CN1092460A - 基于合金颗粒的磁流变材料 - Google Patents

基于合金颗粒的磁流变材料 Download PDF

Info

Publication number
CN1092460A
CN1092460A CN93120748A CN93120748A CN1092460A CN 1092460 A CN1092460 A CN 1092460A CN 93120748 A CN93120748 A CN 93120748A CN 93120748 A CN93120748 A CN 93120748A CN 1092460 A CN1092460 A CN 1092460A
Authority
CN
China
Prior art keywords
magnetorheological materials
iron
magnetorheological
materials
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN93120748A
Other languages
English (en)
Inventor
K·D·韦斯
J·D·卡尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lord Corp
Original Assignee
Lord Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lord Corp filed Critical Lord Corp
Publication of CN1092460A publication Critical patent/CN1092460A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/442Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a metal or alloy, e.g. Fe

Abstract

磁流变材料包含承载流体和铁合金颗粒成分。 颗粒成分可以是铁-钴合金或铁-镍合金。铁-钴合 金有铁∶钴的比率范围为30∶70到95∶5,而铁-镍 合金有铁∶镍的比率范围为90∶10到99∶1。铁合 金颗粒成分能赋予磁流变材料以高的屈服应力的能 力。

Description

本发明涉及一种流体材料,当它置于磁场内时呈现出流阻很大增加。更详细地,本发明涉及磁流变材料,由于使用了某种铁合金颗粒而呈现增强的屈服应力。
流体组成物在有磁场的地方变得其视在粘度发生改变。此种组成物通常称之为Bingham磁性流体或磁流变材料。磁流变材料通常含有铁磁的或顺磁的颗粒,典型地是直径大于0.1微米,分散于承载流体中,在磁场中颗粒极化从而在流体中构成粒子链。粒子链使得视在粘度或整体材料的流阻增加,而在没有磁场时颗粒又回到无规则或自由状态,视在粘度或整体材料的流阻因而下降。这些Bingham磁性流体组成物呈现出和通常对电场而不是磁场作出响应的电流变材料很相似的可控的性质。
电流变材料和磁流变材料二者对一些装置中提供可变的阻尼力是有用的,诸如在阻尼器,吸震器、及弹性底座,和在各种离合器,制动器和阀装置中控制力矩和或压力水平的场合。在这些应用中磁流变材料比电流变材料固有具备若干优点。磁流变流体比电流变材料呈现较高的屈服强度,因此能产生较大的阻尼力。进而,磁流变材料由磁场激励,比起使电流变材料有效运行要求昂贵的高压电源来它可由简单的低压电磁线圈产生。在都在1992年6月18日递交的待审美国专利申请第07/900571号及07/900567号、分别题为“磁流变流体阻尼器”和“磁流变流体装置”之中详细描述了可以有效使用磁流变材料的各种类型装置。它们的全部内容在这里可结合作参考。
磁流变流体或Bingham磁性流体和胶体磁性流体或铁磁流体是有区别的。在胶体磁性流体中,颗粒的直径典型地为5到10毫微米。加以磁场,胶体铁磁流体不呈现颗粒的构筑或者对流动增加阻力。代之以,在全部材料上胶体磁性流体经受正比于磁场梯度的体积力。这力使全体胶体铁磁流体被拉到高磁场强度的区域去。
磁流变流体及相应的装置在许多专利和出版物中已被讨论到。例如,美国专利2575360号描述了一种机电控制的加力矩的装置,它使用了磁流变材料来提供在二个无关的旋转单元之间的驱动联接,像离合器和制动器中所见的那样。满足这种应用的流体组成物是由50%体积的软铁末,通常称之为“羰基铁末”分散于适当的液体介质,如轻润滑油,之中来组成。
另一种装置,是通过应用磁或电场能够控制移动部件之间滑移的,公开于美国专利2661825号中。在移动部件之间的空间充满了对上述场敏感的介质。磁力线或电力线通过此介质来达到控制滑移。响应所加的磁场的流体被描述为包含了羰基铁末和轻质矿物油。
美国专利2886151号描述了力传递装置,如离合器和制动器,它使用了流体膜耦合层,它对电场或者对磁场敏感。一种对磁场敏感的流体的例子被公布为包含了还原的氧化铁粉末和润滑剂等级的油,后者的粘度在25℃时为2到20厘泊。
对控制磁流变流体的流动有用的阀的结构描述在美国专利2670749号及3010471号中。在所公布的阀的设计中可使用的磁性流体包括:铁磁的、顺磁的和反磁的材料。在美国专利第3010471号中说明的专门的磁性流体组成物由羰基铁悬浮于轻质烃油中所组成。在美国专利2670749号中使用的磁性流体混合物被描述为由羰基铁末分散于或者硅油,或者氯化的或氟化的悬浮流体中所组成。
在美国专利2667237号中公开了各种磁流变材料混合物。此混合物限定为小的顺磁或铁磁颗粒分散于或者一种液体中,冷却剂中,抗氧剂气体中,或者一种半固态油脂中。磁流变材料优选的组成物由铁末和轻机械油组成。特别优选的磁性粉末是平均颗粒尺寸的8微米的羰基铁粉末。其他可能的承载成分包括煤油,油脂和硅油。
美国专利4992190号公开了一种对磁场敏感的流变材料,此种材料的组成被公开为可磁化的颗粒和硅胶体分散于液体承载媒质中。可磁化颗粒可以是粉末状磁铁矿石或羰基铁粉末带有绝缘的还原羰基铁粉末,如由GAF公司制造的那种,是特别好的。液体承载媒质描述为在100°F时具有粘度范围1到1000厘泊。合适的媒质的特别例子包括Comoco  LVT油,煤油,轻石膜油,矿物油和硅油。优选的承载媒质是在100°F时粘度范围大约为10到1000厘泊的硅油。
