CN1044801A - 自撑体的制备方法与该法制备的产品 - Google Patents

自撑体的制备方法与该法制备的产品 Download PDF

Info

Publication number
CN1044801A
CN1044801A CN90100133A CN90100133A CN1044801A CN 1044801 A CN1044801 A CN 1044801A CN 90100133 A CN90100133 A CN 90100133A CN 90100133 A CN90100133 A CN 90100133A CN 1044801 A CN1044801 A CN 1044801A
Authority
CN
China
Prior art keywords
parent metal
metal
boron nitride
boron
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN90100133A
Other languages
English (en)
Other versions
CN1022102C (zh
Inventor
戴尼·雷·怀特
苔利·戴尼斯·克拉尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxide Technology Co LP
Original Assignee
Lanxide Technology Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxide Technology Co LP filed Critical Lanxide Technology Co LP
Publication of CN1044801A publication Critical patent/CN1044801A/zh
Application granted granted Critical
Publication of CN1022102C publication Critical patent/CN1022102C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12007Component of composite having metal continuous phase interengaged with nonmetal continuous phase

Abstract

通过使母体金属反应性渗透氮化硼材料典型地制备含有含硼化合物、含氮化合物和金属的自撑体。待渗透块料含一种或多种与氮化硼混合的惰性填料,以便通过反应性渗透制备一种复合体,该复合体含有理置填料的基质。处于含有填料的复合体中的基质包含一种或多种金属、含硼化合物和含氮化合物。可以改变或控制反应物相对量及过程条件以便制备含有可变体积百分比的陶瓷、金属和/或孔隙率的产物。待渗透块料放在具有排放装置的耐火容器中。

