/或这些的任何组合。另外,瞄准图案(使用下述的瞄准光束202)不需要与治疗图案(使用光束6)相同,但是优选地至少限定它的边界以便保证为了患者安全仅仅在期望目标区域内输送治疗光。这例如可以通过使瞄准图案提供预期治疗图案的轮廓线而完成。这样可以使用户知道治疗图案的空间范围,即使不知道单独的光斑自身的实际位置,并且因此可以在速度、效率和精度方面优化扫描。也可以使瞄准图案作为闪光被察觉以便进一步增强它对用户的可见性。可以通过使用输入装置(例如操纵杆或定位患者和/或光学系统的任何其它合适的用户输入装置(例如GUI 304))进一步控制光束6和/或光束6在眼睛68上形成的扫描图案的定位和特性。
可以是任何合适的眼科透镜的接触透镜66可以用于帮助将光束6进一步聚焦到患者的眼睛68中,同时帮助稳定眼睛位置。接触透镜可以是玻璃、塑料或其它合适的光学材料,具有接触眼睛的角膜的固体表面。接触表面可以是弯曲的,从而匹配角膜的前部的表面形状。接触表面也可以是平坦的或不符合角膜的表面形状的其它形状并且由此变形眼睛的前部以符合接触透镜接触表面形状。接触透镜也可以包括接触透镜的固体材料和角膜的前部之间的流体层。该流体可以是水或其它合适的光学流体。该流体将提供合适的光学匹配而不变形角膜。最后,可以在没有接触透镜的情况下使用该系统。该操作模式可以适合于聚焦角膜处或附近的光束,其中角膜的屈光力对光束的影响是可忽略的。
UF激光器4和控制器300可以被设置成靶向眼睛68中的目标结构的表面并且保证光束6将视情况被聚焦并且不意外地损害非目标组织。本文中所述的成像模态和技术(例如光学相干断层摄影(OCT)、Purkinje成像、Scheimpflug成像或超声)可以用于确定晶状体和晶状体囊的位置并且测量厚度以为激光聚焦方法(包括2D和3D图案化)提供更大精度。激光聚焦也可以使用一种或多种方法实现,包括瞄准光束的直接观察、光学相关断层摄影(OCT)、Purkinje成像、Scheimpflug成像、超声或其它已知的眼科或医疗成像模态和/或它们的组合。在图1的实施例中,描述了OCT装置100。眼睛的OCT扫描将提供关于晶状体前囊和后囊的轴向位置以及前房的深度的信息。该信息然后被装载到控制电子装置300中,并且用于安排和控制后续激光辅助手术程序。该信息也可以用于确定与程序相关的多种多样的参数,尤其是例如用于切割晶状体囊和分割晶状体皮质和核的的焦面的轴向上限和下限,以及晶状体囊的厚度。
图1中的OCT装置100包括宽带或扫频光源102,该光源由光纤耦合器104分成参考臂106和样本臂110。参考臂106包括模块108,该模块包含参考反射以及合适的分散和路径长度补偿。OCT装置100的样本臂110具有用作UF激光系统的剩余部分的接口的输出连接器112。来自参考和样本臂106、110的返回信号然后由耦合器104引导到检测装置128,该检测装置利用时域、频率或单点检测技术。在图1中,频域技术用于920nm的OCT波长和100nm的带宽。备选地,OCT源可以用于具有10nm至100nm的带宽的790nm-970nm波长范围内。
离开连接器112,OCT光束114使用透镜116进行准直。准直光束114的尺寸由透镜116的焦距确定。光束114的尺寸由眼睛中的焦点处的期望NA和通往眼睛68的光束串的放大率决定。一般而言,OCT光束114不需要NA与焦平面中的UF光束6一样高并且因此OCT光束114在直径上小于光束组合器34位置处的UF光束6。在准直透镜116之后的是孔径118,该孔径进一步修改眼睛处的OCT光束114的最终产生的NA。孔径118的直径被选择成优化入射在目标组织上的OCT光和返回信号的强度。可以是有源的或动态的偏振控制元件120用于补偿可能例如由角膜双折射的个体差异引起的偏振状态变化。镜122和124然后用于朝着光束组合器126和34引导OCT光束114。为了对准并且特别是为了将OCT光束114覆盖到光束组合器34之后的UF光束6,镜122和124可以是可调节的。类似地,光束组合器126用于组合OCT光束114和下述的瞄准光束202。
一旦与光束组合器34之后的UF光束6组合,OCT光束114沿着与UF光束6相同的路径通过系统的剩余部分。以该方式,OCT光束114指示UF光束6的位置。OCT光束114穿过z扫描装置40和x-y扫描装置50,然后穿过物镜58、接触透镜66并且进入眼睛68。
从眼睛内的结构的反射和散射提供返回光束,该返回光束通过光学系统折回连接器112中,通过耦合器104,并且到达OCT检测器128。这些返回反射提供OCT信号,所述OCT信号又由系统关于UF光束6焦点位置的X、Y、Z位置进行判读。
OCT装置100根据测量它的参考臂和样本臂之间的光学路径长度的差异的原理工作。所以,使OCT穿过z调节40不延长OCT系统100的z范围,原因是光学路径长度不取决于42的运动而改变。OCT系统100具有与检测方案相关的固有z范围,并且在频域检测的情况下它具体地与分光计和参考臂106的位置相关。在图1中所使用的OCT系统100的情况下,在水性环境下z范围可以为大约1-2mm。将该范围延长到至少6mm涉及OCT系统100内的参考臂的路径长度的调节。使OCT光束114在样本臂中穿过z调节40的z扫描允许OCT信号强度的优化。这通过将OCT光束114聚焦到目标结构上并且同时通过相应地增加OCT系统100的参考臂1 06内的路径适应延长的光学路径长度而实现。
由于诸如浸没指数、折射和像差(多色的和单色的)的影响所引起的关于UF聚焦装置的OCT测量的根本差异,必须仔细分析关于UF光束焦点位置的OCT信号。应当进行取决于X、Y、Z的校准或配准程序以便使OCT信号信息匹配UF焦点位置并且也匹配相对和绝对尺度量。瞄准光束的观察也可以用于帮助用户引导UF激光焦点。另外,代替红外OCT和UF光束由肉眼可见的瞄准光束可以有助于对准,只要瞄准光束精确地表示红外光束参数。在图1所示的配置中利用瞄准子系统200。瞄准光束202由瞄准光束光源201生成,例如在633nm的波长下操作的氦氖激光器。备选地可以使用在630-650nm范围内的激光二极管。使用氦氖630nm光束的优点是它的长相干长度,这将能够使用瞄准路径作为激光不等程干涉计(LUPI)来测量例如光束串的光学品质。
一旦瞄准光束光源生成瞄准光束202,瞄准光束202使用透镜204进行准直。准直光束的尺寸由透镜204的焦距确定。瞄准光束202的尺寸由眼睛中的焦点处的期望NA和通往眼睛68的光束串的放大率决定。一般而言,瞄准光束202应当具有与焦平面中的UF光束6近似相同的NA并且因此瞄准光束202具有与光束组合器34位置处的UF光束相似的直径。由于在系统对准到眼睛的目标组织期间瞄准光束意味着替换UF光束6,因此主路径的大部分类似于UF路径,如先前所述。瞄准光束202继续通过半波片206和线性偏振器208。可以调节瞄准光束202的偏振状态使得期望的光量穿过偏振器208。元件206和208因此用作瞄准光束202的可变衰减器。另外,偏振器208的取向确定入射在光束组合器126和34上的入射偏振状态,由此固定偏振状态并且允许优化光束组合器的处理量。当然,如果半导体激光器用作瞄准光束光源200,则可以改变驱动电流以调节光功率。
瞄准光束202继续通过遮光器210和孔径212。系统控制遮光器210提供瞄准光束202的开/关控制。孔径212设置瞄准光束202的可使用外径并且可以适当地进行调节。测量眼睛处的瞄准光束202的输出的校准程序可以用于经由偏振器206的控制设置瞄准光束202的衰减。
瞄准光束202接着穿过光束调节装置214。可以使用一个或多个公知的光束调节光学元件修改光束参数,例如光束直径、发散度、圆度和散光。在瞄准光束202从光纤发出的情况下,光束调节装置214可以简单地包括具有两个光学元件216和218的光束扩展望远镜以便获得预期光束尺寸和准直。用于确定诸如准直度的瞄准光束参数的最终因素由匹配眼睛68的位置处的UF光束6和瞄准光束202所必需的因素决定。可以通过光束调节装置214的适当调节考虑色差。另外,光学系统214用于将孔径212成像到期望位置,例如孔径14的共轭位置。瞄准光束202接着从折叠镜222和220反射,所述折叠镜优选地是可调节的以用于对准配准到光束组合器34之后的UF光束6。瞄准光束202然后入射到光束组合器126上,在所述光束组合器处瞄准光束202与OCT光束114组合。光束组合器126反射瞄准光束202并且透射OCT光束114,这允许在两个波长范围的光束组合功能的有效操作。备选地,光束组合器126的透射和反射功能可以反转并且配置可以反转。在光束组合器126之后,瞄准光束202以及OCT光束114通过光束组合器34与UF光束6组合。