在许多要求磁流变材料的用途中,如汽车或卡车的阻尼器或制动器,要求磁流变材料呈现高的屈服应力点,以便在这类用途中能够经受容许大的力。已经发现通过对传统用于磁流变材料的各不同的铁颗粒中进行选择能够获得的只是已知的磁流变材料屈服应力的有限提高。为了增加已给的磁流变材料的屈服应力,典型地必需增加磁流变颗粒的体积百分率或者增加所加磁场的强度。这些技术没有哪一个合乎要求,因为颗粒成分的高体积百分率会明显增加磁流变装置的重量,也增加了材料总的脱离状态下粘度,从而限制了能够使用这种材料的磁流变装置的尺寸,并且高的磁场明显地增加磁流变装置的功率需求。
因此,需要一种磁流变颗粒成分,它将只增加磁流变材料的屈服应力而不需要增加颗粒体积百分率或增高磁场。
本发明是一种磁流变材料,它使用一种颗粒成分,能够单单增加总的磁流变材料的屈服应力。特别是,本发明是一种磁流变材料,包括承载流体和颗粒成分,其中颗粒成分的组成是一种铁合金,它由有铁钴之比的范围为30:70到95:5的铁钴合金和有铁镍之比的范围为90:10到99:1的铁镍合金所组成的组中选出。现在已经发现有在这里公开的特殊比例的铁-钴合金和铁-镍合金用作磁流变材料的颗粒成分是非常有效的。以现在的铁合金所制备的磁流变材料比起由传统的铁颗粒所制备的磁流变材料来呈现出明显地改善的屈服应力。
图1是按实施例1和比较例2制备的磁流变材料在25℃时的动态屈服应力对磁场强度的曲线图。
本发明是涉及一种包括了承载流体和铁-钴合金或铁-镍合金颗粒成分的磁流变材料。本发明的铁-钴合金有铁:钴的比率范围为从30:70到95:5,最好范围为从50:50到85:15;而铁-镍合金有铁:镍的比率范围为从90:10到99:1,最好范围为从94:6到97:3。铁合金可以含有少量其他元素,如钒、铬等以便改进合金的延展性和机械性能。这些其他元素典型地以少于按重量为约3.0%的数量而存在。在这个使用的颗粒的直径的范围为从0.1到500μm,最好为从0.5到100μm,而从1.0到50μm为特别好。由于它们能够产生较高的屈服应力的能力,铁-钴合金在当前对用作在磁流变材料中颗粒成分要更优于铁-镍合金。优选的铁-钴合金的例子可在市场上根据以下商品名获得:HYPERCO(Carpenter  Technology公司),HYPERM(F.Krupp  Widiafabrik公司),SUPERMENDUR(Arnold  Eng.公司)和2V-PERMENDUR(Western  Electric公司)。
本发明的铁合金典型地是金属粉末的形态,它可以用本领域技术人员所熟知的方法制备。制备金属粉末的典型方法包括还原金属氧化物,磨或碾磨,电解沉积,金属羰基物分解,快速固化,或焙化法。本发明的许多铁合金颗粒成分在市面上可以买到粉末状。例如,可以从Ultra  Fine  Powder  Technologies公司得到[48%]Fe/[50%]Co/[2%]V的粉末。
铁合金颗粒成分随所要求的磁活性和总体材料的粘度而典型地包括总磁流变材料体积的5到50%最好为10到45%而20到35%为特别好。当磁流变材料的承载流体和颗粒成分的比重分别为0.95和8.10时,它们相当于重量为从31.0到89.5%,最好为从48.6到87.5%,而从68.1到82.1%特别好。
本发明磁流变材料的承载流体可以是任何一种的前公开的用于磁流变材料的承载流体或液料,如矿物油、硅油,和石腊油等在上面提到的专利中是描述过的。其他适合于本发明的承载流体包括聚硅氧烷共聚物,轻油、液压油、氯化烃、变压器油、卤化芳烃液体、卤化石腊、二元酸酯、聚乙二醇、全氟化聚醚、氟化烃、氟化聚硅氧烷和其混合物。熟悉这些化合物的人知道,变压器油是兼有电的和热绝缘特征性能的液体。自然状态存在的变压器油包括精炼矿物油具有低的粘度和高的化学稳定性。合成的复压器油一般包括氯化芳烃(氯化联二苯和三氯苯),总起来认为它们是“askarels”,硅油,和酯类液体像癸二酸二丁酯。
其他适用于本发明的承载流体包括(聚)硅氧烷共聚物,受阻碍酯类化合物和氰烷基硅氧烷均聚物,是于1992年9月9日申请的名为“高强度、低导电率电流变材料”的07/942549号待审美国专利申请,其全部内容可在此结合作参考。本发明的承载流体也可以是一种改进的承载流体,它经彻底提纯或由一种低导电率的承载流体的可溶性溶液形成的便造成导电率低于约1×10-7s/m的改进的承载流体。这些改进的承载流体的详细描述了以在1992年10月16日申请的申请人为B.C.Munoz,S.R.Wasserman,J.D.Carlson和K.D.Weiss,并且也转让给本受让人的,名为“有最小的导电率的改进电流变材料”的美国专利申请中找到,其全部公开内容也可在此结合作参考。
聚硅氧烷和全氟化聚醚在25℃时具有粘度为从3和200厘泊之间,也适合用于本发明的磁流变材料。这种低粘度的聚硅氧烷和全氟化聚醚的详细叙述在名为“低粘度磁流变材料”的美国专利申请中给出,该申请由申请人K.D.Weiss,J.D.Carlson,和T.G.Duclos,和本案一起申请,也转让给本受让人,其全部公开内容可于此结合作参考。本发明优选的承载流体包括矿物油,石腊油、硅油、(聚)硅氧烷共聚物和全氟化聚醚,而硅油和矿物油是特别好的。
本发明磁流变材料的承载流体在25℃时应有粘度为2到1000厘泊之间,最好在3和200厘泊之间,而粘度在5到100厘泊之间是特别好的。本发明的承载流体典型地使用数量范围为总磁流变材料体积50到95%,最好为55到90%,而65到80%特别好。这相当于当磁流变材料的承载流体和颗粒成分比重分别为0.95和8.10时按重量为10.5到69.0%,最好为12.5到51.4%,而17.9到31.9%特别好。
