CN103097649B - 在地下井中使用的串联构造的可变流动限制器 - Google Patents

在地下井中使用的串联构造的可变流动限制器 Download PDF

Info

Publication number
CN103097649B
CN103097649B CN201180043024.XA CN201180043024A CN103097649B CN 103097649 B CN103097649 B CN 103097649B CN 201180043024 A CN201180043024 A CN 201180043024A CN 103097649 B CN103097649 B CN 103097649B
Authority
CN
China
Prior art keywords
fluid composition
vortex device
fluid
outlet
flow resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180043024.XA
Other languages
English (en)
Other versions
CN103097649A (zh
Inventor
贾森·D·戴克斯特拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of CN103097649A publication Critical patent/CN103097649A/zh
Application granted granted Critical
Publication of CN103097649B publication Critical patent/CN103097649B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2087Means to cause rotational flow of fluid [e.g., vortex generator]
    • Y10T137/2093Plural vortex generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2087Means to cause rotational flow of fluid [e.g., vortex generator]
    • Y10T137/2098Vortex generator as control for system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2087Means to cause rotational flow of fluid [e.g., vortex generator]
    • Y10T137/2104Vortex generator in interaction chamber of device

Abstract

一种可变流阻系统,可包括涡流装置,流体成分通过涡流装置的流阻取决于流体成分在涡流装置的入口处的旋转。另一系统可包括从第一涡流装置的出口接收流体成分的第二涡流装置,流体成分通过第二涡流装置的流阻取决于流体成分在出口处的旋转。另一系统可包括:第一涡流装置,其响应流体成分的速度的增大,引起流体成分在出口处的旋转增大;以及第二涡流装置,其从出口接收流体成分,通过第二涡流装置的流阻取决于流体成分在出口处的旋转。

Description

在地下井中使用的串联构造的可变流动限制器
技术领域
本发明大体涉及与地下井结合使用的设备和执行的操作,而在以下描述的示例中,更具体地提供串联构造的可变流动限制器。
背景技术
在产烃井(hydrocarbonproductionwell)中,能够调节流体从地层进入井眼的流体流动是非常有益的。这种调节可服务于众多目的,包括防止水或气锥、最小化产砂量、最小化产水量和/或产气量、最大化产油量和/或产气量、在多个带(zone)间平衡产量,等等。
在注入井中,典型地期望将水、蒸汽、气体等均匀地注入多个带内,使得烃均匀地通过地层移动,而被注入的流体不会过早穿透到生产井眼。因此,对于注入井来说,调节流体从井眼进入地层的能力也是有益的。
因此应理解,在上述情况下,在井中控制流体流动的技术领域中的进步是符合期望的,而且这类进步在大量的其他情况下也将是有益的。
发明内容
在以下公开的内容中,提供一种可变流阻系统,其为调节井中流体流动的技术领域带来了改进。以下描述了一个示例,其中,流经涡流装置的阻力取决于流体成分在进入涡流装置时的旋转。还描述了另一示例,其中,多个涡流装置被串联连接。
在一个方案中,本发明为本技术领域提供了一种在地下井中使用的可变流阻系统。该系统可包括涡流装置,流体成分流经该涡流装置。流体成分通过涡流装置的流阻取决于流体成分在涡流装置的入口处的旋转。
在另一方案中,以下描述的可变流阻系统可包括具有出口的第一涡流装置以及从第一涡流装置的出口接收流体成分的第二涡流装置。流体成分通过第二涡流装置的流阻取决于流体成分在第一涡流装置的出口处的旋转。
在又一方案中,可变流阻系统可包括第一涡流装置,其响应流体成分的速度的增大,引起流体成分在第一涡流装置的出口处的旋转增大;以及第二涡流装置,其从第一涡流装置的出口接收流体成分。流体成分通过第二涡流装置的流阻取决于流体成分在第一涡流装置的出口处的旋转。
在认真考虑以下代表性示例和附图的详细描述时,这些及其他特征、优点和益处将变得对本领域技术人员明显,相同的元件在各图中使用相同的附图标记指示。
附图说明
图1是能够体现本发明的原理的井系统的示意性局部剖视图。
图2是可在图1的井系统中使用的井筛和可变流阻系统的放大比例的示意性剖视图。
图3A和图3B是沿图2中的线3-3截取的可变流阻系统的一个构造的示意性“展开”的剖视图。
图4是可变流阻系统的另一构造的示意性剖视图。
图5是沿图4中的线5-5截取的可变流阻系统的示意性剖视图。
图6A和图6B是图4的可变流阻系统的示意性剖视图,示出了因流体成分的特性的改变造成的流阻的改变。
具体实施方式
图1代表性地示出了能够体现本发明的原理的井系统10。如图1所示,井眼12具有从套管16向下延伸的大体竖直的未套管区段14,以及穿过地层20延伸的大体水平的未套管区段18。
管柱(tubularstring)22例如为生产管柱(productiontubingstring),被安装在井眼12中。多个井筛24、可变流阻系统25和封隔器26在管柱22中互连。
封隔器26将在管柱22与井眼区段18之间径向地形成的环空28封堵起来。按这种方式,流体30可经由环空28(这些环空位于相邻的成对的封隔器26之间)的隔离部分而从地层20的多个间隔区或带产出。
位于每对相邻的封隔器26之间的井筛24和可变流阻系统25在管柱22中互连。井筛24过滤从环空28流入管柱22内的流体30。可变流阻系统25基于流体的某些特性,来可变地限制流体30流入管柱22内的流量。
在此应注意,图中示出的及本说明书在此描述的井系统10只不过是能够利用本发明的原理的许多井系统中的一个示例。应清楚地理解,本发明的原理绝不限于图中示出的或本说明书描述的井系统10或井系统的部件的任何细节。
例如,井眼12并非必须包括大体竖直的井眼区段14或大体水平的井眼区段18才算符合本发明的原理。流体30未必必须仅从地层20产出,在其他示例中,流体可被注入地层,流体可既被注入地层又从地层产出等。
井筛24和可变流阻系统25中的每一个并非必须位于一对相邻的封隔器26之间。单个可变流阻系统25并非必须与单个井筛24结合使用。可使用任何数量、设置方式和/或组合的这些部件。
并非任何可变流阻系统25都必须与井筛24一起使用。例如,在注入操作中,注入流体可流经可变流阻系统,而不流经井筛24。
井筛24、可变流阻系统25、封隔器26或管柱22的任何其他部件并非必须被置于井眼12的未套管区段14、18中。根据本发明的原理,井眼12中的任何区段可设有套管或不设有套管,管柱22的任何部分可位于井眼的未套管或套管区段中。
因此,应清楚地理解,本发明描述了如何形成和使用某些示例,但本发明的原理不限于这些示例的任何细节。而是,利用从本说明书获得的知识,那些原理能够应用于许多其他示例。
本领域技术人员应理解,能够调节从地层20的每个带进入管柱22内的流体30的流量是有益的,例如用以防止地层中的水锥32或气锥34。井中的流量调节的其他用途包括但不限于:平衡来自多个带的产出(或对多个带的注入)、最小化不期望流体的产出或注入、最大化期望流体的产出或注入,等等。
以下更充分地描述的可变流阻系统25的示例可通过以下方式来提供这些益处:如果流体的速度增加到超过选定水平,则增大流阻(例如由此平衡多个带间的流量、防止水锥或气锥等);和/或如果流体粘度减小至选定水平以下,则增大流阻(例如由此限制产油井中不期望流体例如水或气之类的流量)。
如本文使用的,术语“粘度”被用来表示任何流变特性,包括运动粘度、屈服强度、粘塑性、表面张力、润湿性等。
流体是否是期望流体或不期望流体取决于正在进行的生产或注入操作的目的。例如,如果期望从井中产出油,但不产出水或气,则油是期望流体,而水和气是不期望流体。如果期望从井中产出气,但不产出水或油,则气是期望流体,而水和油是不期望流体。如果期望将蒸汽注入地层内,但不注入水,则蒸汽是期望流体,而水是不期望流体。
如果气体正在流动,则使用传统技术难以限制气体的流动,传统技术典型地包括在气流中插入小直径通道、孔口等。不幸的是,这些装置在气体而不是油或其他流体流动时能够增大体积流量(volumetricflowrate),并能够导致腐蚀问题。
请注意,在井下的温度和压力条件下,烃气体实际上能够完全地或部分地处于液相。因此,应理解,当本文使用术语“气体”时,超临界相、液相、凝聚相和/或气相均包括在该术语的范围内。
现在再参照图2,其代表性地示出了可变流阻系统25之一和井筛24之一的一部分的放大比例的剖视图。在该示例中,流体成分36(可包括一种或多种流体,例如油和水、液态水和蒸汽、油和气、气和水、油、水和气等)流入井筛24内,由此被过滤,然后流入可变流阻系统25的入口38内。
流体成分可包括一种或多种不期望流体或期望流体。流体成分中可组合有蒸汽和水二者。作为另一示例,流体成分中可组合有油、水和/或气。
基于流体成分的一个或多个特性(例如粘度、速度等),流体成分36通过可变流阻系统25的流量受到限制。流体成分36然后从可变流阻系统25经由出口40被排放到管柱22的内部。
在其他示例中,井筛24可不与可变流阻系统25结合使用(例如在注入操作中),流体成分36可沿反方向流经井系统10的多个元件(例如在注入操作中),单个可变流阻系统可与多个井筛结合使用,多个可变流阻系统可与一个或多个井筛一起使用,流体成分可从井中的不同于环空或管柱的区域中被接收、或被排放到井中的不同于环空或管柱的多个区域内,流体成分可在流经井筛之前流经可变流阻系统,任何其他部件可与井筛和/或可变流阻系统在上游或下游互连,等等。因此应理解,本发明的原理根本不限于图2示出的和在本说明书中描述的示例的细节。
虽然图2示出的井筛24属于本领域技术人员公知的绕丝井筛(wire-wrappedwellscreen)类型,在其他示例中可使用任何其他类型的井筛或多种井筛的组合(例如烧结式的、膨胀式的、预填充式的、金属丝网等)。如果期望的话,也可使用额外的部件(例如护罩、分流管、线路、仪器、传感器、流入控制装置等)。
图2示出了可变流阻系统25的简化形式,但在优选示例中,如以下更充分地描述的,该系统可包括用于执行多种功能的多种通道和装置。另外,系统25可至少部分地围绕管柱22沿周向延伸,或者该系统可在管状结构的壁中形成,作为管柱的一部分而互连。
在其他示例中,系统25可不围绕管柱沿周向延伸或形成于管状结构的壁中。例如,系统25可在平面结构中形成,等等。系统25可位于被附接到管柱22的单独壳体中,或可被定向为使得出口40的轴线与管柱的轴线平行。系统25可位于测井管柱(loggingstring)上,或被附接到形状不是管状的装置。根据本发明的原理可使用任何方向或构造的系统25。
现在再参照图3A和3B,其代表性地示出了系统25的一个示例的更详细的剖视图。系统25在图3A和3B被示出为似乎是从其沿周向延伸的构造“展开”到大体平面的构造。
如上所述,流体成分36经由入口38进入系统25,并经由出口40离开系统。流体成分36通过系统25的流阻基于流体成分的一个或多个特性而变化。
入口38、出口40和流动通道42以及流室(flowchamber)44是涡流装置46的元件,流体成分36通过流动通道42和流室44在在入口与出口之间流动,涡流装置46基于流体成分的某些特性来限制流体成分的流动。流体成分36的旋转式流动在室44中增大,从而例如在流体成分的速度增大时、在流体成分的粘度减小时和/或流体成分中期望流体与不期望流体之比减小时,增大对通过该室的流量的限制。
如图3A所示,室44大体呈圆筒形,而且流动通道42与该室相切,使得经由入口48进入室的流体趋向于围绕出口40顺时针流动(如图3A所示)。旁路通道50与通道42在入口38的下游相交,旁路通道还与室44相切。然而,经由入口52且通过通道50进入室44的流体趋向于围绕出口40逆时针流动(如图3A所示)。
在图3A中,相对的高速度和/或低粘度的流体成分36从系统入口38经过流动通道42流到流室44。相比之下,在图3B中相对的低速度和/或高粘度的流体成分36流经流动通道42到到室44。
在图3A中,仅有一小部分流体成分36经由旁路通道50流到室44。因此,大部分的流体成分36在室44中旋转,以增大的转速朝向出口40螺旋行进。请注意,当进入入口38的流体成分36的速度增大时,且当流体成分的粘度减小时,流体成分在出口40处的旋转将增大。
在图3B中,实质上较大部分的流体成分经由旁路通道50流到室44。在本示例中,经由入口48、52进入室44的流量大致相等。这些流量有效地彼此“对消”或抵消,使得流体成分36在室44中的旋转流相对地小。