Description

本发明涉及制备自撑体的新方法与通过该方法制备的新产品。更具体地说,本发明涉及通过使熔融母体金属反应性渗透含有氮化硼与视具体情况存在的一种或多种惰性填料的床层或块料从而制备含有一种或多种含硼化合物例如硼化物或硼化物与氮化物的自撑体的方法。
近年来,陶瓷代替金属在建筑上的应用已愈来愈引起人们的关注。原因是,与金属相比,陶瓷在某些性能方面如耐腐蚀性,硬度,耐磨性,弹性模数和耐火性能具有相对优越性。
但是,陶瓷应用于上述目的时的一个主要问题是制造所需陶瓷结构的可行性及其造价。例如,利用热压法,反应烧结法和反应热压法制造陶瓷硼化物体是熟知的方法。在热压法中,所需硼化物的细粉颗粒在高温高压下被压实。反应热压法包括例如在高温高压下,将硼或金属硼化物与适当的含金属粉压在一起。Clougherty的美国专利3,937,619叙述了将粉状金属与粉状二硼化物的混合物热压制备硼化物体的方法。Brun的美国专利4,512,946叙述了将陶瓷粉末与硼和金属氢化物一起热压制备硼化物复合体的方法。
但是,这些热压法需要特殊的操作过程和昂贵的特殊设备,对所制造的陶瓷部件的尺寸和形状有限制,而且一般都生产率低造价高。
另外,陶瓷用于建筑上的第二个主要问题是陶瓷通常缺乏韧性(即损坏容限或抗断裂性)。在应用时,缺乏韧性往往容易在中度拉应力情况下引起陶瓷突然的灾难性断裂。这种缺乏韧性在整块陶瓷硼化物中是特别常见的。
解决上述问题的一个方法是使用与金属化合的陶瓷,例如金属陶瓷或金属基复合体。该方法的目的是要获得陶瓷最佳性能(如硬度和/或刚性)和金属最佳性能(如延展性)的综合平衡。Fresnel等人的美国专利4,585,618叙述了制造金属陶瓷的方法,其中颗粒反应物的混合物与熔融金属接触并反应,从而制备烧结的自一支撑陶瓷体。熔融金属至少渗透一部分所得陶瓷体。这种反应混合物的例子有含钛、铝和氧化硼(均为颗粒状)的反应混合物,这种混合物与熔融铝池接触时被加热。反应混合物发生反应生成二硼化钛和氧化铝陶瓷相,陶瓷相被熔融铝渗透。因此,在该方法中,反应混合物中的铝主要是作为还原剂。此外,熔融铝外池不作为硼化物形成反应的前体金属源,而作为一种填充所得陶瓷结构的孔隙的手段。从而获得可湿润和抗熔融铝的金属陶瓷。在制造铝电池中,这些金属陶瓷特别适于作为与产生的熔融铝接触但最好与熔融的冰晶石不接触的成分。但该方法没有采用碳化硼。
Reeve等人的欧洲专利申请0,113,249公开了一种制造金属陶瓷的方法:首先在熔融金属相央原处形成陶瓷相分散颗粒,然后维持这种熔融条件足够长时间以形成交互陶瓷网络。通过钛盐与硼盐在熔融金属如熔融铝中反应来说明陶瓷相的形成。陶瓷硼化物在原处生成并成为交互网络结构。然而没有发生渗透,而且在熔融金属中生成沉淀物硼化物。该申请书的两个实施例都说明没有生成颗粒Tial3,AlB2或AlB12但生成颗粒TiB2,这表明,铝不是硼化物的金属前体。在该方法中,也没有提出使用碳化硼作为前体材料。
Gazza等人的美国专利3,864,154号披露了一种利用渗透制备的陶瓷金属体系。AlB12密实体在真空下被熔融铝渗透,得到含有这些成分的体系。所制备的其他材料包括SiB6-Al;B4C-Al/Si和AlB12-B-Al。没有提出任何一种反应,没有提出利用渗透金属制造复合体,也没有提出嵌入惰性填料的反应产物或作为复合体部分的反应产物。
Halverson等人的美国专利4,605,440披露:为了获得B4C-Al复合体,将B4C-Al密实体(通过冷压B4C和Al粉末的均匀混合物而得)在直空中或在氩气氛中烧结。没有提及反应产物嵌入惰性填料以获得具有填料优越性能的复合体。
尽管制造金属陶瓷材料这些概念在某些场合已产生有希望的结果,但是通常仍需要更有效和更经济的方法制备含硼化物材料。
Danny    R.White,Michael    K.Aghajanian和T.Dennis    Claar在1987年7月15日申请的共同未决美国专利申请073,533(题为“自支撑体的制备方法及其所制备的产品”)叙述了与生产含硼化物材料有关的许多上述问题。
简要归纳申请书′533的内容可知,自一支撑陶瓷体是在碳化硼存在下,利用母体金属渗透作用和反应方法(即,反应性渗透作用)制备的。特别地,碳化硼床层或碳化硼体被熔融的母体金属渗透和反应,而床层可全部由碳化硼组成,因此,所得自一支撑体包括一种或多种母体金属含硼化合物,该化合物包括母体金属硼化物或母体金属碳化硼或两者,一般还包括母体金属碳化物。该申请还披露:待渗透的碳化硼体还可含有一种或多种与碳化硼混合的惰性填料。因此,通过结合惰性材料,所得产物将是一种具有基体的复合体,该基体是利用母体金属的反应性渗透作用制备的,所说基体包括至少一种含硼化合物,还可以包括母体金属碳化物,该基体嵌入惰性填料。还应注意,在上述方案中不论哪种情况(即,有填料或无填料),最终复合体产物均可以包括残余金属,如原始母体金属的至少一种金属成分。
从广义上讲,在申请书′533公开的方法中,含碳化硼体放置在与熔融的金属体或金属合金体相邻或接触的位置上,熔融的金属体或金属合金在一个特定的温域内、在基本惰性环境中熔化。熔融的金属渗透碳化硼体并与碳化硼反应生成至少一种反应产物。碳化硼可被熔融母体金属至少部分还原,从而生成母体金属含硼化合物(例如,在该工艺温度条件下,生成母体金属硼化物和/或硼化合物)。典型情况下,还生成母体金属碳化物,而在特定情况下,生成母体金属碳硼化物。至少部分反应产物与金属接触,并利用毛细作用使熔融的金属吸到或迁移到未反应的碳化硼。迁移的金属形成另外的母体金属,硼化物,碳化物和/或碳硼化物并且陶瓷体继续形成或扩展直到或是母体金属或碳化硼已被消耗掉或是反应温度变化到反应温域以外的温度。所得结构物包括一种或多种母体金属硼化物,母体金属硼化合物,母体金属碳化物,金属(如申请书′533所述,包括合金和金属互化物)或空隙或上述任意组合。而且,这几相在整个陶瓷体中可以或不以一维或多维相互连接。可以通过改变一种或多种条件,例如改变碳化硼体的初密度,碳化硼和母体金属的相对含量,母体金属的合金用填料稀释碳化硼,温度和时间,控制含硼化合物(即硼化物和硼化合物)、含碳化合物和金属相的最终体积分数以及互连度。碳化硼转化为母体金属硼化物、母体金属硼化合物和母体金属碳化物的转化率较好是至少约50%,最好是至少约90%。
在申请书′533中采用的典型环境或气氛是在该工艺条件下相对惰性或非反应性的环境或气氛。该申请特别指出,例如氩气或真空是适宜的工艺气氛。而且,据披露,如果使用锆作为母体金属,则所得复合体包括二硼化锆,碳化锆和残余的金属锆。该申请还披露,如果在该方法中使用铝母体金属,则所得产物是碳硼化铝如Al3B48C2,AlB12C2和/或AlB24C4,并残存铝母体金属和其他未反应、未氧化母体的金属成分。在该工艺条件下其他适用的母体金属还披露有硅,钛,,镧,铁,钙,钒,铌,镁和铍。
共同未决的美国专利申请137,044(以下称作“申请书′044”)是申请书′533的继续部分申请,〔申请人:Terry Dennis Claar,Steven Michael Mason,Kevin Peter Pochopien和Danny Ray White,申请日:1987年12月23日,题为“自一支撑体的制备方法及其所制备的产品”。〕申请书′044披露,在某些情况下,将碳给予体(即,含碳化合物)加到将要被熔融母体金属渗透的碳化硼床层或碳化硼体中是理想的。具体讲,据该申请书公开,碳给予体能够与母体金属反应生成母体金属碳化物相,这种相能改进所得复合体的机械性能(与没有使用碳给予体所制备的复合体比较)。因此,据透露可改变或控制反应物浓度和工艺条件以获得含有不同体积百分数的陶瓷化合物,金属和/或孔隙的陶瓷体。例如,通过向碳化硼体加碳给予体(如石墨粉或碳黑)。可以调节母体金属硼化物/母体金属碳化物的比率。特别是,如果使用锆作为母体金属,则会降低ZrB2/ZrC的比率(即,由于向碳化硼体加入碳给予体可产生更多的ZrC)。