在本发明中也可以选择性地使用为使颗粒成分分散的表面活化剂。这种表面活化剂包括已知的表面活化剂或分散剂,如油酸亚铁和环烷酸盐,金属脂肪酸盐(例如,三硬脂酸铝和二硬脂酸铝),碱的脂肪酸盐(例如,硬脂酸锂和硬脂酸钠),磺酸盐,磷酸脂,硬脂酸,甘油单油酸,倍半油酸脱水山梨糖醇,硬脂酸盐,月桂酸盐,脂肪酸,脂肪醇,和其他表面活性剂,在美国专利3047507号中是讨论过的(可于此结合作参考)。此外,选用的表面活性剂可以由硬脂稳定分子组成,它包括氟化脂肪族的聚合酯,像FC-430(3M  Corporation公司),和钛酸盐,铝酸盐或锆酸盐耦合剂,像KEN-REA  CT(Kenrich  Petrochemicals,Inc.公司)耦合剂。选用的表面活化剂也可以是疏水金属氧化物粉末,像AEROSIL  R972,R974,EPR976,R805和R812(Degussa  Corporation公司)和CABOSIL  TS-530和TS-610(Cabot  Corporation公司)表面处理的疏水雾化硅石。最后,脱溶硅石凝胶体,像那些在美国专利4992190号中所公开的(包括在此作参考材料),可以用来分散颗粒成分。为了降低在磁流变材料中存在的潮气,如果要用脱溶硅胶体的话,最好在对流炉中于温度为110℃到150℃下乾燥3到24小时。
如果要用表面活性剂,最好是疏水雾化硅石,“乾燥的”脱溶硅胶体,磷酸脂、氟化脂肪族的聚合酯,或耦合剂。选用的表面活化剂可使用数量范围为重量相对于颗粒成分重量的0.1到20%。
在本发明磁流变材料中用形成摇溶网状物使颗粒沉降最小。摇溶网状物定义为颗粒的悬浮物在低的剪切速率下形成松散的网状物或结构,有时叫做簇或絮凝物。这种三维结构的存在赋于磁流变材料很小的刚性,由此,降低了颗粒的沉降。然而,当通过柔搅拌加以剪切力,这种结构很容易离断或散开。当剪切力除去,这个松散结构经一段时间又重新形成。
摇溶网状物或结构通过利用氢键摇溶键合剂和/或聚合物改性的金属氧化物来形成。胶状添加剂也可以被用来帮助形成摇溶网状物。利用氢键摇溶键合剂、聚合物改性的金属氧化物和胶状添加剂来形成摇溶网状物进一步在由申请人K.D.Weiss,D.A.Nixon,J.D.Carlson和A.J.Margida、和本案一起申请的,名为“摇溶磁流变材料”的美国专利申请中叙述了,该专利申请也转让给本受让人,其全部内容可在此结合作参考。
发明中摇溶网状物的形成可以用添加低分子量的氢键分子来帮助,像水和包含有羟基、羰基或胺功能的其他分子。除了水以外的典型的低分子量氢键分子包括甲基、乙基、丙基、异丙基、丁基和己基醇;甘醇;二甘醇;丙二醇;丙三醇;脂肪族的,芳香族的和杂环的胺,包括伯、仲和叔胺醇和在其分子中有1-16个碳原子的胺基酯;甲基、丁基、辛基、十二基、十六基、二乙基、二异丙基和二丁基胺;乙醇胺;丙醇胺;乙氧基乙胺;二辛基胺;三乙基胺;三甲基胺;三丁基胺;1,2-乙二胺;丙邻二胺;三乙醇胺;三亚乙基四胺;吡啶;吗啉;咪唑;以及它的混合物。如果使用低分子量氢键分子,典型地采用按其重量相对于颗粒成分的重量的数值范围为从0.1到10.0%,最好为从0.5到5.0%。
本发明的磁流变材料可以如下制备:起先用手(低剪切)持抹刀或类似的东西将配料混合起来,再随后用匀化器、机械混合器或摇动器或用适当的研磨装置如球磨、混砂磨、碾磨、胶态磨、涂料磨、或类似的东西来进行分散以便彻底地混合(高剪切),使得产生更稳定的悬浮。
对本发明磁流变材料的特性和机械性能的评价,以及对其他磁流变材料的评价可以通过应用平行板的和/或同轴圆柱式库爱特流变测定法(Couetie  rheometry)来获得。对这些技术提供根据的理论由S.Oka在《Rheology,Theory  and  Applicalions》(Vol  3,F.R.Eirich,ed.Academic  Press:New  York,1960)中充分地论述了,其全部内容在此可结合作参考。可以从流变仪取得的信息包括关于机械剪切应力对剪切应变率函数关系的数据。对磁流变材料,剪切应力对剪切应变率数据可根据Bingham胶质物来模拟以为了决定动态屈服应力和粘度。在此模型范围内对磁流变材料的动态屈服应力相当于适用于测量数据的线性回归曲线的零变化率的截距。在具体的磁场下磁流变效应可进一步定义为在该磁场下测得的动态屈服应力和没有磁场存在时所测得的动态屈服应力之间的差别。磁流变材料的粘度相当于适用于该测量数据的线性回归曲线的斜率。
在同轴圆柱形间隔的构形中,磁流变材料置于半径为R1的内圆柱和半径为R2的外圆柱之间所形成的环状间隙中,而在简单的平行板构形时,材料置于由均为半径R5的上板和下板间所形成的平面间隙内。在这些技术中任一个板或圆柱随后的角速度ω旋转而另一板或圆柱保持不动。磁场加在这些间隔构形上穿过充满流体的间隙,对同轴圆柱构形为幅向,或者对于平行板构形则为轴向。剪切应力和剪切应变率之间的关系可以从角速度和施加来保持或者阻止该角速的力矩T导出。
下面的实施例的给出是用来说明发明而不应限制发明的范围。
例1
磁流变材料按如下制备:将得自UltraFine  Powder  Technologies公司的成分为[48%]Fe/[50%]Co/[2%]V的铁钴合金粉末112.00克,2.24克硬脂酸(Aldrich  Chemical  Company公司)作为分散剂及30.00克的200厘沲的硅油(L-45,Union  Carbide  Chemicals  &  Plastics  Company,Inc.公司)混合在一起。在此磁流变材料中的铁-钴合金颗粒的重量数量相当于体积百分率为0.30。磁流变材料在碾磨机上搅匀24小时。此磁流变材料贮存在聚乙烯容器内备用。
比较例2
磁流变材料按例1所述的步骤制备。此情况下颗粒成分为117.90克绝缘的还原羰基铁粉末(MICROPOWDER  R2521,GAF  Chemical  Corporation,类似于老的GQ4及GS6粉末标志法)。适当数量的硬脂酸和硅油用来以保持颗粒成分的体积百分率为0.30。此磁流变材料贮存在聚乙烯容器中备用。
磁流变活性
例1和2中制备的磁流变材料用平板流变测定法来评价。此二种磁流变材料所得的在25℃时一系列屈服应力值在图1中画成对磁场的函数关系。用了铁-钴合金颗粒(例1)的磁流变材料得到的屈服应力值比用绝缘还原羰基铁粉末的(例2)要高。在6000奥斯特磁场强度时由含铁-钴合金颗粒的磁流变材料所表现的屈服应力大约比还原铁基的磁流变材料所表现的高40%。
从图1的数据可见,本发明铁合金颗粒为磁流变材料提供比基于传统铁颗粒的磁流变材料明显较高的屈服应力。

Claims (23)

1、一种磁流变材料,包括承载流体和颗粒成分,其特征是其中颗粒成分的组成是一种铁合金,它选自由有铁:钴的比率范围为从30∶70到95∶5的铁-钴合金及有铁∶镍的比率范围为从90∶10到99∶1的铁-镍合金所组成的组中。
2、根据权利要求1的磁流变材料,其特征是其中铁-钴合金有铁:钴比率范围为从50:50到85:15,以及铁-镍合金有铁:镍比率范围为从94:6到97:3。
3、根据权利要求1的磁流变材料,其特征是其中铁合金含有按重量少于3%的钒或铬。
4、根据权利要求1的磁流变材料,其特征是其中铁合金颗粒直径范围为从0.1到500μm。
5、根据权利要求4的磁流变材料,其特征是其中直径范围为从0.5到100μm。
6、根据权利要求5的磁流变材料,其特征是其中直径范围为从1到50μm。
7、根据权利要求1的磁流变材料,其特征是其中承载流体从由矿物油,硅油,硅氧烷共聚物,轻油,石腊油,液压油,氯化烃,变压器油,卤化芳烃液体,卤化石腊,二元酸酯,聚乙二醇,全氟化聚醚,氟化烃,氟化硅氧烷,受阻碍酯类化合物,氰烷基硅氧烷均聚物,有导电率低于1×10-7s/m的改进承载流体,和它们的混合物组成的组中选择。
8、根据权利要求7的磁流变材料,其特征是其中承载流体具有,粘度在2和1000厘泊之间。
9、根据权利要求8的磁流变材料,其特征是其中粘度是在3和200厘泊之间。
10、根据权利要求9的磁流变材料,其特征是其中粘度是在5和100厘泊之间。
11、根据权利要求7的磁流变材料,其特征是其中承载流体从由矿物油,石腊油,硅油,硅氧烷共聚物和全氟化聚醚所组成的组中选择。
12、根据权利要求11的磁流变材料,其特征是其中承载流体是硅油或矿物油。
13、根据权利要求1的磁流变材料,其特征是还包括表面活化剂。
14、根据权利要求13的磁流变材料,其特征是其中表面活化剂从由油酸亚铁和环烷酸盐,脂肪酸铝,碱的脂肪酸盐,磺酸盐,磷酸,脂硬脂酸,甘油单油酸,倍半油酸脱水山梨糖醇,硬脂酸盐,月桂酸盐,脂肪酸,脂肪醇,氟化脂肪族的聚合酯,疏水雾化硅石,脱溶硅石凝胶体,和钛酸盐,铝酸盐和锆酸盐耦合剂所组成的组中选择。
15、根据权利要求14的磁流变材料,其特征是其中表面活化剂是疏水雾化硅石,脱溶硅石凝胶体,磷酸脂,氟化脂肪族的聚合酯或一种耦合剂。
16、根据权利要求15的磁流变材料,其特征是其中脱溶硅石凝胶体在对流炉中于温度为从110℃到150℃下乾燥3小时到24小时。
17、根据权利要求13的磁流变材料,其特征是其中表面活化剂数量处于按其重量相对于颗粒成分的重量在0.1到20%范围内。
18、根据权利要求1的磁流变材料,其特征是其中颗粒有沉降用形成摇溶网状物来使其最小。
19、根据权利要求18的磁流变材料,其特征是其中摇溶网状物的形成用添加包含羟基,羰基,或胺功能的低分子量的氢键分子来帮助。
20、根据权利要求19的磁流变材料,其特征是其中低分子量氢键分子从由水;甲基、乙基、丙基、异丙基、丁基、和己基醇;甘醇;二甘醇;丙二醇;丙三醇;脂肪族的、芳香族的和杂环的胺、包括伯、仲和叔胺醇和在其分子中有1-16个碳原子的胺基酯;甲基、丁基、辛基、十二基、十六基、二乙基、二丙基和二丁基胺;乙醇胺;丙醇胺;乙氧基乙胺;二辛基胺;三乙基胺;三甲基胺;三丁基胺;1,2-乙二胺;丙邻二胺;三乙醇胺;三亚乙基四胺;吡啶;吗啉;咪唑;和其混合物所组成的组中选择。
21、根据权利要求1的磁流变材料,其特征是其中铁合金颗粒成分为按全部磁流变材料体积的5到50%承载流体为按全部磁流变材料体积的50到95%。
22、根据权利要求21的磁流变材料,其特征是其中铁合金颗粒成分处于按体积为10到45%的量,承载流体处于按体积为55到90%的量。
23、根据权利要求22的磁流变材料,其特征是其中铁合金颗粒成分处于按体积为20到35%的量,承载流体处于按体积为65到80%。
CN93120748A 1992-10-30 1993-10-30 基于合金颗粒的磁流变材料 Pending CN1092460A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/968,734 US5382373A (en) 1992-10-30 1992-10-30 Magnetorheological materials based on alloy particles
US07/968,734 1992-10-30