应理解,由于与在图3B的示例中的流体成分所采取的更直接的流动路径相比,在图3A的示例中流体成分36所采取的更迂回的流动路径在相同流速条件下消耗了流体成分的更多能量,因此导致了对流动的更大阻力(流阻)。如果油是期望流体,而水和/或气是不期望流体,则应理解,图3A及图3B的可变流阻系统25将在流体成分36中期望流体与不期望流体之比增大时,对流体成分36的流阻较小,而在流体成分中期望流体与不期望流体之比减小时,流阻较大。
因为本示例中的室44呈具有中心出口40的圆筒形;并且流体成分36(至少在图3A中)通过压差从入口44被驱动到出口,围绕该室螺旋行进,流体成分随着其靠近出口而增大速度,所以该室可被称为“涡流”室。
在图3A和图3B的结构中,在室44中使用了环流引导结构54。当流体成分36围绕出口40环式地流动(环流)时,结构54的工作是维持流体成分围绕出口的环流,或至少阻碍流体成分朝向出口的向内流动。结构54中的开口56允许流体成分36最终向内流到出口40。
如上所述,在图3A中示出的是,涡流装置46处于如下情形:流体成分36的速度增大和/或粘度减小,造成较大比例的流体成分经由入口48流入室44内。因此,流入成分36围绕室44中的出口40螺旋行进,并且通过涡流装置46的阻力增大。由于流体成分36中期望流体与不期望流体之比相对较小,可造成粘度的减小。
在图3A中,因为流动通道50是以使得大部分流体成分保持在流动通道42中的方式从流动通道42分支出来的,所以相对少的流体成分36经由入口52流入室44内。在相对的高速度和/或低粘度条件下,流体成分36趋向于越过流动通道50。
在图3B中,流体成分36的速度已经减小和/或流体成分的粘度已经增大,结果是,按比例更多的流体成分从通道42越过,并经由通道50流到入口52。由于流体成分中期望流体与不期望流体之比增大,可造成流体成分36的粘度增大。
在图3B中,因为从两个入口48、52进入室44内的流动是反向的(或至少流体成分的通过入口52的流动与通过入口48的流动相对),所以它们彼此抵消。因此,流体成分36更直接流到出口40,并且通过涡流装置46的流阻减小,而且流体成分在出口40处的旋转减小(或者没有旋转)。
现在再参考图4,其代表性地示出可变流阻系统25的另一构造。在此构造中,涡流装置46与两个附加涡流装置58、60串联使用。尽管图4中示出三个涡流装置46、58、60,但是应理解根据本发明的原理,任何数量的涡流装置可被串联连接。
涡流装置46的出口62对应于涡流装置58的入口,而涡流装置58的出口64对应于涡流装置60的入口。流体成分36从系统25的入口38流到室44,从室44经由出口/入口62流到涡流装置58,从出口/入口62流到涡流装置58的涡流室(vortexchamber)66,从室66经由出口/入口64流到涡流装置60、从出口/入口64流到涡流装置60的涡流室68,并从室68流到系统25的出口40。
涡流装置58、60中的每一个分别包括两个通道70、72与通道74、76,这些通道的功能有些类似于涡流装置46的通道42、50。然而,如以下更充分地描述的,流体成分36流经通道70、72和74、76中的每一个的比率在流体成分进入各涡流装置58、60时基于流体成分的旋转而改变。
现在再参考图5,其代表性地示出沿图4中的线5-5所看到的可变流阻系统25的剖视图。在图5中,能够容易地看到出口/入口62和出口/入口64在涡流装置46、58、60之间提供流体连通的方式。
在图5中,还可看到涡流装置46、58、60以前后方向交替的紧凑方式被“叠置”。然而应理解,根据本发明的原理,涡流装置46、58、60可按其他方式布置。
现在再参考图6A和图6B,其示出了图4和图5的可变流阻系统25,其中,相对的低粘度和/或高速度的流体成分36流经图6A中的系统,而相对的高粘度和/或低速度的流体成分流经图6B中的系统。这些示例表明了系统25的流阻如何基于流体成分36的某些特性而改变。
在图6A中,流体成分36在涡流装置46中出现显著的螺旋流动(与以上关于图3A所描述的螺旋流动类似)。因此,流体成分36在从室44经由出口/入口62流到涡流装置58时显著地旋转。
流体成分36的这种旋转式流动造成与流经通道72的流体成分的比例相比,流体成分中有更大的比例流经通道70。在通道70、72与出口/入口62的交汇处,旋转的流体成分撞击在通道70、72的弯曲侧壁上的方式造成流经每个通道流体成分在比例上的这种差异。
因为流体成分36中有较大比例经由通道70流入涡流装置58的室66内,所以流体成分在室66内旋转,这与流体成分通过涡流装置46的室44螺旋流动的方式类似。流体成分36通过室66的这种螺旋流动产生流阻,并且流阻随着流体成分在室中旋转式流动的增大而增大。
流体成分36在经由出口/入口64离开室66时旋转。与流体成分的流经通道76的比例相比,流体成分36的这种旋转流动引起更大比例的流体成分流经通道74。与以上描述的涡流室58类似,旋转的流体成分36在通道74、76的与出口/入口64的交汇处的弯曲侧壁上,旋转的流体成分36撞击的方式造成流体成分在流经每个通道的比例上的这种差异。
因为流体成分36中有较大的比例经由通道74流入涡流装置60的室68内,所以流体成分在室68内旋转,这与流体成分通过涡流装置58的室66螺旋流动的方式类似。流体成分36通过室68的这种螺旋流动产生流阻,并且流阻随着流体成分在室中旋转式流动的增大而增大。
因此,在图6A中相对的高速度和/或低粘度的流体成分的条件下,旋转式流动和流阻在涡流装置46、58、60中的每一个中增大,使得总流阻远远大于仅通过单个涡流装置46提供的流阻。另外,通过涡流装置58、60的室66、68的旋转式流动是由于流体成分36在出口/入口62、64中的每一个处旋转式流动造成的。
在图6B中,相对的高粘度和/或低速度的流体成分36流经系统25。请注意,流体成分36在室46、66、68中的每一个中的旋转式流动显著减少,所以流体成分通过这些室的流阻也显著减小。因此,与在图6A中相对的低粘度和/或高速度的流体成分的流阻相比,在图6B中相对的高粘度和/或低速度的流体成分36的流阻大幅减小。
请注意,以上描述的系统26的任一构造的任一特征可包含在系统的任一其他构造中,因此应理解,这些特征并非为系统的任一具体构造所专有。系统25能够被用在任何类型的井系统中(例如,不仅被用在井系统10中),并且用于通过各种井操作来实现各种目的,这些井操作包括但不限于注入、增产处理(stimulation)、完井、生产、证实(conformance)、钻井操作,等等。
应理解,对于井中流动控制技术来说,图4-图6B中示出的系统是重大的进步。通过使涡流装置46、58、60串联连接,并当流体成分从一个涡流装置流到下一个涡流装置时响应于流体成分的旋转来限制流体成分的流动,能够显著地增大流体成分通过系统25的流阻。
以上公开的内容为本技术领域提供了一种在地下井中使用的可变流阻系统。系统25可包括涡流装置58或60,流体成分36通过涡流装置流动。流体成分36通过涡流装置58、60的流阻取决于流体成分在涡流装置58的入口62或涡流装置60的入口64处的旋转。
响应流体成分36在涡流装置58的入口62或涡流装置60的入口64处的旋转的增大,流体成分36通过涡流装置58或60的流阻能够增大。
响应流体成分36的粘度的减小,流体成分在入口62或入口64处的旋转能够增大。
响应流体成分36的速度的增大,流体成分36在入口62或入口64处的旋转能够增大。
响应流体成分36中的期望流体与不期望流体之比的减小,流体成分36在入口62或入口64处的旋转能够增大。
涡流装置58的出口64可包括另一涡流装置60的入口64。涡流装置60的入口64可包括另一涡流装置58的出口64。
涡流装置58可至少包括第一通道70和第二通道72,第一通道和第二通道从另一涡流装置46的出口62接收流体成分36。流体成分36的分别流经第一通道70和第二通道72的比例差值取决于流体成分36在出口62处的旋转。响应流体成分36的速度的增大,流体成分36的流经第一通道70和第二通道72的比例差值可增大。
响应流体成分36的流经第一通道70和第二通道72的比例差值的增大,流体成分36在涡流室66中的旋转增大。
以上公开的内容还描述了一种可变流阻系统25,其可包括:第一涡流装置46,其具有出口62;以及第二涡流装置58,其从第一涡流装置46的出口62接收流体成分36。流体成分36通过第二涡流装置58的流阻可取决于流体成分36在第一涡流装置46的出口62处的旋转。
响应流体成分36的粘度的减小、响应流体成分36的速度的增大、和/或响应流体成分36中期望流体与不期望流体之比的减小,流体成分36在出口62处的旋转可增大。
响应流体成分36在第一涡流装置46的出口62处的旋转的增大,流体成分36通过第二涡流装置58的流阻可增大。
第二涡流装置58的出口64可包括第三涡流装置60的入口64。
第二涡流装置58可至少包括第一通道70和第二通道72,第一通道和第二通道从第一涡流装置46的出口62接收流体成分36。流体成分36的分别流经第一通道70和第二通道72的比例差值取决于流体成分36在第一涡流装置46的出口62处的旋转。
响应流体成分36的速度的增大,流体成分36流经第一通道70和第二通道72的比例差值可增大。
响应流体成分36流经第一通道70和第二通道72的比例差值的增大,流体成分36在第二涡流装置58的涡流室66中的旋转可增大。
以上公开的内容还描述了一种可变流阻系统25,其可包括:第一涡流装置46,其响应流体成分36的速度的增大,引起流体成分36在第一涡流装置46的出口62处的旋转增大;以及第二涡流装置58,其从第一涡流装置46的出口62接收流体成分。流体成分36通过第二涡流装置58的流阻可取决于流体成分36在第一涡流装置46的出口62处的旋转。
应理解,以上描述的各种示例可用于多种方向,例如倾斜、颠倒、水平、竖直等,并用于多种构造,而不背离本发明的原理。图中示出的多个实施例仅仅作为本发明的原理的有效应用的示例来示出和描述,本发明不限于这些实施例的任何具体细节。
当然,在仔细考虑以上对代表性实施例的描述之后,本领域技术人员将容易理解,对这些具体实施例可进行许多更改、添加、替换、删除和其他改变,并且这些改变处在本发明的原理的范围内。因此,前述详细描述应清楚理解为仅作为解释和示例给出,本发明的精神和范围仅由随附权利要求书及其等价物限定。

Claims (10)

1.一种在地下井中使用的可变流阻系统,所述系统包括:
涡流装置,流体成分流经所述涡流装置,所述涡流装置包括通过至少两条通道连接到涡流室的入口;而且
其中,流体成分通过所述涡流装置的流阻取决于流体成分在至所述涡流装置的入口处的旋转。
2.如权利要求1所述的系统,其中,所述涡流装置的出口包括另一涡流装置的入口。
3.如权利要求1所述的系统,其中,至少两条通道包括从另一涡流装置的出口接收流体成分的第一通道和第二通道;而且其中,流体成分的分别流经所述第一通道和所述第二通道的比例差值取决于流体成分在所述出口处的旋转。
4.如权利要求3所述的系统,其中,响应流体成分的速度的增大,流体成分的流经所述第一通道和第二通道的比例差值增大。
5.如权利要求3所述的系统,其中,响应流体成分的流经所述第一通道和第二通道的比例差值的增大,流体成分在涡流室中的旋转增大。
6.一种在地下井中使用的可变流阻系统,所述系统包括:
第一涡流装置,其具有出口;以及
第二涡流装置,其经由通过至少两条通道连接到涡流室的入口,从所述第一涡流装置的出口接收流体成分,流体成分通过所述第二涡流装置的流阻取决于流体成分在所述第一涡流装置的出口处的旋转。
7.如权利要求6所述的系统,其中,所述第二涡流装置的出口包括第三涡流装置的入口。
8.如权利要求6所述的系统,其中,所述第二涡流装置至少包括从所述第一涡流装置的出口接收流体成分的第一通道和第二通道;而且其中,流体成分的分别流经第一通道和第二通道的比例差值取决于流体成分在所述第一涡流装置的出口处的旋转。
9.如权利要求8所述的系统,其中,响应流体成分的速度的增大,流体成分流经所述第一通道和第二通道的比例差值增大。
10.如权利要求8所述的系统,其中,响应流体成分的流经所述第一通道和第二通道的比例差值的增大,流体成分在所述第二涡流装置的涡流室中的旋转增大。
CN201180043024.XA 2010-09-10 2011-08-24 在地下井中使用的串联构造的可变流动限制器 Expired - Fee Related CN103097649B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/879,846 US8430130B2 (en) 2010-09-10 2010-09-10 Series configured variable flow restrictors for use in a subterranean well
US12/879,846 2010-09-10
PCT/US2011/048986 WO2012033638A2 (en) 2010-09-10 2011-08-24 Series configured variable flow restrictors for use in a subtrerranean well

Publications (2)

Publication Number Publication Date
CN103097649A CN103097649A (zh) 2013-05-08
CN103097649B true CN103097649B (zh) 2015-12-09

Family

ID=45805349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180043024.XA Expired - Fee Related CN103097649B (zh) 2010-09-10 2011-08-24 在地下井中使用的串联构造的可变流动限制器

Country Status (12)

Country Link
US (2) US8430130B2 (zh)
EP (1) EP2614215B1 (zh)
CN (1) CN103097649B (zh)
AU (1) AU2011299480B2 (zh)
BR (1) BR112013005402A2 (zh)
CA (2) CA2809423C (zh)
CO (1) CO6660453A2 (zh)
MX (1) MX2013002308A (zh)
MY (1) MY153826A (zh)
RU (1) RU2530818C1 (zh)
SG (1) SG188392A1 (zh)
WO (1) WO2012033638A2 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8893804B2 (en) 2009-08-18 2014-11-25 Halliburton Energy Services, Inc. Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well
US9109423B2 (en) 2009-08-18 2015-08-18 Halliburton Energy Services, Inc. Apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8276669B2 (en) * 2010-06-02 2012-10-02 Halliburton Energy Services, Inc. Variable flow resistance system with circulation inducing structure therein to variably resist flow in a subterranean well
US8235128B2 (en) 2009-08-18 2012-08-07 Halliburton Energy Services, Inc. Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well
US8708050B2 (en) 2010-04-29 2014-04-29 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow using movable flow diverter assembly
US8261839B2 (en) 2010-06-02 2012-09-11 Halliburton Energy Services, Inc. Variable flow resistance system for use in a subterranean well
US8356668B2 (en) 2010-08-27 2013-01-22 Halliburton Energy Services, Inc. Variable flow restrictor for use in a subterranean well
US8430130B2 (en) * 2010-09-10 2013-04-30 Halliburton Energy Services, Inc. Series configured variable flow restrictors for use in a subterranean well
US8950502B2 (en) 2010-09-10 2015-02-10 Halliburton Energy Services, Inc. Series configured variable flow restrictors for use in a subterranean well
US8851180B2 (en) 2010-09-14 2014-10-07 Halliburton Energy Services, Inc. Self-releasing plug for use in a subterranean well
WO2012087431A1 (en) * 2010-12-20 2012-06-28 Exxonmobil Upstream Research Company Systems and methods for stimulating a subterranean formation
AU2012240325B2 (en) 2011-04-08 2016-11-10 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow in an autonomous valve using a sticky switch
US8678035B2 (en) * 2011-04-11 2014-03-25 Halliburton Energy Services, Inc. Selectively variable flow restrictor for use in a subterranean well
US8701772B2 (en) 2011-06-16 2014-04-22 Halliburton Energy Services, Inc. Managing treatment of subterranean zones
US8602100B2 (en) 2011-06-16 2013-12-10 Halliburton Energy Services, Inc. Managing treatment of subterranean zones
US8701771B2 (en) 2011-06-16 2014-04-22 Halliburton Energy Services, Inc. Managing treatment of subterranean zones
US8800651B2 (en) 2011-07-14 2014-08-12 Halliburton Energy Services, Inc. Estimating a wellbore parameter
MY167551A (en) 2011-10-31 2018-09-14 Halliburton Energy Services Inc Autonomous fluid control device having a reciprocating valve for downhole fluid selection
WO2013066295A1 (en) 2011-10-31 2013-05-10 Halliburton Energy Services, Inc Autonomus fluid control device having a movable valve plate for downhole fluid selection
US9506320B2 (en) 2011-11-07 2016-11-29 Halliburton Energy Services, Inc. Variable flow resistance for use with a subterranean well
US8739880B2 (en) 2011-11-07 2014-06-03 Halliburton Energy Services, P.C. Fluid discrimination for use with a subterranean well
US8684094B2 (en) 2011-11-14 2014-04-01 Halliburton Energy Services, Inc. Preventing flow of undesired fluid through a variable flow resistance system in a well
EP3266978B1 (en) * 2011-12-06 2019-05-22 Halliburton Energy Services, Inc. Bidirectional downhole fluid flow control system and method
CN103998711A (zh) * 2011-12-16 2014-08-20 哈利伯顿能源服务公司 流体流动控制器
MY167298A (en) * 2012-01-27 2018-08-16 Halliburton Energy Services Inc Series configured variable flow restrictors for use in a subterranean well
BR112014029677A2 (pt) 2012-06-28 2017-06-27 Halliburton Energy Services Inc arranjo de peneira e método para a produção de uma composição de fluido a partir de uma formação subterrânea
US9404349B2 (en) 2012-10-22 2016-08-02 Halliburton Energy Services, Inc. Autonomous fluid control system having a fluid diode
US9127526B2 (en) 2012-12-03 2015-09-08 Halliburton Energy Services, Inc. Fast pressure protection system and method
US9695654B2 (en) 2012-12-03 2017-07-04 Halliburton Energy Services, Inc. Wellhead flowback control system and method
US9371720B2 (en) * 2013-01-25 2016-06-21 Halliburton Energy Services, Inc. Autonomous inflow control device having a surface coating
WO2014116236A1 (en) * 2013-01-25 2014-07-31 Halliburton Energy Services, Inc. Autonomous inflow control device having a surface coating
US10132136B2 (en) 2013-07-19 2018-11-20 Halliburton Energy Services, Inc. Downhole fluid flow control system and method having autonomous closure
SG11201510237VA (en) * 2013-07-19 2016-01-28 Halliburton Energy Services Inc Downhole fluid flow control system and method having autonomous closure
SG11201605045PA (en) * 2013-12-20 2016-07-28 Absolute Completion Technologies Ltd Nozzle, wellbore tubular and method
GB2539820B (en) * 2014-05-09 2020-12-02 Halliburton Energy Services Inc Surface fluid extraction and separator system
CN105626003A (zh) * 2014-11-06 2016-06-01 中国石油化工股份有限公司 一种用于调节地层流体的控制装置
US9976385B2 (en) * 2015-06-16 2018-05-22 Baker Hughes, A Ge Company, Llc Velocity switch for inflow control devices and methods for using same
CN109138939B (zh) * 2018-10-24 2021-05-25 四川理工学院 一种旋流型流入控制阀
CN113803050B (zh) * 2020-06-12 2023-03-21 中国石油化工股份有限公司 一种自适应流入控制装置、智能完井管柱及完井方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303782A (en) * 1990-09-11 1994-04-19 Johannessen Jorgen M Flow controlling device for a discharge system such as a drainage system
US6402820B1 (en) * 1997-12-23 2002-06-11 The University Of Sheffield Fluidic level control systems
CN101328795A (zh) * 2007-06-20 2008-12-24 普拉德研究及开发股份有限公司 流入控制装置

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2140735A (en) 1935-04-13 1938-12-20 Henry R Gross Viscosity regulator
US2324819A (en) 1941-06-06 1943-07-20 Studebaker Corp Circuit controller
US3091393A (en) 1961-07-05 1963-05-28 Honeywell Regulator Co Fluid amplifier mixing control system
US3256899A (en) * 1962-11-26 1966-06-21 Bowles Eng Corp Rotational-to-linear flow converter
US3216439A (en) * 1962-12-18 1965-11-09 Bowles Eng Corp External vortex transformer
US3233621A (en) * 1963-01-31 1966-02-08 Bowles Eng Corp Vortex controlled fluid amplifier
US3282279A (en) 1963-12-10 1966-11-01 Bowles Eng Corp Input and control systems for staged fluid amplifiers
US3474670A (en) 1965-06-28 1969-10-28 Honeywell Inc Pure fluid control apparatus
US3461897A (en) 1965-12-17 1969-08-19 Aviat Electric Ltd Vortex vent fluid diode
GB1180557A (en) 1966-06-20 1970-02-04 Dowty Fuel Syst Ltd Fluid Switch and Proportional Amplifier
GB1208280A (en) 1967-05-26 1970-10-14 Dowty Fuel Syst Ltd Pressure ratio sensing device
US3515160A (en) 1967-10-19 1970-06-02 Bailey Meter Co Multiple input fluid element
US3537466A (en) 1967-11-30 1970-11-03 Garrett Corp Fluidic multiplier
US3521657A (en) * 1967-12-26 1970-07-28 Phillips Petroleum Co Variable impedance vortex diode
US3529614A (en) 1968-01-03 1970-09-22 Us Air Force Fluid logic components
GB1236278A (en) 1968-11-12 1971-06-23 Hobson Ltd H M Fluidic amplifier
JPS4815551B1 (zh) 1969-01-28 1973-05-15
US3566900A (en) 1969-03-03 1971-03-02 Avco Corp Fuel control system and viscosity sensor used therewith
US3586104A (en) * 1969-12-01 1971-06-22 Halliburton Co Fluidic vortex choke
SE346143B (zh) 1970-12-03 1972-06-26 Volvo Flygmotor Ab
US4029127A (en) 1970-01-07 1977-06-14 Chandler Evans Inc. Fluidic proportional amplifier
US3670753A (en) 1970-07-06 1972-06-20 Bell Telephone Labor Inc Multiple output fluidic gate
US3704832A (en) 1970-10-30 1972-12-05 Philco Ford Corp Fluid flow control apparatus
US3717164A (en) 1971-03-29 1973-02-20 Northrop Corp Vent pressure control for multi-stage fluid jet amplifier
US3712321A (en) 1971-05-03 1973-01-23 Philco Ford Corp Low loss vortex fluid amplifier valve
JPS5244990B2 (zh) 1973-06-06 1977-11-11
US4082169A (en) 1975-12-12 1978-04-04 Bowles Romald E Acceleration controlled fluidic shock absorber
US4286627A (en) 1976-12-21 1981-09-01 Graf Ronald E Vortex chamber controlling combined entrance exit
US4127173A (en) 1977-07-28 1978-11-28 Exxon Production Research Company Method of gravel packing a well
SE408094B (sv) 1977-09-26 1979-05-14 Fluid Inventor Ab Ett strommande medium metande anordning
US4187909A (en) 1977-11-16 1980-02-12 Exxon Production Research Company Method and apparatus for placing buoyant ball sealers
US4385875A (en) 1979-07-28 1983-05-31 Tokyo Shibaura Denki Kabushiki Kaisha Rotary compressor with fluid diode check value for lubricating pump
US4291395A (en) 1979-08-07 1981-09-22 The United States Of America As Represented By The Secretary Of The Army Fluid oscillator
US4323991A (en) 1979-09-12 1982-04-06 The United States Of America As Represented By The Secretary Of The Army Fluidic mud pulser
US4307653A (en) 1979-09-14 1981-12-29 Goes Michael J Fluidic recoil buffer for small arms
US4276943A (en) 1979-09-25 1981-07-07 The United States Of America As Represented By The Secretary Of The Army Fluidic pulser
US4557295A (en) 1979-11-09 1985-12-10 The United States Of America As Represented By The Secretary Of The Army Fluidic mud pulse telemetry transmitter
US4390062A (en) 1981-01-07 1983-06-28 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator using low pressure fuel and air supply
US4418721A (en) 1981-06-12 1983-12-06 The United States Of America As Represented By The Secretary Of The Army Fluidic valve and pulsing device
DE3615747A1 (de) 1986-05-09 1987-11-12 Bielefeldt Ernst August Verfahren zum trennen und/oder abscheiden von festen und/oder fluessigen partikeln mit einem wirbelkammerabscheider mit tauchrohr und wirbelkammerabscheider zur durchfuehrung des verfahrens
US4919204A (en) 1989-01-19 1990-04-24 Otis Engineering Corporation Apparatus and methods for cleaning a well
US5184678A (en) 1990-02-14 1993-02-09 Halliburton Logging Services, Inc. Acoustic flow stimulation method and apparatus
US5165450A (en) 1991-12-23 1992-11-24 Texaco Inc. Means for separating a fluid stream into two separate streams
GB9224300D0 (en) * 1992-11-19 1993-01-06 British Petroleum Co Plc Method for freeing or preventing stuck pipe
US5533571A (en) 1994-05-27 1996-07-09 Halliburton Company Surface switchable down-jet/side-jet apparatus
US5484016A (en) 1994-05-27 1996-01-16 Halliburton Company Slow rotating mole apparatus
US5455804A (en) 1994-06-07 1995-10-03 Defense Research Technologies, Inc. Vortex chamber mud pulser
US5570744A (en) 1994-11-28 1996-11-05 Atlantic Richfield Company Separator systems for well production fluids
US5482117A (en) 1994-12-13 1996-01-09 Atlantic Richfield Company Gas-liquid separator for well pumps
US5505262A (en) 1994-12-16 1996-04-09 Cobb; Timothy A. Fluid flow acceleration and pulsation generation apparatus
US5693225A (en) 1996-10-02 1997-12-02 Camco International Inc. Downhole fluid separation system
GB9706044D0 (en) 1997-03-24 1997-05-14 Davidson Brett C Dynamic enhancement of fluid flow rate using pressure and strain pulsing
US6851473B2 (en) 1997-03-24 2005-02-08 Pe-Tech Inc. Enhancement of flow rates through porous media
AU713643B2 (en) 1997-05-06 1999-12-09 Baker Hughes Incorporated Flow control apparatus and methods
US6015011A (en) 1997-06-30 2000-01-18 Hunter; Clifford Wayne Downhole hydrocarbon separator and method
GB9713960D0 (en) 1997-07-03 1997-09-10 Schlumberger Ltd Separation of oil-well fluid mixtures
FR2772436B1 (fr) 1997-12-16 2000-01-21 Centre Nat Etd Spatiales Pompe a deplacement positif
GB9816725D0 (en) 1998-08-01 1998-09-30 Kvaerner Process Systems As Cyclone separator
DE19847952C2 (de) 1998-09-01 2000-10-05 Inst Physikalische Hochtech Ev Fluidstromschalter
US6367547B1 (en) 1999-04-16 2002-04-09 Halliburton Energy Services, Inc. Downhole separator for use in a subterranean well and method
US6336502B1 (en) 1999-08-09 2002-01-08 Halliburton Energy Services, Inc. Slow rotating tool with gear reducer
GB2383633A (en) 2000-06-29 2003-07-02 Paulo S Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
AU2001286493A1 (en) 2000-08-17 2002-02-25 Chevron U.S.A. Inc. Method and apparatus for wellbore separation of hydrocarbons from contaminants with reusable membrane units containing retrievable membrane elements
GB0022411D0 (en) 2000-09-13 2000-11-01 Weir Pumps Ltd Downhole gas/water separtion and re-injection
US6371210B1 (en) 2000-10-10 2002-04-16 Weatherford/Lamb, Inc. Flow control apparatus for use in a wellbore
US6619394B2 (en) 2000-12-07 2003-09-16 Halliburton Energy Services, Inc. Method and apparatus for treating a wellbore with vibratory waves to remove particles therefrom
US6622794B2 (en) 2001-01-26 2003-09-23 Baker Hughes Incorporated Sand screen with active flow control and associated method of use
US6644412B2 (en) 2001-04-25 2003-11-11 Weatherford/Lamb, Inc. Flow control apparatus for use in a wellbore
NO313895B1 (no) 2001-05-08 2002-12-16 Freyer Rune Anordning og fremgangsmÕte for begrensning av innströmning av formasjonsvann i en brönn
NO316108B1 (no) 2002-01-22 2003-12-15 Kvaerner Oilfield Prod As Anordninger og fremgangsmåter for nedihulls separasjon
US6793814B2 (en) 2002-10-08 2004-09-21 M-I L.L.C. Clarifying tank
GB0312331D0 (en) 2003-05-30 2003-07-02 Imi Vision Ltd Improvements in fluid control
US7025134B2 (en) 2003-06-23 2006-04-11 Halliburton Energy Services, Inc. Surface pulse system for injection wells
US7413010B2 (en) 2003-06-23 2008-08-19 Halliburton Energy Services, Inc. Remediation of subterranean formations using vibrational waves and consolidating agents
US7114560B2 (en) 2003-06-23 2006-10-03 Halliburton Energy Services, Inc. Methods for enhancing treatment fluid placement in a subterranean formation
US7213650B2 (en) 2003-11-06 2007-05-08 Halliburton Energy Services, Inc. System and method for scale removal in oil and gas recovery operations
NO321438B1 (no) * 2004-02-20 2006-05-08 Norsk Hydro As Fremgangsmate og anordning ved en aktuator
US7404416B2 (en) 2004-03-25 2008-07-29 Halliburton Energy Services, Inc. Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US7318471B2 (en) 2004-06-28 2008-01-15 Halliburton Energy Services, Inc. System and method for monitoring and removing blockage in a downhole oil and gas recovery operation
US7290606B2 (en) 2004-07-30 2007-11-06 Baker Hughes Incorporated Inflow control device with passive shut-off feature
US7409999B2 (en) 2004-07-30 2008-08-12 Baker Hughes Incorporated Downhole inflow control device with shut-off feature
US7322412B2 (en) 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing
US20070256828A1 (en) 2004-09-29 2007-11-08 Birchak James R Method and apparatus for reducing a skin effect in a downhole environment
US7296633B2 (en) 2004-12-16 2007-11-20 Weatherford/Lamb, Inc. Flow control apparatus for use in a wellbore
CA2530995C (en) 2004-12-21 2008-07-15 Schlumberger Canada Limited System and method for gas shut off in a subterranean well
US6976507B1 (en) 2005-02-08 2005-12-20 Halliburton Energy Services, Inc. Apparatus for creating pulsating fluid flow
US7216738B2 (en) 2005-02-16 2007-05-15 Halliburton Energy Services, Inc. Acoustic stimulation method with axial driver actuating moment arms on tines
US7213681B2 (en) 2005-02-16 2007-05-08 Halliburton Energy Services, Inc. Acoustic stimulation tool with axial driver actuating moment arms on tines
KR100629207B1 (ko) 2005-03-11 2006-09-27 주식회사 동진쎄미켐 전계 구동 차광형 표시 장치
US7405998B2 (en) 2005-06-01 2008-07-29 Halliburton Energy Services, Inc. Method and apparatus for generating fluid pressure pulses
US7591343B2 (en) 2005-08-26 2009-09-22 Halliburton Energy Services, Inc. Apparatuses for generating acoustic waves
CA2631565C (en) * 2005-12-19 2012-06-12 Exxonmobil Upstream Research Company Profile control apparatus and method for production and injection wells
US7802621B2 (en) 2006-04-24 2010-09-28 Halliburton Energy Services, Inc. Inflow control devices for sand control screens
US7857050B2 (en) 2006-05-26 2010-12-28 Schlumberger Technology Corporation Flow control using a tortuous path
US7446661B2 (en) 2006-06-28 2008-11-04 International Business Machines Corporation System and method for measuring RFID signal strength within shielded locations
AP2536A (en) * 2006-07-07 2012-12-19 Statoilhydro Asa Method for flow control and autonomous valve of flow control device
US20080041582A1 (en) 2006-08-21 2008-02-21 Geirmund Saetre Apparatus for controlling the inflow of production fluids from a subterranean well
US20080041588A1 (en) 2006-08-21 2008-02-21 Richards William M Inflow Control Device with Fluid Loss and Gas Production Controls
US20080041581A1 (en) 2006-08-21 2008-02-21 William Mark Richards Apparatus for controlling the inflow of production fluids from a subterranean well
US20080041580A1 (en) 2006-08-21 2008-02-21 Rune Freyer Autonomous inflow restrictors for use in a subterranean well
US20090120647A1 (en) 2006-12-06 2009-05-14 Bj Services Company Flow restriction apparatus and methods
US7909088B2 (en) 2006-12-20 2011-03-22 Baker Huges Incorporated Material sensitive downhole flow control device
EP1939794A3 (en) 2006-12-29 2009-04-01 Vanguard Identification Systems, Inc. Printed planar RFID element wristbands and like personal identification devices
JP5045997B2 (ja) 2007-01-10 2012-10-10 Nltテクノロジー株式会社 半透過型液晶表示装置
US7832473B2 (en) 2007-01-15 2010-11-16 Schlumberger Technology Corporation Method for controlling the flow of fluid between a downhole formation and a base pipe
US8291979B2 (en) 2007-03-27 2012-10-23 Schlumberger Technology Corporation Controlling flows in a well
US7828067B2 (en) 2007-03-30 2010-11-09 Weatherford/Lamb, Inc. Inflow control device
US8691164B2 (en) 2007-04-20 2014-04-08 Celula, Inc. Cell sorting system and methods
US20080283238A1 (en) 2007-05-16 2008-11-20 William Mark Richards Apparatus for autonomously controlling the inflow of production fluids from a subterranean well
JP5051753B2 (ja) 2007-05-21 2012-10-17 株式会社フジキン バルブ動作情報記録システム
US20090000787A1 (en) 2007-06-27 2009-01-01 Schlumberger Technology Corporation Inflow control device
JP2009015443A (ja) 2007-07-02 2009-01-22 Toshiba Tec Corp 無線タグリーダライタ
KR20090003675A (ko) 2007-07-03 2009-01-12 엘지전자 주식회사 플라즈마 디스플레이 패널
US8235118B2 (en) 2007-07-06 2012-08-07 Halliburton Energy Services, Inc. Generating heated fluid
US7909094B2 (en) 2007-07-06 2011-03-22 Halliburton Energy Services, Inc. Oscillating fluid flow in a wellbore
US7578343B2 (en) 2007-08-23 2009-08-25 Baker Hughes Incorporated Viscous oil inflow control device for equalizing screen flow
US8584747B2 (en) 2007-09-10 2013-11-19 Schlumberger Technology Corporation Enhancing well fluid recovery
US7849925B2 (en) 2007-09-17 2010-12-14 Schlumberger Technology Corporation System for completing water injector wells
WO2009042391A1 (en) 2007-09-25 2009-04-02 Schlumberger Canada Limited Flow control systems and methods
US7913765B2 (en) 2007-10-19 2011-03-29 Baker Hughes Incorporated Water absorbing or dissolving materials used as an in-flow control device and method of use
US7918272B2 (en) 2007-10-19 2011-04-05 Baker Hughes Incorporated Permeable medium flow control devices for use in hydrocarbon production
US20090101354A1 (en) 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Devices and Methods Utilizing Same to Control Flow of Subsurface Fluids
US7918275B2 (en) 2007-11-27 2011-04-05 Baker Hughes Incorporated Water sensitive adaptive inflow control using couette flow to actuate a valve
US8474535B2 (en) 2007-12-18 2013-07-02 Halliburton Energy Services, Inc. Well screen inflow control device with check valve flow controls
US20090159282A1 (en) 2007-12-20 2009-06-25 Earl Webb Methods for Introducing Pulsing to Cementing Operations
US7757761B2 (en) 2008-01-03 2010-07-20 Baker Hughes Incorporated Apparatus for reducing water production in gas wells
NO20080081L (no) 2008-01-04 2009-07-06 Statoilhydro Asa Fremgangsmate for autonom justering av en fluidstrom gjennom en ventil eller stromningsreguleringsanordning i injektorer ved oljeproduksjon
NO20080082L (no) 2008-01-04 2009-07-06 Statoilhydro Asa Forbedret fremgangsmate for stromningsregulering samt autonom ventil eller stromningsreguleringsanordning
US20090250224A1 (en) 2008-04-04 2009-10-08 Halliburton Energy Services, Inc. Phase Change Fluid Spring and Method for Use of Same
US8931570B2 (en) 2008-05-08 2015-01-13 Baker Hughes Incorporated Reactive in-flow control device for subterranean wellbores
US7806184B2 (en) 2008-05-09 2010-10-05 Wavefront Energy And Environmental Services Inc. Fluid operated well tool
US7900696B1 (en) 2008-08-15 2011-03-08 Itt Manufacturing Enterprises, Inc. Downhole tool with exposable and openable flow-back vents
NO338988B1 (no) 2008-11-06 2016-11-07 Statoil Petroleum As Fremgangsmåte og anordning for reversibel temperatursensitiv styring av fluidstrømning ved olje- og/eller gassproduksjon, omfattende en autonom ventil som fungerer etter Bemoulli-prinsippet
NO330585B1 (no) 2009-01-30 2011-05-23 Statoil Asa Fremgangsmate og stromningsstyreinnretning for forbedring av stromningsstabilitet for flerfasefluid som strommer gjennom et rorformet element, og anvendelse av slik stromningsinnretning
US9109423B2 (en) 2009-08-18 2015-08-18 Halliburton Energy Services, Inc. Apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8893804B2 (en) 2009-08-18 2014-11-25 Halliburton Energy Services, Inc. Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well
US8276669B2 (en) 2010-06-02 2012-10-02 Halliburton Energy Services, Inc. Variable flow resistance system with circulation inducing structure therein to variably resist flow in a subterranean well
US8235128B2 (en) 2009-08-18 2012-08-07 Halliburton Energy Services, Inc. Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well
US8527100B2 (en) 2009-10-02 2013-09-03 Baker Hughes Incorporated Method of providing a flow control device that substantially reduces fluid flow between a formation and a wellbore when a selected property of the fluid is in a selected range
NO336424B1 (no) 2010-02-02 2015-08-17 Statoil Petroleum As Strømningsstyringsanordning, strømningsstyringsfremgangsmåte og anvendelse derav
US8752629B2 (en) 2010-02-12 2014-06-17 Schlumberger Technology Corporation Autonomous inflow control device and methods for using same
US9353608B2 (en) 2010-03-18 2016-05-31 Statoil Petroleum As Flow control device and flow control method
US8261839B2 (en) 2010-06-02 2012-09-11 Halliburton Energy Services, Inc. Variable flow resistance system for use in a subterranean well
US8356668B2 (en) 2010-08-27 2013-01-22 Halliburton Energy Services, Inc. Variable flow restrictor for use in a subterranean well
US8430130B2 (en) 2010-09-10 2013-04-30 Halliburton Energy Services, Inc. Series configured variable flow restrictors for use in a subterranean well
US8851180B2 (en) 2010-09-14 2014-10-07 Halliburton Energy Services, Inc. Self-releasing plug for use in a subterranean well

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303782A (en) * 1990-09-11 1994-04-19 Johannessen Jorgen M Flow controlling device for a discharge system such as a drainage system
US6402820B1 (en) * 1997-12-23 2002-06-11 The University Of Sheffield Fluidic level control systems
CN101328795A (zh) * 2007-06-20 2008-12-24 普拉德研究及开发股份有限公司 流入控制装置

Also Published As

Publication number Publication date
AU2011299480B2 (en) 2013-08-22
CA2897281A1 (en) 2012-03-15
CA2809423A1 (en) 2012-03-15
US8464759B2 (en) 2013-06-18
WO2012033638A4 (en) 2012-06-21
BR112013005402A2 (pt) 2016-11-16
SG188392A1 (en) 2013-04-30
MX2013002308A (es) 2013-05-09
US8430130B2 (en) 2013-04-30
US20120255351A1 (en) 2012-10-11
RU2530818C1 (ru) 2014-10-10
EP2614215B1 (en) 2016-12-07
AU2011299480A1 (en) 2013-05-02
CA2809423C (en) 2015-11-17
MY153826A (en) 2015-03-31
RU2013114986A (ru) 2014-10-20
US20120060624A1 (en) 2012-03-15
WO2012033638A3 (en) 2012-05-18
CO6660453A2 (es) 2013-04-30
CN103097649A (zh) 2013-05-08
EP2614215A4 (en) 2014-05-28
WO2012033638A2 (en) 2012-03-15
EP2614215A2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
CN103097649B (zh) 在地下井中使用的串联构造的可变流动限制器
AU2015210431B2 (en) Variable flow resistance system for use in a subterranean well
CN103206196B (zh) 具有循环感应结构以可变地阻止地下井中的流动的可变流阻系统
CN103080467B (zh) 在地下井中使用的可变流动限制器
CN103097646B (zh) 在地下井中使用的自释放插塞
US8950502B2 (en) Series configured variable flow restrictors for use in a subterranean well
US8739880B2 (en) Fluid discrimination for use with a subterranean well
SG190685A1 (en) Downhole fluid flow control system and method having direction dependent flow resistance
EP3252269B1 (en) Fluid discrimination for use with a subterranean well
CN103225494B (zh) 用于地下井中的串联构造的可变流动限制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151209

Termination date: 20160824

CF01 Termination of patent right due to non-payment of annual fee