申请书′044还公开了石墨模具的使用,该石墨模具有适当数量的、具有特定尺寸、形状和位置的通气孔,这些通气孔起着排气的作用,能在母体金属反应性渗透前沿渗透预型坯时除去例如预型坯或填料中收集到的任何气体。
在另一个相关申请,共同未决美国专利申请137,382(以下称作申请书′382”)中,公开了其他改进方案。该申请是Terry Dennis Claar和Garhard Hans Schiroky于1987年12月23日申请的,题为“利用渗碳法改性陶瓷复合体的方法及其制品”。具体讲,申请书′382公开的是:按申请书′′533介绍的方法制备的陶瓷复合体暴露于气体渗碳物中能得到改性。例如,通过将复合体包埋在石墨床中并使至少部分石墨床在控制气氛炉中与潮气或氧气反应能制得上述气体渗碳物。但是炉内气氛一般应主要由非反应性气体如氩气构成。还不清楚是否氩气中的杂质提供了必需的O2以形成渗碳物,还是氩气仅起着含有杂质的媒介作用(这些杂质是在石墨床或复合体中某些成份挥发而产生的)。此外,气体渗碳物可以在加热复合体过程中直接引入控制气氛炉内。
一旦气体渗碳物被引入控制气氛炉内,应按如此方式设计组件以使渗碳物能与至少一部分埋在散填石墨粉中的复合体表面接触,据认为,渗碳物中的碳或来自石墨床层中的碳将溶解在相互连接的碳化锆相中,然后溶解的碳迁移遍布基本上所有的复合体(如果需要可以利用空位扩散法)。而且,申请书′382还披露:通过控制时间、复合体暴露在渗碳物的程度和/或发生渗碳作用时的温度,可在复合体表面形成渗碳区或渗碳层。利用这种方法可形成一层包覆有高金属含量和高断裂硬度的复合材料的坚硬、耐磨表面。
因此,如果生成的复合体含有约5~30%(体积)的残余母体金属相,则能利用后渗碳处理改性这种复合体,使所形成的复合体含有约0~2%(体积),典型是约0.5~2%(体积)的母体金属。
上述每篇共同所有的美国专利申请的内容在此作为参考文献引用。
按照本发明,在氮化硼存在下利用母体金属渗透与反应方法(即反应性渗透)制备自撑陶瓷体。借助熔融母体金属渗透氮化硼床层或块料,床层完全由氮化硼组成,从而产生一种含有一种或多种母体金属含硼化合物的自撑体,上述化合物中包含母体金属硼化物或母体金属氮化物或者二者同时被包括在内。作为可供选择的另一方案,待渗透的块料可以含有一种或多种与氮化硼混合的惰性填料以便通过反应性渗透形成复合体,该复合体含有一种或多种含硼化合物的基质并且还可以包含母体金属氮化物和残存下来未反应或未氧化的母体金属组分。在本发明的具体实施方案中,含有母体金属含硼化合物、母体金属含氮化合物和未反应或未氧化母体金属的基质嵌入填料。在这两个实施方案中,最终产品可以包含以一种或多种母体金属组分形式存在的金属。另外,在某些情况下将供碳材料(即含碳化合物)加至氮化硼中是必要的,该供碳材料能够与母体金属反应形成母体金属碳化物相,从而对复合体的机械性能产生调节作用。可以改变或控制反应剂浓度及过程条件以便制备其中陶瓷化合物、金属和/或孔隙率的体积百分比变化的复合体。
从广义上讲,在本发明方法中,将含有氮化硼的块料放在熔融金属或金属合金附近或者使二者相接触,金属或金属合金在基本上呈惰性的环境中、在特定的温度范围内被熔化。熔融金属渗透块料并且与氮化硼反应形成一种或多种反应产物。氮化硼在过程温度条件下至少可被熔融母体金属部分地还原成为母体金属含硼化合物,例如母体金属硼化物和/或硼化合物。典型地,还可以制备母体金属氮化物。保持至少一部分反应产物与金属相接触,借助毛细作用将熔融金属转移至未反应的氮化硼。这一被转移的金属形成附加的母体金属硼化物与氮化物,陶瓷体不断地形成与发展直至母体金属或氧化硼已经被耗尽为止,或者直至反应温度超出限定的反应温度范围为止。所产生的结构包含一个或多个母体金属硼化物、母体金属硼化合物、母体金属氮化物、金属(包括合金和金属互化物)或空隙或者它们的组合体,这些多个相可以或不可以以一维或多维内连。通过改变诸如氮化硼体的初始密度、氮化硼与母体金属的相对数量、母体金属形成合金的情况、用填料稀释氮化硼的情况、温度与时间之类条件中的一种或多种可以控制含硼化合物(即硼化物和硼化合物)、含氮化合物与金属相的最终体积分数以及内连程度。
此外,通过将供碳材料(例如石墨粉末或碳黑)加至氮化硼块料之中,可以形成用于调节或增强一种或多种最终产物特性的母体金属碳化物相。
典型地、氮化硼块料至少在一定程度上具备多孔性以便使母体金属借助毛细作用通过反应产物。毛细作用之所以能够存在,其原因要么在于反应期间发生的体积变化不会完全堵塞孔隙从而使母体金属能够连续通过,要么在于反应产物的表面能使得至少一部分其颗粒边界可被母体金属渗透从而使反应产物保持了可被熔融金属渗透的特性。
在另一实施方案中,通过将熔融母体金属转移进入与一种或多种惰性填料混合的氮化硼床层制备复合体。在此实施方案中,将氮化硼加入适宜的填料中,随后将它们放在熔融母体金属附近或使它们与母体金属相接触。用一个在过程条件下基本上不会被熔融金属润湿并且不会与熔融金属反应的分离床层支撑该组合体。熔融母体金属渗透氮化硼填料混合物并且与氮化硼反应从而形成一种或多种含硼化合物。所产生的自撑陶瓷-金属复合体典型地为一种密实的微观结构,其中包含一种被含有含硼化合物的基质埋置的填料,并且还可以包含大量氮化物与金属。只需要少量氮化硼以便促进反应性渗透过程。因此,所形成的基质的含量可以变化,主要由金属组分构成因而呈现母体金属的特性;当采用高浓度氮化硼时,会形成相当多的含硼化合物相或相当多的含氮化合物相,或者二者同时形成,它们确定了基质特性。填料有助于增强复合体的特性、降低复合体的原料成本或调节含硼化合物和/或含氮化合物生成反应的动力学特性以及伴随而来的放热速率。
在另一实施方案中,待渗透材料被制成其形状与所需要的最终复合体的几何形状相对应的预型体。随后借助熔融母体金属反应性渗透预型体制成具备网状或近似网状预型体的复合体,从而最大限度地减少了费用昂贵的成品机加工与精制操作。此外,为了有助于减少成品机加工与精制操作,可以在预型体周围设置阻挡材料。石墨模具特别适用作诸如锆、钛或铪之类与由例如碳化硼、氮化硼、硼与碳制成的预型体组合使用的母体金属的阻挡层。此外,通过在上述石墨模具中打通适当数目具有特殊尺寸与形状的透孔可以减少典型地出现在本发明复合体中的孔隙数量。典型地,有许多孔被设置在模具的底部或朝向发生反应性渗透的部分。这些孔起着在母体金属反应性渗透前沿渗透预型体之时排除例如被截留于预型体中的氩气的作用。
另外,在本文的相关专利申请部分所讨论的方法同样适用于本发明。
用于本文的某些术语的定义如下所示:
“母体金属”是指金属,例如锆,它们是多晶氧化反应产物即母体金属氮化物、母体金属硼化物或其它母体金属化合物的前体,其中包括纯的或相对纯的金属、其中具备杂质和/或合金组分的市售金属以及其中主要组分为金属前体的合金;当选用其特定的金属例如锆作为母体金属时,除非另有说明所指的就是上述定义的金属。
“母体金属硼化物”与“母体金属硼化合物”是指通过氮化硼与母体金属反应而生成的含硼反应产物,其中包括硼与母体金属的二元化合物以及三元或多元化合物。
“母体金属氮化物”是指氮化硼与母体金属反应生成的含氮反应产物。
“母体金属碳化物”是指碳源与母体金属反应生成的含碳反应产物。
图1为用于形成本发明自撑体的组合体的横截面示意图;
图2为用于形成本发明自撑体的组合体的横截面示意图;
图3和图4所示为用于本发明的新型石墨模具;
图5为将实施例1生产的自撑体放大50倍得到的横截面光电显微照片。
图6为将实施例1生产的自撑体放大400倍得到的横截面光电显微照片;
图7为将实施例2生产的自撑体放大400倍得到的横截面光电显微照片;
图8所示为实施例4生产的样品;
图9所示为实施例6生产的样品。
