CN1035294C - 具有异形掺杂岛的半导体器件耐压层 - Google Patents

具有异形掺杂岛的半导体器件耐压层 Download PDF

Info

Publication number
CN1035294C
CN1035294C CN93115356A CN93115356A CN1035294C CN 1035294 C CN1035294 C CN 1035294C CN 93115356 A CN93115356 A CN 93115356A CN 93115356 A CN93115356 A CN 93115356A CN 1035294 C CN1035294 C CN 1035294C
Authority
CN
China
Prior art keywords
island
layer
withstand voltage
special shaped
shaped doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN93115356A
Other languages
English (en)
Other versions
CN1102274A (zh
Inventor
陈星弼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3d Semiconductor Ltd By Share Ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4990982&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1035294(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CN93115356A priority Critical patent/CN1035294C/zh
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Publication of CN1102274A publication Critical patent/CN1102274A/zh
Application granted granted Critical
Publication of CN1035294C publication Critical patent/CN1035294C/zh
Priority to US08/953,077 priority patent/US6635906B1/en
Priority to US10/382,027 priority patent/US6936867B2/en
Priority to US10/860,435 priority patent/US7227197B2/en
Priority to US11/365,223 priority patent/US7271067B2/en
Priority to US11/838,522 priority patent/US7498614B2/en
Priority to US12/355,165 priority patent/US8071450B2/en
Priority to US13/280,518 priority patent/US20120040521A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Abstract

本发明介绍了具有异型掺杂岛的半导体功率器件的耐压层,其特征是在耐压层中引入异型掺杂岛代替以往的一种导电类型的耐压层。耐压层中的异型掺杂岛是与衬底平行排列,异型掺杂岛可以是单层或多层,相邻两层异型掺杂岛是重迭排列或交错排列,其耐压层导通电阻与击穿电压的关系Ron=0.83×10-8VB/n1.5(Ω·cm2)。同时本发明还提供了一些半导体高压功率器件的新结构,采用本发明可得到性能更优良的各类新结构的半导体高压功率器件。