用于成像眼睛68上或内的目标组织的装置在图1中示意性地显示为成像系统71。成像系统包括用于产生目标组织的图像的照相机74和照明光源86。成像系统71收集图像,所述图像可以由系统控制器300使用以提供以预定结构为中心或在预定结构内的图案。用于观察的照明光源86通常是宽带的和非相干的。例如,光源86可以包括多个LED,如图所示。观察光源86的波长优选地在700nm至750nm的范围内,但是可以是适合于光束组合器56的任何波长,所述光束组合器组合观察光和用于UF光束6和瞄准光束202的光束路径(光束组合器56反射观察波长,同时透射OCT和UF波长)。光束组合器56可以部分地透射瞄准波长使得瞄准光束202可以是观察照相机74可见的。在光源86前面的可选的偏振元件84可以是线性偏振器、四分之一波片、半波片或任何组合,并且用于优化信号。由近红外波长生成的假色图像是可接受的。在又一个实施例中,通过使用可见光照明或波长范围和可以增强图像的实际或感觉诊断质量的彩色照相机生成全色图像。使用与UF和瞄准光束6、202相同的物镜58和接触透镜66朝着眼睛向下引导来自光源86的照明光。从眼睛68中的各种结构反射和散射的光由相同透镜58和66收集并且朝着光束组合器56向回引导。在那里,返回光经由光束组合器和镜82向回引导到观察路径中,并且引导到照相机74。照相机74例如可以是、但不限于适当尺寸规格的任何硅基检测器阵列。视频透镜76在照相机的检测器阵列上形成图像,同时光学元件80和78分别提供偏振控制和波长过滤。孔径或虹膜81提供成像NA的控制并且因此提供焦深和景深的控制。小孔径提供有助于患者对接程序的大景深的优点。备选地,可以切换照明和照相机路径。此外,可以使瞄准光源200发出不直接可见、但是可以使用成像系统71捕获和显示的红外光。
通常需要粗调配准使得当接触透镜66与角膜接触时,目标结构处于系统的X、Y扫描的捕获范围内。所以当系统接近接触条件(即,患者的眼睛68和接触透镜66之间的接触)时优选地考虑患者运动的对接程序是优选的。观察系统71被配置成使得焦深足够大使得在接触透镜66与眼睛68接触之前可以看到患者的眼睛68和其它突出特征。优选地,运动控制系统70被整合到总控制系统2中,并且可以移动患者、系统2或其元件或两者,从而实现接触透镜66和眼睛68之间的精确和可靠接触。此外,真空抽吸子系统和法兰可以包含到系统2中,并且用于稳定眼睛68。眼睛68经由接触透镜66对准到系统2可以在监测成像系统71的输出的同时实现,并且通过借助于控制电子装置300经由IO 302电子地分析由成像系统71产生的图像手动地或自动地执行。力和/或压力传感器反馈也可以用于分辨接触,以及启动真空子系统。
在图2的备选实施例中显示了备选的光束组合配置。例如,图1中的无源光束组合器34可以用图2中的有源组合器140代替。有源光束组合器34可以是移动或动态控制元件,例如检流扫描镜,如图所示。有源组合器140改变它的角取向以便每次一个地朝着扫描器50并且最终朝着眼睛68引导UF光束6或组合瞄准和OCT光束202、114。有源组合技术的优点在于它避免了使用无源光束组合器组合具有类似波长范围或偏振状态的光束的困难。该能力与具有在时间上同时的光束的能力以及由于有源光束组合器140的位置公差引起的可能较小准确度和精度相权衡。
在图3中显示了另一个备选实施例,该实施例类似于图1的实施例,但是利用OCT 100的替代方法。在图3中,OCT 101与图1中的OCT 100相同,区别在于参考臂106由参考臂132代替。通过在透镜116之后包括光束分裂器130实现该自由空间OCT参考臂132。参考臂132然后继续通过偏振控制元件134并且然后进入参考返回模块136。参考返回模块136包含适当的分散和路径长度调节和补偿元件并且生成用于与样本信号干涉的适当的参考信号。OCT 101的样本臂现在产生于光束分裂器130之后。该自由空间配置的可能优点包括参考和样本臂的单独偏振控制和维护。OCT 101的基于光纤的光束分裂器104也可以由基于光纤的循环器代替。备选地,相比于参考臂136,OCT检测器128和光束分裂器130可以一起移动。
图4显示了用于组合OCT光束114和UF光束6的另一个备选实施例。在图4中,OCT 156(其可以包括OCT 100或101的配置)被配置成使得在使用光束组合器152的z扫描40之后它的OCT光束154耦合到UF光束6。以该方式,OCT光束154避免使用z调节。这允许OCT 156可能更容易地收束成光束并且缩短路径长度以用于更稳定的操作。该OCT配置以优化信号返回强度为代价,如关于图1所述。存在OCT干涉计的配置的许多可能性,包括时域和频域法、单光束和双光束方法、扫频源等,如美国专利Nos.5,748,898;5,748,352;5,459,570;6,111,645;和6,053,613中所述。
图5是具有各种指示结构的眼睛的横截面示意图。这些结构的每一个可以用作引导囊中的激光切口的定位的标志。这些候选标志结构包括角膜416的前表面418、角膜的后表面420、虹膜414、晶状体412、晶状体的后部410、晶状体的前部401以及围绕晶状体的囊的前部分408。也可以使用这些结构的特征,例如角膜和晶状体的曲率半径、这些表面的相对位置或虹膜的直径。
可以直接测量或经由分析确定结构和结构的特征。例如,可以从检测器阵列或视频上的虹膜的图像检测虹膜边界。从该边界和成像系统的适当校准,眼睛尺度中的虹膜直径可以被确定并且用于确定囊的中心位置,如轴线422与囊408的交界所示。
另一个例子是使用扫描OCT系统100检测角膜的前表面418。然后可以确定该表面的曲率半径。类似地可以找到角膜的后表面420以及晶状体的前表面401和后表面410的曲率半径。选择通过这些曲率半径的中心的最佳拟合轴线422可以被确定并且该轴线用于确定囊切口的位置。备选地并且类似于视频系统,OCT系统也可以检测虹膜边界位置并且计算切口的中心。该系统的目标是能够检测这些标志或标志的适当特征以便作出导致将切口有效地置于囊408中的选定位置的决定。
图6是简化示意图,显示了对应于系统2的切割激光器4、OCT 100和视频71子系统的光束路径相对于眼睛68的关系。UF光束路径6、OCT光束路径114、视频光束路径81和视频照明光束路径86理想地覆盖在眼睛中的目标切口位置处或者至少目标切口位置处的路径之间的相对空间关系经由校准、模型、测量或某个其它方法而获知。用作系统和晶状体之间的接口的接触透镜66也是已知的。所有四个光束路径接近眼睛内的体积。对于UF光束6,例如经由检流计52、54实现侧向运动。UF光束的焦点的轴向或z运动经由检流机构40实现。由此在眼睛内的整个体积上三维地扫描UF光束的焦点。考虑到大范围的生物学差异该扫描体积允许UF激光接近并且切割囊。类似地对于OCT光束114;可以使用检流计52、54和40在整个体积上三维地扫描它的焦点。与图1和2中一样系统2具有在整个体积上扫描OCT光束的焦点以增加信噪比的能力。OCT的焦点也可以轴向固定(即,在Z上),与图4的OCT系统1 56中一样。在该情况下,OCT在Z上的操作范围的深度大。在任一情况下,OCT可以检测结构,该结构包括在整个体积上的接触透镜、角膜、虹膜、晶状体。
对于包括视频照明路径86和照相机光路径74的视频或观察子系统71,眼睛内的平面的图像被转到检测器阵列,优选2D检测器阵列。眼睛体积内的特定平面可以在检测器平面对好焦点。该聚焦能力可以是固定的或可调节的。例如包含虹膜的内径的平面可以对好视频焦点。图像处理然后可以用于确定虹膜的边界。使用适当的校准、建模或其它方法,该图像分析可以转化为眼睛内的虹膜的直径和中心位置。可以借助于视频系统的焦深或通过调节视频系统的焦平面类似地确定在眼睛内的整个体积上的其它平面的其它结构。
图7是眼睛的正面示意图,描绘了虹膜414、虹膜边界404、撕囊切口位置400和虹膜的中心406。图7显示了患者的眼睛68的图像的示意性表示,该图像可以用成像系统71捕获、显示在GUI 304上并且由控制电子装置300用于图像处理以自动地对准囊401上的切口400。图8是在如图1中所示的系统2的执行中从GUI显示器捕获的实际图像帧。图8中的眼睛图像在照相机的视野内偏移(即,眼睛的图像不居中)使得可以更容易地看到缘407。在图8中,覆盖在视频图像上的缘407A、虹膜边界404A和虹膜的中心406A的分界已经由检测和应用算法由系统生成并且被提供以引导用户。也就是说,在图8中这些分界由系统2生成并且这些分界相对于图像的位置已自动化。经由GUI呈现的这些分界位置可以由用户经由光标、触摸屏、滑杆或其它用户可访问手段手动地操作,在开始或作为自动寻找的修改。囊中的撕囊切口位置400也可以被确定并且作为分界400A呈现给用户。GUI与用户的相互作用因此可以是双向的:一方面系统将自动结果呈现给用户供查看;另一个方面用户操作或输入信息供系统处理。例如,通过将撕囊的指示位置移动到新位置,用户能够重新定位撕囊切口的期望位置。在又一个实施例中,用户能够通过平移表示虹膜的系统检测位置的符号修改虹膜的指示位置。在又一个实施例中其它切割位置(例如白内障切口、松弛切口和/或分割切口)的图形显示可以指示在屏幕上和/或由用户重新定位以修改预期治疗位置。
确定如图8中所示的切口位置400A的一种方法的例子是使用OCT系统确定虹膜直径。在体积中扫描OCT光束从OCT信号生成复合OCT图像。在图9中显示了从OCT导出的复合图像的例子。虹膜414出现在横截面图的两侧。一般而言,可以确定虹膜的内径404B并且因此确定虹膜的中心406。OCT可以用于检测并且显示囊401的表面的位置。使用虹膜直径、虹膜的中心和囊表面的位置,可以确定整个撕囊切口的位置。
在又一个实施例中,通过在已知光照条件下成像眼睛和瞳孔确定撕囊切口的位置。在治疗期间,然后将图像重叠在眼睛的实时图像上,并且然后平移、缩放、旋转和/或扭曲固定图像和/或实时图像以补偿透镜成像系统的失真的差异,使得两个图像大致重叠。然后能够相对于固定图像中的瞳孔定位撕囊和/或任何其它疗法的预期位置。
