Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónCN105803253 A
Tipo de publicaciónSolicitud
Número de solicitudCN 201610401755
Fecha de publicación27 Jul 2016
Fecha de presentación29 Nov 2013
Fecha de prioridad29 Nov 2013
También publicado comoCN103643079A, CN103643079B, CN105803253B, CN105925838A
Número de publicación201610401755.1, CN 105803253 A, CN 105803253A, CN 201610401755, CN-A-105803253, CN105803253 A, CN105803253A, CN201610401755, CN201610401755.1
Inventores李国升
Solicitante国网河南省电力公司平顶山供电公司
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos:  SIPO, Espacenet
Production process of alloy for producing high-power power generator rotor slot wedge
CN 105803253 A
Resumen
The invention discloses a production process of an alloy for producing a high-power power generator rotor slot wedge. The alloy comprises 2.4-2.6 Wt% of Ni, 0.36-0.40 Wt% of Cr, 0.60-0.65 Wt% of Si, 0.02-0.03 Wt% of P and the balance of Cu. The production process includes steps of smelting, casting, solid solution treatment and age strengthening. Through ingredient proportion controlling, process optimizing and multiphase strengthening, conductivity of the obtained alloy is 62-65% IACS; at temperature below 500 DEG C, tensile strength is 689-692 MPa, and yield strength is 644-647 MPa. The alloy is high in conductivity, good in resistance to high temperature, long in service life, capable of meeting requirements on using for the high-power power generator rotor slot wedge, simple, low in production cost, little in environment pollution and good in market prospect and economic benefit.
Reclamaciones(1)  traducido del chino
1.一种生产大功率发电机转子槽楔用合金的生产工艺,所述合金的成分及其含量(Wt%)包括:Ni 2.4~2.6、Cr 0.36~0.40、Si 0.60~0·65、Ρ 0.02~0.03、Cu:余量;其特征在于,包括以下步骤: ① 熔炼:先将电解铜预热至250~280°C,再装入低频感应炉中,开始熔化时加入覆盖剂,使覆盖厚度达1.2~1.4mm,全部熔化后加入占铜质量0.5~0.7%的磷铜作为脱氧剂,进行扒渣,补充覆盖剂后,综合考虑各元素的理化性质,将Si、P、Ni、Cr按常规工艺依此加入铜熔体中,保温15min出炉; ② 浇铸:采用常规连续铸造工艺,水压机上锻压成坯; ③ 固溶处理:在940~960°C下热处理1.5h再进行水淬处理,冷乳使合金产生60%冷变形; ④ 时效强化:再将铸坯加热至460~480°C保温2.5h后,机械加工成所需形状;所述覆盖剂的成分及其含量(Wt%)为:50%木炭、30%碎玻璃、10%NaCl、10%CaF 2。 1. A method of producing ingredient Power Generator Rotor Wedge with the production process of the alloy, and the alloy content (Wt%) include: Ni 2.4 ~ 2.6, Cr 0.36 ~ 0.40, Si 0.60 ~ 0 · 65, Ρ 0.02 ~ 0.03, Cu: balance; characterized by comprising the steps of: ① the smelting: first copper preheated to 250 ~ 280 ° C, and then into the low-frequency induction furnace, covering agent is added at the start to melt, the covering thickness of 1.2 ~ 1.4mm, added all melted copper accounts for 0.5 to 0.7% by mass of the phosphor as a deoxidizer, slag carried out after the supplementary cover agent, considering the physical and chemical properties of each element, the Si, P, Ni, Cr by conventional technology and so added to the melt copper, insulation 15min baked; ② casting: conventional continuous casting process, the forging hydraulic press into a billet; ③ solution treatment: in 940 ~ 960 ° C heat treatment 1.5h then water quenching process cold milk to produce 60% of the alloy cold deformation; ④ strengthen aging: slab and then heated to 460 ~ 480 ° C insulation 2.5h after machining into a desired shape; components of the coating agent and its content (Wt% ) was: 50 percent charcoal, 30 percent cullet, 10% NaCl, 10% CaF 2.
Descripción  traducido del chino

一种生产大功率发电机转子槽楔用合金的生产工艺技术领域本发明属于发电机转子槽楔材料生产技术领域,具体涉及一种生产大功率发电机转子槽楔用合金的生产工艺。 A process for producing high-power generator rotor slot wedges with alloy production technology in the field of the present invention is in the field of materials technology rotor slot wedge production units, particularly relates to a process for producing high-power generator rotor slot wedge alloy production process. 背景技术发电机转子槽楔要承受转子运转时槽内铜线、绝缘件及自身巨大的离心力,电流流经槽楔会产生较高的温升,生产转子槽楔时需要使用导电率高、耐高温性能优良的合金材料。 BACKGROUND generator rotor slot wedge to bear copper wire, pieces of insulation and its own huge centrifugal force, the current flowing through the wedge will have a high temperature during operation of the rotor, the production requires the use of high conductivity rotor wedge resistance, excellent high temperature properties of the alloy. 申请号为200510123011的专利《大容量汽轮发电机转子铜合金槽楔及其制备方法》中, 合金成分为:Ni: 1.35~2 · 05% ,Si :0.40~0.80 % ,Cr: 0.05 ~0.25% ,Be: 0.15~0· 40%, Cu:余量;生产工艺主要采用920~980°C固溶处理,35~50 %冷变形,450~500 °C保温4~5h 时效处理,空冷。 Patent Application No. 200 510 123 011 "high-capacity turbine generator rotor copper alloy wedge and its preparation method", the alloy composition is: Ni: 1.35 ~ 2 · 05%, Si: 0.40 ~ 0.80%, Cr: 0.05 ~ 0.25 %, Be: 0.15 ~ 0 · 40%, Cu: balance; production process mainly 920 ~ 980 ° C solution treatment, 35 to 50% cold deformation, 450 ~ 500 ° C heat aging 4 ~ 5h, cooled. 该技术方案中,Be价格高,且影响合金的高温稳定性,使合金不宜长时间承受高温工作,同时添加Be的合金产生的粉尘会有毒;合金中Ni、Si的质量配比在2.5~3.5左右,Si含量相对偏高,只有一部分Si形成Ni 2Si析出相,剩余的Si以固溶态存在,严重影响合金的导电率;所得合金导电率仅为49 % IACS,寿命短,且耐高温性能未知。 The technical solution, Be high prices, and the impact of high temperature stability of the alloy, the alloy to withstand high temperature for too long, while adding Be alloys will produce toxic dust; quality alloy Ni, Si ratio of 2.5 to 3.5 around, Si content is relatively high, only a part of the Si precipitates formed Ni 2Si remaining Si in solid solution, seriously affect the conductivity of the alloy; the resulting alloy conductive rate was 49% IACS, life is short, and high temperature performance unknown. 申请号为200510038051.4的专利《汽轮发电机转子槽楔用钛青铜及其加工工艺》中,钛青铜采用无钴无锆设计,其成分为:Be:0.1~0.3% ,Ni :1.5~2.5%、Ti :0.4~0.6%、Cu:余量,所得合金导电率仅为47 % IACS,高温(427 °C)屈服强度480~550MPa,抗拉强度540~630MPa,工作寿命短,无法满足大功率发电机长时间运转的需求。 Patent Application No. 200510038051.4 "Turbogenerator Rotor Wedge with bronze and titanium processing technology", the bronze-free titanium, zirconium cobalt-free design, and its composition is: Be: 0.1 ~ 0.3%, Ni: 1.5 ~ 2.5% , Ti: 0.4 ~ 0.6%, Cu: balance, resulting conductive alloy was only 47% IACS, high temperature (427 ° C) yield strength of 480 ~ 550MPa, a tensile strength 540 ~ 630MPa, short working life, high power can not be met long-term operation of the generator needs. 发明内容本发明是为了弥补上述不足,并对成分配比和生产工艺进行改进,提供一种生产大功率发电机转子槽楔用合金的生产工艺,该合金导电率高,耐高温性能好,寿命长,能满足大功率发电机转子槽楔用合金的使用要求,同时工艺简单,生产成本低,对环境污染小,具有较好的市场前景和经济效益。 The present invention is to remedy these shortcomings, and the composition ratio and production process improvements, a process for producing high-power generator rotor slot wedge alloy production process, the high conductivity alloy, high temperature performance, life long, can meet power generator rotor slot wedges with the requirements of the alloy, while the process is simple, low production costs, less environmental pollution, has good market prospects and economic benefits. 一种生产大功率发电机转子槽楔用合金的生产工艺,所述合金的成分及其含量(Wt%) 包括:Ni 2.4~2.6、Cr 0.36~0.40、Si 0.60~0·65、Ρ 0.02~0.03、Cu:余量;包括以下步骤: ① 熔炼:先将电解铜预热至250~280°C,再装入低频感应炉中,开始熔化时加入覆盖剂,使覆盖厚度达1.2~1.4mm,全部熔化后加入占铜质量0.5~0.7%的磷铜作为脱氧剂,进行扒渣,补充覆盖剂后,综合考虑各元素的理化性质,将Si、P、Ni、Cr按常规工艺依此加入铜熔体中,保温15min出炉; ② 浇铸:采用常规连续铸造工艺,水压机上锻压成坯; ③ 固溶处理:在940~960°C下热处理1.5h再进行水淬处理,冷乳使合金产生60 %冷变形; ④ 时效强化:再将铸坯加热至460~480°C保温2.5h后,机械加工成所需形状;所述覆盖剂的成分及其含量(Wt%)为:50%木炭、30%碎玻璃、10%NaCl、10%CaF2。 A method of producing ingredient Power Generator Rotor Wedge with the production process of the alloy, and the alloy content (Wt%) include: Ni 2.4 ~ 2.6, Cr 0.36 ~ 0.40, Si 0.60 ~ 0 · 65, Ρ 0.02 ~ 0.03, Cu: balance; comprising the steps of: ① the smelting: first copper preheated to 250 ~ 280 ° C, and then into the low-frequency induction furnace, covering agent is added at the start to melt, the covering thickness of 1.2 ~ 1.4mm all added to melted copper accounted for 0.5 to 0.7% by mass of the phosphor as a deoxidizer, slag carried out after the supplementary cover agent, considering the physical and chemical properties of each element, the Si, P, Ni, Cr and so added by conventional technology copper melt, heat 15min baked; ② casting: conventional continuous casting process, the forging hydraulic press into a billet; ③ solution treatment: in 940 ~ 960 ° C heat treatment 1.5h then treated water quenching, cold milk to produce the alloy 60% cold deformation; ④ strengthen aging: slab and then heated to 460 ~ 480 ° C insulation 2.5h after machining into a desired shape; composition and content of the coating agent (Wt%) as follows: 50% charcoal , 30% cullet, 10% NaCl, 10% CaF2. 本技术方案中,在成分配比方面,Cr可以提高合金的电导性,形成Cr3Si相影响合金的高温稳定性,并能一定程度上抑制固溶处理期间合金的晶粒长大;因为铜基中Be与Ni2Si具有类似的机械性能,因此,可适当提高Ni 2Si的含量,获得更好的热稳定性和高温强度,配比Ni和Si的质量百分含量分别在2.2~2.6%、0.55~0.65%,避免合金中含有固溶态Si,从而提高了合金的强度和导电率,既确保合金的性能,降低了生产成本,又减少了污染;而加入Cr后,Cr将比Ni、Si先溶于Cu中,使基体处于饱和状态,在一定程度上提高了Ni2Si相的析出量,基体中Ni、Si含量减少,减少了基体中晶格畸变的程度,提高了合金的导电率;使合金含有质量百分含量为〇. 02~0.03 %的P,是为了在不会使合金产生明显晶格畸变的基础上,产生M3P沉淀强化相,进一步提高合金的显微硬度和抗拉强度,并一定程度上抑制析出相的长大,使合金基体得到纯化,导电率提高。 In this aspect, in terms of composition ratio, Cr can improve the electrical conductivity of the alloy, Alloy phase formation Cr3Si high temperature stability, and can inhibit the grain during the solution treated alloy grow to a certain extent; because the copper base be the Ni2Si have similar mechanical properties, therefore, may be appropriate to increase the content of Ni 2Si, better thermal stability and high temperature strength, the ratio of the mass percent of Ni and Si, respectively, at 2.2 to 2.6%, from 0.55 to 0.65 %, to avoid solid solution alloy containing Si, thereby increasing the strength and electrical conductivity of the alloy, both to ensure the properties of the alloy, reduce production costs, and reduce pollution; and after adding Cr, Cr than Ni, Si before melting in Cu, and the matrix is saturated, to a certain extent, improve the Ni2Si precipitation amount of phase, reducing the matrix Ni, Si content, reducing the extent of the matrix lattice distortion and improve the conductivity of the alloy; the alloy contains mass percentage of the square. 02 to 0.03% of P, in order to produce the alloy does not make clear the basis of lattice distortion generated M3P precipitation strengthening phase, to further improve the hardness and tensile strength of the alloy, and certain the degree of inhibition of the precipitation grew up phase, the alloy matrix to obtain purified, increasing the conductivity. 合金熔炼时,选用低频感应炉降低铜合金的熔炼消耗,电解铜加入炉中前先预热,将Si、P、Ni、Cr按顺序熔化,合理的装炉和熔化顺序有效地缩短熔化时间,覆盖剂质量配比选用50 %木炭、30 %碎玻璃、10 % NaCl、10 % CaF2,该覆盖剂铺展性好,合金熔炼时能全面覆盖液态金属液面,与熔渣的亲和力强,具有极好的净化液态金属、细化合金的能力,使熔体得到适当保护并获得较佳的熔炼气氛;加入〇. 5~0.7 %的磷铜作为脱氧剂,能够有效去除熔体里的氧粒子,有效提尚合金的质量和成品率。 When the alloy melting, use low-frequency induction melting furnace to reduce the consumption of copper alloys, copper is added before the preheated oven, the Si, P, Ni, Cr order melting furnace and melting rational loading order effectively shorten the melting time, covering agent selected mass ratio of 50% charcoal, 30% cullet, 10% NaCl, 10% CaF2, the cover is good spreading agents, when melting the alloy to fully cover the surface of liquid metal, slag and affinity is strong, with a very good purifying liquid metal, the ability to refine the alloy melt are adequately protected and get better melting atmosphere; 5 billion added to 0.7% of the phosphor as a deoxidizer, can effectively remove the oxygen in the melt particles. effectively improve the quality and yield still alloys. 对铸坯采用高温固熔淬火处理、中温时效处理析出沉淀硬化合金的方法,该方法生产工艺简单,便于合金便于进行大规模生产。 Slab of high temperature solid solution hardening treatment temperature aging precipitation hardening alloys precipitation method, the production process is simple, easy to alloy to facilitate large-scale production. 固溶处理时的处理温度以合金不产生晶粒粗大为前提,尽量提高温度,保温一定时间后快冷,保证析出相的溶质元素在基体中达到最大的固溶度。 Processing solution treatment temperature when the alloy does not produce coarse grains as possible while raising the temperature, rapid cooling after holding a certain time, to ensure the solute element precipitation phase maximum solid solubility in the matrix. 当在940~960°C下热处理1.5h再进行水淬处理,大量过剩相溶解,得到过饱和固溶体,冷乳使合金产生较大的冷变形,合金基体发生再结晶,使基体内部产生大量位错,合金的亚结构得到细化,但这种形变强化对铜合金的强度贡献有限,需要时效处理进一步强化, 经460~480°C保温2.5h的时效处理,合金元素呈弥散分布的沉淀相相,且沉淀得到硬化,使合金取得最佳的性能。 When the 940 ~ 960 ° C heat treatment 1.5h then water quenching process, a large excess relative to dissolved to obtain a supersaturated solid solution, cold milk alloy to produce large cold deformation, the alloy matrix recrystallization, the matrix inside a large amount of bits wrong, sub-structure of the alloy can be refined, but the strain on the limited strength of the copper alloy to strengthen the contribution of aging need to further strengthen by 460 ~ 480 ° C insulation 2.5h aging treatment, the alloy elements were dispersed precipitates phase, and the resulting precipitate hardening of the alloy to achieve the best performance. 本技术方案是在常规工艺的基础上,通过优化多元合金组成、添加微量元素、控制成分配比以提高合金的强度,并且尽可能地避免或减少对合金导电率的不良影响,进行多相强化,所得合金材料,室温下,抗拉强度796~79810^,屈服强度734~73710^,延展率17.9~ 18.2 %,导电率62~65 % IACS; 500°C下,抗拉强度689~692MPa,屈服强度644~647MPa,导电率高,耐高温性能好,寿命长,确保了大功率发电机的安全可靠性。 The technical solution is based on the conventional process, by optimizing the multi-alloy composition, adding trace elements to control the ratio of ingredients to improve the strength of the alloy, and as much as possible to avoid or minimize adverse effects on the electrical conductivity of the alloys, multiphase strengthen The resulting alloy materials at room temperature tensile strength of 796 ~ 79810 ^ 73710 ^ ~ yield strength of 734, 17.9 ~ 18.2% elongation, conductivity 62 ~ 65% IACS; 500 ° C, the tensile strength of 689 ~ 692MPa, yield strength of 644 ~ 647MPa, high conductivity, high temperature performance, long life, to ensure the safety and reliability of power generators. 能满足大功率发电机转子槽楔用合金的使用要求,显著提高了大功率发电机的安全可靠性,同时工艺简单,生产成本低,对环境污染小,具有较好的市场前景和经济效益。 To meet the high-power generator rotor slot wedges with the requirements of the alloy, significantly improves the safety and reliability of power generators, while the process is simple, low production costs, less environmental pollution, has good market prospects and economic benefits. 具体实施例实施例一制备一种大功率发电机转子槽楔用合金,各组合金的成分及其含量(Wt%)包括:2.2% Ni、0.32%Cr、0.55%Si、0.02%P、Cu:余量; 所述大功率发电机转子槽楔用合金的生产工艺,包括以下步骤: ①熔炼:先将电解铜预热至250°C,再装入低频感应炉中,开始熔化时加入覆盖剂,覆盖剂质量成分包括50 %木炭、30 %碎玻璃、10 % NaCl、10 % CaF2,使覆盖厚度达1.2mm,全部熔化后加入占铜质量0.5%的磷铜作为脱氧剂,进行扒渣,补充覆盖剂后,综合考虑各元素的理化性质,将31、? EXAMPLES a specific preparation of a high-power generator rotor slot wedges with alloy composition and content of each combination of gold (Wt%) include: 2.2% Ni, 0.32% Cr, 0.55% Si, 0.02% P, Cu : balance; the production technology of high-power generator rotor slot wedge alloy, comprising the steps of: ① smelting: first copper preheated to 250 ° C, and then into the low-frequency induction furnace, added coverage at the beginning of melting agent, covering agent quality ingredients, including 50% charcoal, 30% cullet, 10% NaCl, 10% CaF2, the covering thickness of 1.2mm, all melted after adding 0.5% copper by mass of the phosphor as a deoxidizer, slag carried after covering agent added, considering the physical and chemical properties of each element, the 31 ,? 、附士、0按常规工艺依此加入铜熔体中,保温1511^11出炉; ② 浇铸:采用常规连续铸造工艺,水压机上锻压成坯; ③ 固溶处理:在940 °C下热处理1.5h再进行水淬处理,冷乳使合金产生60 %冷变形; ④ 时效强化:再将铸坯加热至460°C保温2.5h后,机械加工成所需形状。 , With disabilities, according to the conventional process so 0 is added copper melt, insulation 1511 ^ 11 released; ② casting: the conventional continuous casting process, forging hydraulic press into a billet; ③ solution treatment: heat treatment at 940 ° C under 1.5h then water quenching treatment, cold milk to produce 60% of the alloy cold deformation; ④ strengthen aging: slab and then heated to 460 ° C insulation 2.5h after machining into a desired shape. 经检测,合金性能如下表所示: After testing, the properties of the alloy in the following table:

Figure CN105803253AD00051

实施例二制备一种大功率发电机转子槽楔用合金,各组合金的成分及其含量(Wt% )包括:2.4% Ni、0.36%Cr、0.60%Si、0.03%P、Cu:余量; 所述大功率发电机转子槽楔用合金的生产工艺,包括以下步骤: ① 熔炼:先将电解铜预热至265°C,再装入低频感应炉中,开始熔化时加入覆盖剂,覆盖剂质量成分包括50 %木炭、30 %碎玻璃、10 %NaCl、10 % CaF2,使覆盖厚度达1.3mm,全部熔化后加入占铜质量0.6%的磷铜作为脱氧剂,进行扒渣,补充覆盖剂后,综合考虑各元素的理化性质,将31、? Second Embodiment preparation of a high-power generator rotor slot wedges with alloy composition and content of each combination of gold (Wt%) include: 2.4% Ni, 0.36% Cr, 0.60% Si, 0.03% P, Cu: balance ; the power generator rotor slot wedge alloy production process, comprising the steps of: ① smelting: first copper preheated to 265 ° C, and then into the low-frequency induction furnace, covering agent is added at the beginning of melting, cover agent quality ingredients, including 50% charcoal, 30% cullet, 10% NaCl, 10% CaF2, the covering thickness of 1.3mm, all melted after adding 0.6% copper by mass of the phosphor as a deoxidizer, slag carry out supplementary coverage after the agent, considering the physical and chemical properties of each element, the 31 ,? 、附士、0按常规工艺依此加入铜熔体中,保温1511^11出炉; ② 浇铸:采用常规连续铸造工艺,水压机上锻压成坯; ③ 固溶处理:在950 °C下热处理1.5h再进行水淬处理,冷乳使合金产生60 %冷变形; ④ 时效强化:再将铸坯加热至470°C保温2.5h后,机械加工成所需形状。 , With disabilities, according to the conventional process so 0 is added copper melt, insulation 1511 ^ 11 released; ② casting: the conventional continuous casting process, forging hydraulic press into a billet; ③ solution treatment: heat treatment at 950 ° C under 1.5h then water quenching treatment, cold milk to produce 60% of the alloy cold deformation; ④ strengthen aging: slab and then heated to 470 ° C insulation 2.5h after machining into a desired shape. 经检测,合金性能如下表所示: 实施例三 After testing, the properties of the alloy in the following table: Third Embodiment

Figure CN105803253AD00052

制备一种大功率发电机转子槽楔用合金,各组合金的成分及其含量(Wt % )包括:2.6% Ni、0.40%Cr、0.65%Si、0.03%P、Cu:余量; 所述大功率发电机转子槽楔用合金的生产工艺,包括以下步骤: ①熔炼:先将电解铜预热至280°C,再装入低频感应炉中,开始熔化时加入覆盖剂,覆盖剂质量成分包括50 %木炭、30 %碎玻璃、10 %NaCl、10 % CaF2,使覆盖厚度达1.4mm,全部熔化后加入占铜质量0.7%的磷铜作为脱氧剂,进行扒渣,补充覆盖剂后,综合考虑各元素的理化性质,将31、? Preparing a power generator rotor slot wedges with alloy composition and content of each combination of gold (Wt%) include: 2.6% Ni, 0.40% Cr, 0.65% Si, 0.03% P, Cu: balance; the power generator rotor wedge with alloy production process, comprising the steps of: ① smelting: first copper preheated to 280 ° C, and then into the low-frequency induction furnace, covering agent is added at the beginning of melting, coating agent quality ingredients including 50% charcoal, 30% cullet, 10% NaCl, 10% CaF2, so after covering thickness of 1.4mm, all melted after adding 0.7% copper by mass of the phosphor as a deoxidizer, slag carry out supplementary cover agent, considering the physical and chemical properties of each element, the 31 ,? 、附士、0按常规工艺依此加入铜熔体中,保温1511^11出炉; ② 浇铸:采用常规连续铸造工艺,水压机上锻压成坯; ③ 固溶处理:在960 °C下热处理1.5h再进行水淬处理,冷乳使合金产生60 %冷变形; ④ 时效强化:再将铸坯加热至480°C保温2.5h后,机械加工成所需形状。 , With disabilities, according to the conventional process so 0 is added copper melt, insulation 1511 ^ 11 released; ② casting: the conventional continuous casting process, forging hydraulic press into a billet; ③ solution treatment: heat treatment at 960 ° C under 1.5h then water quenching treatment, cold milk to produce 60% of the alloy cold deformation; ④ strengthen aging: slab and then heated to 480 ° C insulation 2.5h after machining into a desired shape.

[0013]经检测,合金性能如下表所示: [0013] After testing, the properties of the alloy in the following table:

Figure CN105803253AD00061

由上述三个实施例表明,采用本技术方案,所得合金材料,室温下,抗拉强度796~ 798MPa,屈服强度734~737MPa,延展率17.9~18.2%,导电率62~65%1405;500°(:下,抗拉强度689~692MPa,屈服强度644~647MPa,导电率高,耐高温性能好,寿命长,能满足大功率发电机转子槽楔用合金的使用要求,确保了大功率发电机的安全可靠性。 From the above three examples show that, with the present technical solution, the resulting alloys at room temperature, tensile strength of 796 ~ 798MPa, yield strength 734 ~ 737MPa, elongation and 17.9 ~ 18.2%, conductivity 62 ~ 65% 1405; 500 ° (:, the tensile strength of 689 ~ 692MPa, yield strength of 644 ~ 647MPa, high conductivity, high temperature performance, long life, can meet the high-power generator rotor slot wedges with the requirements of the alloy, to ensure that the power generator safety and reliability.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
CN102108459A *23 Dic 200929 Jun 2011沈阳兴工铜业有限公司High-strength nickel-chromium-silicon-copper alloy material and processing technology thereof
US4191601 *12 Feb 19794 Mar 1980Ampco-Pittsburgh CorporationCopper-nickel-silicon-chromium alloy having improved electrical conductivity
Clasificaciones
Clasificación internacionalC22C1/02, C22C9/06, C22F1/08
Eventos legales
FechaCódigoEventoDescripción
27 Jul 2016C06Publication
24 Ago 2016C10Entry into substantive examination
4 Ene 2017CORChange of bibliographic data
28 Jul 2017GR01