按照本发明,通过熔融母体金属反应性渗透含有氮化硼的块料从而形成包含母体金属与氮化硼的反应产物与一种或多种母体金属组分的含多晶陶瓷体来制备自撑体。在过程条件下典型地为固体的氮化硼以微粒或粉末形式存在为佳。进行方法时应选择在过程条件下呈相对惰性或非反应性的环境或气氛。例如,氩气或真空是适宜的过程气氛。所得到的产物含有(a)母体金属硼化物、(b)硼化合物、(c)母体金属氮化物和(d)金属中的至少一种。产物中的组分与比例在很大程度上取决于所选用的母体金属及其组成与反应条件。此外,所得到的自撑体具备空隙。
在本发明的优选实施方案中,使母体金属与氮化硼块料或床层彼此相邻以便在朝向床层的方向上发生反应性渗透。经过预成型的床层包括诸如补强填料之类在过程条件下基本上呈惰性的填料。这些填料通常被含有母体金属与氮化硼的反应产物的基质埋置,该基质中还含有未氧化或未反应的母体金属组分。在基本上不扰动或移动床层的条件下反应产物进入床层。因此,无需借助会对床层的配置产生干扰或破坏作用的外力、无需借助棘手的或费用昂贵的高温高压方法及设备来制备反应产物。母体金属反应性渗透含有氮化硼、以颗粒或粉末状为佳的填料体可以产生典型地含有填料和母体金属硼化物以及母体金属氮化物的复合体。选用铝作为母体金属,除了填料外,产物中还含有铝的硼化物或氮化物、未反应的母体金属例如铝以及其它可能存在的未反应或未氧化的母体金属。若选用锆为母体金属,所形成的复合体除了填料以外还含有锆的硼化物或碳化物以及未反应或未氧化的母体金属或母体金属的组分。
尽管本发明下文中的优选实施方案具体谈到使用锆或铝作为母体金属,不过那只是为了便于描述。还可以选用诸如硅、钛、铪、镧、铁、钙、钒、铌、镁、钽、铬、钼、钨和铍之类的其它母体金属,其实例如下文所述。
参照图1,将作为前体的母体金属10例如锆制成铸块、短条、棒材、片材等。使金属至少部分地嵌入粒状氮化硼12中。用在过程条件下不会被熔融金属润湿并且不会与熔融金属反应、典型情况下呈粒状的惰性材料14包围该组合件,并且将它们放入坩埚16或其它耐火容器中。母体金属的上表面18暴露于氮化硼之中或全部嵌入氮化硼或者被氮化硼包围,可以忽略惰性床层14。将该组合体放入炉内,以诸如氩气之类惰性气氛存在下为佳、在高于母体金属的熔点但最好是低于所需反应产物的熔点的温度下将其加热从而形成熔融金属体或池。应该理解操作温度范围或优选温度可以超出上述区间。温度范围在很大程度上取决于诸如所形成的复合体中的母体金属组成与所需相之类因素。熔融金属与氮化硼相接触,从而形成反应产物即,母体金属硼化物(例如二硼化锆)和/或母体金属氮化物(例如氮化锆)。一旦继续暴露于氮化硼,残余的熔融金属便沿着进入含氮化硼块料的方向逐渐被吸入反应产物从而在熔融金属与氮化硼的交界处不断地形成反应产物。由该方法制备的产物含有母体金属与氮化硼的反应产物,或者可以含有一种陶瓷-金属复合体以便另外还包含一种或多种未反应或未氧化的母体金属组分。有相当多的氮化硼参加反应形成反应产物,其数量以至少约25%为佳。作为该方法反应产物形成的陶瓷晶体可以是或不是内连产品,不过以三维内连产物为佳,产物中的金属相与所有空隙通常都会至少部分地发生内连。任何空隙都易于由于母体金属相的部分或几乎全部耗尽而产生以便形成附加的反应产物(正如当氮化硼至少以化学计量数量存在的情况下),但是空隙的体积百分比取决于例如温度、时间、母体金属种类与氮化硼块料的孔隙率。
业以发现使用锆、钛和铪作为母体金属按照本发明方法制备的产品为其特征在于具有片晶状结构的母体金属硼化物。典型地,这些片晶未排列好或者随机取向并且由于其破裂挠度和/或拔拉机理而使其断裂韧度得到提高。
在本发明的另一方面,提供了一种包括复合体在内的自撑体,其中含有嵌入基本上惰性的填料的反应产物与视具体情况而存在的金属组分的基质。该基质通过母体金属反应性渗透与氮化硼紧密混合的填料床层或块料而形成。填料可以任何尺寸或形状存在,只要反应产物的动向趋于并且至少部分地淹没填料而不会明显地将其扰动或移动,母体金属便可以任何方式取向。填料可以由诸如陶瓷和/或金属纤维、须晶、颗粒、粉末、棒材、金属丝、金属丝布、耐火布、片材、片晶、网状泡沫结构、实心或空心球体之类适宜的材料组成。特别适用的填料为氧化铝,依据原料与所需的目的特性也可以选用其它氧化物与陶瓷填料。填料可以被疏松地放置或被粘结在一起,其中有便于熔融母体金属填透的裂缝、小孔等。此外,填料可以是均相或非均相物质。必要的话,这些材料可以与任何适宜的不会干扰本发明反应进行或者不会在最终复合体产物中残留任何不需要的副产物的粘合剂相粘结。可以涂敷在过程进行期间易于与氮化硼或熔融金属过度反应的填料以便使填料对过程环境呈惰性。举例来说,如果选用碳纤维作为与母体金属铝组合使用的填料,它易于与熔融铝反应,不过,如果选用例如,氧化铝涂敷该纤维,便可以避免该反应发生。
用一个适宜的耐火容器盛放母体金属和与氮化硼混合的填料床,氮化硼经过适当的取向可以使母体金属反应性渗透填料床并且使复合体得到适当发展,将它们放入炉内并且将其加热至高于母体金属熔点的温度。在此升温条件下,借助毛细作用使熔融母体金属渗透可渗透填料并且使其与氮化硼反应,从而得到所需要的陶瓷或陶瓷金属复合体。此外,为了有助于减少成品机加工与精制操作,可以用阻挡材料包围预型体。石墨模具特别适用作诸如锆、钛或铪之类与由例如,碳化硼、氮化硼、硼和碳制成的预型体组合使用的母体金属的阻挡层。另外,通过在上述石墨模具中打通适宜数目具备特定尺寸和形状的透孔,可以减少典型地存在于本发明复合体中的空隙数量。典型地,许多透孔位于模具的底部或朝向发生反应性渗透的部分。这些孔的作用是排放例如,在母体金属反应渗透前沿渗透预型体时被截留于预型体中的氩气。图3和图4表明预型体42与母体金属铸块43相接触,二者均被盛放在石墨耐火容器41之中。该容器的底部44具有许多用作排放装置的透孔45。透孔45用于在母体金属反应性渗透前沿渗透预型体(即反应性渗透前沿沿着图3中箭头“A”的方向渗透预型体)之时排放被截留于预型体中的氩气。因此可以降低成型复合体中的孔隙率。
图2所示为可被用于生产本发明产物的组合体。氮化硼与任何所需要的惰性填料被制成其形状与目的复合体所需的几何形状相对应的预型体。预型体20上叠加有母体金属前体10,该组合体被坩埚16内的惰性材料14包围。母体金属的上表面18可被暴露或未被暴露。依据填料的特性可以借助许多传统的陶瓷体制备方法(如单轴压制法、均衡压型法、粉浆浇铸法、沉降浇铸法、带形浇铸法、注塑法、纤维丝缠绕法等)中的任何一种制备预型体20。在进行反应性渗透之前通过轻度烧结或者选用不会干扰该方法进行或使不需要的副产物残留于成品之上的各种有机或无机粘合材料可以使填料颗粒、须晶、纤维等得到初步粘结。制得的预型体20具备充分的形状完整性与生坯强度并且可以被熔融金属渗透,其孔隙率以大约5~90%(体积)为佳,以大约25~75%(体积)为更佳。在选用铝作为母体金属的情况下,适宜的填料包括,例如,碳化硅、二硼化钛、氧化铝和十二硼化铝,典型情况下其粒径约为14~1000目,不过,可以选用任何大小的填料混合物。然后使预型体20与熔融母体金属在其一个或多个表面上接触足够的时间使基质完全渗透预型体的表面边界。其结果是形成其形状与目的产品所需形状确切相同的陶瓷-金属复合体,从而最大限度地减少或消除了费用昂贵的成品机加工或研磨操作。
填料中氮化硼的浓度可以在很宽的范围内变化,不过,氮化硼的浓度越低,基质中金属的体积百分比就越高。当氮化硼的用量很少时,所得到的基质为内连金属,分散于金属中的母体金属硼化物和母体金属氮化物数量有限。在无氮化硼存在下,不会发生填料的反应性渗透,在不采用诸如施加外压迫使金属进入填料之类特殊步骤的条件下不可能发生渗透。
由于用于本发明方法的填料中氮化硼的浓度可以在宽范围内变化,所以可以通过改变氮化硼的浓度和/或床层的组成来控制或调节成品的特性。当相对于母体金属用量的氮化硼用量较少从而使块料含有低密度氮化硼时,由于基质的主要成分为金属,所以复合体或基质的特性取决于母体金属的特性、最典型的为可锻性和韧性。该产物适用于低温或中温应用场合。当选用大量氮化硼时,举例来说,正如在将含氮化硼颗粒的混合物紧密充填在填料周围或占据高比例填料组分之间的空间时,易于通过母体金属硼化物和母体金属氮化物控制所形成的基质的特性,此时基质会更加坚硬或者变得可锻性更低或韧性更低。如果严格控制化学计量关系以便使母体金属基本上转化完全,所形成的产物中将含有很少或完全不含有金属,这样有利于产物的高温应用。此外,由于硼化物反应产物同易于与残余或未氧化金属例如存在于产物中的铝反应的氮化硼相比更稳定,所以,尤其是在某些高温应用场合中母体金属基本上转化完全很重要。
在本发明的实施方案中,TiB2被加入氮化硼中以便获得硼化物含量较高的目的产物。这一工艺可被用于其它会对成品的特性产生影响的化合物。举例来说,AlB12可以被加至氮化硼中以便在成品中形成更多的母体金属硼化物,此外,AlB12与母体金属反应形成的铝金属可以与母体金属形成合金或金属互化物,从而影响或提高成品的性能。
在另一实施方案中,将固体氧化剂加至氮化硼床层以便促进渗透。
此外,可以使单质硼与氮化硼床层(包括填料床在内)相互混合以便有助于反应性渗透,在使用铝作为母体金属之时尤为如此。
通过控制渗透条件可以使复合体的特性产生附加的变化。能够加以控制的变量包括氮化硼材料的性质与粒径、渗透温度与时间。举例来说,涉及在低温下与最短的暴露时间内对大氮化硼颗粒所进行的反应性渗透会导致氮化硼部分地转化为含有母体金属硼与母体金属氮化合物。其结果是未反应的氮化硼材料保持微观结构,这样便可以赋予某些应用场合的成品以所需的特性。在高温与延长暴露时间(或许甚至在渗透完成后在此温度保持一段时间)的条件下对氮化硼颗粒进行渗透有助于使母体金属基本上完全转化为母体金属硼化物和母体金属氮化物。氮化硼转化为母体金属硼化物和母体金属氮化物的转化率以至少约为25%为佳。高温下进行渗透(或随后进行高温处理)同样会通过烧结法导致某些复合体组分致密化。另外,如上所述,使适用母体金属数量低于形成母体金属硼化物和母体金属氮化物与填充材料中所形成的空隙所需用量会导致同样适用的多孔体。在该复合体中,依据上述多种因素或条件,孔隙率取值范围约为1~25%(体积),有时会更高。
下列实施例描述了本发明的新型反应产物及其制备方法;然而,这些实施例只供描述之用,并不对本发明构成限制。
实施例1
下列实施例描述钛母体金属反应性渗透氮化硼床层。
将直径约为1英寸(25mm)、高约为1.5英寸(38mm)的工业纯钛的圆柱形铸块埋置于盛放在氧化铝坩埚中的氮化硼颗粒(粒径约为150μm)之中。
将这一由氧化铝坩埚及其内含物组成的组合体放在其中提供有以300μl/分钟流速流动的氩气的感应电炉之中。将该组合体由室温加热至大约1700℃并且在1700℃左右保温大约30分钟。此后,关闭炉子并且使组合体在炉内冷却大约1小时,随后将其从炉子中取出。
肉眼观察结果表明钛母体金属已经反应性渗透氮化硼床层,形成自撑体。对自撑体内部的粉末样品进行X-光衍射分析,结果表明存在钛与氮和硼的化合物(如Ti2N、TiB与TiN),这就证明了钛金属已经与氮化硼床层发生反应。
实施例2
下列实施例描述钛母体金属反应性渗透与铝粉混合的氮化硼床层。
将直径约为1英寸(25mm)、高约为1.5英寸(38mm)的工业纯钛的圆柱形铸块埋置于含有大约89.5g150μm氮化硼粉末与大约22.4g铝粉末的颗粒床中。将其盛放在氧化铝坩埚内。
由氧化铝坩埚及其内含物组成的组合体放在其中提供有以大约500ml/分钟流速流动的氩气的感应电炉中。将该组合体由室温加热至大约1700℃并且在1700℃下保温大约30分钟。此后,关闭炉子并使组合体在炉内冷却大约1小时。
肉眼检察该组合体的结果表明钛母体金属已经反应性渗透氮化硼/铝混合物从而形成自撑体。对其内部的粉末样品进行X-光衍射分析。分析结果表明存在钛与氮和硼的化合物(如TiN,TiB2和TiB),因而证实钛母体金属已经与氮化硼床层反应。这一分析结果还表明至少存在少量AlB10,这一点说明床层中的铝与氮化硼或解离的硼发生了反应。
实施例3
下列实施例表明锆母体金属反应性渗透氮化硼颗粒床。
将直径约为1英寸(25mm)、高约1.5英寸(38mm)的工业纯锆母体金属的圆柱形铸块埋置在被盛放在氧化铝坩埚中的氮化硼颗粒(粒径约为150μm)之中。
将由氧化铝坩埚及其内含物组成的组合体放入其中提供有流速约为500ml/分钟的氩气的感应电炉之中并且将其由室温加热至大约1900℃,在1900℃左右保持约1小时。此后,关闭炉子并且使组合体在炉中冷却约1小时。
肉眼检查组合体的结果表明锆金属已经反应性渗透氮化硼床层从而形成自撑体。
实施例4
下列实施例说明锆母体金属反应性渗透氮化硼颗粒床。
将直径约为5/8英寸(16mm)、高约为3/4英寸(19mm)的锆(品位702,由Teledyne-Wah-Chang-Albany出口)圆柱体铸块埋置于被盛放在石墨坩埚中的UCARHCM氮化硼颗粒(粒径小于48目、大于200目)多孔块料中。铸块的上表面暴露于环境气氛中。
将由石墨坩埚及其内含物组成的组合体放入其中氩气流速约为500ml/分钟的电阻加热炉中。将其在大约4小时内加热至1900℃左右,随后在1900℃左右保温约1小时。使组合体冷却约12小时后,将其从炉中取出。
肉眼检查组合体的结果表明锆母体金属已经反应性渗透氮化硼床层,形成了如图8所示其内腔反形重现园柱形锆铸块形状的自撑体。对其内部粉末进行X-光衍射分析,结果表明至少存在一种锆与硼形成的化合物(ZrB2),这一点证实锆母体金属已经与氮化硼床层发生反应。
实施例5
下列实施例说明钛反应性渗透氮化硼颗粒床。
将直径约为1英寸(25mm)、高约3/8英寸(10mm)的2级钛圆柱形铸块放在被盛放于内径为1英寸(25mm)的石墨坩埚中、大约0.5英寸(13mm)厚、直径约为1英寸(25mm)的HTP-40氮化硼(粒径小于40目而大于150目)圆柱形预型体型部。通过将一层氮化硼颗粒放入石墨坩埚并且经过2分钟的振动装填后便可以形成预型体。在进行该装填步骤之前为了便于使氮化硼层致密化可以将少量金属放在氮化硼层顶部。在制备预型体时未采用任何粘合剂。将由石墨坩埚及其内含物组成的组合体放在其中被提供流速为500ml/分钟的氩气流的电阻加热炉中,将其由室温加热至大约1750℃,历时约3小时。在1750℃左右保温约2小时后,使组合体在炉内冷却约12小时,随后将其从炉内取出。
肉眼检查该组合体的结果表明钛母体金属已经反应性渗透氮化硼预型体从而形成自撑体。对其内部的粉末样品进行X-光衍射分析,分析结果表明存在钛与氮与硼的化合物(如Ti2N和TiB),这一点证实钛母体金属已经与氮化硼床层发生反应。
实施例6
下列实施例说明钛母体金属反应性渗透氮化硼颗粒床。
将直径约为5/8英寸(16mm)、高约为3/4英寸(19mm)的2级钛圆柱形铸块埋置在被盛放于氧化铝坩埚中的粒状氮化硼(UCAR HCM BN,由联合碳化物公司出品,粒径小于48目而大于200目)块料之中。钛铸块的上表面暴露在环境气氛中。将由氧化铝坩埚及其内含物组成的组合体放入其中氩气流速约为1升/分钟的电阻加热炉中。在大约4.5小时内将该组合体加热至大约1750℃,此时用流速约为1升/分钟的混合气体(含有大约96%(体积)N2和4%(体积)H2)置换氩气。将该组合体放在流动的混合气体中于大约1750℃下保温约4小时。
待冷却约12小时,取出炉内的组合体并且用肉眼观察。其结果表明钛母体金属已经反应性渗透氮化硼床从而形成其内腔如图9所示确切地反形复制钛圆柱形铸块外表面的自撑体。
对其内部粉末样品进行X-光衍射分析,结果表明存在钛与硼和氮形成的化合物(如TiB2和TiN),这一点证实钛母体金属已经与氮化硼床发生反应。