图17是虹膜414的前表面的图形,其中乳头区从瞳孔600延伸到环状领610,并且睫状区从环状领610延伸到虹膜的周缘,在所述周缘处它接合睫状体。更具体地,虹膜414是具有中心孔径(瞳孔600)的有色隔膜。虹膜悬浮在角膜和晶状体之间的房水中。附连到睫状体的前表面的虹膜的周边被称为虹膜的睫状缘或睫状根。瞳孔由睫状缘围绕或者在虹膜边界404的内部,如图7中所示。虹膜的外径是基本固定的并且尺寸为大约12mm。瞳孔600在直径上在1mm至9.5mm之间变化,这取决于许多因素,包括进入眼睛的光量。一般而言瞳孔决不是固定的并且总是响应括约肌和扩大乳头肌在尺寸上变化。在一部分人口中左右瞳孔在尺寸上略有不同。
虹膜的颜色不同,例如从浅蓝色到深褐色:该颜色在同一个人的两只眼睛之间可能不同并且在相同虹膜的不同部分中可能不同。虹膜的前表面被分成中心乳头区和周边睫状区。分界线由位于离睫状缘大约2mm处的圆形脊(环状领610)形成。环状领可以形成波浪线。虹膜的前表面没有上皮并且具有天鹅绒外观。它显示了由封闭卵形隐窝620(也被称为Fuch’s隐窝)的小梁或结缔组织带导致的一系列放射条痕。小梁在环状领的区域中是最显著的。
靠近睫状区的外部分的是许多同心沟,它们当瞳孔扩张时变得更深。它们一般看上去像黑线并且被称为收缩沟630,并且当瞳孔扩张时由虹膜的折叠导致。在睫状缘处,有色后上皮在前面围绕瞳孔的边缘延伸一小段距离。上皮具有放射褶,该放射褶赋予它的边界钝锯齿状外观,有时被称为环皱640。虹膜的任何或所有这些特征可以在已知条件(例如已知环境照明)下用作基准以标记将由系统用于定位撕囊切口的虹膜的位置。这些特征包括颜色、颜色变化、隐窝、环状领、环皱、沟、收缩沟、小梁、放射条痕、结缔组织带以及任何其它可分辨特征。全部被认为是解剖基准。
可以使用离线系统或系统的(一个或多个)成像子系统记录这些基准。在除了在预治疗或治疗条件下由系统强加的条件以外的条件下利用眼睛的前部分的生理图像的能力允许使用关于自然条件下的眼睛的信息进行撕囊切口的定位引导。由这样的方法提供的优点是避免由于系统或程序所强加的条件引起的眼睛的对准偏移和扭曲。这些偏移和扭曲可以是瞳孔扩张、环境光条件、患者用药和头部取向(例如旋转、扭转)的结果;并且由治疗和预治疗照明条件、引起扩张的药物、局部或全身麻醉和患者身体取向引起。基准可以由系统使用以通过利用许多变换(包括平移、缩放、旋转、倾斜和其它图像扭曲)将自然状态图像叠加到治疗(或预治疗)图像上。使用OCT系统定位瞳孔的中心和整个囊切口的更详细自动方法概括如下。如上所述,OCT系统产生人眼的前段的三维图像或图。
该图像信息由任何空间低通滤波器(例如有限核平均、中值滤波等)处理以减小眼睛中的结构的假性检测。最后产生的滤波图像进行阈值处理以便将图像转换成二进制图像。备选地,原始图像首先进行阈值处理以将它转换成二进制图像,并且然后用空间低通中值滤波器或任何其它滤波器进行滤波。
考虑最后产生的二进制图像中的每个A扫描(指定XY位置的Z上的OCT像素的线、序列或列)。此外,考虑A扫描包括在相同XY位置进行的若干A扫描的级联,其中不同的深度用于产生A扫描。由于A扫描相对于光学系统配准,并且由于眼睛相对于光学系统定位在一定范围内,因此能够具有z位置(深度)的先验范围,眼睛的各种特征将位于该先验范围内(考虑到人口中的眼睛结构的几何形状的生理变化的已知范围)。如果待检测的特征或结构在该特征的支撑结构之上(例如角膜的前表面),则二进制图像的体积或A扫描中的像素的每个范围内的第一非零像素(最负Z位置像素)被当成该表面的边缘像素。备选地,如果待检测的期望表面在该特征的支撑结构之下(例如角膜的后表面),则最后非零像素(最正Z位置像素)被当成边缘像素。在又一个实施例中,在以上两种情况的每一个中,如果像素是第一非零像素并且后续n个像素(例如n=9)也为非零,则该像素被认为是边缘像素。在任何情况下,它的XYZ位置被记录,因此图像被还原成XYZ三元组的集合(即,该集合中的每个点具有X坐标、Y坐标和Z坐标),每个表示三维OCT图像中的边缘像素的位置。
这些XYZ三元组可以拟合到球面或者任何其它这样的数学表面。我们将在以下非限定性例子中使用球面拟合。每个XYZ三元组可以表示前晶状体或晶状体囊上的有效“像素”;或者每个“像素”可以表示OCT系统中的系统或随机噪声源。所以为了减小该不确定性,XYZ三元组使用迭代鲁棒最小二乘法拟合到球面。执行迭代,其中初始使用经典最小二乘法将眼睛的中心部分拟合到球面(在一个实施例中包括相对于XYZ三元组的XY方向上的扫描半径的中心15%)。任何公知的鲁棒最小二乘(LS)法可以用于根据每个边缘像素与最后产生的拟合的接近性加权边缘,例如双平方、最小修剪平方、M估计、MM估计、S估计。重复鲁棒LS法直到鲁棒LS拟合解收敛。最后,加入来自正在识别的特征或结构的更多边缘(在一个实施例中,附加5%的边缘像素),并且重复鲁棒拟合算法。重复加入附加边缘像素并且执行附加鲁棒LS拟合的步骤直到所有XYZ三元组已包括在拟合中。在所有拟合完成之后,在前表面的情况下,具有位置在球面外部的很小权重(在一个实施例中,零权重)并且具有比球面的表面上的所有点更负的Z分量的XYZ三元组可以被认为是虹膜集合的成员,而具有较大权重(在一个实施例中,非零权重)的边缘像素可以被认为是瞳孔集合的成员。在一个实施例中,瞳孔和非瞳孔像素之间的区分由三个或以上相邻非瞳孔像素所在的位置限定。以该方式,OCT系统可以三维地确定瞳孔的位置,允许UF治疗系统安排治疗(即,切口),同时避开非瞳孔(虹膜)位置。
以上概念可以扩展到包括其它表面、特征或结构的识别。定义为从角膜至巩膜的过渡区或角膜巩膜接合部的缘可以在角膜前部的拟合期间被识别:群集在中心拟合区域的外部并且最接近中心区域的异常值可以被认为在角膜和巩膜之间的过渡区域中。类似地,如果球面拟合在眼睛的(缘之上的巩膜的)眼球上,则群集在眼睛的眼球的中心的异常值可以被认为是非眼球族的成员,并且眼球和中心族之间的边界可以被定义为缘。当拟合角膜后部时,前房角(在此处虹膜接合巩膜突)可以被识别为角膜后部的球面拟合中的周边异常值。该信息可以用于引导囊切口和/或角膜切口(例如白内障器械、穿刺以及散光松弛或校正切口)的放置。以该方式我们也可以定位由相邻结构的交界限定的边界;例如由前角膜和巩膜的接合部确定的缘、由晶状体和虹膜的接合部确定的瞳孔、由后角膜和虹膜的接合部确定的缘。
一般而言,使用其它因素(例如预期IOL的直径)预先确定撕囊切口直径。但是该预先确定的撕囊直径可以针对如先前所述自动寻找的虹膜直径进行检查。切口可以通过不通过方式继续或者相对于自动寻找的虹膜边界执行期望缩放裕量。来自OCT的三维信息优于二维(例如XY)系统,该二维系统必须通过假设虹膜的标称深度或从另一个成像模态导出虹膜的深度而近似第三维度(例如Z)。
一般而言在实践中,整个撕囊切口不限于Z上的单平面或单层。切口可以被描述为具有圆柱形(挤出圆或椭圆)而不是平面圆形。如图9中所示,整个切口限定具有Z位置417和深度厚度419的体积。切口在Z上有一定范围,即,深度厚度419,以便在整个切割程序期间考虑目标囊切口位置的深度的变化。这些变化可以产生于囊的倾斜、囊的偏心、结构的运动以及UF、OCT和视频系统的公差。切割囊的过程包括步进在深度上的量419以保证囊由UF光束所生成的切割机构(例如等离子)交叉。OCT生成侧向(XY)和深度(Z)信息(三维)。使用具有大约100nm波长带宽的普通OCT配置,Z信息的分辨率可以在10um的水平。来自OCT的高分辨率深度信息允许最小化切口的深度厚度419。这又减小切割处理时间。来自OCT的较高分辨率三维信息优于二维系统。二维系统必须通过假设虹膜的标称深度、囊的深度、囊的倾斜、囊的偏心和囊的曲率半径或者从其它测量模态导出这些和类似量以大裕量近似第三维度Z。来自OCT的三维信息可以用于将期望撕囊的二维圆形路径投影到表示晶状体的前表面的球面的表面上以便产生用于切割撕囊的三维路径。
系统也提供例如由术前AC OCT、超声或任何其它这样的诊断试验采集的、与患者解剖结构相关的诊断信息的用户输入,所述诊断试验提供关于患者的中心晶状体厚度、晶状体曲率、前房深度、角膜厚度等的信息。系统可以使用这些值作为预期值和/或替换或增加它自身的3D信息的采集。作为非限定性例子,当利用术前获得的前房深度和中心晶状体厚度时该信息可以用于晶状体和/或囊图案深度设置。该信息允许系统增加它自身的内部成像结果和/或检验它们。例如,通过已知患者的前房深度并且确定他们的角膜的位置,系统可以限制撕切开图案的轴向范围。类似地,输入晶状体厚度允许系统计划晶状体超声粉碎图案轴向范围。将前房深度加入晶状体厚度进一步允许系统确定图案深度放置。将这与晶状体表面曲率或它们的保守估计(例如对于晶状体前表面半径为8mm并且对于晶状体后表面半径为5.5mm)组合可以用于完全限定图案和它的放置。当然,图案的轴向(深度)范围将需要大的前和后表面安全裕量。一体化成像将提供改善的结果。然而,在成像数据不足以用于更自动特征检测的情况下上述技术可以提供应急。
尽管在拟合晶状体的前表面的背景下教导了迭代鲁棒最小二乘球面拟合的以上描述,但是它也可以用于确定以下结构的每一个的最佳拟合球面:角膜前部、角膜后部和晶状体后部。在这三个附加结构的情况下,使用权重确定虹膜位置可能是不适用的。换句话说,OCT可以用于检测除了与虹膜相关的以外的结构或特征以用于引导切割激光的定位。不同于使用虹膜的中心定心切口,晶状体的轴线可以用作定心的引导。可以通过使用OCT检测晶状体的前和后表面、计算靠近这些表面的顶点的曲率半径、然后连接这些半径的中心以建立轴线而确定晶状体的轴线。该轴线与囊的表面的交界然后可以被选择作为囊切开(或撕囊)切口的中心。类似地角膜的表面可以用于确定该轴线或者可以使用通过2个以上表面的半径的中心的最佳拟合匹配。也可以不同地选择撕囊切口的直径。切口的直径可以是虹膜直径的简单比率。切口也可以具有在XY方向上的非圆形状。它可以例如沿着虹膜直径的轮廓。
备选地,可以使用视频系统确定撕囊切口400的位置。可以使用例如图8中所示的视频图像寻找诸如虹膜的特征。例如,有定位虹膜414的中心406的许多图像处理方法,例如:Canny、Laplacian和/或Sobel边缘检测方案、自适应阈值处理和后续形态解释(包括二进制确定)。可以由一维或二维图像滤波技术减小感测系统中的噪声,例如高斯(Gaussian)开窗、Bartlett开窗或简单移动平均开窗。具体地,使用视频图像的例子如下。我们将瞳孔定义为虹膜边界404的内部的区域。用于确定瞳孔的中心的方法包括对虹膜边界404执行边缘检测并且将圆、椭圆或其它闭合曲线拟合到瞳孔和虹膜之间的边界;将像素分割成瞳孔和非瞳孔像素,并且寻找瞳孔的形心,然后最大化可以拟合在瞳孔的内部的圆和/或椭圆;将像素再次分割成瞳孔和非瞳孔像素,寻找瞳孔的形心,然后交替地a)最大化可以拟合在瞳孔的内部的圆和/或椭圆,并且b)在与相对于圆/椭圆的中心最近的非瞳孔像素的方向相反的方向上移动圆的中心。重复该迭代过程直到不能进行圆或椭圆尺寸的进一步改善。一旦找到虹膜边界和中心,可以继续囊切割过程。切口直径可以由IOL要求预先确定并且针对相对于通过视频信息的边缘检测的图像处理确定的虹膜直径的拟合进行检查。类似地对于切口的中心;可以使用由先前所述的视频图像的处理确定的虹膜边界的中心确定它。如图9中所示,切口的绝对深度位置417和深度厚度419可以由视频系统的焦深或视频系统的主动聚焦或由基于使虹膜与囊相关的统计解剖数据的推测进行确定。可以使用这些技术增加深度厚度419以解决更大的预期变化范围。更大的深度厚度可以导致切割时间的更长持续时间。
患者常常具有偏心瞳孔,并且在视频图像中可以清楚识别的缘407也被认为是分辨囊401的几何中心的手段。囊401由小带(未显示)保持就位,小带连接到在缘407正下方的睫状器(未显示)。然而,当虹膜414大范围扩张时,它在标称上与缘407同心,因此产生等价测度。包括切口直径、切口的中心、深度417和深度厚度419的如图10中所述的撕囊切口的方面可以使用通过缘识别导出的视频信息获得。
在又一个实施例中,OCT和视频系统都可以用于引导囊切割。例如,可以通过同时考虑OCT和视频系统数据以确定像素或眼睛位置是瞳孔像素还是非瞳孔像素而确定瞳孔的中心。对于将被视为在瞳孔内的位置,可能需要两个系统单独地分辨该结论。备选地,如果至少一个系统得出该结论则位置可以在瞳孔内。在任一情况下,考虑来自两个系统的信息。
必须配准成像系统和UF光束6。成像系统可以是视频系统、OCT系统100或两者的组合。因此,必须实现系统2的空间校准以精确地放置切口。这可以以各种方式实现。图10是指示具有目标表面510的校准透镜505的光学示意图。校准透镜505由已知折射率、厚度515和光功率的材料制造。
它用作眼睛的代替物或替代物。厚度、材料和形状被选择成使得在目标位置510处的尺度和眼睛中的尺度之间有已知关系。表面510可以包括具有已知校准尺度的分划板或掩模。经由光学设计代码(例如Zemax、OSLO和CODE V)的光学计算可以用于进一步细化校准透镜和分划板尺度相对于眼睛之间的关系。可以包括在该细化中的因素包括校准透镜505的指数、厚度、形状和预期眼睛光学因素,例如角膜厚度、角膜指数、角膜表面半径、房水指数、房水厚度以及晶状体指数、晶状体厚度和晶状体表面半径。
使用该分划板,像素可以映射到眼睛尺度,与视频情况中一样,并且被扫描OCT信号可以与眼睛尺度相关,与OCT情况中一样。图11是使用视频系统看到的分划板图像的例子。在该情况下分划板是具有已知直径的圆520的铬掩蔽玻璃表面。在图11的图像中圆以毫米标记。然后可以将视频像素校准到分划板毫米。图像毫米可以与眼睛中的指定平面处的等价眼睛尺度相关。可以经由光学建模帮助该关系。在图12中给出了使视频像素与眼睛尺度相关的曲线的例子。类似地可以在分划板表面510上校准UF光束,与图10中一样。视频和UF光束的眼睛空间中的远心性允许如图12中的校准曲线有效地应用于眼睛内的整个切割体积。
图13是将成像系统配准到UF光束的校准技术的另一个例子。在图13中,目标表面由材料530(例如聚酯薄膜的薄片)制造,其可以被标记535或者由聚焦UF光束烧灼。一旦标记,OCT可以检测标记位置。OCT由此配准到UF光束。
另外如果使用如图13中的视频系统观察该标记材料,则视频像素可以配准到UF和因此OCT光束位置。可以通过使用如关于图11中使用的校准目标所述的校准技术和如图12中的校准曲线获得与实际眼睛尺度的联系。使用可以由UF光束标记、由OCT和视频系统读取并且校准到实际眼睛尺度的目标材料不仅产生如图12中的曲线斜率所示的缩放信息,而且产生UF光束标记图案相对于成像(视频和OCT)系统的定心和旋转。来自这样的校准技术的校准信息的完整集合在图13的表中给出。
图14是用于将切割激光器、OCT和视频图像配准到眼睛中的实际尺度的包括像素缩放、中心位置和旋转的关键校准因素的表。将有用于切割激光器和用于OCT的一组值,但是理想地OCT和切割激光器重叠使得仅仅一组是必要的,如图14中所示。
图15是眼睛的横截面示意图,显示了倾斜撕囊切口平面。它显示了倾斜晶状体并且理想地囊的切口将跟随该倾斜。在这里图1的OCT系统100用于通过检测晶状体412的表面408和410分辨囊401。OCT系统可以通过寻找连接前和后晶状体表面的曲率的中心的轴线424检测该倾斜。可以相对于由虹膜的中心限定并且与系统的光轴重合的轴线422看到该轴线424的倾斜。类似地,也可以使用OCT系统100解决系统2和眼睛68之间的失配。相比于可以具有较大焦深并且因此难以区分倾斜分量的视频系统,OCT系统通常在检测眼睛和系统之间的相对倾斜信息方面是出色的。
图16显示了视网膜图像的示意性表示。视网膜结构(例如小凹或中心凹)的包括允许关于它指定的视轴线的更好定心。为此,可调节焦点系统可以置于成像系统71中以允许成像虹模和视网膜。虹膜和视网膜的图像之间的焦点偏移将描述眼睛的长度,并且这还可以用于计算晶状体中心或其它点(例如晶状体的光学基点)和视网膜配准特征之间的角以及囊401上的切口400的偏移。可以通过使用类似于图1的描述中的z调节40的校准z调节实现这样的调节。此外,增加成像系统71中的孔径81的直径将减小它的焦深,并且因此更好地定位眼结构(例如视网膜426和虹膜402)的实际位置。再次地,图像处理然后可以定位瞳孔404(或虹膜402或缘407)内的中心406和小凹430内的中心428,配准它们并且因此分辨眼睛的视轴线。这然后可以代替中心线422用作撕囊定心的轴线。类似地,为了这样的确定可以使OCT系统分辨虹膜和视网膜结构。固定灯也可以用于帮助所述视网膜/眼对准。
尽管晶状体412的厚度(3-5mm)和几何轴线和视轴线之间的角差异(3-7°)的典型值仅仅产生~600μm的中心406的最差位移,但是它完全在本发明的精度内,如本文中所述。此外,成像系统71的近红外光的使用通过提供否则可能由于光学不透明白内障的存在而更加衰减的增强返回信号而简化检测。
系统也可以为用户提供使用上述拟合中的任何一种放置激光产生的切口的选择。例如,视频系统可以显示覆盖有缘、几何和视觉定心结果的患者的眼睛的正面图像。用户然后可以基于关于视频图像的它的外观选择方法。类似地,系统可以显示供用户选择的角膜切口的(一个或多个)预期位置。
图18显示了用于测量生理瞳孔的装置的实施例,该装置响应变化的照明条件。由照明源提供的光量可以由漫射器漫射以提供入射在试验中的患者的眼睛上的更均匀的光分布。光束分裂器经由光电检测器提供照明光的水平的主动反馈,同时使用照相机成像眼睛的虹膜。所有这些电子元件可以经由I/O端口连接到CPU。该配置提供很灵活的仪器以根据照明水平测量瞳孔尺寸、形状和形心。因而,它可以被校准以在对应于典型环境照明条件的范围上调节照明水平,所述环境照明条件是不同的,从黑夜到阳光明媚的白天,通过典型的800勒克斯的办公室环境。也可以使照明源提供光的变化光谱分量以增加测量。可以使照明强度的变化率以适应生理瞳孔反应的一定速度改变以便精确地捕获瞳孔反应,如图19中示意性地所示。可以使包含瞳孔尺寸(图20)和形心位置(图21)与照明水平的比较的数据提供最佳地定位囊切开切口的侧向或横向位置所必需的信息。在示例性图中,由标记a-h标识的水平对应于实际情况,例如晨光等。线l连接数据c-f,该照明水平被视为适合于试验中的患者。瞳孔反应可能具有一定的滞后量,如图20和21中所示。因此,线l的中心点(点P)用于限定该环境光水平的中值囊切开切口中心位置。本发明也将捕获扩张瞳孔的图像以用于术中配准,如上面详细地所述。

Claims (15)

1.一种用于患者的眼睛的白内障手术的系统,所述系统包括:
a.激光源,所述激光源被配置成产生包括多个激光脉冲的治疗光束;
b.集成光学系统,所述集成光学系统包括成像组件,所述成像组件可操作地联接到治疗光束输送组件使得它们共用至少一个公共光学元件,所述集成光学系统被配置成采集与一个或多个目标组织结构相关的图像信息并且以三维图案引导治疗光束以导致目标组织结构中的至少一个的破坏;以及
c.控制器,所述控制器可操作地联接到所述激光源和所述集成光学系统,并且被配置成:
1)基于所述图像信息调节激光束和治疗图案,并且
2)至少部分地基于所述图像信息的鲁棒最小二乘拟合分析区分眼睛的两个或以上解剖结构。
2.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括角膜。
3.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括巩膜。
4.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括缘。
5.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括虹膜。
6.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括晶状体。
7.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括晶状体囊。
8.根据权利要求1所述的系统,其中所述控制器被配置成进行一系列最小二乘拟合分析,并且在每个连续最小二乘拟合分析中迭代地包括更多数量的像素。
9.根据权利要求1所述的系统,其中所述控制器被配置成寻找紧密最小二乘拟合,其中相关的最小二乘拟合分析预期球形表面。
10.根据权利要求1所述的系统,其中所述控制器被配置成寻找紧密最小二乘拟合,其中相关的最小二乘拟合分析预期非球形表面。
11.根据权利要求1所述的系统,其中所述控制器还被配置成定位所述两个或以上解剖结构之间的边界。
12.根据权利要求11所述的系统,其中所述边界被限定为眼睛的角膜和眼睛的巩膜之间的交界。
13.根据权利要求11所述的系统,其中所述边界被限定为眼睛的角膜和眼睛的虹膜之间的交界。
14.根据权利要求11所述的系统,其中所述边界被限定为眼睛的晶状体和眼睛的虹膜之间的交界。
15.根据权利要求1所述的系统,其中所述控制器被配置成利用最小二乘拟合分析的拒绝点来识别眼睛的解剖结构。
CN201180015518.7A 2010-01-22 2011-01-21 用于自动放置扫描激光撕囊切口的装置 Active CN102811684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510490331.2A CN104997587B (zh) 2010-01-22 2011-01-21 用于自动放置扫描激光撕囊切口的装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US29762410P 2010-01-22 2010-01-22
US61/297,624 2010-01-22
US61/297624 2010-01-22
PCT/US2011/022158 WO2011091326A1 (en) 2010-01-22 2011-01-21 Apparatus for automated placement of scanned laser capsulorhexis incisions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510490331.2A Division CN104997587B (zh) 2010-01-22 2011-01-21 用于自动放置扫描激光撕囊切口的装置

Publications (2)

Publication Number Publication Date
CN102811684A true CN102811684A (zh) 2012-12-05
CN102811684B CN102811684B (zh) 2015-09-09

Family

ID=43857654

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180015518.7A Active CN102811684B (zh) 2010-01-22 2011-01-21 用于自动放置扫描激光撕囊切口的装置
CN201510490331.2A Active CN104997587B (zh) 2010-01-22 2011-01-21 用于自动放置扫描激光撕囊切口的装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510490331.2A Active CN104997587B (zh) 2010-01-22 2011-01-21 用于自动放置扫描激光撕囊切口的装置

Country Status (6)

Country Link
US (3) US8845625B2 (zh)
EP (2) EP3138475B1 (zh)
JP (4) JP5763681B2 (zh)
CN (2) CN102811684B (zh)
AU (1) AU2011207402B2 (zh)
WO (1) WO2011091326A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473055A (zh) * 2013-06-04 2016-04-06 拜尔普泰戈恩公司 包括具有三重透镜的光束成形光学组件的光学相干断层成像术成像系统和光学激光扫描系统,其中第二和第三透镜是可移动的
CN105491981A (zh) * 2013-04-17 2016-04-13 光学医疗公司 用于白内障手术中的轴对准的激光基准
CN105517514A (zh) * 2013-04-18 2016-04-20 光学医疗公司 角膜手术程序的角膜形貌测量和对准
CN108024869A (zh) * 2015-09-17 2018-05-11 卡尔蔡司医疗技术股份公司 用于激光辅助眼睛治疗的系统和方法
CN109124871A (zh) * 2014-02-28 2019-01-04 易格赛尔透镜有限公司 激光辅助白内障手术
CN111479533A (zh) * 2017-12-12 2020-07-31 爱尔康公司 多输入耦合的照明式多点激光探针
CN114668583A (zh) * 2022-05-30 2022-06-28 季华实验室 一种眼科激光手术治疗系统

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140276681A1 (en) 2013-03-15 2014-09-18 Optimedica Corporation Microfemtotomy methods and systems
US9168173B2 (en) 2008-04-04 2015-10-27 Truevision Systems, Inc. Apparatus and methods for performing enhanced visually directed procedures under low ambient light conditions
US10117721B2 (en) 2008-10-10 2018-11-06 Truevision Systems, Inc. Real-time surgical reference guides and methods for surgical applications
US9226798B2 (en) 2008-10-10 2016-01-05 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for surgical applications
EP2184005B1 (en) * 2008-10-22 2011-05-18 SensoMotoric Instruments Gesellschaft für innovative Sensorik mbH Method and apparatus for image processing for computer-aided eye surgery
US9173717B2 (en) 2009-02-20 2015-11-03 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for intraocular lens implantation
EP3138475B1 (en) * 2010-01-22 2023-10-25 AMO Development, LLC Apparatus for automated placement of scanned laser capsulorhexis incisions
DE102010008146B4 (de) * 2010-02-12 2022-03-31 Carl Zeiss Meditec Ag Messsystem und Verfahren zum Ermitteln des Innendrucks eines Auges sowie Verfahren und System zum Einstellen des Augeninnendrucks
JP5701625B2 (ja) 2010-03-31 2015-04-15 株式会社ニデック 眼科用レーザ治療装置
JP5578550B2 (ja) * 2010-03-31 2014-08-27 株式会社ニデック 眼科用レーザ治療装置
JP5601610B2 (ja) 2010-03-31 2014-10-08 株式会社ニデック 眼科用レーザ治療装置
US11771596B2 (en) 2010-05-10 2023-10-03 Ramot At Tel-Aviv University Ltd. System and method for treating an eye
EP2568938A1 (en) 2010-05-10 2013-03-20 Ramot at Tel-Aviv University Ltd System for treating glaucoma by directing electromagnetic energy to the limbal area of an eye
AU2011295719B2 (en) 2010-09-02 2014-07-10 Amo Development, Llc Patient interface for ophthalmologic diagnostic and interventional procedures
US10716706B2 (en) 2011-04-07 2020-07-21 Bausch & Lomb Incorporated System and method for performing lens fragmentation
US9622913B2 (en) * 2011-05-18 2017-04-18 Alcon Lensx, Inc. Imaging-controlled laser surgical system
EP2713848A1 (en) * 2011-05-26 2014-04-09 AMO WaveFront Sciences, LLC Method of verifying performance of an optical measurement instrument with a model eye and an optical measurement instrument employing such a method
US9095414B2 (en) * 2011-06-24 2015-08-04 The Regents Of The University Of California Nonlinear optical photodynamic therapy (NLO-PDT) of the cornea
US8863749B2 (en) 2011-10-21 2014-10-21 Optimedica Corporation Patient interface for ophthalmologic diagnostic and interventional procedures
US9044302B2 (en) 2011-10-21 2015-06-02 Optimedica Corp. Patient interface for ophthalmologic diagnostic and interventional procedures
WO2013059719A2 (en) * 2011-10-21 2013-04-25 Optimedica Corporation Patient interface for ophthalmologic diagnostic and interventional procedures
US9237967B2 (en) 2011-10-21 2016-01-19 Optimedica Corporation Patient interface for ophthalmologic diagnostic and interventional procedures
US20130131653A1 (en) * 2011-11-22 2013-05-23 Excelsius Medical, Inc. Ophthalmological laser method and apparatus
US20130204236A1 (en) * 2011-12-01 2013-08-08 Nanophthalmos, Llc Method and system for laser ocular surgery
WO2013085997A1 (en) 2011-12-05 2013-06-13 Bioptigen, Inc. Optical imaging systems having input beam shape control and path length control
US8807752B2 (en) 2012-03-08 2014-08-19 Technolas Perfect Vision Gmbh System and method with refractive corrections for controlled placement of a laser beam's focal point
US8777412B2 (en) 2012-04-05 2014-07-15 Bioptigen, Inc. Surgical microscopes using optical coherence tomography and related methods
US9629750B2 (en) 2012-04-18 2017-04-25 Technolas Perfect Vision Gmbh Surgical laser unit with variable modes of operation
US9216066B2 (en) * 2012-04-20 2015-12-22 Bausch & Lomb Incorporated System and method for creating a customized anatomical model of an eye
JP6040578B2 (ja) * 2012-06-02 2016-12-07 株式会社ニデック 眼科用レーザ手術装置
WO2014011231A1 (en) * 2012-07-13 2014-01-16 Bausch & Lomb Incorporated Posterior capsulotomy using laser techniques
WO2014018104A1 (en) * 2012-07-25 2014-01-30 Elenza, Inc. Method and apparatus for performing a posterior capsulotomy
WO2014036499A1 (en) 2012-08-30 2014-03-06 Truevision Systems, Inc. Imaging system and methods displaying a fused multidimensional reconstructed image
CA2884235C (en) * 2012-09-07 2021-05-25 Optimedica Corporation Methods and systems for performing a posterior capsulotomy and for laser eye surgery with a penetrated cornea
US9445946B2 (en) 2012-11-02 2016-09-20 Optimedica Corporation Laser eye surgery system
US9549670B2 (en) 2012-11-02 2017-01-24 Optimedica Corporation Optical surface identification for laser surgery
US10245180B2 (en) 2013-01-16 2019-04-02 Ziemer Ophthalmic Systems Ag Ophthalmological device for treating eye tissue
EP2756828B1 (de) * 2013-01-16 2019-02-27 Ziemer Ophthalmic Systems AG Ophthalmologische Vorrichtung zur Behandlung von Augengewebe
KR101444757B1 (ko) * 2013-02-19 2014-09-30 주식회사 루트로닉 안과용 수술장치
KR101444758B1 (ko) 2013-02-19 2014-09-30 주식회사 루트로닉 안과용 치료장치
EP2967999B1 (en) 2013-03-14 2017-04-19 Optimedica Corporation Laser capsulovitreotomy
WO2014149625A1 (en) * 2013-03-15 2014-09-25 Amo Development Llc Systems and methods for providing anatomical flap centration for an ophthalmic laser treatment system
AU2014293542B2 (en) 2013-07-25 2019-03-14 Amo Development, Llc In situ determination of refractive index of materials
EP3027151B1 (en) * 2013-07-29 2019-09-11 Bioptigen, Inc. Procedural optical coherence tomography (oct) for surgery and related systems and methods
US9402539B2 (en) 2013-08-28 2016-08-02 Bioptigen, Inc. Heads up displays for optical coherence tomography integrated surgical microscopes
US9265411B2 (en) * 2013-09-27 2016-02-23 Tomey Corporation Anterior segment three-dimensional image processing apparatus, and anterior segment three-dimensional image processing method
US10018711B1 (en) * 2014-01-28 2018-07-10 StereoVision Imaging, Inc System and method for field calibrating video and lidar subsystems using independent measurements
US10105261B2 (en) * 2014-03-24 2018-10-23 Optimedica Corporation Automated calibration of laser system and tomography system with fluorescent imaging of scan pattern
CA2943807A1 (en) * 2014-03-26 2015-10-01 Optimedica Corporation Confocal laser eye surgery system
US10441463B2 (en) 2014-03-26 2019-10-15 Optimedica Corporation Confocal laser eye surgery system and improved confocal bypass assembly
US10441465B2 (en) 2014-03-26 2019-10-15 Optimedica Corporation Registration of LOI fiducials with camera
US9849633B2 (en) * 2014-06-23 2017-12-26 Siemens Product Lifecycle Management Software Inc. Removing sharp cusps from 3D shapes for additive manufacturing
US10925579B2 (en) * 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
CN107072815B (zh) * 2014-11-20 2020-03-10 诺华股份有限公司 用于对眼睛进行激光处理的设备
DE102015119887B4 (de) * 2015-11-17 2017-08-17 Carl Zeiss Meditec Ag Behandlungsvorrichtung für eine subretinale Injektion und Verfahren zur Unterstützung bei einer subretinalen Injektion
US11380008B2 (en) * 2016-05-06 2022-07-05 Innovega Inc. Gaze tracking system with contact lens fiducial
KR102648770B1 (ko) 2016-07-14 2024-03-15 매직 립, 인코포레이티드 홍채 식별을 위한 딥 뉴럴 네트워크
EP3484343B1 (en) * 2016-07-14 2024-01-10 Magic Leap, Inc. Iris boundary estimation using cornea curvature
DE102017107915A1 (de) * 2016-07-18 2018-01-18 Carl Zeiss Meditec Ag System zur Augentherapie mittels Gewebebearbeitung durch nichtlineare Wechselwirkung
WO2018031982A1 (en) * 2016-08-12 2018-02-15 Alex Artsyukhovich A surgical laser capsulorhexis system and patient interface lens accessory
EP3500911B1 (en) 2016-08-22 2023-09-27 Magic Leap, Inc. Augmented reality display device with deep learning sensors
RU2016138608A (ru) 2016-09-29 2018-03-30 Мэджик Лип, Инк. Нейронная сеть для сегментации изображения глаза и оценки качества изображения
CA3038967A1 (en) 2016-10-04 2018-04-12 Magic Leap, Inc. Efficient data layouts for convolutional neural networks
CA3043352A1 (en) 2016-11-15 2018-05-24 Magic Leap, Inc. Deep learning system for cuboid detection
KR20230070318A (ko) 2016-12-05 2023-05-22 매직 립, 인코포레이티드 혼합 현실 환경의 가상 사용자 입력 콘트롤들
US10275648B2 (en) * 2017-02-08 2019-04-30 Fotonation Limited Image processing method and system for iris recognition
KR102302725B1 (ko) 2017-03-17 2021-09-14 매직 립, 인코포레이티드 룸 레이아웃 추정 방법들 및 기술들
US10299880B2 (en) 2017-04-24 2019-05-28 Truevision Systems, Inc. Stereoscopic visualization camera and platform
US11083537B2 (en) 2017-04-24 2021-08-10 Alcon Inc. Stereoscopic camera with fluorescence visualization
US10917543B2 (en) 2017-04-24 2021-02-09 Alcon Inc. Stereoscopic visualization camera and integrated robotics platform
US20190117459A1 (en) 2017-06-16 2019-04-25 Michael S. Berlin Methods and Systems for OCT Guided Glaucoma Surgery
US20180360655A1 (en) 2017-06-16 2018-12-20 Michael S. Berlin Methods and systems for oct guided glaucoma surgery
KR102368661B1 (ko) 2017-07-26 2022-02-28 매직 립, 인코포레이티드 사용자 인터페이스 디바이스들의 표현들을 이용한 뉴럴 네트워크 트레이닝
US10452624B2 (en) 2017-08-02 2019-10-22 Vmware, Inc. Storage and analysis of data records associated with managed devices in a device management platform
US10521661B2 (en) 2017-09-01 2019-12-31 Magic Leap, Inc. Detailed eye shape model for robust biometric applications
WO2019060283A1 (en) 2017-09-20 2019-03-28 Magic Leap, Inc. PERSONALIZED NEURONAL FOLLOW-UP NETWORK
CN111373419A (zh) 2017-10-26 2020-07-03 奇跃公司 用于深度多任务网络中自适应损失平衡的梯度归一化系统和方法
CA3096256A1 (en) 2018-04-06 2019-10-10 Amo Development, Llc Methods and systems for changing a refractive property of an implantable intraocular lens
US10303576B1 (en) * 2018-05-04 2019-05-28 6Fusion Usa, Inc. Systems and methods for IT intelligence and management based on container-level metering
US11382794B2 (en) * 2018-07-02 2022-07-12 Belkin Laser Ltd. Direct selective laser trabeculoplasty
US11000413B2 (en) * 2019-02-15 2021-05-11 Amo Development, Llc Ophthalmic laser surgical system and method implementing simultaneous laser treatment and OCT measurement
JP7449587B2 (ja) * 2019-03-13 2024-03-14 ベルキン ヴィジョン リミテッド 自動レーザ虹彩切開術
JP7281175B2 (ja) 2019-03-27 2023-05-25 株式会社フジキン バルブ
AU2020271989A1 (en) 2019-04-11 2020-12-10 Amo Development, Llc Process monitoring and control during laser-based refractive index modification of intraocular lenses in patients
EP3952806B8 (en) 2019-04-11 2024-03-27 AMO Development, LLC High speed tracking of iol during refractive index modification
US20220015949A1 (en) 2019-04-11 2022-01-20 Amo Development, Llc Calibration process for femtosecond laser intraocular lens modification system using video and oct targeting
JP2023542349A (ja) * 2020-09-21 2023-10-06 エーエムオー ディベロップメント エルエルシー 眼科用レーザシステムのレーザビーム送達経路における多用途ビームサンプラ
CN116669647A (zh) 2020-12-28 2023-08-29 波士顿科学医学有限公司 激光对准方法和工具
WO2023100128A1 (en) * 2021-12-05 2023-06-08 Belkin Vision Ltd. Testing and calibrating an automatic ophthalmic surgical system
US20230255479A1 (en) * 2022-02-14 2023-08-17 Vialase, Inc. System and method for eye region visualization in a laser surgical system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053613A (en) * 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
CN1610522A (zh) * 2001-12-28 2005-04-27 皇家飞利浦电子股份有限公司 具有图像调节装置的医用观察系统
CN101057777A (zh) * 2007-06-01 2007-10-24 南开大学 提高光学相干层析术成像质量的方法
US20070292037A1 (en) * 2006-06-20 2007-12-20 Ophthalmic Imaging Systems Inc. Device, method and system for automatic stabilization of a series of retinal images
CN201320219Y (zh) * 2008-12-26 2009-10-07 天津医科大学 自控激光手术设备
CN101631522A (zh) * 2007-03-13 2010-01-20 眼科医疗公司 用于创建眼睛手术和松弛切口的装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US549570A (en) * 1895-11-12 Apparatus for preventing boiler-incrustation
WO1992019930A1 (en) 1991-04-29 1992-11-12 Massachusetts Institute Of Technology Method and apparatus for optical imaging and measurement
US5984916A (en) * 1993-04-20 1999-11-16 Lai; Shui T. Ophthalmic surgical laser and method
JP3261244B2 (ja) 1993-12-17 2002-02-25 ブラザー工業株式会社 走査光学装置
US5743902A (en) * 1995-01-23 1998-04-28 Coherent, Inc. Hand-held laser scanner
US6454761B1 (en) * 1995-01-30 2002-09-24 Philip D. Freedman Laser surgery device and method
JPH0955843A (ja) * 1995-08-10 1997-02-25 Nec Corp 画像データ送受信システム
US5720894A (en) * 1996-01-11 1998-02-24 The Regents Of The University Of California Ultrashort pulse high repetition rate laser system for biological tissue processing
US7655002B2 (en) * 1996-03-21 2010-02-02 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US6079831A (en) * 1997-04-24 2000-06-27 Orbtek, Inc. Device and method for mapping the topography of an eye using elevation measurements in combination with slope measurements
US6019472A (en) * 1997-05-12 2000-02-01 Koester; Charles J. Contact lens element for examination or treatment of ocular tissues
US6283954B1 (en) 1998-04-21 2001-09-04 Visx, Incorporated Linear array eye tracker
AU2002233323A1 (en) * 2001-02-09 2002-08-28 Sensomotoric Instruments Gmbh Multidimensional eye tracking and position measurement system
GB0103514D0 (en) 2001-02-13 2001-03-28 Oxagen Ltd Test and model for inflammatory disease
US20030103212A1 (en) 2001-08-03 2003-06-05 Volker Westphal Real-time imaging system and method
EP1516156B1 (en) * 2002-05-30 2019-10-23 AMO Manufacturing USA, LLC Tracking torsional eye orientation and position
US7430320B2 (en) 2004-11-15 2008-09-30 Drvision Technologies Llc Region-guided boundary refinement method
JP4975305B2 (ja) 2004-12-01 2012-07-11 株式会社ニデック 眼科装置
US8394084B2 (en) 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US8262646B2 (en) * 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US20110319875A1 (en) * 2007-01-19 2011-12-29 Frieder Loesel Apparatus and Method for Morphing a Three-Dimensional Target Surface into a Two-Dimensional Image for Use in Guiding a Laser Beam in Ocular Surgery
JP5058627B2 (ja) * 2007-02-26 2012-10-24 株式会社トプコン 眼底観察装置
DE102007028042B3 (de) * 2007-06-14 2008-08-07 Universität Zu Lübeck Verfahren zur Laserbearbeitung transparenter Materialien
US20100187835A1 (en) 2007-06-29 2010-07-29 Stichting Imec Nederland Electromagnetic Energy Scavenger Based on Moving Permanent Magnets
US20100324543A1 (en) * 2007-09-18 2010-12-23 Kurtz Ronald M Method And Apparatus For Integrating Cataract Surgery With Glaucoma Or Astigmatism Surgery
JP2010538770A (ja) * 2007-09-18 2010-12-16 アルコン レンゼックス, インコーポレーテッド 統合された白内障手術のための方法及び装置
US20090137991A1 (en) * 2007-09-18 2009-05-28 Kurtz Ronald M Methods and Apparatus for Laser Treatment of the Crystalline Lens
ES2390315T3 (es) * 2007-11-02 2012-11-08 Alcon Lensx, Inc. Aparato para unas prestaciones ópticas oculares posoperatorias mejoradas
US7717907B2 (en) * 2007-12-17 2010-05-18 Technolas Perfect Vision Gmbh Method for intrastromal refractive surgery
US8115934B2 (en) * 2008-01-18 2012-02-14 The Board Of Trustees Of The University Of Illinois Device and method for imaging the ear using optical coherence tomography
EP2280753B1 (en) * 2008-05-14 2017-07-19 J&J Solutions, Inc. Systems and methods for safe medicament transport
US8480659B2 (en) * 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
US8382745B2 (en) * 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
EP3138475B1 (en) * 2010-01-22 2023-10-25 AMO Development, LLC Apparatus for automated placement of scanned laser capsulorhexis incisions
US8414564B2 (en) 2010-02-18 2013-04-09 Alcon Lensx, Inc. Optical coherence tomographic system for ophthalmic surgery
US8845624B2 (en) * 2010-06-25 2014-09-30 Alcon LexSx, Inc. Adaptive patient interface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6053613A (en) * 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
CN1610522A (zh) * 2001-12-28 2005-04-27 皇家飞利浦电子股份有限公司 具有图像调节装置的医用观察系统
US20070292037A1 (en) * 2006-06-20 2007-12-20 Ophthalmic Imaging Systems Inc. Device, method and system for automatic stabilization of a series of retinal images
CN101631522A (zh) * 2007-03-13 2010-01-20 眼科医疗公司 用于创建眼睛手术和松弛切口的装置
CN101057777A (zh) * 2007-06-01 2007-10-24 南开大学 提高光学相干层析术成像质量的方法
CN201320219Y (zh) * 2008-12-26 2009-10-07 天津医科大学 自控激光手术设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIHENG LIU, YANMEI LIANG, ZHENGRONG TONG, XIAONONG ZHU: "Contrast enhancement of optical coherence tomography images", 《OPTICS COMMUNICATIONS》, vol. 279, no. 1, 1 November 2007 (2007-11-01), XP002634236, DOI: 10.1016/J.OPTCOM.2007.07.003 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491981B (zh) * 2013-04-17 2018-04-13 光学医疗公司 用于白内障手术中的轴对准的激光基准
CN105491981A (zh) * 2013-04-17 2016-04-13 光学医疗公司 用于白内障手术中的轴对准的激光基准
CN109009658A (zh) * 2013-04-18 2018-12-18 光学医疗公司 角膜手术程序的角膜形貌测量和对准
CN105517514A (zh) * 2013-04-18 2016-04-20 光学医疗公司 角膜手术程序的角膜形貌测量和对准
CN109009658B (zh) * 2013-04-18 2021-03-05 光学医疗公司 角膜手术程序的角膜形貌测量和对准
US9949634B2 (en) 2013-06-04 2018-04-24 Bioptigen, Inc. Hybrid telescope for optical beam delivery and related systems and methods
CN105473055A (zh) * 2013-06-04 2016-04-06 拜尔普泰戈恩公司 包括具有三重透镜的光束成形光学组件的光学相干断层成像术成像系统和光学激光扫描系统,其中第二和第三透镜是可移动的
US10271725B2 (en) 2013-06-04 2019-04-30 Bioptigen, Inc. Hybrid telescope for optical beam delivery and related systems
CN109124871A (zh) * 2014-02-28 2019-01-04 易格赛尔透镜有限公司 激光辅助白内障手术
CN109124871B (zh) * 2014-02-28 2021-11-02 易格赛尔透镜有限公司 激光辅助白内障手术
CN108024869A (zh) * 2015-09-17 2018-05-11 卡尔蔡司医疗技术股份公司 用于激光辅助眼睛治疗的系统和方法
US11278451B2 (en) 2015-09-17 2022-03-22 Carl Zeiss Meditec Ag Systems and methods for a laser assisted eye treatment
CN111479533A (zh) * 2017-12-12 2020-07-31 爱尔康公司 多输入耦合的照明式多点激光探针
CN111479533B (zh) * 2017-12-12 2023-03-10 爱尔康公司 多输入耦合的照明式多点激光探针
CN114668583A (zh) * 2022-05-30 2022-06-28 季华实验室 一种眼科激光手术治疗系统

Also Published As

Publication number Publication date
AU2011207402B2 (en) 2015-01-29
CN102811684B (zh) 2015-09-09
US9495743B2 (en) 2016-11-15
JP6083823B2 (ja) 2017-02-22
WO2011091326A1 (en) 2011-07-28
JP2017094154A (ja) 2017-06-01
US8845625B2 (en) 2014-09-30
EP2525749A1 (en) 2012-11-28
CN104997587A (zh) 2015-10-28
JP6556879B2 (ja) 2019-08-07
CN104997587B (zh) 2017-12-01
EP3138475A1 (en) 2017-03-08
EP2525749B1 (en) 2016-11-02
JP6281923B2 (ja) 2018-02-21
AU2011207402A1 (en) 2012-08-02
JP2015186595A (ja) 2015-10-29
JP5763681B2 (ja) 2015-08-12
EP3138475B1 (en) 2023-10-25
US10449091B2 (en) 2019-10-22
US20170027756A1 (en) 2017-02-02
US20110202046A1 (en) 2011-08-18
JP2013517844A (ja) 2013-05-20
JP2018079348A (ja) 2018-05-24
US20140341451A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
CN102811684B (zh) 用于自动放置扫描激光撕囊切口的装置
US11752037B2 (en) Optical surface identification for laser eye surgery
CN109009658B (zh) 角膜手术程序的角膜形貌测量和对准
US20230021864A1 (en) Full depth laser ophthalmic surgical system, methods of calibrating the surgical system and treatment methods using the same
EP3197338B1 (en) Methods and systems for corneal topography, blink detection and laser eye surgery
CN108309465A (zh) 用于白内障手术中的轴对准的激光基准
AU2018229409B2 (en) Apparatus for automated placement of scanned laser capsulorhexis incisions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1178776

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210707

Address after: California, USA

Patentee after: Eye health development Co.,Ltd.

Address before: California, USA

Patentee before: OPTIMEDICA Corp.