Description

具有异形掺杂岛的半导体器件耐压层
本发明属于半导体功率器件。
现有的半导体功率器件的耐压是靠一层较轻掺杂的单一导电类型的半导体材料(可以是外延或其它技术制成),这里称它为耐压层或漂移区,对于高压功率器件,导通电阻(或正向压降)主要是由这耐压层决定,耐压层的耐压能力与它的掺杂浓度及厚度有关,浓度愈低、厚度愈大,则耐压愈高,导通电阻(或正向压降)则愈大。在一般VDMOS或SIT的漂移区中,或双极型结型晶体管的轻掺杂集电区中等,当最大电场强度达到击穿临界电场强度时,发生雪崩击穿,击穿临界电场强度Ec几乎是常数,对硅器件而言,Ec=8.2·105·VB -0.2[V/cm]。图1-1示出一个VDMOS的结构,图1-2示出在VDS=VB时的电场强度分布。其中VDS为漏源电压,VB为器件的击穿电压,W为耐压层(n-外延层的一部分)的厚度。
由图可见,对于一个高击穿电压VB,耐压层的厚度W应该大,而掺杂浓度N0应该低。由于单位面积的导通电阻Ron正比于W/N0,因此器件高的击穿电压VB总是伴随着一个高的导通电阻Ron。根据下面引用的文献[1]所述,对于一个杂质为均匀分布的耐压层,在一定耐压VB下要使得单位面积内导通电阻Ron最小的方法是取W=3VB/2Ec及N0=4εsEc 2/9qVB,其中εc是半导体的介电常数,q是电子电荷。在这种情形下,耐压层加上电压VB后,此层中最大电场为Ec,最小电场为Ec/3,VB与Ron之间的关系是:对n型耐压层
    Ron=0.83·10-8VB[Ω·cm2]……………(1)一些研究工作,例如:
[1]C.Hu,IEEE Trans.Electron Devices
          Vol.ED-2 No.3,p243(1979)
[2]V.A.K Temple,et al.IEEE Trans.,Electron Devices,
          Vol-ED 27,No.2,p243(1980);
[3]X.B Chen(陈星弼),C.Hu,IEEE Trans.,Electron Devices
          Vol-ED 29 No.6pp985-987(1982)。曾试图揭示,如果耐压层(n-外延层)掺杂的浓度分布是非均匀的,则击穿电压VB与导通电阻的关系是否会改善得好一些,其结果表明没有明显的改进。又如专利文献:
[4]Matstushita,et al.,
          U.S.Patent,No.4,003,072(1977);
[5]J.A.G.Slatter,et al.,
          U.S.Patent,No.5,218,226(1993)。在文献[4]的图6及图7中提出了在n(或p)型耐压层中引入p(或n)岛以提高击穿电压。由于该p岛是重掺杂,正如文献[5]所指出的,p(或n)岛在其上部(或下部)并不能产生很大的电场,因此击穿电压没有提高多少。文献[5]提出了在这种P(或n)岛的上面(或下面)覆盖一层重掺杂的n(或p)区,以增加其上部(或下部)的电场,来提高击穿电压。应该指出,不管是文献[4]还是文献[5],由于p(或n)岛没有全耗尽,它们和耐压层及耐压层上、下两侧的重掺p+区及n+区分别构成了p+-n-p+-n-n+(或n+-p-n+-p-p+)、p+-n-n+-p+-n-n+ (或n+-p-p+-n+-p-p+)的寄生晶闸管的结构,因此,在高反偏压下容易导致二次击穿,也容易发生闩锁效应。
本发明的目的在于提供一种具有异型掺杂岛结构的耐压层(或漂移区),在这层耐压层上再制作高压功率器件,以得到性能更优良的各类新结构的高压功率器件。其击穿电压与导通电阻的极限关系将建立在一个新的基础上,从而可以大大缓解导通电阻(或正向压降)与器件击穿电压的矛盾。
为了实现以上的目的,在中国国家自然科学基金重点项目及八五国家科技攻关重点项目的资助下,经过发明人的探索,提供了以下的方案:在耐压层内,引入异型轻掺杂岛以代替以往的单一导电类型的耐压层,它的结构如图2所示。
其结构特征为:
(1)p(或n)岛被n-(或p-)的外延层所包围;
(2)耐压层(外延层)中的p(或n)岛与n+(或p+)衬底平行排列;
(3)p(或n)岛在耐压层中可是单层(n=2),也可是多层(n=3、n=4……),当p(或n)岛将整个耐压层分成几个“亚层”时,各亚层的厚度相等。对单层p(或n)岛,n=2(n是亚层数)即将整个耐压层分成两个“亚层”,此时p(或n)岛位于耐压层厚度二分之一处,如图2-1所示。对两层p(或n)岛。n=3,即将整个耐压层分成三个“亚层”,此时,p(或n)岛位于耐压层三分之一及三分之二处,如图2-2、图2-3所示;
(4)p(或n)岛在耐层层中可以是重迭排列,或交错排列。图2-2所示为两层p(或n)岛重迭排列,图2-3所示为两层p(或n)岛交错排列;
(5)p(或n)岛可置于纵向导电型功率器件的耐压层中对导电几乎没有贡献的区域。在垂直导电的功率MOST中,p(或n)岛位于源极下方;在双极型晶体管中,p(或n)岛位于基极电极条下方。
(6)耐压层总厚度为W=0.024VB 1.2微米。假定整个耐压层有n个亚层,则N0=n·2.2·1018VB -1.4[1/cm3],每层p岛单位面积的总剂量为NT=3.53·1012(VB)-0.2[1/cm2]。
(当式中n=2时为单层p岛,n=3时为两层p岛)
文献[4]的重掺p(或n)岛以及文献[5]的重掺p(或n)岛,即使在反偏压接近于击穿电压时,也不全耗尽。而采用本发明的设计,在反偏压远不到击穿电压时,p(或n)岛已全耗尽。故本发明的结构不会导致二次击穿及闩锁效应。
文献[4]的p(或n)岛在其一侧电场为临界电场时,另一侧电场仍极小。而根据本发明的设计,p(或n)岛的一侧电场为临界电场Ec时,其中单位面积内有2Ec/3的电力线终止于p(或n)岛的电离杂质上,剩下的Ec/3的电力线将穿过p(或n)岛,使p(或n)岛的另一侧电场为Ec/3。这正是每个亚层在一定导通电阻下获得最大耐压的最优设计。因此,这里并不需要文献[5]所提出的在p(或n)岛另一侧覆盖的n+(或p+)层。本发明比文献[5]节省了一次制造此重掺杂n+(或p+)层的工序。
假定整个耐压层内有n个“亚层”,每一“亚层”能维持VB/n电压,其中VB为整个耐压层的击穿电压,于是很明显,导通电阻是每一区域的n倍。
即Ron=n·0.83×10-8(VB/n)2.5
      =0.83×10-8VB 2.5/n1.5    (2)
(Ron的实际值是要比上式得到的计算值略高一些)
对比(1)(2)式,可以看出,新发明的具有p岛耐压层结构的功率器件,其Ron在高压范围内要比传统的Ron小得多。
根据本发明提供的具有异型掺杂岛结构的耐压层,可制作出性能优良的各类新结构的功率器件,列举如下:
1)具有单层p(或n)岛的MOST的功率器件。
图3-1示出n=2的MOST功率器件结构图,各部分的导电类型p型或n型在图中括弧内外各相互对应。图3-1中标号为:1为p(或n)岛、2为n-(或p-)外延层、3为n+(或p+)衬底、4为p(或n)阱、5为n+(或p+)源区。现以单层p岛的MOST功率器件为例,当在截止状态时,该结构中在p岛中的空穴被源极抽出,而n-外延层中的电子被漏极抽出。p岛下面正电荷的电力线大部分终止于耗尽了的p岛内的负电荷,故电场强度不在整个耐压层内积累,在击穿附近的电场强度分布如图3-2所示。
2)具有两层p(或n)岛n=3的MOST结构。
图3-3示出具有两层交错排列p(或n)岛MOST功率器件(也可是重迭排列)。图3-3标号为:1为p(或n)岛、2为n-(或p-)外延层、3为n+(或p+)衬底、4为p(或n)阱、5为n+(或p+)源区。以具有两层p岛的MOST功率器件为例,当它的击穿电压与单层p岛的MOST击穿电压相同时,其导通电阻比单层的更小。1)及2)这类MOST的关断时间很小,象通常的MOST。其开启拘态类似IGBT的关断瞬态:器件的电压变化有一个很快的衰减阶段,其时间常数几乎与VDMOS的开启时间相同。并有一个像IGBT被关断时的尾部。
3)在IGBT衬底(n-外延层位于薄重掺杂n层上,n层又位于p衬底上)上的MOST结构。
图3-4示出在IGBT衬底上具有单层p(或n)岛的MOST功率器件。图3-5示在IGBT衬底上具有两层p(或n)岛的交错排列MOST功率器件(也可以是重迭排列)。图3-4、图3-5的标号为:1为p(或n)岛、2为n-(或p+)外延层、4为p(或n)阱、5为n+(或p+)源区、6为p(或n)衬底、7为n(或p)缓冲层。以在IGBT衬底上具有p岛的MOST结构为例,该结构从衬底向耐压层注入少量空穴,就可以使图3-1及图3-3的MOST结构的开启尾部缩短,从而减小开启时间。若注入效率γ很小,则在器件中仍是多子起主导作用,这样就不会影响关断时间,于是整个开启时间比0.1μs小得多,因此能使其开启过程与关断过程与传统MOST一样快。
4)具有单层异型掺杂岛耐压层的R-MOST结构功率器件。
图4示出具有单层p(或n)岛耐压层的R-MOST功率器件。其中标号为:1为p(或n)岛、2为n-(或p-)外延层、3为n+(或p+)衬底、4为p(或n)阱、5为n+(或p+)源区、10为氧化层。
5)双极型功率晶体管。
图5示出具有单层p(或n)岛耐压层的双极型功率晶体管。其中标号为:1为p(或n)岛、2为n-(或p-)外延层、3为n+(或p+)衬底、4为p(或n)内基区、5为n+(或p+)发射区、9为p+(或n+)外基区、10为氧化层。
6)二极管。
图2所示结构在p+和n+两面制作两个金属电极,即形成具有异型掺杂岛耐压层的高压二极管,这种结构的二极管在速度方面比高压pin二极管更好。
7)静电诱导晶体管(SIT)。
该晶体管可以采用埋栅,也可以采用表面栅。图6示出具有单层p(或n)岛耐压层的表面栅静电诱导晶体管。其中标号1为p(或n)岛、2为n-(或p-)外延层、3为n+(或p+)衬底、5为n+(或p+)源区、9为p+(或n+)栅、10为氧化层。
根据上述列举在新发明的耐压层上制作出的功率器件,具有耐压高、导通电阻(或正向压降)小、开启与关断时间快等优点。同时本发明在理论上研究出导通电阻Ron与击穿电压VB的一个新关系Ron=0.83×10-8VB 2.5/n1.5。由此可见本发明大大的缓解了高压功率器件导通电阻Ron(或正向压降)与击穿电压VB的矛盾,在改善导通电阻与器件耐压方面有着重要的突破。
本发明的附图说明:
图1是现有技术VDMOS的示意图。其中图1-1为结构图;图1-2为电场分布图。
图2是本发明耐压层结构。其中图2-1为单层异型掺杂岛;图2-2为两层重迭排列的异型掺杂岛;图2-3为两层交错排列的异型掺杂岛。
图3是采用本发明制作的具有p(或n)岛的MOST结构功率器件。其中图3-1为具有单层p(或n)岛;图3-2是图3-1结构在击穿附近的电场强度分布图;图3-3为两层交错排列的p(或n)岛;图3-4是在IGBT衬底上的单层p(或n)岛;图3-5是在IGBT衬底上的两层交错排列的p(或n)岛。
图4是采用本发明制作的具有单层p(或n)岛耐压层的R-MOST功率器件。
图5是采用本发明制作的具有单层p(或n)岛耐压层的双极型功率晶体管。
图6是采用本发明制作的具有单层p(或n)岛表面栅静电诱导晶体管。
下面结合附图通过实施例进一步说明本发明。
为了制作本发明具有p岛的耐压层,其设计方法是:从要求的击穿电压VB出发,以本发明耐压层设计为参考数据,然后再作计算机模拟,以得出更精确的数据。
现结合附图3制作MOST功率器件为例说明制造耐压层的工艺过程。
第一步:对于图3-1、图3-3所示的MOST功率器件,从<100>晶向的n+硅片着手,对于图3-4、图3-5所示的MOST功率器件则在<100>晶向p衬底上具有薄n外延层的硅片着手。
第二步:掺杂n-外延,形成n-型外延层。
第三步:氧化,随后开出小窗口。
第四步:通过窗口进行硼离子注入。
第五步:重复第二步到第四步。当需要形成(n-1)层p岛时,则重复第二步到第五步(n-2)次。
第六步:剩下的步骤与传统制作VDMOS相同。
虽然本发明是以一些具体结构说明本发明的耐压层,相信对熟悉本领域的技术人员而言,根据具体条件在本专利精神下可以做形式上的变化。

Claims (1)

1、一种具有异型掺杂岛的半导体器件耐压层,包含有一层较轻掺杂的n(或p)型的半导体材料,其特征在于在此层内引入p(或n)岛;p(或n)岛在耐压层中是单层或多层,(n-1)个p岛层将整个耐压层分成n个“亚层”,各“亚层”的厚度相等;当耐压要求为VB(伏)时,耐压层总厚度W=0.024VB 1.2微米,轻掺杂浓度N0=n·2.2·1018VB -1.4[1/cm3],单位面积每层p岛掺杂总量NT=3.53·1012VB -0.2[1/cm2]。
CN93115356A 1993-10-29 1993-10-29 具有异形掺杂岛的半导体器件耐压层 Expired - Lifetime CN1035294C (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN93115356A CN1035294C (zh) 1993-10-29 1993-10-29 具有异形掺杂岛的半导体器件耐压层
US08/953,077 US6635906B1 (en) 1993-10-29 1997-10-17 Voltage sustaining layer with opposite-doped islands for semi-conductor power devices
US10/382,027 US6936867B2 (en) 1993-10-29 2003-03-05 Semiconductor high-voltage devices
US10/860,435 US7227197B2 (en) 1993-10-29 2004-06-03 Semiconductor high-voltage devices
US11/365,223 US7271067B2 (en) 1993-10-29 2006-03-01 Voltage sustaining layer with opposite-doped islands for semiconductor power devices
US11/838,522 US7498614B2 (en) 1993-10-29 2007-08-14 Voltage sustaining layer with opposite-doped islands for semiconductor power devices
US12/355,165 US8071450B2 (en) 1993-10-29 2009-01-16 Method for forming voltage sustaining layer with opposite-doped islands for semiconductor power devices
US13/280,518 US20120040521A1 (en) 1993-10-29 2011-10-25 Voltage sustaining layer wiht opposite-doped island for seminconductor power devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN93115356A CN1035294C (zh) 1993-10-29 1993-10-29 具有异形掺杂岛的半导体器件耐压层

Publications (2)

Publication Number Publication Date
CN1102274A CN1102274A (zh) 1995-05-03
CN1035294C true CN1035294C (zh) 1997-06-25

Family

ID=4990982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93115356A Expired - Lifetime CN1035294C (zh) 1993-10-29 1993-10-29 具有异形掺杂岛的半导体器件耐压层

Country Status (2)

Country Link
US (7) US6635906B1 (zh)
CN (1) CN1035294C (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035294C (zh) * 1993-10-29 1997-06-25 电子科技大学 具有异形掺杂岛的半导体器件耐压层
US6977420B2 (en) * 1998-09-30 2005-12-20 National Semiconductor Corporation ESD protection circuit utilizing floating lateral clamp diodes
WO2001015235A1 (de) * 1999-08-19 2001-03-01 Infineon Technologies Ag Vertikal aufgebautes leistungshalbleiterbauelement
US6576516B1 (en) * 2001-12-31 2003-06-10 General Semiconductor, Inc. High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and diffusion from regions of oppositely doped polysilicon
EP1671374B1 (en) * 2003-10-08 2018-05-09 Toyota Jidosha Kabushiki Kaisha Insulated gate type semiconductor device and manufacturing method thereof
KR20080100265A (ko) * 2003-12-19 2008-11-14 써드 디멘존 세미컨덕터, 인코포레이티드 종래의 종단을 갖는 수퍼 접합 장치를 제조하는 방법
JP4417962B2 (ja) * 2003-12-19 2010-02-17 サード ディメンジョン (スリーディ) セミコンダクタ インコーポレイテッド 超接合デバイスの製造での平坦化方法
US7052982B2 (en) * 2003-12-19 2006-05-30 Third Dimension (3D) Semiconductor, Inc. Method for manufacturing a superjunction device with wide mesas
US7023069B2 (en) * 2003-12-19 2006-04-04 Third Dimension (3D) Semiconductor, Inc. Method for forming thick dielectric regions using etched trenches
JP4928947B2 (ja) * 2003-12-19 2012-05-09 サード ディメンジョン (スリーディ) セミコンダクタ インコーポレイテッド 超接合デバイスの製造方法
US7439583B2 (en) * 2004-12-27 2008-10-21 Third Dimension (3D) Semiconductor, Inc. Tungsten plug drain extension
TWI401749B (zh) * 2004-12-27 2013-07-11 Third Dimension 3D Sc Inc 用於高電壓超接面終止之方法
KR20080028858A (ko) * 2005-04-22 2008-04-02 아이스모스 테크날러지 코포레이션 산화물 라인드 트렌치를 갖는 슈퍼 접합 장치 및 그 제조방법
US20070012983A1 (en) * 2005-07-15 2007-01-18 Yang Robert K Terminations for semiconductor devices with floating vertical series capacitive structures
US7446018B2 (en) 2005-08-22 2008-11-04 Icemos Technology Corporation Bonded-wafer superjunction semiconductor device
US7723172B2 (en) 2007-04-23 2010-05-25 Icemos Technology Ltd. Methods for manufacturing a trench type semiconductor device having a thermally sensitive refill material
US8580651B2 (en) * 2007-04-23 2013-11-12 Icemos Technology Ltd. Methods for manufacturing a trench type semiconductor device having a thermally sensitive refill material
EP2208229A4 (en) 2007-09-21 2011-03-16 Fairchild Semiconductor SUPER TRANSITION STRUCTURES FOR PERFORMANCE ARRANGEMENTS AND MANUFACTURING PROCESSES
US20090085148A1 (en) * 2007-09-28 2009-04-02 Icemos Technology Corporation Multi-directional trenching of a plurality of dies in manufacturing superjunction devices
US7846821B2 (en) 2008-02-13 2010-12-07 Icemos Technology Ltd. Multi-angle rotation for ion implantation of trenches in superjunction devices
US8030133B2 (en) 2008-03-28 2011-10-04 Icemos Technology Ltd. Method of fabricating a bonded wafer substrate for use in MEMS structures
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
JP5271022B2 (ja) * 2008-10-01 2013-08-21 株式会社豊田中央研究所 半導体装置
US8154078B2 (en) * 2010-02-17 2012-04-10 Vanguard International Semiconductor Corporation Semiconductor structure and fabrication method thereof
US9105682B2 (en) * 2011-02-28 2015-08-11 Infineon Technologies Austria Ag Semiconductor component with improved dynamic behavior
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
CN102420251A (zh) * 2011-12-05 2012-04-18 电子科技大学 一种具有非均匀浮岛结构的vdmos器件
TWI587503B (zh) * 2012-01-11 2017-06-11 世界先進積體電路股份有限公司 半導體裝置及其製造方法
US8946814B2 (en) 2012-04-05 2015-02-03 Icemos Technology Ltd. Superjunction devices having narrow surface layout of terminal structures, buried contact regions and trench gates
US8710620B2 (en) * 2012-07-18 2014-04-29 Infineon Technologies Ag Method of manufacturing semiconductor devices using ion implantation
CN103151392A (zh) * 2013-02-07 2013-06-12 电子科技大学 一种带有p型氮化镓埋层的垂直氮化镓基异质结场效应晶体管
US9236458B2 (en) * 2013-07-11 2016-01-12 Infineon Technologies Ag Bipolar transistor and a method for manufacturing a bipolar transistor
CN104810408A (zh) * 2014-01-24 2015-07-29 无锡华润华晶微电子有限公司 一种超势垒整流器件及其制造方法
US10340885B2 (en) 2014-05-08 2019-07-02 Avago Technologies International Sales Pte. Limited Bulk acoustic wave devices with temperature-compensating niobium alloy electrodes
CN104167442B (zh) * 2014-08-29 2017-04-12 电子科技大学 一种具有P型GaN岛的垂直氮化镓基异质结场效应晶体管
EP3222950B1 (en) * 2014-11-20 2019-01-02 Nissan Motor Co., Ltd Coat drying device and coat drying method
CN106298974B (zh) * 2015-05-22 2019-07-05 朱江 一种半导体结装置
CN105390536A (zh) * 2015-09-30 2016-03-09 深圳市可易亚半导体科技有限公司 绝缘栅双极型晶体管及其制备方法
GB201604796D0 (en) 2015-11-10 2016-05-04 Analog Devices Global A combined isolator and power switch
US9698594B2 (en) 2015-11-10 2017-07-04 Analog Devices Global Overvoltage protection device, and a galvanic isolator in combination with an overvoltage protection device
US9653455B1 (en) 2015-11-10 2017-05-16 Analog Devices Global FET—bipolar transistor combination
US9935628B2 (en) * 2015-11-10 2018-04-03 Analog Devices Global FET—bipolar transistor combination, and a switch comprising such a FET—bipolar transistor combination
CN105720089B (zh) * 2016-02-16 2018-10-26 上海华虹宏力半导体制造有限公司 超级结及其制造方法
US9704949B1 (en) * 2016-06-30 2017-07-11 General Electric Company Active area designs for charge-balanced diodes
CN106340535A (zh) * 2016-08-01 2017-01-18 苏州捷芯威半导体有限公司 一种半导体器件及其制造方法
CN110224017A (zh) * 2019-04-30 2019-09-10 上海功成半导体科技有限公司 超结器件结构及其制备方法
CN110212015A (zh) * 2019-04-30 2019-09-06 上海功成半导体科技有限公司 超结器件结构及其制备方法
CN111370469A (zh) * 2020-04-30 2020-07-03 上海华虹宏力半导体制造有限公司 超级结器件结构及其制造方法
CN114220848B (zh) * 2022-02-22 2022-05-10 浙江大学 一种快速开通的浮岛器件及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218226A (en) * 1989-11-01 1993-06-08 U.S. Philips Corp. Semiconductor device having high breakdown voltage

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404295A (en) 1964-11-30 1968-10-01 Motorola Inc High frequency and voltage transistor with added region for punch-through protection
US3497777A (en) * 1967-06-13 1970-02-24 Stanislas Teszner Multichannel field-effect semi-conductor device
US3564356A (en) 1968-10-24 1971-02-16 Tektronix Inc High voltage integrated circuit transistor
JPS5238889A (en) * 1975-09-22 1977-03-25 Mitsubishi Electric Corp Vertical junction type field effect transistor
US4868624A (en) * 1980-05-09 1989-09-19 Regents Of The University Of Minnesota Channel collector transistor
GB2089119A (en) * 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
DE3476945D1 (en) * 1984-05-30 1989-04-06 Max Planck Gesellschaft A semiconductor device for detecting electromagnetic radiation or particles
JP2577330B2 (ja) * 1986-12-11 1997-01-29 新技術事業団 両面ゲ−ト静電誘導サイリスタの製造方法
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US4821095A (en) * 1987-03-12 1989-04-11 General Electric Company Insulated gate semiconductor device with extra short grid and method of fabrication
DE69034136T2 (de) * 1989-08-31 2005-01-20 Denso Corp., Kariya Bipolarer transistor mit isolierter steuerelektrode
CN1019720B (zh) * 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
KR940006702B1 (ko) * 1991-06-14 1994-07-25 금성일렉트론 주식회사 모스패트의 제조방법
JP2570022B2 (ja) * 1991-09-20 1997-01-08 株式会社日立製作所 定電圧ダイオード及びそれを用いた電力変換装置並びに定電圧ダイオードの製造方法
JPH06196723A (ja) * 1992-04-28 1994-07-15 Mitsubishi Electric Corp 半導体装置及びその製造方法
JPH06163907A (ja) * 1992-11-20 1994-06-10 Hitachi Ltd 電圧駆動型半導体装置
US5418376A (en) * 1993-03-02 1995-05-23 Toyo Denki Seizo Kabushiki Kaisha Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure
DE4309764C2 (de) * 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
CN1035294C (zh) 1993-10-29 1997-06-25 电子科技大学 具有异形掺杂岛的半导体器件耐压层
US5510287A (en) * 1994-11-01 1996-04-23 Taiwan Semiconductor Manuf. Company Method of making vertical channel mask ROM
US6011298A (en) * 1996-12-31 2000-01-04 Stmicroelectronics, Inc. High voltage termination with buried field-shaping region
US6081009A (en) * 1997-11-10 2000-06-27 Intersil Corporation High voltage mosfet structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218226A (en) * 1989-11-01 1993-06-08 U.S. Philips Corp. Semiconductor device having high breakdown voltage

Also Published As

Publication number Publication date
US7227197B2 (en) 2007-06-05
CN1102274A (zh) 1995-05-03
US6936867B2 (en) 2005-08-30
US20120040521A1 (en) 2012-02-16
US20030160281A1 (en) 2003-08-28
US7271067B2 (en) 2007-09-18
US20090130828A1 (en) 2009-05-21
US20050035406A1 (en) 2005-02-17
US20070272999A1 (en) 2007-11-29
US7498614B2 (en) 2009-03-03
US6635906B1 (en) 2003-10-21
US20060177995A1 (en) 2006-08-10
US8071450B2 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
CN1035294C (zh) 具有异形掺杂岛的半导体器件耐压层
CN1040814C (zh) 一种用于半导体器件的表面耐压区
CN1215570C (zh) Mos晶体管组件
CN1314091C (zh) 具有内嵌的沟槽肖特基整流器的沟槽dmos晶体管
CN1244160C (zh) 半导体器件
CN1211844C (zh) 功率mosfet及利用自对准体注入制作其的方法
CN1656610A (zh) 沟槽栅半导体器件及制造方法
CN101034526A (zh) 等离子显示装置
CN1019720B (zh) 半导体功率器件
CN1311560C (zh) 横向低侧高压器件及高侧高压器件
CN100568534C (zh) 具有栅极场板的薄膜soi厚栅氧功率器件
CN1528020A (zh) 具有较低栅极电荷结构的沟槽mosfet
CN1799145A (zh) 具有边缘终止结构的半导体器件及其制造方法
CN1589499A (zh) 具有多晶硅源极接触结构的沟槽mosfet器件
CN116093146A (zh) 一种分段式分离栅sgt mosfet结构
CN87106746A (zh) 半导体元件
CN2879425Y (zh) 高压元件
CN1258229C (zh) 具有多数载流子累积层作为子集电极的双极晶体管
CN1050226C (zh) 半导体器件
CN1799144A (zh) 半导体器件的端子结构及其制造方法
CN110518060B (zh) 横向变掺杂结终端结构
CN1130809A (zh) 具有电子施主的半导体二极管
CN1809931A (zh) 沟槽mos结构
CN1822396A (zh) 一种垂直双扩散金属氧化物半导体功率器件
CN216213471U (zh) 一种半导体功率器件结构

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent for invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: PATENTEE; FROM: ELECTRONIC SCIENCE AND TECHNOLOGY UNIV. TO: POWER MOSS SOFITEL TECHNOLOGY CO., LTD.

CP03 Change of name, title or address

Address after: Texas in the United States

Patentee after: Dynamic Moss non Technology Ltd

Address before: No. two, Jianshe North Road, Sichuan City, Chengdu Province, No. four

Patentee before: University of Electronic Science and Technology of China

ASS Succession or assignment of patent right

Owner name: DYNAMIC MOSS SOFITEL TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: ELECTRONIC SCIENCE AND TECHNOLOGY UNIV.

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT PATENT AGENCY; FROM: ELECTRONIC SCIENCE AND TECHNOLOGY UNIV. PATENT OFFICE; TO: LONGTIAN INTERNATIONAL PATENTS + TRADEMARKS AGENT CO., LTD.

Free format text: CORRECT AGENT; FROM: SHENG MINGJIE; TO: CHEN HONG

Effective date: 20010709

TR01 Transfer of patent right

Effective date of registration: 20010709

Address after: Texas in the United States

Agent after: Chen Hong

Patent agency after: Lung Tin International Patent & Trademark Agency Ltd.

Patentee after: Dynamic Moss non technology limited liability company

Address before: 610054 No. two, Jianshe North Road, Chengdu, Sichuan, four

Agent before: Sheng Mingjie

Patent agency before: Patent Agency, University of Electronic Science and Technology of China

Patentee before: University of Electronic Science and Technology of China

ASS Succession or assignment of patent right

Owner name: THREE-DIMENSIONAL SEMICONDUCTOR CO., LTD.

Free format text: FORMER OWNER: DYNAMIC MOSS SOFITEL TECHNOLOGY CO., LTD.

Effective date: 20020927

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20020927

Address after: Arizona, USA

Patentee after: 3D semiconductor Limited by Share Ltd

Address before: Texas in the United States

Patentee before: Dynamic Moss non technology limited liability company

C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20131029

Granted publication date: 19970625