Claims (6)

1、一种生产自撑体的方法,该方法包括选择母体金属;
在基本上呈惰性的气氛中将所述的母体金属加热至高于其熔点的温度以便形成熔融母体金属体;
使所述熔融母体金属体与含有氮化硼的可渗透块料相接触;
保持所述温度足够长的时间以便使熔融母体金属渗透所述可渗透块料并且使所述熔融母体金属与所述氮化硼反应从而形成至少一种含硼化合物;
使上述渗透反应继续进行足够长的时间以便制备包含至少一种含有母体金属硼的化合物的自撑体。
2、一种生产自撑体的方法,该方法包括:
选择母体金属;
在基本上呈惰性的气氛中将所述的母体金属加热至高于其熔点的温度以便形成熔融母体金属体;
使所述熔融母体金属体与含有氮化硼的可渗透块料相接触;
保持所述温度足够长的时间以便使熔融母体金属渗透所述可渗透块料并且使所述熔融母体金属与所述氮化硼反应从而形成至少一种含硼化合物;
使上述渗透反应继续进行足够长的时间以便制备包含至少一种母体金属含有氮的化合物的自撑体。
3、一种生产自撑体的方法,该方法包括:
选择母体金属;
在基本上呈惰性的气氛中将所述的母体金属加热至高于其熔点的温度以便形成熔融母体金属体;
使所述熔融母体金属体与含有氮化硼的可渗透块料相接触;
保持所述温度足够长的时间以便使熔融母体金属渗透所述可渗透块料并且使所述熔融母体金属与所述氮化硼反应从而形成至少一种含硼化合物与至少一种含氮化合物;
使上述渗透反应继续进行足够长的时间以便制备包含至少一种母体金属含硼化合物与至少一种母体金属含氮化合物的自撑体。
4、按照权利要求1所述的方法,其中所述母体金属包括选自铝、钛、锆、铪、钒、铬、铌、钽、钼和钨的金属。
5、按照权利要求2所述的方法,其中所述母体金属包括选自铝、钛、锆、铪、钒、铬、铌、钽、钼和钨的金属。
6、按照权利要求3所述的方法,其中所述母体金属包括选自铝、钛、锆、铪、钒、铬、铌、钽、钼和钨的金属。
CN90100133A 1989-01-13 1990-01-11 自支承陶瓷体的制备方法 Expired - Fee Related CN1022102C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/296,774 US4904446A (en) 1989-01-13 1989-01-13 Process for preparing self-supporting bodies and products made thereby
US07/296,774 1989-01-13