Publications (1)

Publication Number Publication Date
CN1092460A true CN1092460A (zh) 1994-09-21

Family

ID=25514689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93120748A Pending CN1092460A (zh) 1992-10-30 1993-10-30 基于合金颗粒的磁流变材料

Country Status (8)

Country Link
US (1) US5382373A (zh)
EP (1) EP0667028A1 (zh)
JP (1) JPH08502779A (zh)
CN (1) CN1092460A (zh)
CA (1) CA2146551A1 (zh)
LV (1) LV11391B (zh)
RU (1) RU95109902A (zh)
WO (1) WO1994010691A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104560301A (zh) * 2014-12-12 2015-04-29 中国矿业大学 一种大功率传动用矿物油基磁流变液及其制备方法

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503414B1 (en) * 1992-04-14 2003-01-07 Byelocorp Scientific, Inc. Magnetorheological polishing devices and methods
US5578238A (en) * 1992-10-30 1996-11-26 Lord Corporation Magnetorheological materials utilizing surface-modified particles
WO1994010693A1 (en) * 1992-10-30 1994-05-11 Lord Corporation Thixotropic magnetorheological materials
RU2106710C1 (ru) * 1992-10-30 1998-03-10 Лорд Корпорейшн Магнитореологический материал
JPH0790290A (ja) * 1993-09-21 1995-04-04 Nippon Oil Co Ltd 磁性と電気粘性効果とを同時に有する流体用分散粒子及びそれを用いた流体。
US5462685A (en) * 1993-12-14 1995-10-31 Ferrofluidics Corporation Ferrofluid-cooled electromagnetic device and improved cooling method
US5769996A (en) * 1994-01-27 1998-06-23 Loctite (Ireland) Limited Compositions and methods for providing anisotropic conductive pathways and bonds between two sets of conductors
US5547049A (en) * 1994-05-31 1996-08-20 Lord Corporation Magnetorheological fluid composite structures
US5549837A (en) * 1994-08-31 1996-08-27 Ford Motor Company Magnetic fluid-based magnetorheological fluids
US5851644A (en) * 1995-08-01 1998-12-22 Loctite (Ireland) Limited Films and coatings having anisotropic conductive pathways therein
US5795212A (en) * 1995-10-16 1998-08-18 Byelocorp Scientific, Inc. Deterministic magnetorheological finishing
US5900184A (en) * 1995-10-18 1999-05-04 Lord Corporation Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid device
US5670077A (en) * 1995-10-18 1997-09-23 Lord Corporation Aqueous magnetorheological materials
US5609353A (en) * 1996-01-11 1997-03-11 Ford Motor Company Method and apparatus for varying the stiffness of a suspension bushing
US5693004A (en) * 1996-03-11 1997-12-02 Lord Corporation Controllable fluid rehabilitation device including a reservoir of fluid
US5711746A (en) * 1996-03-11 1998-01-27 Lord Corporation Portable controllable fluid rehabilitation devices
US5667715A (en) * 1996-04-08 1997-09-16 General Motors Corporation Magnetorheological fluids
US5850906A (en) * 1996-08-02 1998-12-22 Fmc Corporation Bi-directional, differential motion conveyor
US5946891A (en) * 1996-07-22 1999-09-07 Fmc Corporation Controllable stop vibratory feeder
US5683615A (en) * 1996-06-13 1997-11-04 Lord Corporation Magnetorheological fluid
US5906767A (en) * 1996-06-13 1999-05-25 Lord Corporation Magnetorheological fluid
US5705085A (en) * 1996-06-13 1998-01-06 Lord Corporation Organomolybdenum-containing magnetorheological fluid
US5842547A (en) * 1996-07-02 1998-12-01 Lord Corporation Controllable brake
US5878851A (en) * 1996-07-02 1999-03-09 Lord Corporation Controllable vibration apparatus
US6019201A (en) * 1996-07-30 2000-02-01 Board Of Regents Of The University And Community College System Of Nevada Magneto-rheological fluid damper
US5916641A (en) * 1996-08-01 1999-06-29 Loctite (Ireland) Limited Method of forming a monolayer of particles
US6402876B1 (en) 1997-08-01 2002-06-11 Loctite (R&D) Ireland Method of forming a monolayer of particles, and products formed thereby
BR9706597A (pt) 1996-08-01 1999-07-20 Loctite Ireland Ltd Processo para formação de uma monocamada de partículas e produtos formados desse modo
US6977025B2 (en) * 1996-08-01 2005-12-20 Loctite (R&D) Limited Method of forming a monolayer of particles having at least two different sizes, and products formed thereby
DE19654461A1 (de) * 1996-12-27 1998-07-02 Rwe Dea Ag Flüssigkeitszusammensetzung und Verwendung der Flüssigkeitszusammensetzung als magnetorheologische Flüssigkeit
US5921357A (en) * 1997-04-14 1999-07-13 Trw Inc. Spacecraft deployment mechanism damper
US5984056A (en) * 1997-04-24 1999-11-16 Bell Helicopter Textron Inc. Magnetic particle damper apparatus
US5974856A (en) * 1997-05-27 1999-11-02 Ford Global Technologies, Inc. Method for allowing rapid evaluation of chassis elastomeric devices in motor vehicles
US5814999A (en) * 1997-05-27 1998-09-29 Ford Global Technologies, Inc. Method and apparatus for measuring displacement and force
US5863455A (en) * 1997-07-14 1999-01-26 Abb Power T&D Company Inc. Colloidal insulating and cooling fluid
US6427813B1 (en) 1997-08-04 2002-08-06 Lord Corporation Magnetorheological fluid devices exhibiting settling stability
US5985168A (en) * 1997-09-29 1999-11-16 University Of Pittsburgh Of The Commonwealth System Of Higher Education Magnetorheological fluid
US6186290B1 (en) 1997-10-29 2001-02-13 Lord Corporation Magnetorheological brake with integrated flywheel
US6394239B1 (en) * 1997-10-29 2002-05-28 Lord Corporation Controllable medium device and apparatus utilizing same
US6340080B1 (en) 1997-10-29 2002-01-22 Lord Corporation Apparatus including a matrix structure and apparatus
US6202806B1 (en) 1997-10-29 2001-03-20 Lord Corporation Controllable device having a matrix medium retaining structure
US6131709A (en) 1997-11-25 2000-10-17 Lord Corporation Adjustable valve and vibration damper utilizing same
US6089115A (en) * 1998-08-19 2000-07-18 Dana Corporation Angular transmission using magnetorheological fluid (MR fluid)
US6117093A (en) * 1998-10-13 2000-09-12 Lord Corporation Portable hand and wrist rehabilitation device
US6471018B1 (en) 1998-11-20 2002-10-29 Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada-Reno, The University Of Reno Magneto-rheological fluid device
US6168634B1 (en) 1999-03-25 2001-01-02 Geoffrey W. Schmitz Hydraulically energized magnetorheological replicant muscle tissue and a system and a method for using and controlling same
US6257356B1 (en) 1999-10-06 2001-07-10 Aps Technology, Inc. Magnetorheological fluid apparatus, especially adapted for use in a steerable drill string, and a method of using same
DE19950747A1 (de) 1999-10-21 2001-04-26 Suspa Holding Gmbh Dämpfer
US6547983B2 (en) 1999-12-14 2003-04-15 Delphi Technologies, Inc. Durable magnetorheological fluid compositions
US6599439B2 (en) 1999-12-14 2003-07-29 Delphi Technologies, Inc. Durable magnetorheological fluid compositions
AU2001241642A1 (en) 2000-02-18 2001-08-27 The Board Of Regents Of The University And Community College System Of Nevada Magnetorheological polymer gels
US6818143B2 (en) * 2000-04-07 2004-11-16 Delphi Technologies, Inc. Durable magnetorheological fluid
US6475404B1 (en) 2000-05-03 2002-11-05 Lord Corporation Instant magnetorheological fluid mix
US6547986B1 (en) 2000-09-21 2003-04-15 Lord Corporation Magnetorheological grease composition
US6451219B1 (en) 2000-11-28 2002-09-17 Delphi Technologies, Inc. Use of high surface area untreated fumed silica in MR fluid formulation
US6610404B2 (en) 2001-02-13 2003-08-26 Trw Inc. High yield stress magnetorheological material for spacecraft applications
US6679999B2 (en) 2001-03-13 2004-01-20 Delphi Technologies, Inc. MR fluids containing magnetic stainless steel
US20020171067A1 (en) * 2001-05-04 2002-11-21 Jolly Mark R. Field responsive shear thickening fluid
US6929756B2 (en) * 2001-08-06 2005-08-16 General Motors Corporation Magnetorheological fluids with a molybdenum-amine complex
US6932917B2 (en) * 2001-08-06 2005-08-23 General Motors Corporation Magnetorheological fluids
US20030030026A1 (en) * 2001-08-06 2003-02-13 Golden Mark A. Magnetorheological fluids
US20030042461A1 (en) * 2001-09-04 2003-03-06 Ulicny John C. Magnetorheological fluids with an additive package
US6638443B2 (en) 2001-09-21 2003-10-28 Delphi Technologies, Inc. Optimized synthetic base liquid for magnetorheological fluid formulations
US6673258B2 (en) 2001-10-11 2004-01-06 Tmp Technologies, Inc. Magnetically responsive foam and manufacturing process therefor
US6787058B2 (en) 2001-11-13 2004-09-07 Delphi Technologies, Inc. Low-cost MR fluids with powdered iron
US20040040800A1 (en) * 2002-07-31 2004-03-04 George Anastas System and method for providing passive haptic feedback
US7736394B2 (en) * 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
EP2535024B2 (en) 2002-08-22 2019-01-16 Victhom Human Bionics Inc. Actuated prosthesis for above-knee amputees
US6824700B2 (en) * 2003-01-15 2004-11-30 Delphi Technologies, Inc. Glycol-based MR fluids with thickening agent
US7101487B2 (en) * 2003-05-02 2006-09-05 Ossur Engineering, Inc. Magnetorheological fluid compositions and prosthetic knees utilizing same
WO2004109488A2 (en) * 2003-05-30 2004-12-16 Immersion Corporation System and method for low power haptic feedback
JP2005048250A (ja) * 2003-07-30 2005-02-24 Dowa Mining Co Ltd 金属磁性粒子の集合体およびその製造法
US6929757B2 (en) * 2003-08-25 2005-08-16 General Motors Corporation Oxidation-resistant magnetorheological fluid
CA2755416C (en) 2003-11-07 2015-09-01 Aps Technology, Inc. A torsional bearing assembly for transmitting torque to a drill bit
US20050107889A1 (en) 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US7254908B2 (en) * 2004-02-06 2007-08-14 Nike, Inc. Article of footwear with variable support structure
US20060184280A1 (en) * 2005-02-16 2006-08-17 Magnus Oddsson System and method of synchronizing mechatronic devices
WO2005079712A2 (en) * 2004-02-12 2005-09-01 össur hf System and method for motion-controlled foot unit
US7896927B2 (en) 2004-02-12 2011-03-01 össur hf. Systems and methods for actuating a prosthetic ankle based on a relaxed position
WO2005087144A2 (en) * 2004-03-10 2005-09-22 össur hf Control system and method for a prosthetic knee
US20050283257A1 (en) * 2004-03-10 2005-12-22 Bisbee Charles R Iii Control system and method for a prosthetic knee
US7070708B2 (en) * 2004-04-30 2006-07-04 Delphi Technologies, Inc. Magnetorheological fluid resistant to settling in natural rubber devices
US20050242322A1 (en) * 2004-05-03 2005-11-03 Ottaviani Robert A Clay-based magnetorheological fluid
US7522152B2 (en) * 2004-05-27 2009-04-21 Immersion Corporation Products and processes for providing haptic feedback in resistive interface devices
US20050274454A1 (en) * 2004-06-09 2005-12-15 Extrand Charles W Magneto-active adhesive systems
US7198137B2 (en) * 2004-07-29 2007-04-03 Immersion Corporation Systems and methods for providing haptic feedback with position sensing
JP2006073991A (ja) * 2004-08-02 2006-03-16 Sony Corp 電磁波抑制材料、電磁波抑制デバイス、並びに電子機器
US8441433B2 (en) * 2004-08-11 2013-05-14 Immersion Corporation Systems and methods for providing friction in a haptic feedback device
US9495009B2 (en) 2004-08-20 2016-11-15 Immersion Corporation Systems and methods for providing haptic effects
US8013847B2 (en) * 2004-08-24 2011-09-06 Immersion Corporation Magnetic actuator for providing haptic feedback
US8803796B2 (en) 2004-08-26 2014-08-12 Immersion Corporation Products and processes for providing haptic feedback in a user interface
US20060049010A1 (en) * 2004-09-03 2006-03-09 Olien Neil T Device and method for providing resistive and vibrotactile effects
US8002089B2 (en) * 2004-09-10 2011-08-23 Immersion Corporation Systems and methods for providing a haptic device
US9046922B2 (en) * 2004-09-20 2015-06-02 Immersion Corporation Products and processes for providing multimodal feedback in a user interface device
US7764268B2 (en) * 2004-09-24 2010-07-27 Immersion Corporation Systems and methods for providing a haptic device
US8256147B2 (en) 2004-11-22 2012-09-04 Frampton E. Eliis Devices with internal flexibility sipes, including siped chambers for footwear
EP1848380B1 (en) * 2004-12-22 2015-04-15 Össur hf Systems and methods for processing limb motion
US20060262120A1 (en) * 2005-05-19 2006-11-23 Outland Research, Llc Ambulatory based human-computer interface
US8801802B2 (en) * 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
US20060213739A1 (en) * 2005-03-25 2006-09-28 Sun Shin-Ching Magnetic drive transmission device having heat dissipation, magnetic permeability and self-lubrication functions
US20060253210A1 (en) * 2005-03-26 2006-11-09 Outland Research, Llc Intelligent Pace-Setting Portable Media Player
SE528516C2 (sv) 2005-04-19 2006-12-05 Lisa Gramnaes Kombinerat aktivt och passivt benprotessystem samt en metod för att utföra en rörelsecykel med ett sådant system
US20060248750A1 (en) * 2005-05-06 2006-11-09 Outland Research, Llc Variable support footwear using electrorheological or magnetorheological fluids
US7394014B2 (en) * 2005-06-04 2008-07-01 Outland Research, Llc Apparatus, system, and method for electronically adaptive percussion instruments
FR2887680A1 (fr) * 2005-06-27 2006-12-29 Univ Paris Curie Fluides conducteurs contenant des particules magnetiques millimetriques
FR2887681A1 (fr) * 2005-06-27 2006-12-29 Univ Paris Curie Fluides conducteurs contenant des particules magnetiques micrometriques
US8852292B2 (en) * 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
US7586032B2 (en) * 2005-10-07 2009-09-08 Outland Research, Llc Shake responsive portable media player
US20070176035A1 (en) * 2006-01-30 2007-08-02 Campbell John P Rotary motion control device
US20080213853A1 (en) * 2006-02-27 2008-09-04 Antonio Garcia Magnetofluidics
US7748474B2 (en) * 2006-06-20 2010-07-06 Baker Hughes Incorporated Active vibration control for subterranean drilling operations
JP5222296B2 (ja) 2006-09-22 2013-06-26 ビーエーエスエフ ソシエタス・ヨーロピア 磁性流体組成物
US20080185554A1 (en) * 2007-01-09 2008-08-07 Gm Global Technology Operations, Inc. Treated magnetizable particles and methods of making and using the same
US8394483B2 (en) * 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8083953B2 (en) 2007-03-06 2011-12-27 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8557128B2 (en) * 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US7959975B2 (en) * 2007-04-18 2011-06-14 Micron Technology, Inc. Methods of patterning a substrate
US8097175B2 (en) 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
US8294139B2 (en) 2007-06-21 2012-10-23 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
US8372295B2 (en) 2007-04-20 2013-02-12 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
WO2008151272A1 (en) * 2007-06-05 2008-12-11 Lord Corporation High temperature rubber to metal bonded devices and methods of making high temperature engine mounts
US8404124B2 (en) 2007-06-12 2013-03-26 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8080615B2 (en) 2007-06-19 2011-12-20 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US8101261B2 (en) 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US7981221B2 (en) 2008-02-21 2011-07-19 Micron Technology, Inc. Rheological fluids for particle removal
US8426313B2 (en) * 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8425982B2 (en) * 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
WO2009120637A1 (en) 2008-03-24 2009-10-01 Ossur Hf Transfemoral prosthetic systems and methods for operating the same
US8114300B2 (en) 2008-04-21 2012-02-14 Micron Technology, Inc. Multi-layer method for formation of registered arrays of cylindrical pores in polymer films
US8114301B2 (en) 2008-05-02 2012-02-14 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
US9976360B2 (en) 2009-03-05 2018-05-22 Aps Technology, Inc. System and method for damping vibration in a drill string using a magnetorheological damper
US8087476B2 (en) * 2009-03-05 2012-01-03 Aps Technology, Inc. System and method for damping vibration in a drill string using a magnetorheological damper
US8845812B2 (en) * 2009-06-12 2014-09-30 Micron Technology, Inc. Method for contamination removal using magnetic particles
US8919457B2 (en) 2010-04-30 2014-12-30 Mark Hutchinson Apparatus and method for determining axial forces on a drill string during underground drilling
US8304493B2 (en) 2010-08-20 2012-11-06 Micron Technology, Inc. Methods of forming block copolymers
US9458679B2 (en) 2011-03-07 2016-10-04 Aps Technology, Inc. Apparatus and method for damping vibration in a drill string
US8696610B2 (en) * 2011-07-21 2014-04-15 Clifford T. Solomon Magnetorheological medical brace
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
EP2961355B1 (en) 2013-02-26 2018-08-22 Össur hf Prosthetic foot with enhanced stability and elastic energy return
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
EP3172747A4 (en) 2014-07-22 2018-03-14 BeijingWest Industries Co. Ltd. Magneto rheological fluid composition for use in vehicle mount applications
EP3424056B1 (en) 2016-02-29 2024-04-03 LORD Corporation Additive for magnetorheological fluids
DE102020206722A1 (de) 2020-05-28 2021-12-02 Suspa Gmbh Dämpferanordnung und Maschine für eine derartige Dämpferanordnung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733792A (en) * 1956-02-07 Clutch with magnetic fluid mixture
US2575360A (en) * 1947-10-31 1951-11-20 Rabinow Jacob Magnetic fluid torque and force transmitting device
US2667237A (en) * 1948-09-27 1954-01-26 Rabinow Jacob Magnetic fluid shock absorber
US2886151A (en) * 1949-01-07 1959-05-12 Wefco Inc Field responsive fluid couplings
US2663809A (en) * 1949-01-07 1953-12-22 Wefco Inc Electric motor with a field responsive fluid clutch
US2661825A (en) * 1949-01-07 1953-12-08 Wefco Inc High fidelity slip control
US2670749A (en) * 1949-07-21 1954-03-02 Hanovia Chemical & Mfg Co Magnetic valve
US2661596A (en) * 1950-01-28 1953-12-08 Wefco Inc Field controlled hydraulic device
NL88348C (zh) * 1951-08-23
US2847101A (en) * 1951-11-10 1958-08-12 Basf Ag Overload releasing magnetic powder-clutch
US3010471A (en) * 1959-12-21 1961-11-28 Ibm Valve for magnetic fluids
NL273959A (zh) * 1961-01-27
US3650473A (en) * 1970-03-13 1972-03-21 Afa Corp Liquid dispensing apparatus
US3700595A (en) * 1970-06-15 1972-10-24 Avco Corp Ferrofluid composition
US3917538A (en) * 1973-01-17 1975-11-04 Ferrofluidics Corp Ferrofluid compositions and process of making same
US4516695A (en) * 1981-02-09 1985-05-14 The Afa Corporation Child-resistant liquid dispenser sprayer or like apparatus
US4485024A (en) * 1982-04-07 1984-11-27 Nippon Seiko Kabushiki Kaisha Process for producing a ferrofluid, and a composition thereof
US4624413A (en) * 1985-01-23 1986-11-25 Corsette Douglas Frank Trigger type sprayer
JPH0670921B2 (ja) * 1988-06-03 1994-09-07 松下電器産業株式会社 磁性流体とその製造方法およびそれを用いた磁気シール装置
US4992190A (en) * 1989-09-22 1991-02-12 Trw Inc. Fluid responsive to a magnetic field
JP2666503B2 (ja) * 1990-01-25 1997-10-22 トヨタ自動車株式会社 磁粉流体
US5147573A (en) * 1990-11-26 1992-09-15 Omni Quest Corporation Superparamagnetic liquid colloids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104560301A (zh) * 2014-12-12 2015-04-29 中国矿业大学 一种大功率传动用矿物油基磁流变液及其制备方法

Also Published As

Publication number Publication date
RU95109902A (ru) 1997-04-10
US5382373A (en) 1995-01-17
LV11391B (en) 1996-10-20
WO1994010691A1 (en) 1994-05-11
CA2146551A1 (en) 1994-05-11
LV11391A (lv) 1996-06-20
EP0667028A4 (en) 1995-05-23
EP0667028A1 (en) 1995-08-16
JPH08502779A (ja) 1996-03-26

Similar Documents

Publication Publication Date Title
CN1092460A (zh) 基于合金颗粒的磁流变材料
RU2106710C1 (ru) Магнитореологический материал
JP3280032B2 (ja) 磁気レオロジー流体装置の出力増加法及び磁気レオロジー流体組成物
US5667715A (en) Magnetorheological fluids
EP1319233B1 (en) Magnetorheological grease composition
Ashtiani et al. A review on the magnetorheological fluid preparation and stabilization
JP3241726B2 (ja) 磁気レオロジー流体及びその製造方法
CN1230501C (zh) 稳定型磁流变液及制备方法
US20040206928A1 (en) Magnetorheological fluids
EP0667029A1 (en) Thixotropic magnetorheological materials
EP0856189A1 (en) Aqueous magnetorheological materials
US20030025101A1 (en) Magnetorheological fluid and process for preparing the same
DE60113672T2 (de) Instante mischung für magnetorheologische flüssigkeiten
US6824701B1 (en) Magnetorheological fluids with an additive package
Nejatpour et al. Bidisperse magneto-rheological fluids consisting of functional SPIONs added to commercial MRF
Ashour et al. Manufacturing and characterization of magnetorheological fluids
JP6163072B2 (ja) 高粘性変化性の磁気粘性流体
JPH0370103A (ja) 磁界に感応する流体
JP4581619B2 (ja) 磁性流体及びその製造方法
Vékás Rheological Properties of Bimodal Magnetic Suspensions
Espin et al. Effect of pollution on the interfacial properties of electrorheological fluids
JPH04261496A (ja) 電気粘性流体の分散粒子沈澱防止方法
Ashour et al. Center for Intelligent Material Systems and Structures Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0261
JPH06228586A (ja) 電気粘性流体組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication