CN1090427A - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN1090427A
CN1090427A CN93114663A CN93114663A CN1090427A CN 1090427 A CN1090427 A CN 1090427A CN 93114663 A CN93114663 A CN 93114663A CN 93114663 A CN93114663 A CN 93114663A CN 1090427 A CN1090427 A CN 1090427A
Authority
CN
China
Prior art keywords
source
drain region
film
silicide
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN93114663A
Other languages
English (en)
Other versions
CN1041872C (zh
Inventor
竹村保彦
张宏勇
寺本聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4297650A external-priority patent/JPH06124962A/ja
Priority claimed from JP17271193A external-priority patent/JP3252990B2/ja
Priority claimed from JP5200253A external-priority patent/JP3030367B2/ja
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1090427A publication Critical patent/CN1090427A/zh
Application granted granted Critical
Publication of CN1041872C publication Critical patent/CN1041872C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/90MOSFET type gate sidewall insulating spacer

Abstract

一种以增加硅化物膜减少源和漏间电阻的薄膜 晶体管器件,通过在硅基片上形成栅绝缘膜和栅极接 触区、用阳极氧化栅极接触区、用金属覆盖已露出的 硅半导体表面和从上面或绝缘基片侧以激光等强光 照射金属膜使金属涂层与硅反应以获得硅化物膜的 工艺来制造。金属硅化物层还可通过紧密粘附一金 属涂层到已露出的源和漏区,使用形状近似三角形、 宽度最好是1μm或更小的绝缘体,和使金属与硅起 反应而得到。于是能获得一种性能优良的TFT。

Description

本发明涉及薄膜晶体管(TFT)的结构及其制造工艺。本发明也涉及到一种在绝缘基片上制造绝缘栅半导体器件的工艺和通过在绝缘基片上组装上许多所说的绝缘栅半导体器件来得到集成电路(IC)的制造工艺。这里提到的术语“绝缘基片”指的是任何有绝缘表面的制品,如果不特别说明,它不仅包括由绝缘材料例如玻璃制成的产品,而且也包括其上有绝缘层的由例如半导体和金属等材料制成的产品。按照本发明的半导体器件作为液晶显示有源阵列的TFTs、图象传感器的驱动电路或SOI(在绝缘材料上的硅)集成电路和常规半导体集成电路(例如微处理器和微控制器,微计算机,和半导体存储器)是有用的。
近来,对在绝缘基片上制造绝缘栅半导体器件(MOSFET)的工艺进行了深入仔细的研究。在绝缘基片上形成的这种型式的集成电路(ICs)考虑到有利于高速驱动,因为在绝缘材料上的这种ICs不会有杂散电容的影响。与这些ICs相反,常规IC的工作速度受杂散电容即连线和基片之间的电容的限制。此已在绝缘基片上形成并包括薄膜有源层的MOSFETs叫作薄膜晶体管(TFT)。这些TFTs在形成多层集成电路中是必有可少的。现在,TFT能在常规半导体JC中提到,例如作为(SRAM)的负载晶体管。
某些新产品,例如像液晶显示这样光学器件和图象传感器的驱动电路,要求将半导体IC形成在透明基片上。
然而可能发觉TFTs已组装在其中,此ICs必须形成在较宽大的区域上,因而制造TFTs需要低温处理。此外,在有许多引互端的器件中,每条都与在绝缘基片上的半导体ICs连接,建议通过形成更低层的半导体IC或者整个半导体IC自身整体地形成在同样的绝缘基片上来降低安装密度。
按常规,高质量的TFTs已通过在450~1200℃温度范围内热退火非晶膜、半非晶膜或微晶膜用制造一高性能半导体膜(即一有足够高迁移率的半导体膜)而得到。也能制造一种使用半导体非晶材料膜的非晶TFT,然而,因为非常低的5cm2/vs的迁移率或者通常约1cm2/vs的更低的迁移率造成的低下的工作速度,或者因为不能提供P沟道TFT(PTFT),使其应用范围受到极大地限制。有5cm2/vs或更高迁移率的TFT仅在450~1200℃温度范围进行过热退火后才能得到。PTFT仅在使膜经过这样的退火处理才能制造出来。
然而在包括加热至高温的热处理工艺中仅能使用严格挑选的基片材料。更准确地说,包括在900~1200℃范围高温加热的所谓高温处理是有益的,因为它允许使用能通过热氧化作用得到的像栅介电层那样的高质量膜,但适用于高温处理的基片只限于使用昂贵的材料如石英、蓝宝石和尖晶石制成的基片、它们不适合广泛使用。
与上述高温工艺相比,最高温度范围为450~750℃低温工艺允许使用从更广的变化范围选择的基片材料。但是这样的工艺要求长时间的退火处理、而且源/漏区的薄层电阻由于杂质的激活不足而维持高阻值。还力求使有源层结晶化和通过激光束或类似能量束照射使源极/源区活化(这种工艺在下文中称为激光处理),但发现难以降低薄层电阻。在所制造的场迁移率高于150cm2/vs的TFT中,最重要的是,使薄层电阻不高于200Ω/cm2
在器件中,例如在包括其上有集成元件的玻璃基片的图象传感器和有源阵列驱动的液晶显示器件中,使用TFT也是公知的。图9示意性地示出常规TFT的横截面图。图12示意性地示出另一常规TFT的横截面图和制造此TFT的相连工艺步骤的实例。图9(A)示出了一使用制作在玻璃基片上的薄膜硅半导体的绝缘栅效应晶体管(下文中简称为“TFT”)。参看图9(A),作为基底的厚约2000
Figure 931146631_IMG2
硅氧化膜62形成在玻璃基片61上,在硅氧化膜62上形成由硅半导体膜构成的有源层,此硅半导体膜具有源/漏区63和65以及沟道形成区64。所制作的非晶的或结晶(多晶或微晶)的硅半导体层厚约1000
Figure 931146631_IMG3
作为栅绝缘膜的厚约1000
Figure 931146631_IMG4
的氧化硅膜66形成在有源层上。在其上设置铝栅接触区67,此接触区为通过阳极氧化形成厚约2000
Figure 931146631_IMG5
的氧化层68所包围。层间绝缘体69用氧化硅等形成、并在其中制成源/漏触区70和71以及连接到栅极接触区67的接触孔72。在图9(A)中,连接到栅级接触区67的接触孔72与源/漏接触70和71所在的平面不在同一平面,而是超出该平面或在平面之前。
图9(A)所示结构的特征在于偏移的栅极区能够通过控制铝栅极接触区67的阳极氧化,以自对准的方式来形成。环绕栅极接触区67的氧化层68的厚度73取决于这种由受控制的阳极氧化所产生的厚度。更准确地说,与氧化层68的厚度相应的偏移区能通过在形成氧化层68后注入杂质离子以形成源/漏区来建立。
但是,因为杂质的扩散,沟道形成区64与源/漏区63和65之间的界线实际上位于比相应的氧化层68的边界更接近沟道形成部分。因而氧化层68的厚度必须考虑到扩散的影响来确定。通常,氧化层68必须比所要求的偏移栅的长度形成的更厚。
连接到源/漏区63和65的接触孔必须小心打穿而不要过腐蚀。在形成铝接触70和71时在氧化硅膜66之间的边界以外并浸蚀到接触孔周边部分的过腐蚀,会使铝扩散进已蚀刻的周边部,在极个别的情况下,铝扩散进沟道形成区64附近会损害TFT的特性和可靠性。
从另一方面说,由于其间的距离74增加,沟道形成区64和源/漏区的接触部分之间的薄层电阻会成为问题。这个问题可以通过缩短距离74来解决,但是这种解决办法只限制到一定程度,因太短的距离在套合掩模时相反会影响精度,当使用玻璃基片时这是一重要的问题,因为在加热步骤(各种形式的热处理步骤是必不可少的)期间玻璃基片产生收缩,套合掩模时会有不利的结果。例如,在约600℃下进行热处理时,10平方厘米或更大的玻璃基片能很快收缩几微米。因此,在现代工艺中,距离74总要留约20μm的余量。
考虑到在形成连接到源/漏区的接触孔时过腐蚀的问题,相反,也不可能过分地缩短距离74。如上所述,常规TFTs有如下缺陷:
(1)这些问题与连接到源/漏区的接触孔的形成有关;和
(2)鉴于上述问题(1),因为接触孔不能设置在沟道形成区附近,源/漏区的薄层电阻也是一个问题。
作为克服上述常规TFTs的缺陷(1)和(2)的方法,推荐图9(B)所示的TFT结构。这种TFT包括一由铝作为主要成分构成的栅极接触67,并以象在9(A)所示的TFT中类似的方式,用通过阳极氧化形成的氧化层包围。因此,源/漏接触区70和71设置得与氧化层68紧密接触。但在这种结构中,栅极接触设置得邻近源/漏接触区70和71,其间仅间隔氧化层68。由于与氧化层68结合形成的寄生电容使工作不稳定并降低TFT的可靠性。这种问题能够通过增加氧化层68的厚度解决。但由于氧化层68的厚度相当于偏移栅极的长度,因而厚度不能简单地象所希望那样地增加。而且,氧化层68中的针孔引起栅极接触和源/漏接触之间的电泄漏。总之,这种TFT型式实际上是不适用的。
图12示出另一种由在玻璃基片上的薄膜硅半导体构成的绝缘栅埸效应晶体管(下文简称为“TFT”)。下面将讨论这种结构的制造工艺。参看图12(A),厚约2000
Figure 931146631_IMG6
的氧化硅膜1302形成在玻璃基片1301上,再在氧化硅膜1302上形成由氧化硅膜构成厚约500~2000 的岛状有源层1303。此硅半导体膜可以是非晶的也可以是结晶的(即多晶和微晶)。厚约1000~1500
Figure 931146631_IMG8
的氧化硅膜1304进一步形成在有源层上以产生栅极绝缘膜。
然后,栅极接触1305由掺杂的多晶硅、钽、钛、铝等形成(见图12(B))。
通过掺进杂质,例如磷和硼,以自对准方式,在有源层1303中形成源/漏区(掺杂区)。这要用例如离子掺杂工艺来完成,而应用栅极接触区做掩模。在栅极接触区下面无掺杂的有源区提供一沟道形成区1307(见图12(C))。
再通过照射激光束或者通过使用热源,例如闪光灯来使掺入的杂质活化(见图12(D))。
然后,通过例如等离子体CVD和APCVD工艺形成氧化硅膜,以制成层间绝缘体1307。而且接触孔在源/漏区贯穿层间绝缘体以实现互连,而接触1308使用金属材料例如铝,连接到源/漏区(见图12(E))。
在上述的常规TFT中,重要的是要降低源/栅区的薄层电阻以提高TFT性能,特别是埸迁移率和次阈值特性(S值)。曾建议用如下措施来达到要求:
(1)增加掺入杂质的浓度;
(2)将激活能量(激光束或闪光灯的强度)增加到足够高的值;和
(3)减少沟道形成区1307的金属接触1308之间的距离(图12(E)中用“Z”表示)。
对于上述措施(1),掺入杂质浓度的增加意味着处理时间增加,从而降低了生产率。而且有源层和栅极绝缘膜1304的损伤随后掺入杂质浓度的增加而增加。一种例如包括生产掺杂等离子体并使杂质加速注入的离子掺杂和等离体掺杂的工艺是大量生产的良好方法,但是,已加速的离子包括许多原子例如氢原子,导致基片温度上升。这问题与增加等离子体的密度不同。所以问题产生在掺杂时,包括器件的热度上升从而使之损坏,而且如果使用光刻胶还会使它碳化造成去除困难。
就上述措施(2)来说,太强的能量不仅造成有源层或栅极接触剥落而使TFT的成品率降低,而且还减少产量。在使用激光时,例如,必须高度会聚激光束以增加能量密度,因为该能量自行不会大大增强。这不可避免地减少束的面积因而就需要用更长的照射时间来处理以照遍同样尺寸的面积。
措施(3)取决于套合掩膜的精度,而不能期望有显著的改进。特别是当使用玻璃基片时,这是一严重问题,因为在加热步骤(各种退火步骤在工艺中是必不可少的)期间发生玻璃基片收缩,使在套合掩膜时出现不利的结果。例如,在约600℃下热处理时,10cm2或更大的玻璃基片很快收缩了几个微米。因此在现代工艺中距离Z总是有约20μm的余量。而且当Z小时在栅极接触1305的源/漏接触1308之间产生较大的寄生电容,损害TFT的性能。
关于在源/漏区1306形成接触孔,要求操作稍稍有点过腐蚀,以保证接触孔的形成。因此,距离Z不会有很大程度的缩短。如上所述,进一步降低源/漏区的寄生电阻几乎是不可能的,因此才长期以来都采用这样的现有技术。
本发明解决了上述问题。因此,本发明的一个任务是提供一种TFT,这种TFT的制造工艺与用高温工艺不同,能用最高温度为750℃或更低温度的工艺制造,而且其薄层电阻可降到足够低,基片材料也不受限制。
本发明的另一个任务是提供一种制造上述TFT的工艺。
本发明的又一个任务是提供一种有优良特性的TFT,这种TFT实质上是通过缩短沟道形成区和源/漏接触之间的距离从而降低其间的电阻。本发明另外的任务是通过适合大量生产的工艺完成上述任务。
本发明再一个任务是提供一种带接触的TFT,此接触连接到精确地形成在接近沟道形成区位置的源/漏区,或者通过在源/漏区形成的接触孔而提供一种高可靠的TFT。
图1示出按照本发明的一实施例制造TFT的工艺步骤;
图2是按照本发明的另一实施例制造另一种TFT的工艺步骤;
图3是按照本发明的再一实施例制造再一种TFT的工艺步骤;
图4是按照本发明的又一实施例制造又一种TFT的工艺步骤;
图5是按照本发明制造一种TFT实例的工艺步骤;
图6是按照本发明制造另一种TFT实例的工艺步骤;
图7是按照本发明制造再一种TFT实例的工艺步骤;
图8是按照本发明制造又一种TFT实例的工艺步骤;
图9示出现有技术的TFT的结构;
图10示出按照本发明的其他实施例制造其他TFT的工艺步骤;
图11示出按照本发明的另一其他实施例制造另一其他种TFT的工艺步骤;
图12示出制造现有技术TFT的工艺步骤;
图13示出制造有源阵列基片的工艺步骤。
常规的低温工艺(最高温度为750℃或更低)或激光工艺仅能生产出其源/漏激活不足的TFT,它造成器件有最小值在100~1KΩ/cm2范围内的高薄层电阻。因此TFT不能呈现出其固有特性(特别是迁移率)。
更准确地说,由于在源接触和漏接触之间存在大的源/漏寄生电阻,使器件的ON电流如工作速率降低。然而从另一方面来说,因为在图形形成中的最小极限(最小设计规则)如必须降低栅接触如其它互连线之间的寄生电容,使源接触像所希望那样更靠近漏接触是不可能的也是困难的。
鉴于上述情况,本发明的特征在于,通过将由金属和硅的合金,并使之与源/漏区实质上有同样形状的硅化物层紧密地粘附到源/漏区上,而将源/漏区的薄层电阻降低到100Ω/cm2或更低。因硅化物层呈分层状,它和栅极接触点之间的寄生电容大体保持和常规源/漏相同。本发明显著的特征是栅极接触区用阳极氧化物覆盖,源/漏区以自准方式相对于栅极接触形成,形成薄膜硅化物并紧密地粘附到源/漏区。
在硅化物中所用的金属材料最好是这样一种材料,即当用作硅化物并形成在硅半导体上时,能形成欧姆接触或类似的低阻接触。更准确地说,这样适用的金属材料是钼(Mo)、钨(W)、铂(Pt)、铬(Cr)、钛(Ti)和钴(Co)。本发明能通过使以上列举的金属同硅起反应以得到硅化物来完成。
绝缘的阳极氧化物在本发明中起重要作用。阳极氧化物防止源区/漏区上的硅化物与栅极接触区形成短路。就是说,实质上硅化物覆盖着整个源/漏区的表面,结果它可以被带到栅极接触区附近。源/漏区用栅极绝缘膜与栅极接触区隔离。但是,由于按照本发明的工艺要求硅化物在从源/漏区上除去栅极绝缘之后立即形成,所以很可能造成硅化物与栅极接触区接触。如果阳极氧化物至少存在在栅极接触区侧边上,则防止硅化物和栅极接触区之间的接触是可能的,而能得到有良好绝缘性能的非常致密的阳极氧化物,会显著地减少形成短路的可能性。
此外,考虑到连接的各工艺步骤,通过形成具有与栅极接触区不同的腐蚀特性的阳极氧化物,能显著提高所获得的工艺成品率。如果硅化物膜是在没有用阳极氧化物覆盖栅极接触区时形成的,如果非硅化的金属膜具有近似与栅极接触相同的腐蚀率,则在除去非硅化金属膜时,部分或整个栅极接触会被腐蚀。因此,从腐蚀的角度来看,阳极氧化物最好形成在栅极接触的上表面。
按照本发明制造TFT的工艺包括如下四个基本步骤:
(1)阳极氧化栅极接触区;
(2)为在元件的暴露表面(连硅半导体区在内)上形成硅化物,而形成一金属涂层;
(3)通过照射强光,例如激光束,使硅与所说的金属涂层起反应,而在硅和所说的金属涂层之间的界面形成硅化物;和
(4)除去留下的未反应的金属涂层。
本发明中可以应用单独使用上述材料的单层栅极接触,或者由二层或更多叠层组成的多层的栅极接触,例如,由在铝层上的硅化钨层组成的,或者由在氮化钛层上的铝层组成的双层结构。每一层的厚度可以按照要求的元件特性来确定。
本发明中的硅化物是通过对金属膜照射像激光束这样的强光使之与在下面的硅半导体膜起反应而形成的。如果用激光作为强光源,最好用脉冲激光。因为激光照射时间太长,所以不推荐连接波方式工作的激光。不仅担心由于热膨胀会使所照射的膜剥落,而且对该结构也怕基片受热损坏。
关于在本发明中使用的在脉冲方式下工作的激光器指的是发射红外光的激光器,如Nd∶YAG激光器(最好是Q开关脉冲激光器),或者发射可见光激光器,如其二次谐波或KrF、XeCl、ArF等各种类型的发射紫外光准分子激光器。然而,当从金属膜的上边照射激光时,应选择工作该激光束不会被金属膜反射的波长范围的激光器。当然,如果使用很薄的金属膜,这种选择是不必要的。此外,激光束可以从基片侧照射。但如果激光束从基片侧照射,就必须选择能穿透在金属膜下面的硅半导体膜的激光束。
硅化物层的厚度取决于源/漏区所要求的薄层电阻。考虑到硅化物的电阻率在0.1~1mΩ·cm范围,硅化物层的厚度最好在10nm~1μm的范围;以使薄层的电阻在10~100Ω/cm2范围。
参看图5,下面讨论按照本发明的另一个实施例。以铝为基的栅极接触15被氧化铝层16包围,氧化铝层又被近似三角形的绝缘体(氧化硅)22包围。此绝缘体22决定了在源/漏区17和19与接触29和30之间接触位置。此近似三角形的绝缘体能通过沿垂直方向各向异性地蚀刻氧化硅膜20(沿垂直方向有选择地蚀刻)而被形成在标号21所指出的部分上。
此近似为三角形的绝缘体的尺寸,特别是宽度,取决于预先设置的绝缘层20的厚度、蚀刻条件,和栅极接触层15的高度(包括绝缘层16的厚度)。绝缘体22的宽度通常在2000~20000
Figure 931146631_IMG9
范围,但它能按照相应实施例的要求来确定,而不考虑上述规定的范围。此外,绝缘体22的形状不限于三角形,可按照氧化物22的台阶覆盖范围和膜的厚度来改变。例如,如果缩短用25所指示的尺寸,就使形状成为矩形。在本说明书中,这里所涉及的绝缘体22用“绝缘体近似为三角形”来说明,或者为简单起见如在图中所示简称为“三角形绝缘体”。
硅与金属的化合物(下文中称作硅化物)28形成在源/漏接触29和30与源/漏区之间的接触部分。接触电阻和源/漏区的薄层电阻由于有这层硅化物而降低。此硅化物28能通过在硅膜上沉积构成硅化物的金属膜并按照要求对其进行热处理而制成。更准确地说硅化物包括作为其构成金属所用的Ti(TiSi和TiSi2)、Mo(MoSiO2)、W(WSi2、W(SiAl)2)、TiSi2(Ti7Si12Al5)和Pd2Si(Pd4SiAl3)。但从处理温度、接触电阻和薄层电阻等方面来看,最好使用TiSi和TiSi2形式的Ti。
图5所示的TFT包括被绝缘层16包围的栅极接触。但绝缘层16可以省略,绝缘体22可以与栅极接触紧密接触。
参看图7,下面讨论本发明的另一个优选实施例。图7所示的结构包括一个用以降低源/漏区薄层电阻的硅化物层90。源/漏接触区以类似常规TFT结构的方式设置在与沟道形成区87间隔开的位置处(用94指出)。源/漏区的薄层电阻可通过这种结构形式降低。因此,即使源极/漏极接触设置在图7(D)所示的原来的位置,也能得到提高了性能的TFT。
在栅极接触的两侧以自对准方式形成三角形绝缘体,而省去在源/漏区的接触孔。这种三角形绝缘体的存在允许在更靠近沟道形成区的位置在源/漏区上形成接触。此外,在源/漏区表面上形成硅化物不仅降低了它们与源/漏区接触之间的接触电阻,也降低了源/漏区的薄层电阻。
而且,甚至当采用常规结构的TFT时,由于在源/漏区的表面上形成金属硅化物层,源/漏区的薄层电阻也能降低。从而也能得到提高了性能的TFT。
此外,带接触孔的层间接绝缘体也可以制作在硅化物层上,源极/漏极接触可以通过接触孔以同硅化物层直接接触的方式连接到源/漏区。
按照本发明的工艺包括用至少氧化栅极接触的两侧,最好是上表面和两侧形成一氧化物覆盖层。氧化物覆盖层最好是良好的绝缘体。三角形绝缘体进一步形成在栅极接触上的氧化物的外侧。三角形绝缘体的宽度最好少于1μm。所形成的硅化物,以对三角形绝缘体自对准的方式紧密地粘附到源/漏区。因为硅化物有远比多晶硅为低的电阻率,制成很薄也能获得足够低的电阻率。
图10涉及上述技术思想的实例,它给出用以制造上述结构的TFT的几个连续步骤。参看图10,作为主要组成部分,基底氧化膜1102、源/漏区1103、沟道形成区1104、栅极绝缘膜1105和由金属,如铝、钛和钽或其合金组成的栅极接触1106,使用公知的方法按这种顺序依次形成在基片1011上。然后,环绕栅极接触区形成栅极接触的氧化层1107。热氧化工艺或阳极氧化工艺适用于形成氧化层。当以铝、钛或钽;或者由它们作为主要成分组成的合金为基的金属用做栅极接触时,氧化层最好用阳极氧化来形成。由于杂质是以自对准的方式相对于氧化层1107掺入,源/漏区和栅极接触是偏移的(图10(A))。
当使用阳极氧化时,栅极接触材料的选择是关键,因为阳极氧化物的类型取决于栅极接触材料。本发明中使用的栅极接触材料包括纯金属(如铝、钛、钽和硅),及其内添加有小量其他掺杂物的合金(如包括用1~3%的硅作为掺杂物的铝基合金和含有0.1~5%的磷的硅基合金)、导电的硅化物如硅化钨(WSi2)和硅化钼(MoSi2),以及以氮化钛为代表的导电的氮化物。这里所说的“铝”,其意思不仅指纯铝,也包括含10%或更少掺杂物的铝合金这也同样适用于硅和其他材料。随后形成绝缘涂层1108。此绝缘涂层必须对栅极接触区两边有良好的覆盖(图10(B))。
然后,此绝缘涂层须经例如干法腐蚀的工艺进行各向异性腐蚀。也就是说,仅沿垂直方向有选择地腐蚀。结果,露出源/漏区的表面而在连周围氧化物涂层1107在内的栅极接触的两边剩下三角形绝缘体1109。
三角形绝缘体1109的尺寸,特别是宽度取决于预先淀积的绝缘涂层1108的厚度、腐蚀条件和栅极接触的高度(包括环绕的氧化层1107)。在这种情况下高度包括绝缘层1107的厚度。绝缘涂层1108的厚度通常在2000~20000
Figure 931146631_IMG10
的范围内,但它可根据各个实施例的情况来确定而不受上述规定范围的限制。此外,绝缘体1109的形状不限于三角形,是根据绝缘涂层1108的台阶覆盖范围和膜的厚度而变化的。例如,如果是薄的涂层,加工出的形状是一矩形。但为简化起见,下文所涉及到的绝缘体1109都用图示的近似三角形的绝缘体来说明。
适当金属如钛、钼、钨、铂和钯的涂层1110形成在基片的前表面(图10(D))。
然后,通过所形成的金属膜与源/漏区的硅起反应而形成硅化物层。这种工艺可通过在适当温度下退火或者通过使用激光、闪光灯等退火工艺来实现。由于金属不与其他材料如氧化硅和氮化硅或者构成栅极接触的氧化层1107的材料如氧化铝、氧化钛和氧化钽起反应,金属膜保留下来了。因此,硅化物和金属膜同时保留在基片上,但仅金属膜能用适当的腐蚀剂有选择地被腐蚀去。在这种情况下重点是要使氧化层1107形成在栅极接触的上表面。此氧化层1107防止金属膜1110和栅极接触1106直接发生反应。就这样,仅留下硅化物层1111与源/漏区形成接触(图10(E))。
当通过对金属膜照射强光如激光以使其与下面的硅半导体膜起反应来形成硅化物时,最好选用脉冲方式工作的激光器,而不用连续波方式工作的激光器,因为激光的照射时间太长,会由于热膨胀而使被激光照射的膜剥离。
当然,硅化物层可以与有源层的厚度相同,尽管图中例示的硅化物层比有源层薄。问题是在绝缘体1109下面的有源层区是一层掺杂半导体、其中有源/漏区。硅化物层1111中的硅化物包括其构成金属为Ti(TiSi和TiSi2)、Mo(MoSiO2)、W(WSi2,W(SiAl)2)、TiSi2(Ti7Si12Al5)和Pd2Si(Pd4SiAl3)的硅化物。但从处理温度、接触电阻和薄层电阻等方面来看,最好使用结果是TiSi和TiSi2的Ti。
随后,淀积层间绝缘体1112,在硅化物层1111中开出接触孔,并形成互连线1113的金属接触,从而得到完整的TFT,其最终结构示于图10(F)。
如上所述,本发明的TFT包括有很低电阻的硅化物层1111。因此,沟道形成区和金属接触之间的电阻基本上由图10(F)中用X所指出的距离决定。因为距离X优选为10μm或更小,所以能显著地降低电阻。当然,接触孔和栅极接触之间的距离可设置成与现有技术的TFTs相同。
像上述那样的偏移(在图10(F)中用Y标示)对减少TFT的漏电流是有效的。
下面将参照图11说明本发明的另一个优选实施例。在本实施例中以图10所例举的实施例同样的方式在基片1201(见图11(A))上形成基底氧化膜1202、包括源/漏区1203和沟道形成区1204的有源层、栅极绝缘膜1205、和氧化层包围的的栅极接触1206。
以自对准的方式使用栅极接触及其包围的氧化层1207做掩模来蚀刻栅极绝缘膜1205。如果形成以氧化铝作为主要成分组成的氧化层1207和以氧化硅为基础的栅极绝缘膜,则可实现使用以氟为基的腐蚀气体(如NF3和SF6)的干法腐蚀。在这些腐蚀气体的作用下,以氧化硅为基础的栅极绝缘膜被迅速腐蚀,而氧化铝基底层腐蚀得足够慢以实现有选择的腐蚀。
绝缘涂层1208随后淀积在其前表面,以提供图11(B)所示的结构。
然后,使所得到的结构以像在图10中所例举的同样的方式经各向导性腐蚀,以便将三角形绝缘体1209留在栅极接触的两侧面。这步骤之后是淀积适当金属的涂层1210(见图11(C))。
随后,通过进行适当的热处理、激光照射等使金属涂层与硅起反应,以获得硅化物层1211(图11(D))。
再形成层间绝缘体1212和有互连线1213的金属接触,以获得图11(E)所示的结构。
与图10所示的情况类似,沟道形成区和源极/漏极接触之间的电阻在本实施例中也可做得足够低。
如上所述,本发明提供了一种性能优良的TFT,这种TFT主要通过缩短沟道形成区和源极/漏极接触之间的距离而能方便地降低其间的电阻。但本发明的优点不限于此。足够低的电阻能减少掺进源/漏区的杂质量。更准确地说,例如,通常所说的掺杂质的剂量1×1015~8×1015/cm2可减少一个数量级,即减少到5×1013~1×1015/cm2。甚至用更低的掺杂剂量也能用本发明方法确保得到改进了特性的TFT。通过简单的计算可以知道,由于应用本发明,掺杂步骤可缩短到十分之一。
更有利的是,沟道形成区和源/漏区之间的界面所造成的损伤会随导电掺杂剂的浓度降低而减少。特别是,在用激光束之或类退火来激活杂质的情况下,已考虑到由于以高浓度掺杂造成的性能退化是一严重问题,因为栅极接触和起遮蔽作用的类似物造成沟道形成区和源/漏区之间的界面处激活不足。像本发明这样低浓度的掺杂物能有效地阻止这样的问题发生。
此外,有源层可做得更薄。在现有技术中因为源/漏区的薄层电阻高,要将有源层的厚度减少到1000
Figure 931146631_IMG11
或更低,特别是减少到500 或更低是困难的。但本发明的TFT不受这样的限制。更准确地,举例说硅化物层厚100
Figure 931146631_IMG13
,就能实现薄层电阻在10Ω~1KΩ范围内,因为其电阻率已小到在10-3~10-5Ω·cm范围。
使有源层更薄是有利的,这不仅因为它能使淀积膜层所需的时间更短,而且也因为能防止由于栅极绝缘膜和栅极接触的台阶覆盖程度不足而发生漏电流和互连线断开(台阶断裂)。确实能提高成品率。
下面将参照非限定性的实施例和附图对本发明进行更详细地说明。应当理解,本发明不限于所说的实施例。
实例1
下面将参照图1讨论按照本发明的一种实施例制造TFT的工艺。通过在氧气的气氛中溅射,在Corning    7059基片100(尺寸为300mm×400mm或100mm×100mm)上淀积出厚度为100~300nm的氧化硅膜作为基底的氧化膜。作为更适于大量生产的工艺,基底氧化膜可以通过使用等离子体CVD分解和淀积TEOS(四乙氧基硅烷)来形成,并在450~650℃温度范围内退火所生成的膜。
然后,通过等离子体CVD或LPCVD淀积成30~500nm厚最好是100~300nm厚的非晶硅膜,并使其在还原的气氛中,在550~600℃的温度下维持24小时以实现结晶化。此步骤也可用激光照射来完成。所得到的结晶化硅膜被刻成图形,产生岛状部分102。进而通过溅射在其上淀积出70~150nm厚的氧化硅膜103,作为栅绝缘膜。
随后,通过电子束淀积形成200nm~5μm厚的含99%铝和1%硅的铝膜并刻成图形以得到与栅极绝缘膜接触的栅电极104。所得的栅电极通过对其加电,在电解液中加以阳极氧化。这样以来至少在栅电极的一侧得到50~250nm厚的阳极氧化物105并构成栅电极材料,如图1(A)所示。与极氧化是在日本专利申请公开Hei-4-30220(1992·1·21申请)所披露的条件下完成的。
栅电极可由至少两种材料的合金构成,而阳极氧化物可以包括至少两种材料中的至少一种。
由于除去了除在栅极接触和阳极氧化物下面部分之外的氧化硅膜103露出硅半导体102的表面。氧化硅膜103可用使用氢氟酸为基的腐蚀液的湿法腐蚀或用干法腐蚀来除去。
杂质通过用栅极接触(即栅极接触和环绕的阳极氧化膜)做掩模的离子掺杂工艺以自对准的方式掺进位于每个TFTs上的岛状硅膜,以获得掺杂区106,如图1(B)所示。就形成NMOSTFT来说,通过掺进磷化烷(PH3)中的磷作为掺杂气体来形成掺杂区,或者通过掺进硼化烷(B2H6)中的硼作为掺杂气体来形成掺杂区,以获得PMOSTFT。此离子掺杂在10~60Kev加速能量下完成。
用溅射法淀积成5~50nm厚的钨膜107以获得图1(C)所示的结构。随后通过照射波长为248nm,脉宽为20nsec的KrF受激准分子激光使已淀积的钨膜与硅起反应。这样就获得二个硅化钨区,并同二个制作在基片上的具有P型或N型导电性的硅半导体掺杂区接触。对两个半导体区来说,具有本征导电或相反类型导电的硅半导体构成的有源区制作在两个硅半导体区之间。通过将激光能量密度控制在200~400mJ/cm2,最好在250~300mJ/cm2来完成适当的激光处理。照射的激光束大部分被钨膜吸收,因此难以用来对已在前面的离子掺杂步骤中严重损伤的硅掺杂区结晶度进行修复。但由于硅化钨有低至30~100μΩ cm的电阻率,因此源和漏区(即108区及其中的掺杂区)的薄层电阻为10Ω/cm2或更低。当然,通过在离子注入后立即对其进行激光照射或退火等,能消除掺杂区的退化。
通过腐蚀来除去激光照射后未起反应而残留的钨膜为图1(E)所示。通过在氟化碳的气氛中对其进行反应腐蚀,将钨变成六氟化钨而去除。
最后,用CVD法在所制成结构的整个表面上淀积一层厚300nm的氧化硅膜,以提供一中间绝缘层109。在打开TFT的源/漏接触孔后,形成与接触110和111的铝互连线。就这种方法加工完成TFT的这种结构。还在200~400℃温度范围进行氢退火以激活掺杂区。
实例2
将参照图2,下面将说明按照本发明的实施例制造TFT的工艺,用像实例1同样的方法将基底氧化膜202、岛状半导体区、和起栅极氧化膜作用的氧化硅膜204顺序地形成在Corning7059基片100上。然后,用厚200nm~5μ的铝膜形成栅极接触区205。如图2(A)所示,通过用栅极接触区做掩模注入杂质来形成掺杂区203。
然后,通过用实例1所用的相同方法进行阳极氧化、环绕栅极接触(即在栅极接触区的两边和上表面)形成阳极氧化物206。但应注意,与实例1的情况比较,掺杂区更远进入阳极气化物层的内侧。随后,通过除去除栅极接触区下面部分以外的氧化硅膜使掺杂区的表面暴露出来。所加工成的结构示于图2(B)。在进行下一步骤之前,可以进行激光照射和热退火,以消除因上述离子掺杂所接纳而成掺杂区所受的损伤来恢复结晶度。
通过溅射淀积5~50nm厚的钼膜207,以获得图2(C)所示的结构。随后,淀积成的钼膜通过被波长为248nm,脉宽为20nsec的KrF准分子激光照射而与硅起反应,从而在掺杂区(源/漏)上获得硅化钼区208。
通过腐蚀而将照射后未起反应残留下来的钼膜除去。最后,用CVD法淀积成厚300nm的氧化硅膜,以便在所得的结构的整个表面上提供一中间氧化层209。在制成TFT的源/漏接触孔之后,形成与接触区210和211接触的铝互连线。就用这种方法得到完整的TFT。
实例3
参照图3,下面将说明按照本发明的实施例制造TFT的工艺。参看图3(A),用像上述实例1同样的方法,将基底氧化膜301、岛状半导体区302、起栅极氧化膜作用的氧化硅膜303、和作为栅极接触点的厚200nm~5μm的铝膜顺序地形成在Corning7059基片300上。然后,用下述的象实例1中同样过程的阳极氧化,在栅极接触区的周边(两边和上表面)上形成阳极氧化物305。
然后,将除接触下面部分之外的氧化硅膜303除去,并通过溅射淀积成厚5~50nm的铂膜306,以获得图3(B)所示的结构。用离子掺杂法通过铂膜掺进杂质,以获得图3(C)所示的掺杂区307。随后,淀积成的铂膜通过照射波长为248nm,脉宽为20nsec的KrF准分子激光而与硅起反应,从而在掺杂区(源/漏)上得到硅化铂区308。
通过腐蚀清除激光照射后未起反应的残留铂膜,如图3(E)所示。最后,用CVD法在所得的结构的整个表面上淀积成300nm厚的氧化硅膜,以提供一中间绝缘层309。在打成TFT的源/漏接触孔之后,形成与接触区310和311的铝互连线。
实例4
参照图4,下面将说明按照本发明的实施例制造TFT的工艺。参看图4(A),用像上述实例1同样的方法,将基底氧化膜401、岛状半导体区402、起栅极氧化膜作用的氧化硅膜403、和作为栅极接触的厚200nm~5μm的铝膜404顺序地形成在Corning    7059基片400上。然后,用下述象实例1同样过程的阳极氧化,在栅极接触区的周边(两侧和上表面)上形成阳极氧化物405。
然后,将除接触区下面部分之外的氧化硅膜403清除掉,并通过溅射淀积成厚5~50nm的钛膜406,以获得图4(B)所示的结构。随后,淀积的钛膜由于被波长为248nm,脉宽为20nsec的KrF准分子激光照射而与硅起反应,从而得到硅化钛区407。通过激光照射而末起反应的剩下的钛膜以图4(D)所示的蚀刻方法清除掉。这之后再用栅接触区作为掩膜采用离子注入法以自对准方式在硅化钛区407下引入掺杂物。最后,如图4(E)所示,用CVD法在所得,的结构的整个表面上淀积成厚300nm的氧化硅膜以提供一层间绝缘体409。在洞穿TFT的源/漏接触孔之后,形成与接触区410和411的铝互连线。用这种方法加工成完整的TFT。
实例5
参照图5中示意性的加工顺序步骤,下面将说明按照本发明的实施例制造N沟道TFT(NTFT)的工艺。当然,通过使用源/漏区P型半导体简单地交换本实例的TFT能很容易地得到P沟道TFT(PTFT)。尽管本实例具体涉及使用硅半导体的情况,但其他半导体也同样可以使用。本实例的TFT可以用作,液晶显示器件的象素,或者用于周边电路,用于图象传感器和其它集成电路。
在本实例中使用玻璃基片11。通过溅射,在玻璃基片11的表面上淀积2000
Figure 931146631_IMG14
厚的氧化硅膜作为基底膜12。随后用等离子体CVD方法淀积成厚1000
Figure 931146631_IMG15
的非晶硅膜13。膜淀积方法和膜厚度无特殊限制,而取决于不同的实施例。此外,结晶硅膜(如微晶硅膜和多晶硅膜)可用以取代非晶硅膜。
随后使非晶硅膜13法化以获得一结晶硅膜。通过在600℃加热24小时能很容易地进行结晶化处理,但也可用其他方法如照射激光或强光来代替。然后将膜刻成图形以隔离各元件,从而形成有源层区。这里所说的有源层区相应于岛状半导体区,而源/漏区和沟道形成区都在其中形成。
通过溅射再淀积成1000
Figure 931146631_IMG16
厚的氧化硅膜14作为栅极绝缘膜。该氧化硅膜14可以通过使用有机硅烷(如TEOS)和氧的等离子体CVD法等其他方法来淀积。随后淀积厚为6000~8000
Figure 931146631_IMG17
的栅极接触用的铝膜,更准确地说,在本实例中厚为6000 。所淀积的铝膜中包含0.1~2%的硅。栅极接触可建立在硅、金属硅化物、或者硅和金属的叠层上。
所得到的铝膜被刻成图形以得到栅极接触15。铝栅极接触15的表面随后用阳极氧化法以形成氧化层16。阳极氧化在含1~5%酒石酸的乙二醇溶液中完成。这样,在本实例中就能在两侧得到厚2000
Figure 931146631_IMG19
的氧化膜16,因此在下一个注入杂质离子的步骤中就能利用膜的厚度形成偏移的栅极区。图5(A)示出所加工成的结构。
作为有源层淀积的结晶硅膜13,掺杂进磷离子使结晶硅膜B成为N型导电。这种方法,通过使用栅极接触15和环绕的氧化层16做掩模,以自对准的方式形成源/漏区17和19以及沟道形成区18。随后进行激光退火以激活掺进的磷杂质,并对由于掺杂工艺使结晶性受损害的硅膜进行退火。这种退火可用灯照射红外光来完成。此外,也可能应用公知的的加热退火工艺。但最好的和最有效的退火工艺是使用红外光(如波长为1.2μm的光),因为红外光能有选择地被硅半导体吸收而不会明显加热玻璃基片。而且通过缩短照射时间还能防止玻璃基片温度上升。由于在退火工艺期间磷一定程度上扩散进沟道形成区,使沟道形成区18与源/漏区17和19之间的而从氧化层16的外侧移动到更靠近沟道形成区18处。
然后通过溅射淀积成2000 ~2μm厚的氧化硅膜20,在本实例中具体为9000
Figure 931146631_IMG21
厚。此氧化硅膜20也能通过使用TEOS和氧的等离子体CVD法等其它方法淀积。加工成的氧化膜在栅极接触15的上部有较大的台阶差,而示于图5(B)。而这是定性地表示,其变化取决于氧化硅膜20的厚度和台阶覆盖范围。
然后,用公知的各向异性腐蚀即RIE(反应离子腐蚀)工艺来腐蚀所得到的氧化硅膜20,由于在高度为9000
Figure 931146631_IMG22
的栅极接触15两侧上的厚度达到近两倍的膜厚度(即氧化硅膜厚度,9000
Figure 931146631_IMG23
),剩余的氧化硅最终形成图中虚线21所绘出的形状。继续腐蚀氧化硅栅极绝缘膜14以暴露出源/漏区17和19。可以看到一台阶形成在作为有源层已刻成图形的结晶硅膜13的边缘部分。但由于这台阶高度仅约1000
Figure 931146631_IMG24
,实质上在这部分上没有残留氧化硅膜20。在图5所示例举的实施例中,所剩下的氧化硅呈虚线21所绘的形状,因为氧化硅膜20以图5(B)所示的形状剩下。但如果氧化硅膜20淀积成反映栅极接触的形状(如突出的矩形形状),则用虚线所指出区域的形状最终形成矩形或有角形状。
于是,可得到近似三角形的氧化硅22。在本实施例中三角形氧化硅22的宽度约3000
Figure 931146631_IMG25
,但实际上此宽度由氧化硅膜20的膜厚和腐蚀条件确定,还要考虑栅极接触15(包括氧化层16)的高度。
接着淀积钛或硅化钛(TiSi2)膜并对其热退火以获得钛的硅化物28。在本实例中通过溅射淀积成500
Figure 931146631_IMG26
的厚度,而通常淀积成的厚度范围为100 ~1000
Figure 931146631_IMG28
。所生成的膜在450℃下退火以获得硅化物层28。此退火工艺可用发射红外光的灯来完成。用灯退火的工艺可将表面照射加热到600~1000℃温度范围来完成。若是在600℃下退火,其加热持续时间需几分钟。若在1000℃高温下退火则持续时间是几秒钟。在本实施例中,淀积钛膜后在450℃下退火,因为栅极接触是铝的。但如果栅极接触使用含硅作为主要成分的材料,则退火温度最好不低于500℃。
然后用含有比例为5∶2∶2的过氧化氢、氨水和水的混合物的腐蚀液腐蚀钛膜。未腐蚀的剩下的硅化钛层28用对其照射输出能量为200~400mJ/cm2激光束的方法退火。
这就在源/漏区的表面上形成硅化物28,通过进一步在其上形成源/漏接触29和30而得到图5(D)中所示的NTFT。
源/漏接触29和30最好由氮化钛/铝双层膜形成,此双层膜包括氮化钛基底膜和其上的铝膜。因为源/漏区的表面是由硅化钛制成,所以用这种方法形成极良好的接触。
而所得到的NTFT包括三角形氧化硅22以所谓自对准方式在源/漏区和接触之间确定接触部分。而且接触部分位置的设置可以不考虑玻璃基片11的收缩。接触部分可被设置得很靠近沟道形成区。更有利的是由于包括有硅化物层28而使源/漏区的薄层电阻减少。用这种方法可得到性能优良的TFT。此外,由于能省去用以制造源/漏接触的栅极绝缘膜的开孔步骤,就能避免发生与此步骤有关的问题。
本实施例其它的优点是在栅极接触15的两侧面上存在用阳极氧化而生成的氧化铝(Al2O3)和氧化硅(SiO2)22。能减少栅极接触和源/漏接触之间的寄生电容。
实例6
下面将参照图6说明按照本发明的实施例制造N沟道TFT(NTFT)的工艺。图6中与图5中相同符号所指出的部分,用实例5中相同的方法制造。
首先,通过溅射在玻璃基片11上淀积出厚2000 的氧化硅膜。然后用等离子体CVD法在其上淀积1000
Figure 931146631_IMG30
厚的非晶硅膜13。再将所获得的非晶硅膜13在600℃下进行24小时的结晶化热退火以获得结晶的硅膜。
再淀积上6000
Figure 931146631_IMG31
厚的铝膜,并对其进行实例5中所实施的类似的工艺步骤以获得铝栅极接触15,其表面上有2000 厚的氧化层16。通过腐蚀除去栅极接触区以外的栅极氧化膜14以获得图6(A)所示的结构。随后通过以自对准的方式注入磷离子形成源/漏区17和19以及沟道形成区18。可在除去氧化硅栅极绝缘膜14之前完成离子注入步骤。然后通过用激光束照射、用灯加热或热退火来激活源/漏区17和19。
通过溅射淀积成6000 厚的氧化硅膜20,并以实例5同样的方法完成腐蚀,以便在用21所指出的部分上获得三角形氧化硅22。
淀积成500 厚的钛膜27。然后,在450℃下热退火之后,通过在按实例5中所说的有选择腐蚀除去钛膜27。通过再对膜照射激光束进行退火以获得硅化钛层28。随后通过形成与源/漏接触29和30相应的铝接触而加工成NTFT。
本实施例的NTFT提供极好的结构和在实例5获得的类似的效果。因为三角形氧化硅22的宽度25能减少到约3000
Figure 931146631_IMG35
,不仅源/漏区17和19与接触29和30之间能获得良好接触,而且源/漏区17和19的接触部分能形成在尽可能靠近沟道形成区18的位置。因此能实现性能优良的TFT。
25所示部分的尺寸根据氧化硅膜20的膜厚、氧化硅膜20的腐蚀条件和包括氧化层16在内的栅极接触15的高度来确定。
由于能省却源/漏区的开孔步骤,所以能避免发生与此步骤有关的问题。
实例7
下面将参照图7说明按照本发明的实施例制造TFT的工艺。本实例的特征在于用与已有技术类似的工艺形成按照本实施例的TFT的源/漏接触,而在源/漏区的表面90上形成硅化物层以减少源/漏区86和88的薄层电阻。
首先通过溅射在玻璃基片80上淀积上1000
Figure 931146631_IMG36
厚的氧化硅膜作为基底膜81。然后用等离子CVD法在其上淀积1000
Figure 931146631_IMG37
厚的非晶硅膜82。所得到的非晶硅膜82在600℃下进行48小时的结晶化热处理,并使元件隔离以形成有源层。
通过溅射淀积成1000
Figure 931146631_IMG38
厚的氧化硅膜83,然后,再通过溅射淀积上6000
Figure 931146631_IMG39
厚的含1%硅的铝膜以给出栅极接触84。随后再阳极氧化形成2000 厚的氧化层85。由于注入磷离子,源/漏区86和88呈N型导电,且以自对准的方式形成沟道形成区87。从而获得源/漏区86和88以及沟道形成区87。
通过照射激光束或红外光束激活源/漏区。除去所得到的已暴露出的氧化硅膜83,并通过溅射形成厚500
Figure 931146631_IMG41
的钛膜89。通过使已淀积成的钛膜在450℃下退火来形成硅化钛层90。随后通过如实例5中所说明的有选择腐蚀,除去钛膜89。通过激光照射再使所得到的结构退火。
由氧化硅构成层间绝缘体91,再经通常的刻图形步骤以形成源/漏接触92和93。由于采用本实施例这种结构,能获得不受源/漏区薄层电阻影响的TFT。也就是说,本实施例的TFT包括源/漏接触92和93,它们距沟道形成区87的距离设定为94。由于存在硅化物层90使源/漏区的薄层电阻降低。而距离94有一定配合容差。这就使在为形成源/漏区而将层间绝缘体开孔的下一工艺步骤中能按容差调整掩模。可见从实现工艺步骤的观点看本发明的结构是有利的。
在打开连接到源/漏区的接触孔的同时给栅极接触开孔时,在现有技术工艺中要考虑用腐蚀液(缓冲氢氟酸)处理源/漏区上表面的问题。但在本实施例的工艺中,因为在源/漏区的上表面上保留有未被缓冲氢氟酸腐蚀去的硅化物层,可不必考虑上述问题。
实例8
下面将参照图8说明按照本发明的实施例,在互补结构包括N沟道TFT(NTFT)和P沟道TFT(PTFT)中制造互补TFT(C/TFT)的工艺。
首先,通过溅射在玻璃基片700上淀积1000 厚的氧化硅膜作为基底膜701。然后用等离子CVD法在其上淀积1000
Figure 931146631_IMG43
厚的非晶硅膜。这样所得到的非晶硅膜在600℃下进行48小时的结晶化热退火,并使元件隔离以形成结晶化的有源区702和703。
通过溅射淀积成1000
Figure 931146631_IMG44
厚的氧化硅膜704作为栅极绝缘膜。然后,淀积上厚6000
Figure 931146631_IMG45
的含1%硅的铝膜,通过刻成图形产生栅极接触705和707。接着通过阳极氧化形成2000 厚的氧化层706和708。由于注入硼离子,源/漏区709和711呈P型导电,以自对准的方式形成沟道形成区710。通过再将磷离子注入另一有源层703,所以源/漏区712和714呈N型导电,再以自对准的方式形成沟道形成区713。如果在此步骤中不需注入离子,则该区可用保护膜覆盖。
通过照射激光束或红外光来激活源/漏区。除去所得到的已暴露出的氧化硅膜704,并在类似实例5所讨论的条件下淀积上钛膜。通过使已淀积成的钛膜退火形成硅化钛膜716。随后通过像实例5中所说的有选择性地腐蚀除去未反应的钛膜,接着用激光照射进行退火。就用这种方法获得了硅化钛层716。
由氧化硅构成层间绝缘体,然后经过通常的刻图形步骤形成PTFT的源/漏接触718和719以及用NTFT的源/漏接触720和721。由于采用本实施例的结构能获得不受源/漏区薄层电阻影响NTFT。也就是说,本实施例的NTF包括源/漏接触720和721,此两个接触区位于与沟道形成区713相距为722处,由于存在硅化物层716,源/漏区的薄层电阻降低了。而距离722有一定配合容差,这就能在为形成源/漏区而给层间绝缘体7717开孔的下一步骤中按容差来调整掩模。可见从实现工艺各步骤的观点来看,按照本发明的结构是有利的,而且在开孔步骤中源/漏区的表面不需处理或腐蚀。
在上述实例5~8所讨论的结构中,铝用作栅极接触,通过阳极氧化,环绕栅极接触形成氧化层。但此栅极接触可以是硅或金属作主要成分。此外,它也可由半导体和金属的叠层或金属硅化物和半导体的叠层组成。更准确地说,金属接触如钛、铬和钽,它们与硅的叠层或者这些金属的硅化物可用作栅极接触,以及这些金属的叠层或Si-W、Si-Mo和Si-Al等硅化物也可用作栅极接触。
实例9
下面将参照图10说明按照本发明的实施例制造TFT的工艺。通过在氧气气氛下溅射,在Corning    7059基片1101(尺寸为300mm×400mm或100mm×100mm)上淀积100~300nm厚的氧化硅膜1102作为基底氧化膜。但作为适于大量生产的工艺,基底氧化膜可以通过用等离子CVD法分解和淀积TEOS(四乙氧基硅),并将所得到的膜在450~650℃温度范围内退火来形成。
然后,用等离子CVD法或LPCVD法淀积成厚30~500nm,最好是50~100nm的非晶硅膜,并使之在还原气氛中在550~600℃的温度范围保持24小时以达到结晶化。此步骤可作激光照射来完成。将所得到的已结晶化的硅膜刻成图形给出岛状部分。进而通过溅射在其上淀积70~150nm厚的氧化硅膜1105。
然后通过电子束淀积形成厚度为200nm至5μm的含90%铝和1%硅的铝膜并刻成图形以获得栅极接触1106。所得到的栅极接触在电解液中加电流阳极氧化,从而得到50~250nm厚的阳极氧化物1107。此阳极氧化工艺是在日本专利申请公开-4-30220(1992.1.21申请)所披露的条件下进行的。
将杂质通过用栅极接触部分(即栅极接触和环绕阳极氧化膜)做掩模的离子掺杂工艺以自对准的方式注入位于每个TFTs上的岛状硅膜以获得源/漏区(掺杂区)103,如图10(A)所示。杂质区可通过如下方法来形成:在形成NMOS TFT情况下用磷烷(PH3)作为掺杂气体注入磷,在形成PMOS TFT情况下用乙硼烷(B2H6)作为掺杂气体注入硼。此离子掺杂工艺是在加速能量为10~90kev和离子剂量为2×1014~8×1014cm-2下来进行的。
用等离子CVD法淀积厚400nm~1.5μm,例如为900nm的氧化硅膜1108。
然后用公知的各向异性腐蚀即RIE工艺来腐蚀所得到的氧化硅膜1108。在这种情况下在高度900nm的栅极接触区1106两边的厚度近似达到两倍的膜厚(即氧化硅膜的膜厚,900nm)。再继续腐蚀氧化硅栅极绝缘膜1105使源/漏区1103暴露出。在上述步骤之后,在栅极接触两侧边产生三角形绝缘体1109,如图10(C)所示。
通过溅射,淀积上5~50nm厚的钨膜以获得图10(D)所示的结构。随后通过用波长248nm,脉宽20nsec的KrF准分子激光照射,使所淀积的钨膜与硅起反应,从而在掺杂区(源/漏)上得到硅化钨区1111。通过控制激光的能量强度在200~400mJ/cm2,最好在250~300mJ/cm2可进行适当的激光处理。所照射的激光束大部分被钨膜吸收,因此难用它修复在先前的离子掺杂步骤中已严重损伤了的硅掺杂区的结晶度。然而,由于硅化钨有低到30~100μΩ·cm范围的电阻率,源/漏区(区1108和其下面的掺杂区)的实际薄层电阻是10Ω/cm2或更低。当然,通过在离子注入步骤之后立即进行激光照射或热退火等,能解除掺杂区的退化。
如图10(E)所示,通过腐蚀除去激光照射时未起反应的残留的钨膜,而仅留下硅化钨。例如,通过令其在氟化碳的气氛中反应腐蚀,钨能化作六氟化钨气体而去除。
最后,用CVD法淀积成300nm厚的氧化硅膜以便在所得到结构的整个表面上提供层间绝缘体1112。在TFT的源/漏区开出接触孔之后,形成与接触1113的铝互连线。用这种方法加工成TFT的结构。此外,再在200~400℃温度范围进行氢退火,以激活掺杂区。
实例10
下面将参照图11说明按照本发明的实施例制造TFT的工艺。用像上述实例9中同样的方法在Corning 7059基片1201上顺序地形成基底氧化膜1202,岛状半导体区、起栅极氧化膜1205作用的氧化硅膜、和作为栅极接触的厚200nm~5μm铝膜1206。然后,通过按像实例9同样过程的阳极氧化,在栅极接触的周边(两边和上表面)上形成阳极氧化物1207。通过用栅极接触作掩模的离子掺杂,注入剂量为1×1014~5×1014cm-3的杂质形成掺杂区1203。
接着用波长248nm、脉宽20nsec的KrF准分子激光照射,使掺入的杂质激活。通过将激光能量密度控制在200~400mJ/cm2,最好在250~300mJ/cm2可获得适当的激光处理,从而获得图11(A)所示的结构。
可通过用灯照射红外光或通过使用公知的热退火工艺来进行激活。但最好和最有效的激活工艺是使用红外光(例如波长为1.2μm的光),因为红外光能被硅半导体有选择地吸收而不会显著地加热玻璃基片。而且通过缩短照射时间能避免玻璃基片变热。在上述激活步骤之后,用阳极氧化物1207作掩模通过干法腐蚀来腐蚀栅极氧化膜。例如,最好用CF4气体作为腐蚀气体,因为阳极氧化物能留下不被腐蚀而只腐蚀氧化硅栅极绝缘膜1205。接着再用等离子CVD法淀积上厚400nm~1.5μm的氧化硅膜1208。
通过像上述实例9中同样的各向异性腐蚀,在栅极接触两侧形成氧化硅三角形绝缘体1209。通过溅射,如图11(C)所示,形成5~50nm厚的钛膜1210。将此钛膜加热到250~650℃范围使钛与硅起反应,从而在绝缘基底(包括基底氧化膜1202)表面的杂质区(源/漏)上形成硅化钛区1211。此步骤最好在这样的温度下进行,即在该温度下在栅极接触和类似区域上不应产生小丘。
在单晶半导体基片的IC情况下,在硅化物区下面必须有一N+和基片的结。但由于本发明应用位于绝缘基片上的薄膜IC,硅化物能直接与玻璃基片(绝缘基片)接触。因此可很容易地进行形成硅化物。
在本实例中可用灯产生的红外光来进行退火。用灯退火,可以将所照射的表面加热到600~1000℃范围来完成。若退火温度是600℃,退火时间是几分钟,如退火温度是1000℃的高温,则退火时间仅需几秒钟。在本实例中淀积钛膜后的热退火要在650℃或更低温度下进行,因为栅极接触是铝制的。但如果栅极接触用硅作主要成分,则退火温度最好是在700℃或更高。
然后使用比例为5∶2∶2的过氧化氢、氨水和水的混合物组成的腐蚀液去腐蚀钛膜。硅化钛层1211不受腐蚀而保留下来。最后,如图11(E)所示,用CVD法淀积成300nm厚的氧化硅膜,从而在所得到结构的整个表面上提供一层间绝缘体1212。在打开TFT的源/漏接触孔之后形成与接触1213的铝此连线。用这种方法得到完整的TFT。
实例11
下面将参照图13说明制造有源阵列编址液晶显示基片的工艺。
参看图13(A),用上述实例9中同样的方法在Corning 7059基片1401上顺序地形成基底氧化膜1402,岛状半导体区、和起栅极氧化膜作用的氧化硅膜1405、此外还进一步在同一层与互连线(第一层互连线)1406一起形成厚200nm~5μm铝膜作栅极接触1407。然后,按像实例9中同样过程的阳极氧化,在栅极接触的周边(两侧和上表面)上形成阳极氧化物层1408。通过用离子掺杂法注入杂质形成杂质区1403。随后,用波长248nm、脉宽20nsec的KrF准分子激光对其照射使掺进的杂质激活。通过控制激光能量密度在200mJ/cm2~400mJ/cm2,最好在250~300mJ/cm2可得到适当的激光处理。
然后如图13(B)所示,淀积氧化硅膜1410。再通过像在上述实例9同样的各向异性腐蚀,在栅极接触和第一层互连线的两侧形成三角形绝缘体1411和1412。在使源/漏区暴露出以后,通过溅射形成5~50nm厚的钛膜。在膜淀积期间基片温度保持在200~450℃范围。最好在250~300℃。以使钛与硅起反应,从而在源/漏区的表面上形成硅化钛层1413。
然后,如图13(C)所示,腐蚀掉残留的未起反应的钛膜,并用CVD法在整个表面上淀积成厚600nm的氧化硅膜作为层间绝缘体1414。下一步骤是通过溅射淀积一厚50~100nm的ITO膜。再将此ITO膜刻成图形以提供一象素电极1415。最后形成TFT的源/漏接触孔,再淀积成多层的铝膜和氮化钛并刻成图形,以获得与接触1416的互连线作为第二层。氮化钛和铝层的厚度分别是80nm和500nm。就用这种方法可得到完整的有源阵列编址基片。
在本实例所制造的有源阵列中,单个象素电路示于图13(E)中。源/漏接触1416和栅极接触1407之间的薄层电阻,即使期间采取大的距离时估计也不会有问题。此外,由于栅极接触用作偏移栅,所以栅极接触和源/漏区(或源/漏接触)之间的寄生电容Cp很小。可见能得到理想的有源阵列。于是,通常与象素电容并联构成维持电容Cs会显著减少或完全消除。因而能使孔径比增大。
能使用本实施例的TFT,通过比上述实施例(-象素TFT)更加减少阳极氧化物1409的厚度来制造有源阵列的外围驱动电路。用另外的方法还能完全取消阳极氧化物层。象素TFT要求把寄生电容Cp减至最小,而外围电路的TFT对寄生电容Cp的减少要求并不严格。
如上所述,本发明提供一种显著减小了源/漏之间的电阻的薄膜半导体器件。现有技术的工艺要求长时间的热退火以降低源/漏之间的电阻。但这样的现有技术工艺有产量低的缺陷,而且适用于此工艺的基片材料被限定要能耐受550℃甚至更高的温度。已推荐一种使用激光照射的工艺,但此工艺要求最佳的能量密度,在比适当值低或高的能量密度下,不能获得有利的薄层电阻。因此,这样的工艺造成TFTs的特性十分分散,充其量也不过能得到每方几百欧(Ω/cm2)的薄层电阻。
与上述现有技术工艺不同,本发明提供一种薄层电阻降到100Ω/cm2或者甚至更低的薄膜半导体器件,因为在硅半导体(源/漏)的表面上形成非常薄的硅化物膜,显著地降低薄层电阻。本发明要求激光照射以获得硅化物膜,但不需要像激活硅的现有技术工艺那样严格控制操作条件。但激光照射显著地提高了产品的成品率。此制造硅化物膜的工艺也需要淀积金属膜,但淀积膜的工艺时间可使之适于大量生产的工艺所要求的那样短。
此外,就在硅化物层下面的硅半导体掺杂区来说,不必再进行为恢复被离子注入损伤的结晶度的激活步骤。例如,在使用离子掺杂注入剂量为1015cm-2或更大的杂质之后,就能得到约10KΩ/cm2的薄层电阻,而不需对杂质区进行激活工艺。因此,在本发明的有与杂质区接触的低阻硅化物层的实际器件中,源和漏的实际薄层电阻是足够低的。
但是,未进行激活步骤的硅半导体存在许多缺陷,从可靠性的观点来看,这样的硅半导体有时是不利的。在这样情况下必须进行杂质区激活。应注意,加入激活步骤使整个工艺步骤增加。但是,为激活而使用激光照射显著地减少工艺时间而没有使工艺复杂化,因为与使用激光照射来控制最佳杂质区的薄层电阻的情况相比此步骤能在不太严格的条件下进行。
如上所述,本发明在制造改进了特性提高了成品率的TFTs方面是有很大用途的。
除上述外,源/漏区接触的位置能通过以自对准方式提供与栅极接触区相连的绝缘体而能自动确定。另一优点是能获得对薄层电阻无特殊要求的结构。特别是,当以自对准方式设定接触部分和沟道形成区之间的距离时,可获得与掩模套合及形成接触孔问题无关的器件。
通过在源/漏区表面上形成硅化物膜从而降低源/漏区的薄层电阻,能制造出进一步提高器件性能、可靠性、生产率和产品成品率的薄膜半导体器件。
以上参照具体实施例对本发明进行了详细地讨论,但应指出,本领域熟练的人员能对其进行各种改变和变换这都不超出本发明的精神和范围。

Claims (21)

1、一种半导体器件包括:
两个位于基片上的有P型或N型导电的硅半导体区;
一个有源区,它位于所说的两个硅半导体区基本上是本征导电或相反导电型的硅半导体;
位于所说的有源区上的栅极绝缘膜;
与所说的栅极绝缘膜接触的栅电极;
至少提供在所说栅电极一侧面并包括所说栅电极材料的阳极氧化物;和
与所说的两个硅半导体接触并包括硅和金属的硅化物区。
2、按照权利要求1所说的半导体器件,其特征在于所说的两个硅化物区是有像所说的两个硅半导体区同样形状的薄层。
3、按照权利要求1所说的半导体器件,其特征在于所说的棚电极包括至少两种材料的合金,所说的阳极氧化物包括所说的至少两种材料的至少一种。
4、按照权利要求1所说的半导体器件,其特征在于所说的两个硅化物区厚为10nm~1μm。
5、一种形成半导体器件的方法,包括如下步骤:
有选择地在基片上形成包括硅的半导体层;
在所说的半导体层上形成栅极绝缘膜;
在所说的栅极绝缘膜上形成栅电极;
至少在所说的栅电极的一侧面形成阳极氧化物;
通过用所说的栅电极和所说的阳极氧化物做掩模,以自对准方式向其中引入杂质,在所说的半导体层中形成源和漏区;
除去所说的栅极绝缘膜的一部分以暴露出所说的源和漏区的表面;
在已露出的表面上形成由金属构成的金属膜;
用光照射所说的金属膜,通过使所说的金属与所说的硅结合,形成硅化物;和
除去所说的金属膜,在所说的源和漏区上留下所说的硅化物。
6、一种制造半导体器件的方法,包括如下步骤:
有选择地在基片上形成包括硅的半导体层;
在所说的半导体层上形成栅极绝缘膜;
在所说的栅极绝缘膜上形成栅电极;
在所说的形成栅极绝缘膜的步骤之后,通过用所说的栅电极做掩模,以自对准方式引入杂质在所说的半导体层中形成源和漏区;
至少在所说的栅电极的一侧面形成阳极氧化物;
在所说的形成源和漏区的步骤之后除去栅极绝缘膜的一部分,以暴露出所说的源和漏区的表面;
在所说的源和漏区形成步骤之后,在已露出的表面上形成由金属构成的金属膜;
用光照射所说的金属膜使所说的金属与所说的硅结合形成硅化物;和
除去所说的金属膜,留下在所说的源和漏区上所说的硅化物。
7、按照权利要求6所说的方法,其特征在于通过所说的阳极氧化物形成步骤所说的阳极氧化物还形成在所说的栅电极的上表面。
8、按照权利要求6所说方法,其特征在于所说的光是脉冲激光。
9、一种形成半导体器件的方法,包括如下步骤:
在基片上有选择地形成含硅的半导体层;
在所说的半导体层上形成棚极绝缘膜;
在所说的棚极绝缘膜上形成栅电极;
至少在所说的栅电极的一侧上形成阳极氧化物;
除去栅极绝缘膜的一部分,以暴露出所说的半导体层的表面;
在暴露出的表面上形成由金属构成的金属膜;
在所说的金属膜形成步骤之后,通过用所说的栅电极和所说的阳极氧化物做掩模,以自对准方式引入杂质在所说的半导体层中形成源和漏区;
用光照射所说的金属膜,使所说的金属与所说的硅结合形成硅化物;和
在所说的源和漏区形成步骤之后,除去所说的金属膜,在所说的源和漏区上留下所说的硅化物。
10、按照权利要求9所说的方法,其特征在于通过所说的阳极氧化物形成步骤所说的阳极氧化物还形成在所说的栅电极的上表面。
11、按照权利要求9所说的方法,其特征在于所说的光是脉冲激光。
12、按照权利要求9所说的方法,其特征在于所说的基片有一绝缘表面,而所说的硅化物形成于所说的绝缘表面。
13、一种形成半导体器件的方法,包括如下步骤:
在基片上有选择地形成含硅的半导体层;
在所说的半导体层上形成栅极绝缘膜;
在所说的栅极绝缘膜上形成栅电极;
至少在所说的栅电极的一侧上形成阳极氧化物;
除去所说的栅极绝缘膜的一部分以暴露出所说的半导体层的表面;
在已露出的表面上形成由金属构成的金属膜;
用光照射所说的金属膜使所说的金属与所说的硅结合形成硅化物;
除去所说的金属膜,在所说的半导体层上留下所说的硅化物;和
在所说的金属膜除去步骤之后,通过用所说的栅电极和所说的阳极氧化物做掩模以自对准方式引入杂质,在所说的半导体层中形成源和漏区;
14、一种半导体器件包括:
源和漏区;
位于所说的源和所说的漏区之间的沟道区;
邻近所说的沟道区的栅电极;
位于所说的栅电极的一侧面上的绝缘层;
与所说的绝缘层接触并实质上呈三角形的绝缘体;和
分别位于所说的源和所说的漏区的表面上的硅化物层;
其特征在于至少所说的源和漏区的一个接触区的位置是通过所说的绝缘体自对准的。
15、按照权利要求14所说的器件,其特征在于所说的栅电极包括铝,所说的绝缘层包括所说铝的氧化物。
16、按照权利要求14所说的器件,其特征在于所说的硅化物层不在位于所说的绝缘体下面的所说的源和漏区的部分上。
17、按照权利要求14所说的器件,其特征在于所说的硅化物层由从包括钼、钨、铂、铬、钛和钴的这组材料中所选择的材料组成。
18、一种半导体器件包括:
源和漏区;
位于所说的源和所说的漏区之间的沟道区;
邻近所说的沟道区的栅电极;
与所说的栅电极的一侧接触而且实质上为三角形的绝缘体;和
与所说的源和漏区的表面接触的硅化物层,其特征在于至少所说的源和漏区的一个接触区的位置是通过所说的绝缘体自对准的。
19、一种形成半导体器件的方法包括如下步骤:
形成覆盖栅电极的绝缘体;
各向异性地腐蚀所说的绝缘体以暴露出所说的源和漏区的表面,以及一部分所说的实质上呈三角形的绝缘体留在所说的栅电极的一侧面上;和
在已露出的所说的源和漏区的表面上形成硅化物层。
20、一种形成半导体器件的方法包括如下步骤:
在半导体层上形成栅极绝缘膜以便变成源、漏和沟道区;
在所说的栅极绝缘膜上形成栅电极;
暴露出此半导体层使之变成所说的源和漏区;和
在已露出的半导体层上形成硅化物层。
21、一种形成半导体器件的方法包括以下步骤:
至少在所说栅电极的一侧面上形成包括栅电极中所用元件的第一绝缘体;
形成覆盖所说的栅电极和所说的第一绝缘体的第二绝缘体;
各向异性地腐蚀所说的第二绝缘体,在所说的栅电极的一侧面上留下一部分实质上呈三角形的所说的第二绝缘体;
暴露出源和漏区表面,以及一部分所说的源和漏区用所说的第二绝缘体的留下部分覆盖;和
在已露出的表面上形成硅化物层。
CN93114663A 1992-10-09 1993-10-09 半导体器件及其制造方法 Expired - Lifetime CN1041872C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP4297650A JPH06124962A (ja) 1992-10-09 1992-10-09 薄膜状半導体装置およびその作製方法
JP297650/92 1992-10-09
JP172711/93 1993-06-18
JP17271193A JP3252990B2 (ja) 1993-06-18 1993-06-18 半導体装置およびその作製方法
JP200253/93 1993-07-20
JP5200253A JP3030367B2 (ja) 1993-07-20 1993-07-20 半導体装置およびその作製方法

Publications (2)

Publication Number Publication Date
CN1090427A true CN1090427A (zh) 1994-08-03
CN1041872C CN1041872C (zh) 1999-01-27

Family

ID=27323673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93114663A Expired - Lifetime CN1041872C (zh) 1992-10-09 1993-10-09 半导体器件及其制造方法

Country Status (4)

Country Link
US (7) US5962897A (zh)
KR (1) KR0131061B1 (zh)
CN (1) CN1041872C (zh)
TW (1) TW232751B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078386C (zh) * 1994-08-29 2002-01-23 株式会社半导体能源研究所 制造半导体器件的方法
CN101262013B (zh) * 2007-03-08 2012-01-11 株式会社半导体能源研究所 半导体装置以及其制造方法
CN1614756B (zh) * 1994-12-16 2013-06-19 株式会社半导体能源研究所 半导体器件及其制造方法
US8759186B2 (en) 2011-11-21 2014-06-24 Industrial Technology Research Institute Semiconductor device and method for manufacturing the same
CN101673769B (zh) * 2003-04-23 2015-09-02 株式会社半导体能源研究所 半导体元件、半导体器件以及其制作方法
CN107827077A (zh) * 2017-09-21 2018-03-23 广东电网有限责任公司惠州供电局 一种压阻式mems温度传感器及其制作方法

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683697B1 (en) * 1991-03-20 2004-01-27 Millenium L.P. Information processing methodology
US5643801A (en) * 1992-11-06 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Laser processing method and alignment
US6544825B1 (en) * 1992-12-26 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a MIS transistor
US6410374B1 (en) 1992-12-26 2002-06-25 Semiconductor Energy Laborartory Co., Ltd. Method of crystallizing a semiconductor layer in a MIS transistor
JPH0730125A (ja) * 1993-07-07 1995-01-31 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
TW297142B (zh) 1993-09-20 1997-02-01 Handotai Energy Kenkyusho Kk
US5719065A (en) 1993-10-01 1998-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with removable spacers
JP3256084B2 (ja) * 1994-05-26 2002-02-12 株式会社半導体エネルギー研究所 半導体集積回路およびその作製方法
US6906383B1 (en) * 1994-07-14 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacture thereof
US6670640B1 (en) * 1994-09-15 2003-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
JP3778456B2 (ja) * 1995-02-21 2006-05-24 株式会社半導体エネルギー研究所 絶縁ゲイト型薄膜半導体装置の作製方法
TW317643B (zh) * 1996-02-23 1997-10-11 Handotai Energy Kenkyusho Kk
TW335503B (en) * 1996-02-23 1998-07-01 Semiconductor Energy Lab Kk Semiconductor thin film and manufacturing method and semiconductor device and its manufacturing method
TW374196B (en) 1996-02-23 1999-11-11 Semiconductor Energy Lab Co Ltd Semiconductor thin film and method for manufacturing the same and semiconductor device and method for manufacturing the same
JPH10104663A (ja) 1996-09-27 1998-04-24 Semiconductor Energy Lab Co Ltd 電気光学装置およびその作製方法
JPH10135475A (ja) * 1996-10-31 1998-05-22 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
KR100400288B1 (ko) * 1996-12-31 2003-12-31 주식회사 하이닉스반도체 반도체 소자의 트랜지스터 제조방법
JPH10284438A (ja) 1997-04-02 1998-10-23 Toshiba Corp 半導体集積回路及びその製造方法
US6686623B2 (en) 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
CN1145224C (zh) * 1998-05-08 2004-04-07 三星电子株式会社 使化合物半导体层激活成为p-型化合物半导体层的方法
JP4053136B2 (ja) * 1998-06-17 2008-02-27 株式会社半導体エネルギー研究所 反射型半導体表示装置
US6262461B1 (en) * 1998-06-22 2001-07-17 Motorola, Inc. Method and apparatus for creating a voltage threshold in a FET
JP2000012864A (ja) * 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP3592535B2 (ja) * 1998-07-16 2004-11-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6271101B1 (en) 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
US6559036B1 (en) * 1998-08-07 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP4476390B2 (ja) 1998-09-04 2010-06-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6451644B1 (en) * 1998-11-06 2002-09-17 Advanced Micro Devices, Inc. Method of providing a gate conductor with high dopant activation
TW444257B (en) 1999-04-12 2001-07-01 Semiconductor Energy Lab Semiconductor device and method for fabricating the same
US6370502B1 (en) * 1999-05-27 2002-04-09 America Online, Inc. Method and system for reduction of quantization-induced block-discontinuities and general purpose audio codec
TW480722B (en) * 1999-10-12 2002-03-21 Semiconductor Energy Lab Manufacturing method of electro-optical device
US6448594B1 (en) * 2000-03-30 2002-09-10 Advanced Micro Devices, Inc. Method and system for processing a semiconductor device
US6734071B1 (en) * 2000-08-30 2004-05-11 Micron Technology, Inc. Methods of forming insulative material against conductive structures
GB0024294D0 (en) * 2000-10-04 2000-11-15 Univ Cambridge Tech Solid state embossing of polymer devices
KR100737910B1 (ko) * 2000-11-27 2007-07-10 삼성전자주식회사 폴리실리콘형 박막트랜지스터 제조방법
JP2002208592A (ja) * 2001-01-09 2002-07-26 Sharp Corp 絶縁膜の形成方法、半導体装置、製造装置
US7112818B2 (en) * 2001-01-29 2006-09-26 Seiko Epson Corporation Semiconductor film transistor
KR100491141B1 (ko) * 2001-03-02 2005-05-24 삼성에스디아이 주식회사 박막 트랜지스터 및 그의 제조방법과 이를 이용한 액티브매트릭스형 표시소자 및 그의 제조방법
DE10141352A1 (de) * 2001-08-23 2003-06-05 Osram Opto Semiconductors Gmbh Verfahren zur Oberflächenbehandlung eines Halbleiters
AU2002359975A1 (en) * 2001-12-12 2003-07-09 Matsushita Electric Industrial Co., Ltd. Variable capacitor and its manufacturing method
KR100447893B1 (ko) * 2001-12-26 2004-09-08 엘지.필립스 엘시디 주식회사 박막 트랜지스터 제조방법
US6783591B1 (en) * 2002-08-06 2004-08-31 Advanced Micro Devices, Inc. Laser thermal annealing method for high dielectric constant gate oxide films
US6887751B2 (en) * 2003-09-12 2005-05-03 International Business Machines Corporation MOSFET performance improvement using deformation in SOI structure
US20050124128A1 (en) * 2003-12-08 2005-06-09 Kim Hag D. Methods for manufacturing semiconductor device
US7026713B2 (en) * 2003-12-17 2006-04-11 Hewlett-Packard Development Company, L.P. Transistor device having a delafossite material
US7288480B2 (en) * 2004-04-23 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit and method for manufacturing the same, CPU, memory, electronic card and electronic device
US20060045425A1 (en) * 2004-09-02 2006-03-02 Tomohiko Kanie Wavelength-selectable device and optical communication system including the same
TWI382455B (zh) * 2004-11-04 2013-01-11 Semiconductor Energy Lab 半導體裝置和其製造方法
US7575959B2 (en) * 2004-11-26 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
CN101088158B (zh) * 2004-12-24 2010-06-23 株式会社半导体能源研究所 半导体装置
US20060197088A1 (en) * 2005-03-07 2006-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2006295025A (ja) * 2005-04-14 2006-10-26 Sharp Corp 半導体装置およびその製造方法
US7550382B2 (en) * 2005-05-31 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, evaluation method of semiconductor device, and semiconductor device
KR100658286B1 (ko) * 2005-08-11 2006-12-14 삼성에스디아이 주식회사 유기 박막 트랜지스터 및 이를 이용한 평판표시장치
US20070054442A1 (en) * 2005-09-08 2007-03-08 Po-Chih Liu Method for manufacturing thin film transistor, thin film transistor and pixel structure
US7719030B2 (en) * 2006-03-29 2010-05-18 International Rectifier Corporation Aluminum alloys for low resistance, ohmic contacts to III-nitride or compound semiconductor
US7696024B2 (en) * 2006-03-31 2010-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070298623A1 (en) * 2006-06-26 2007-12-27 Spencer Gregory S Method for straining a semiconductor device
TWI319211B (en) * 2006-12-13 2010-01-01 Univ Nat Taiwan Mobility enhancement of thin film transistor by strain technology
JP5352081B2 (ja) * 2006-12-20 2013-11-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5415001B2 (ja) * 2007-02-22 2014-02-12 株式会社半導体エネルギー研究所 半導体装置
KR101453829B1 (ko) * 2007-03-23 2014-10-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 및 그 제조 방법
JP5512931B2 (ja) * 2007-03-26 2014-06-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5512930B2 (ja) 2007-03-26 2014-06-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR20080094300A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101440930B1 (ko) * 2007-04-20 2014-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Soi 기판의 제작방법
EP1993127B1 (en) * 2007-05-18 2013-04-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate
KR100875432B1 (ko) 2007-05-31 2008-12-22 삼성모바일디스플레이주식회사 다결정 실리콘층의 제조 방법, 이를 이용하여 형성된박막트랜지스터, 그의 제조방법 및 이를 포함하는유기전계발광표시장치
KR100889626B1 (ko) * 2007-08-22 2009-03-20 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법, 이를 구비한유기전계발광표시장치, 및 그의 제조방법
KR100889627B1 (ko) * 2007-08-23 2009-03-20 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법, 및 이를 구비한유기전계발광표시장치
JP5527956B2 (ja) * 2007-10-10 2014-06-25 株式会社半導体エネルギー研究所 半導体基板の製造方法
US7982272B2 (en) * 2008-03-26 2011-07-19 Advanced Lcd Technologies Development Center Co., Ltd. Thin-film semiconductor device and method for manufacturing the same
KR100982310B1 (ko) 2008-03-27 2010-09-15 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법, 및 이를 포함하는유기전계발광표시장치
KR100989136B1 (ko) * 2008-04-11 2010-10-20 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법, 및 이를 포함하는유기전계발광표시장치
KR101002666B1 (ko) * 2008-07-14 2010-12-21 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법, 및 이를 포함하는유기전계발광표시장치
TWI711182B (zh) * 2008-07-31 2020-11-21 日商半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
US20100032759A1 (en) * 2008-08-11 2010-02-11 International Business Machines Corporation self-aligned soi schottky body tie employing sidewall silicidation
US7821068B2 (en) * 2008-08-18 2010-10-26 Xerox Corporation Device and process involving pinhole undercut area
US8158513B2 (en) * 2008-10-08 2012-04-17 Globalfoundries Singapore Pte. Ltd. Integrated circuit system employing backside energy source for electrical contact formation
US8227867B2 (en) 2008-12-23 2012-07-24 International Business Machines Corporation Body contacted hybrid surface semiconductor-on-insulator devices
WO2011027661A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
KR20120124061A (ko) 2010-01-26 2012-11-12 다우 코닝 코포레이션 오가노할로실란의 제조 방법
JP5726294B2 (ja) 2010-05-28 2015-05-27 ダウ コーニング コーポレーションDow Corning Corporation ジオルガノジハロシランの調製方法
US8722915B2 (en) 2010-05-28 2014-05-13 Dow Corning Corporation Preparation of organohalosilanes
US8765090B2 (en) 2010-09-08 2014-07-01 Dow Corning Corporation Method for preparing a trihalosilane
RU2013117809A (ru) 2010-12-17 2015-01-27 Дау Корнинг Корпорейшн Способ получения тригалогенсилана
US8674129B2 (en) 2010-12-17 2014-03-18 Dow Corning Corporation Method of making a diorganodihalosilane
CN103298821A (zh) 2011-01-25 2013-09-11 道康宁公司 制备二有机二卤代硅烷的方法
CN102522429A (zh) * 2011-12-28 2012-06-27 华南理工大学 一种基于金属氧化物的薄膜晶体管及其制备方法和应用
US8995218B2 (en) 2012-03-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9292243B2 (en) * 2012-06-21 2016-03-22 Sanford, L.P. User interface for a label printer
CN104736547A (zh) 2012-08-13 2015-06-24 道康宁公司 通过使氢、卤硅烷和有机卤化物在铜催化剂上以两步法反应制备有机卤硅烷的方法
JP6125646B2 (ja) 2012-10-16 2017-05-10 ダウ コーニング コーポレーションDow Corning Corporation ハロゲン化シラヒドロカルビレンの調製方法
DE102012109937A1 (de) 2012-10-18 2014-04-24 Limo Patentverwaltung Gmbh & Co. Kg Vorrichtung zur Beaufschlagung einer Innenseite eines Zylinders mit Licht sowie Strahltransformationsvorrichtung für eine derartige Vorrichtung
US20150087144A1 (en) * 2013-09-26 2015-03-26 Taiwan Semiconductor Manufacturing Company Ltd. Apparatus and method of manufacturing metal gate semiconductor device
WO2015073213A1 (en) 2013-11-12 2015-05-21 Dow Corning Corporation Method for preparing a halosilane
CN103942900B (zh) * 2014-04-29 2017-10-10 Tcl集团股份有限公司 一种公共场所的社交系统
WO2016099690A1 (en) 2014-12-18 2016-06-23 Dow Corning Corporation Method for producing aryl-functional silanes
US10642077B1 (en) * 2018-11-20 2020-05-05 Elenion Technologies, Llc Lateral MOSCAP phase adjuster

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34658A (en) * 1862-03-11 Improvement in cooking-stoves
JPS4995592A (zh) 1973-01-12 1974-09-10
JPS54153583A (en) 1978-05-25 1979-12-03 Agency Of Ind Science & Technol Semiconductor device
JPS5683935A (en) 1979-12-12 1981-07-08 Sony Corp Formation of metal layer
JPS5694671A (en) 1979-12-27 1981-07-31 Fujitsu Ltd Manufacture of mis field-effect semiconductor device
US4336550A (en) * 1980-03-20 1982-06-22 Rca Corporation CMOS Device with silicided sources and drains and method
USRE34658E (en) 1980-06-30 1994-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device of non-single crystal-structure
JPS5799775A (en) * 1980-12-12 1982-06-21 Toshiba Corp Manufacture of semiconductor device
US4622735A (en) * 1980-12-12 1986-11-18 Tokyo Shibaura Denki Kabushiki Kaisha Method for manufacturing a semiconductor device utilizing self-aligned silicide regions
DE3272410D1 (en) 1981-02-16 1986-09-11 Fujitsu Ltd Method of producing mosfet type semiconductor device
JPS584180A (ja) * 1981-06-30 1983-01-11 セイコーエプソン株式会社 アクテイブマトリクス基板
JPS5823479A (ja) * 1981-08-05 1983-02-12 Fujitsu Ltd 半導体装置の製造方法
US4378628A (en) * 1981-08-27 1983-04-05 Bell Telephone Laboratories, Incorporated Cobalt silicide metallization for semiconductor integrated circuits
JPS5895877A (ja) * 1981-12-01 1983-06-07 Semiconductor Res Found 半導体光電変換装置
FR2527385B1 (fr) 1982-04-13 1987-05-22 Suwa Seikosha Kk Transistor a couche mince et panneau d'affichage a cristaux liquides utilisant ce type de transistor
JPS59110114A (ja) * 1982-12-15 1984-06-26 Matsushita Electronics Corp 半導体装置の製造方法
JPS59110115A (ja) 1982-12-16 1984-06-26 Nec Corp 半導体装置の製造方法
US4570328A (en) 1983-03-07 1986-02-18 Motorola, Inc. Method of producing titanium nitride MOS device gate electrode
KR910006249B1 (ko) * 1983-04-01 1991-08-17 가부시기가이샤 히다찌세이사꾸쇼 반도체 장치
US4619034A (en) 1983-05-02 1986-10-28 Ncr Corporation Method of making laser recrystallized silicon-on-insulator nonvolatile memory device
US4554572A (en) * 1983-06-17 1985-11-19 Texas Instruments Incorporated Self-aligned stacked CMOS
JPH0693509B2 (ja) 1983-08-26 1994-11-16 シャープ株式会社 薄膜トランジスタ
JPH0656839B2 (ja) 1984-03-28 1994-07-27 株式会社日立製作所 半導体装置の製造方法
US4727044A (en) 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
JPS60245174A (ja) * 1984-05-18 1985-12-04 Semiconductor Energy Lab Co Ltd 絶縁ゲイト型電界効果半導体装置の作製方法
JPS6156460A (ja) 1984-08-28 1986-03-22 Nec Corp 半導体装置及びその製造方法
JPS61183971A (ja) 1985-02-08 1986-08-16 Matsushita Electric Ind Co Ltd 薄膜トランジスタ
US5166086A (en) 1985-03-29 1992-11-24 Matsushita Electric Industrial Co., Ltd. Thin film transistor array and method of manufacturing same
US4931411A (en) 1985-05-01 1990-06-05 Texas Instruments Incorporated Integrated circuit process with TiN-gate transistor
JPS6232653A (ja) 1985-08-05 1987-02-12 Nippon Telegr & Teleph Corp <Ntt> 薄膜トランジスタの製造方法
JPS6254960A (ja) * 1985-09-04 1987-03-10 Nec Corp Mis形電界効果トランジスタ
US4707721A (en) 1986-02-20 1987-11-17 Texas Instruments Incorporated Passivated dual dielectric gate system and method for fabricating same
JPH0828510B2 (ja) 1987-01-20 1996-03-21 富士通株式会社 薄膜トランジスタの形成方法
JPH0687503B2 (ja) 1987-03-11 1994-11-02 株式会社日立製作所 薄膜半導体装置
JPS63314862A (ja) 1987-06-17 1988-12-22 Nec Corp 薄膜トランジスタの製造方法
JPS63318779A (ja) * 1987-06-22 1988-12-27 Sanyo Electric Co Ltd 半導体装置の製造方法
US4755478A (en) 1987-08-13 1988-07-05 International Business Machines Corporation Method of forming metal-strapped polysilicon gate electrode for FET device
JPH01114070A (ja) * 1987-10-28 1989-05-02 Hitachi Ltd 半導体装置の製造方法
JPH01160009A (ja) 1987-12-16 1989-06-22 Fujitsu Ltd 半導体装置の製造方法
US4965213A (en) 1988-02-01 1990-10-23 Texas Instruments Incorporated Silicon-on-insulator transistor with body node to source node connection
JPH0734749B2 (ja) * 1988-02-03 1995-04-19 日本碍子株式会社 エリスリトールの製造方法
US5248623A (en) 1988-02-19 1993-09-28 Nippondenso Co., Ltd. Method for making a polycrystalline diode having high breakdown
JP2752424B2 (ja) * 1988-05-11 1998-05-18 三菱電機株式会社 半導体装置
JP2653099B2 (ja) * 1988-05-17 1997-09-10 セイコーエプソン株式会社 アクティブマトリクスパネル,投写型表示装置及びビューファインダー
JPH0228377A (ja) * 1988-06-09 1990-01-30 Fujitsu Ltd 半導体装置、電界効果トランジスタ、および、キャパシタの製造方法
US4899202A (en) * 1988-07-08 1990-02-06 Texas Instruments Incorporated High performance silicon-on-insulator transistor with body node to source node connection
JPH0242419A (ja) * 1988-08-02 1990-02-13 Hitachi Ltd 半導体装置およびその製造方法
JPH0283941A (ja) 1988-09-21 1990-03-26 Fuji Xerox Co Ltd 薄膜トランジスタの製造方法
US5180690A (en) * 1988-12-14 1993-01-19 Energy Conversion Devices, Inc. Method of forming a layer of doped crystalline semiconductor alloy material
JPH02207537A (ja) * 1989-02-08 1990-08-17 Hitachi Ltd 薄膜半導体装置の製造方法
JPH077773B2 (ja) * 1989-03-01 1995-01-30 工業技術院長 半導体装置の製造方法
US5245207A (en) 1989-04-21 1993-09-14 Nobuo Mikoshiba Integrated circuit
JP2731236B2 (ja) 1989-05-09 1998-03-25 三菱電機株式会社 薄膜結晶層を有する半導体装置の製造方法
US4923822A (en) * 1989-05-22 1990-05-08 Hewlett-Packard Company Method of fabricating a semiconductor device by capping a conductive layer with a nitride layer
US4951100A (en) 1989-07-03 1990-08-21 Motorola, Inc. Hot electron collector for a LDD transistor
US5194405A (en) 1989-07-06 1993-03-16 Sony Corporation Method of manufacturing a semiconductor device having a silicide layer
JP2508851B2 (ja) 1989-08-23 1996-06-19 日本電気株式会社 液晶表示素子用アクティブマトリクス基板とその製造方法
US5083190A (en) 1989-09-05 1992-01-21 Motorola, Inc. Shared gate CMOS transistor
US4925812A (en) 1989-09-21 1990-05-15 International Rectifier Corporation Platinum diffusion process
US5498573A (en) 1989-11-29 1996-03-12 General Electric Company Method of making multi-layer address lines for amorphous silicon liquid crystal display devices
JP2890584B2 (ja) * 1989-12-29 1999-05-17 ソニー株式会社 半導体装置の製造方法
JPH03248469A (ja) 1990-02-26 1991-11-06 Nec Corp Mos型半導体装置
US5124769A (en) 1990-03-02 1992-06-23 Nippon Telegraph And Telephone Corporation Thin film transistor
JP2775503B2 (ja) 1990-03-13 1998-07-16 三菱電機株式会社 接合ゲート型電界効果トランジスタの製造方法
US5141897A (en) 1990-03-23 1992-08-25 At&T Bell Laboratories Method of making integrated circuit interconnection
JPH0411722A (ja) 1990-04-28 1992-01-16 Kyocera Corp 半導体結晶化膜の形成方法
JPH0458564A (ja) 1990-06-28 1992-02-25 Seiko Epson Corp 薄膜半導体装置の製造方法
JPH0465168A (ja) 1990-07-05 1992-03-02 Hitachi Ltd 薄膜トランジスタ
US5147826A (en) 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
JP2982254B2 (ja) 1990-08-20 1999-11-22 日本電気株式会社 半導体装置の製造方法
JPH04106982A (ja) * 1990-08-24 1992-04-08 Seiko Epson Corp 半導体装置の製造方法
US5064775A (en) 1990-09-04 1991-11-12 Industrial Technology Research Institute Method of fabricating an improved polycrystalline silicon thin film transistor
JP2940880B2 (ja) * 1990-10-09 1999-08-25 三菱電機株式会社 半導体装置およびその製造方法
JPH04162679A (ja) * 1990-10-26 1992-06-08 Mitsubishi Electric Corp 半導体装置
EP0486284A3 (en) 1990-11-13 1993-09-01 Sel Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US20010050664A1 (en) 1990-11-13 2001-12-13 Shunpei Yamazaki Electro-optical device and driving method for the same
JP2916606B2 (ja) 1990-11-26 1999-07-05 株式会社半導体エネルギー研究所 表示装置
JP3029289B2 (ja) * 1990-11-20 2000-04-04 株式会社半導体エネルギー研究所 液晶表示装置
KR950013784B1 (ko) 1990-11-20 1995-11-16 가부시키가이샤 한도오따이 에네루기 겐큐쇼 반도체 전계효과 트랜지스터 및 그 제조방법과 박막트랜지스터
JP2767495B2 (ja) * 1990-11-26 1998-06-18 株式会社半導体エネルギー研究所 半導体装置および表示装置
IT1244119B (it) 1990-11-29 1994-07-05 Cons Ric Microelettronica Processo di introduzione e diffusione di ioni di platino in una fetta di silicio
EP0488801B1 (en) 1990-11-30 1998-02-04 Sharp Kabushiki Kaisha Thin-film semiconductor device
US5854494A (en) * 1991-02-16 1998-12-29 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5289030A (en) * 1991-03-06 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide layer
JP2794678B2 (ja) * 1991-08-26 1998-09-10 株式会社 半導体エネルギー研究所 絶縁ゲイト型半導体装置およびその作製方法
US5365875A (en) * 1991-03-25 1994-11-22 Fuji Xerox Co., Ltd. Semiconductor element manufacturing method
GB2255443B (en) 1991-04-30 1995-09-13 Samsung Electronics Co Ltd Fabricating a metal electrode of a semiconductor device
JPH04360580A (ja) * 1991-06-07 1992-12-14 Casio Comput Co Ltd 電界効果型トランジスタおよびその製造方法
JP3005918B2 (ja) * 1991-06-11 2000-02-07 カシオ計算機株式会社 アクティブマトリクスパネル
JPH0562928A (ja) 1991-09-03 1993-03-12 Nec Corp 化合物半導体装置及びその製造方法
JPH0793363B2 (ja) 1991-09-25 1995-10-09 株式会社半導体エネルギー研究所 半導体集積回路およびその作製方法
JP2833291B2 (ja) 1991-10-09 1998-12-09 日本電気株式会社 Cmos型半導体集積回路装置
JPH06132303A (ja) 1991-11-29 1994-05-13 Semiconductor Energy Lab Co Ltd 薄膜トランジスタおよびその作製方法
JP2750380B2 (ja) 1991-12-03 1998-05-13 株式会社 半導体エネルギー研究所 半導体装置の作製方法
JP3072637B2 (ja) * 1991-12-25 2000-07-31 セイコーエプソン株式会社 アクティブマトリクス基板
US5485019A (en) * 1992-02-05 1996-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JPH05299655A (ja) 1992-04-08 1993-11-12 Nec Corp 薄膜トランジスタ
JPH0613615A (ja) 1992-04-10 1994-01-21 Fujitsu Ltd 半導体装置の製造方法
US5576225A (en) 1992-05-09 1996-11-19 Semiconductor Energy Laboratory Co., Ltd. Method of forming electric circuit using anodic oxidation
JP3506445B2 (ja) * 1992-05-12 2004-03-15 沖電気工業株式会社 半導体装置の製造方法
US5266507A (en) 1992-05-18 1993-11-30 Industrial Technology Research Institute Method of fabricating an offset dual gate thin film field effect transistor
JPH05343426A (ja) * 1992-06-11 1993-12-24 Nippon Telegr & Teleph Corp <Ntt> 電界効果型半導体装置およびその製造方法
JP3030367B2 (ja) * 1993-07-20 2000-04-10 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US5252502A (en) * 1992-08-03 1993-10-12 Texas Instruments Incorporated Method of making MOS VLSI semiconductor device with metal gate
US5322807A (en) * 1992-08-19 1994-06-21 At&T Bell Laboratories Method of making thin film transistors including recrystallization and high pressure oxidation
US5576556A (en) * 1993-08-20 1996-11-19 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device with gate metal oxide and sidewall spacer
US5359219A (en) * 1992-12-04 1994-10-25 Texas Instruments Incorporated Silicon on insulator device comprising improved substrate doping
US5275851A (en) 1993-03-03 1994-01-04 The Penn State Research Foundation Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
CN1542929B (zh) 1993-03-12 2012-05-30 株式会社半导体能源研究所 半导体器件的制造方法
KR0139346B1 (ko) 1994-03-03 1998-06-15 김광호 박막 트랜지스터 액정표시장치의 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078386C (zh) * 1994-08-29 2002-01-23 株式会社半导体能源研究所 制造半导体器件的方法
CN1614756B (zh) * 1994-12-16 2013-06-19 株式会社半导体能源研究所 半导体器件及其制造方法
CN101673769B (zh) * 2003-04-23 2015-09-02 株式会社半导体能源研究所 半导体元件、半导体器件以及其制作方法
CN101262013B (zh) * 2007-03-08 2012-01-11 株式会社半导体能源研究所 半导体装置以及其制造方法
US8759186B2 (en) 2011-11-21 2014-06-24 Industrial Technology Research Institute Semiconductor device and method for manufacturing the same
CN107827077A (zh) * 2017-09-21 2018-03-23 广东电网有限责任公司惠州供电局 一种压阻式mems温度传感器及其制作方法

Also Published As

Publication number Publication date
US20070007529A1 (en) 2007-01-11
US5962897A (en) 1999-10-05
US6790749B2 (en) 2004-09-14
US6455875B2 (en) 2002-09-24
KR950012753A (ko) 1995-05-16
US20100041187A1 (en) 2010-02-18
CN1041872C (zh) 1999-01-27
US20050037549A1 (en) 2005-02-17
US20020011627A1 (en) 2002-01-31
KR0131061B1 (ko) 1998-04-14
US7602020B2 (en) 2009-10-13
US20030006414A1 (en) 2003-01-09
TW232751B (en) 1994-10-21
US20090152631A1 (en) 2009-06-18
US7723788B2 (en) 2010-05-25
US8017506B2 (en) 2011-09-13
US7109108B2 (en) 2006-09-19

Similar Documents

Publication Publication Date Title
CN1041872C (zh) 半导体器件及其制造方法
CN1244891C (zh) 有源矩阵显示器
CN1085887C (zh) 制造半导体器件的方法
CN1269092C (zh) 具有象素电极和导电层的半导体器件
CN1274009C (zh) 薄膜半导体器件的制造方法
CN1249818C (zh) 半导体器件及其制造方法
CN1052566C (zh) 制造半导体器件的方法
CN1292489C (zh) 半导体装置及其制造方法
CN1111815A (zh) 半导体器件及其制造方法
CN1169026A (zh) 半导体薄膜,半导体器件及其制造方法
CN1128900A (zh) 半导体器件的制造方法
CN1388591A (zh) 薄膜晶体管及其制造方法
CN1275300C (zh) 激光辐照方法和激光辐照装置以及制造半导体器件的方法
CN100347822C (zh) 制造显示器件的方法
CN1842919A (zh) 薄膜晶体管及其制造方法
CN1881550A (zh) 一种制造薄膜晶体管和电子器件的方法
CN1670915A (zh) 半导体器件及其制造方法
CN1967791A (zh) 半导体器件的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20131009

Granted publication date: 19990127