Publications (2)

Publication Number Publication Date
CN1044801A true CN1044801A (zh) 1990-08-22
CN1022102C CN1022102C (zh) 1993-09-15

Family

ID=23143493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN90100133A Expired - Fee Related CN1022102C (zh) 1989-01-13 1990-01-11 自支承陶瓷体的制备方法

Country Status (17)

Country Link
US (2) US4904446A (zh)
EP (1) EP0378502B1 (zh)
JP (1) JP2911938B2 (zh)
KR (1) KR0134960B1 (zh)
CN (1) CN1022102C (zh)
AT (1) ATE97892T1 (zh)
AU (1) AU628462B2 (zh)
BR (1) BR9000088A (zh)
CA (1) CA2007601A1 (zh)
DE (1) DE69004813T2 (zh)
FI (1) FI900200A0 (zh)
IL (1) IL92394A (zh)
NO (1) NO900145L (zh)
NZ (1) NZ232045A (zh)
PH (1) PH26245A (zh)
PT (1) PT92854B (zh)
ZA (1) ZA90215B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298051A (en) * 1987-12-23 1994-03-29 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5143870A (en) * 1987-12-23 1992-09-01 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5162098A (en) * 1987-12-23 1992-11-10 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5143540A (en) * 1988-01-13 1992-09-01 The Dow Chemical Company Densification of ceramic-metal composites
US4904446A (en) * 1989-01-13 1990-02-27 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5187128A (en) * 1989-01-13 1993-02-16 Lanxide Technology Company, Lp Process for preparing self-supporting bodies
US4978644A (en) * 1989-01-13 1990-12-18 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5039633A (en) * 1989-09-14 1991-08-13 The Dow Chemical Company B4C/Al cermets and method for making same
US5112654A (en) * 1990-06-25 1992-05-12 Lanxide Technology Company, Lp Method for forming a surface coating
US5250324A (en) * 1990-06-25 1993-10-05 Lanxide Technology Company, L.P. Method for forming a surface coating using powdered solid oxidants and parent metals
US5203488A (en) * 1990-07-12 1993-04-20 Lanxide Technology Company, Lp Method for joining ceramic composite bodies and articles formed thereby
US5120684A (en) * 1990-07-12 1992-06-09 Lanxide Technology Company, Lp Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
JPH06502379A (ja) * 1990-07-12 1994-03-17 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ セラミックス複合体の接合方法
EP0538417B1 (en) * 1990-07-12 1995-01-25 Lanxide Technology Company, Lp Joining methods for ceramic composite bodies
US5264401A (en) * 1990-07-12 1993-11-23 Lanxide Technology Company, Lp Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
US5098870A (en) * 1990-07-12 1992-03-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
US5439744A (en) * 1991-06-25 1995-08-08 Lanxide Technology Company, Lp Composite bodies and methods for making same
US5500182A (en) * 1991-07-12 1996-03-19 Lanxide Technology Company, Lp Ceramic composite bodies with increased metal content
JPH07504946A (ja) * 1992-03-20 1995-06-01 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ 反応浸透による物体の製造方法
US5366686A (en) * 1993-03-19 1994-11-22 Massachusetts Institute Of Technology, A Massachusetts Corporation Method for producing articles by reactive infiltration
US5509555A (en) * 1994-06-03 1996-04-23 Massachusetts Institute Of Technology Method for producing an article by pressureless reactive infiltration
US6228453B1 (en) * 1995-06-07 2001-05-08 Lanxide Technology Company, Lp Composite materials comprising two jonal functions and methods for making the same
US8268234B2 (en) 1997-03-31 2012-09-18 Lawrence Livermore National Security, Llc Cermets from molten metal infiltration processing
US20030050707A1 (en) * 1997-03-31 2003-03-13 Richard L. Landingham Novel cermets and molten metal infiltration method and process for their fabrication
AT407393B (de) * 1999-09-22 2001-02-26 Electrovac Verfahren zur herstellung eines metall-matrix-composite (mmc-) bauteiles
CA2502575A1 (en) * 2002-11-15 2004-06-03 University Of Utah Research Foundation Integral titanium boride coatings on titanium surfaces and associated methods
US20040247479A1 (en) * 2003-06-04 2004-12-09 Lockheed Martin Corporation Method of liquid phase sintering a two-phase alloy
US7459105B2 (en) * 2005-05-10 2008-12-02 University Of Utah Research Foundation Nanostructured titanium monoboride monolithic material and associated methods
US20100176339A1 (en) * 2009-01-12 2010-07-15 Chandran K S Ravi Jewelry having titanium boride compounds and methods of making the same
DE102013224308B4 (de) 2013-11-27 2017-02-02 Kennametal Inc. Gesinterter Bornitrid-Körper sowie Verfahren zum Herstellen eines gesinterten Bornitrid-Körpers

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296002A (en) * 1963-07-11 1967-01-03 Du Pont Refractory shapes
US3758662A (en) * 1971-04-30 1973-09-11 Westinghouse Electric Corp In carbonaceous mold forming dense carbide articles from molten refractory metal contained
US3864154A (en) * 1972-11-09 1975-02-04 Us Army Ceramic-metal systems by infiltration
GB1492477A (en) * 1976-04-21 1977-11-23 British Steel Corp Production of articles containing a hard phase
US4353714A (en) * 1981-10-26 1982-10-12 General Electric Company Polycrystalline silicon-bonded cubic boron nitride body and method
US4793968A (en) * 1982-12-29 1988-12-27 Sermatech International, Inc. Surface modified powder metal parts and methods for making same
US4595545A (en) * 1982-12-30 1986-06-17 Eltech Systems Corporation Refractory metal borides and composites containing them
US4471059A (en) * 1983-02-04 1984-09-11 Shinagawa Refractories Co., Ltd. Carbon-containing refractory
CH654031A5 (de) * 1983-02-10 1986-01-31 Alusuisse Verfahren zur herstellung von festkoerperkathoden.
ATE53863T1 (de) * 1983-02-16 1990-06-15 Moltech Invent Sa Gesinterte metall-keramikverbundwerkstoffe und ihre herstellung.
US4595595A (en) * 1983-08-15 1986-06-17 Sun-Diamond Growers Of California Process for simultaneous roasting of nutmeats and pellicle removal
US4713360A (en) * 1984-03-16 1987-12-15 Lanxide Technology Company, Lp Novel ceramic materials and methods for making same
DE3588005T2 (de) * 1984-05-18 1995-08-24 Sumitomo Electric Industries Verfahren zum Sintern von keramischen Körpern mit einer verteilten Metallverstärkung.
US4692418A (en) * 1984-08-29 1987-09-08 Stemcor Corporation Sintered silicon carbide/carbon composite ceramic body having fine microstructure
US4851375A (en) * 1985-02-04 1989-07-25 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
US4605440A (en) * 1985-05-06 1986-08-12 The United States Of America As Represented By The United States Department Of Energy Boron-carbide-aluminum and boron-carbide-reactive metal cermets
US4702770A (en) * 1985-07-26 1987-10-27 Washington Research Foundation Multipurpose boron carbide-aluminum composite and its manufacture via the control of the microstructure
US4777014A (en) * 1986-03-07 1988-10-11 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4718941A (en) * 1986-06-17 1988-01-12 The Regents Of The University Of California Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
US4847220A (en) * 1986-09-17 1989-07-11 Lanxide Technology Company, Lp Method of making ceramic composites
US4891338A (en) * 1987-01-13 1990-01-02 Lanxide Technology Company, Lp Production of metal carbide articles
US5017334A (en) * 1987-07-15 1991-05-21 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US4885130A (en) * 1987-07-15 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US4940679A (en) * 1987-07-15 1990-07-10 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4915736A (en) * 1987-12-23 1990-04-10 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by carburization process and articles produced thereby
US5066622A (en) * 1987-12-23 1991-11-19 Lanxide Technology Company, Lp Method of producing and modifying the properties of ceramic composite bodies
US4834938A (en) * 1988-04-25 1989-05-30 The Dow Chemical Company Method for making composite articles that include complex internal geometry
US5004714A (en) * 1989-01-13 1991-04-02 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US4904446A (en) * 1989-01-13 1990-02-27 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5011063A (en) * 1989-01-13 1991-04-30 Lanxide Technology Company, Lp Method of bonding a ceramic composite body to a second body and articles produced thereby
US5010044A (en) * 1989-01-13 1991-04-23 Lanxide Technology Company, Lp. Process for preparing self-supporting bodies and products produced thereby
US4978644A (en) * 1989-01-13 1990-12-18 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4885131A (en) * 1989-01-13 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5019539A (en) * 1989-01-13 1991-05-28 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby

Also Published As

Publication number Publication date
NZ232045A (en) 1992-04-28
CN1022102C (zh) 1993-09-15
ZA90215B (en) 1991-09-25
ATE97892T1 (de) 1993-12-15
IL92394A0 (en) 1990-07-26
NO900145D0 (no) 1990-01-11
EP0378502B1 (en) 1993-12-01
KR900011682A (ko) 1990-08-01
PT92854A (pt) 1990-07-31
BR9000088A (pt) 1990-10-16
PT92854B (pt) 1995-12-29
US4904446A (en) 1990-02-27
AU628462B2 (en) 1992-09-17
JP2911938B2 (ja) 1999-06-28
DE69004813D1 (de) 1994-01-13
CA2007601A1 (en) 1990-07-13
NO900145L (no) 1990-07-16
JPH02275764A (ja) 1990-11-09
IL92394A (en) 1994-06-24
AU4779490A (en) 1990-07-19
FI900200A0 (fi) 1990-01-12
KR0134960B1 (ko) 1998-04-18
DE69004813T2 (de) 1994-04-21
EP0378502A1 (en) 1990-07-18
US5296419A (en) 1994-03-22
PH26245A (en) 1992-04-01

Similar Documents

Publication Publication Date Title
CN1022102C (zh) 自支承陶瓷体的制备方法
CN1022236C (zh) 自支承体的制备方法
CN1022033C (zh) 自支承陶瓷体的生产方法
CN1022479C (zh) 自支承体及其制备方法
US5019539A (en) Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
US5011063A (en) Method of bonding a ceramic composite body to a second body and articles produced thereby
CN87101720A (zh) 制备自撑式材料的方法以及用其制造的产品
CN1048893A (zh) 用自生真空工艺制造金属基复合体的方法及其产品
CN1042503A (zh) 用金属基质复合体表面粘结材料的方法及其由此生产的产品
CN1082554C (zh) 改善金属基质复合体性能的方法
US5010044A (en) Process for preparing self-supporting bodies and products produced thereby
CN1042488A (zh) 通过从外向内的自发渗透工艺生产金属基质复合体的方法及其由此方法生产的产品
US4978644A (en) Process for preparing self-supporting bodies and products made thereby
CN1033046C (zh) 用自生真空工艺制造大复合体的方法
AU628907B2 (en) A method of bonding a ceramic composite body to a second body and articles produced thereby
CN1044803A (zh) 陶瓷复合体的制备方法
US5166105A (en) Process for preparing self-supporting ceramic composite bodies and bodies produced thereby
US5232040A (en) Method for reducing metal content of self-supporting composite bodies and articles formed thereby

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee