CN1114225C - 稀土掺杂的半导体薄膜 - Google Patents

稀土掺杂的半导体薄膜 Download PDF

Info

Publication number
CN1114225C
CN1114225C CN99123482A CN99123482A CN1114225C CN 1114225 C CN1114225 C CN 1114225C CN 99123482 A CN99123482 A CN 99123482A CN 99123482 A CN99123482 A CN 99123482A CN 1114225 C CN1114225 C CN 1114225C
Authority
CN
China
Prior art keywords
film
erbium
rare earth
reactor
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN99123482A
Other languages
English (en)
Other versions
CN1255736A (zh
Inventor
大卫·B·彼迟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1255736A publication Critical patent/CN1255736A/zh
Application granted granted Critical
Publication of CN1114225C publication Critical patent/CN1114225C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S252/00Compositions
    • Y10S252/95Doping agent source material
    • Y10S252/951Doping agent source material for vapor transport
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/914Doping
    • Y10S438/918Special or nonstandard dopant

Abstract

本发明公开了一种光学有源外延薄膜及具有该外延薄膜的光电子器件。本发明的光学有源外延薄膜包括由硅、锗或硅-锗构成的半导体,所述薄膜含有从约8×1018至约8×1019原子/厘米3的稀土元素,且基本上无稀土元素的硅化物和锗化物析出。

Description

稀土掺杂的半导体薄膜
本申请是申请号为93117079.6、发明名称为“化学汽相沉积过饱和稀土掺杂的半导体层”的发明专利申请的分案申请。
技术领域
本发明涉及利用气相的硅烷或锗烷和稀土元素化合物在衬底上生成的稀土元素掺杂的外延半导体薄膜及光电子器件。
背景技术
近几年来,研究工作集中在实现硅光电子集成电路(OE-ICs)。可应用的领域将是芯片之间的互连、并行处理以及硅芯片上的集成光电子器件。而前面二项应用基本上需要在77K之上工作的光源和硅片上的探测器,但后一项应用要求光源在一定波长下工作,即约1.5μm,该波长处于光纤的吸收最小值处。
1983年Ennen等人〔Appl.phys,lett.,943(1993)〕曾指出半导体材料中稀土元素离子的位能适于发展光发射二极管和激光器。制作这些器件的最佳选择物之一是掺铒的硅。铒的1.54μm的发光在硅的带隙之下,因此在硅中可以构成光波导。这个性质令人振奋地提供了用硅制备光学器件和在用硅制备的电路中集成电学与光学器件的可能性。通过克服硅间接跃迁的局限性,可将硅的成熟制造技术扩展到光通信领域。光通信中这个波长也变得极为重要,因为该波长相应于在光纤中传输最大,它也是IR-泵浦掺铒硅光放大器的输出波长。
铒的1.54μm发光是内部4f跃迁的结果。而5s和5p壳层屏蔽了来自第1级主晶核作用的Er3+的4f轨道,因此,发光与主材料完全独立无关。该光跃迁出现在Er3+(4f”)的自旋轨道能级4I13/24I15/2之间。因主晶核晶场的影响弱,在硅中作为一种杂质的铒可望在室温下出现荧光。
过去十年,已研究过了掺Er的硅的光致和电致发光、电特性和结构性质。然而,在本发明之前,所有的掺Er硅都必须用硅块离子注入或MBE生长硅的低能离子注入来制作。注入后,样品要退火,既除去离子损伤又“激活”注入的铒。(对于可能形成Er杂质复合物来说,激活起到这些材料中的光学中心的作用)。在900℃退火温度下,得到的结果最好。可惜的是,900℃时,铒在硅中极限溶解度约为1.3×1018原子/cm3,而且退火结果形成ErSi2片晶,ErSi2在浓度超过1.3×1018时从硅相中析出。
因硅外延层内稀土元素的浓度愈高便可提供效率和功率愈大的器件,所以,需要有一种方法,能在900℃下生产高于目前极限溶解度的掺入水平。
我们发现,通过避免高温退火而利用化学汽相淀积的非平衡性,可以制出超过掺杂剂平衡浓度的亚稳态的高掺杂材料。因而,采用超高真空化学汽相淀积(UHVCVD)法来淀积铒掺杂硅,掺铒浓度约为2×1019原子/cm3,比硅中铒的平衡固溶度高一个数量级。
发明内容
本发明的目的是提供一种掺稀土元素的光学有源外延薄膜及具有该薄膜的光电子器件,该薄膜包括一种半导体材料和一种稀土元素,其浓度高于它在所述半导体层中为单相时的平衡固溶度。
本发明的技术方案具体如下:
一种光学有源外延薄膜,包括由硅、锗或硅-锗构成的半导体,所述薄膜含有从约8×1018至约8×1019原子/厘米3的稀土元素,且基本上无稀土硅化物和锗化物析出。
一种光电子器件,包括一衬底和附着其上的外延半导体薄膜,所述半导体膜包括由硅、锗或硅-锗构成的半导体,所述薄膜含有从约8×1018至约8×1019原子/厘米3的稀土元素,且基本上无稀土硅化物和锗化物析出。
附图说明
下面结合附图详细说明本发明。
图1是用于实施本发明的超高真空CVD装置的示意图。
图2是本发明器件的光致发光输出的IR光谱。
具体实施方式
图1描绘了用于制造本发明薄膜的7.6cm直径的超高真空化学汽相淀积(UHVCVD)反应器。该反应器在设计上不同于Meyerson等人叙述过的最早的UHVCVD反应器。其不同点在于:泵和装载晶片都使用反应器的同一端。这种修改就允许将加热了的先质的储存器1安装在反应器的相对一端。该储存器用一不长的直径12.7mm的不锈钢管12与反应器端部凸缘相连接。反应器由石英玻璃和不锈钢构成,利用凸缘、阀门与密封件一起组成高真空设备。反应器用外电阻加热元件(管式炉4)加热。淀积前和淀积期间,反应器用带有二级油泵9的150L/sec涡轮分子泵8抽真空。装料锁气室也用一涡轮分子泵10抽空,以便防止泵油的沾污。该反应器的基本气压低于10-9乇,而该装料锁气室在10分钟内可自大气压获得低于10-6乇的气压。
根据本发明的方法,先质储存器1装着适量的稀土元素化合物并被抽空。在一个优选的实施例中,该稀土元素是铒,不过也可以用其它稀土元素,尤其是铽和铕。该稀土族元素包括元素57至71。这些稀土元素化合物要限制在必须能够在CVD能工作的温度和压力下供给CVD工艺所需的蒸汽。在实践意义上,这意味着稀土元素化合物在500℃下应表现出至少约10-6乇的蒸汽压。举例的化合物归入两个主要的类型:(a)配位化合物,其稀土元素与氧、氮、硫或磷键合;以及(b)有机金属化合物,其稀土元素与碳键合。对配位化合物适合的配位基包括:乙酰丙酮化物(2,4-戊二酮化物)和包括六氟乙酰丙酮化物的(HFAC,1,1,1,5,5,5-六氟-2,4-戊二酮化物)和三氟乙酰丙酮化物(TFAC,1,1,1-三氟-2,4-戊二酮化物)乙酰丙酮化物的衍生物;2,4-己二酮化物与2,4-己二酮化物的衍生物;2,4-与3,5-戊二酮化物及包括2,2,6,6-四甲基3,5-戊二酮化物(THD)、2,2,6-三甲基3,5-戊二酮化物以及1,1,1,5,5,6,6,7,7-十氟2,4-戊二酮化物的衍生物;2,2-二甲基-6,6,7,7,8,8,8-七氟-3,5-辛二酮化物(FOD);以及诸如苯胺和羟基苯甲醛的席夫碱(Schiff-base)型复合物,这些物质给出一种通过氮和氧键合的二齿配位体。有机金属化合物的例子包括:三环戊二烯基铒(III)和环戊二烯基环的有机衍生物,其包括:三-四甲基环戊二烯基配位体、甲基环戊二烯基配位体,以及异丙基环戊二烯基配位体、双(环戊二烯基)铒的卤化物,以及双(环戊二烯基)铒的烷基化物,而其中烷基被定义为一至六个碳原子的直链或分枝的烃基。优选的配位体包括:乙酰丙酮化物、HFAC、THD或FOD。
从文献发表的内容看来,除了铒之外还夹杂有氧(或许还有碳、氮和氟)导致光致发光的增强。由于这个原因,这就需要给CVD薄膜提供一种氧源。这点通过引入气体氧源,如氧化氮,或采用含氧的先质化合物,如前所述的配位体来实现。在两种情况下,当在衬底上热分解先质时,就可淀积出含有稀土原子和氧(或其他“杂质”原子)的薄膜。
将衬底装在石英片舟3上,放入装料锁气室2中再抽空到合适的气压,最好低于10-5乇。该衬底可以是能与CVD条件相容的任何材料;优先选用单晶硅片。一般来说,当衬底晶片按常规作过预先清洗时,就可生产出较好的薄膜。
向反应器通入制造半导体薄膜用的先质气体,该先质可以是任何硅烷或锗烷,或两者的混合物。这些先质在CVD条件下是挥发性的;使用硅烷(SiH4)、乙硅烷(Si2H6)、锗烷(GeH4)和乙锗烷(Ge2H6)较好。可以通入III族掺杂剂先质,如乙硼烷,或V族掺杂剂先质,如磷烷,以改变薄膜的电学特性。该半导体先质气体是经气体进气口11进入反应器的。
该反应器的温度保持在450℃至800℃。低于450℃时,没有明显的Si、Ge或Si/Ge的外延生长;如果温度接近900℃,则铒开始分凝。在将衬底推入反应器之前,装料锁气室2的气压最好低于10-5乇。
在用电磁耦合操纵器6移动衬底、经门阀5进入反应器室13之后,经加热使稀土先质汽化,从储存器1进入反应室。在图1所示的实施例中,通过围绕着储存器的外部恒温器7供热。使用Er(HFAC)3时,恒温器保持在58℃可获得最佳的汽化速率。调节先质储存器的温度,也就是调节在反应器中先质的分压,对工艺过程的成功是很重要的。用Er(HFAC)3时,温度低于55℃,没有铒混入。温度高于65℃时,薄膜由铒浓度为10至20%、厚为300到400A的多晶层构成。该层的厚度不会随淀积时间延长而增加,这表明该生长表面已受先质“抑制”。对这个观察结果的合理解释是,存在一个最低的生长速率,高于这个速率,来自先质的铒和其它元素可以掺入,而低这个速率,生长表面就被抑制。(在1毫乇气压下由硅烷生长纯硅的速率在550℃下为4埃/分,而在650℃下时为40埃/分)。作为工作状态调整实验条件的一部分,容易由经验确定所给定稀土化合物应选用的合适恒温器温度。通过将所关注的先质的蒸汽压在储存器中的气压与Er(HFAC)3在58°/l乇时的蒸汽压相比较,可以计算出适当的温度。
给该先质储存器装上1.0克无水的三(六氟乙酰丙酮-O,O′)铒(III)并抽空。把4片直径2.25英寸的硅片预先清洗并浸在10%的氢氟酸中直至表面变为疏水,而后立即放入反应器的装料锁气室中。开始通入硅烷(4SCCM)和氢(50SCCM),并且打开通向室温铒源的阀门。把装料锁气室抽气十分钟之后,将晶片送入反应器。3分钟后,停止通入氢气,而且在一小时的间隔内将反应器温度升到500℃至650℃。在反应器处于650℃时,将包围先质的恒温器温度升到58℃,直接使Er(HFAC)3蒸升进入反应器。给定的计算系统抽空速度为42升/秒,淀积时气压是1.5乇。在这些条件下,淀积速率约30埃/分,而淀积时间从3变至12小时。中断硅烷气流,再将晶片拉入装料锁气室冷却。
利用下述方法确定薄膜的组分:由卢瑟夫背散射谱(RBS)确定铒的浓度,而用二次离子质谱(SIMS)确定出现在薄膜中的碳、氟和氧的含量。在上述(蒸发器温度(Te)=58℃,衬底温度(Ts)=650℃)条件下产生的薄膜具有均匀的铒浓度(2×1019原子/cm3),碳、氟与氧的含量约为4×1019原子/cm3。在测过的三个样品中,碳、氧和氟的含量都相等(在测量的误差范围内)。这些“杂质”都是先质分解造成的。
使用透射电子显微镜(TEM)对两个样品进行分析。样品1是在Si(100)上淀积的厚2.7μm的膜层(Te=60℃,Ts=650℃,Er浓度=8×1019原子/cm3)。电子衍射表明,该薄膜是外延的,但也显出了存在着很容易指出的第2相,如ErSi2。相应的电子图像还表明,该层的结晶质量很差。样品2是Te降低2℃所生长的厚2μm的薄膜,生长时间较长(11小时,而不是3小时)。该薄膜的剖面TEM测量没有出现任何凝析出的ErSi2。样品2的铒浓度为2×1019原子/cm3。这个浓度至少高出所报告的采用注入技术得到的最高浓度一个数量级。该剖面TEM测量还显示出一处高密度的线状缺陷。这些线状缺陷可能是由于铒(或铒复合物)引入薄膜所产生的应力造成的,不过,这些缺陷更象是由于先质的沾污造成的。在UHVCVD中所用的温度下,结晶的质量对碳和氧的存在很敏感,而SIMS的结果表明这些元素都以相当高的浓度存在着。另一个可能的污染源则是由淀积区上游的配位体分解所产生的多余的碳和氧。该Er(HFAC)3复合物在反应器低达300℃的部位分解,并且能不断放出少量有机物,这种有机物会污染原始的生长表面。TEM的结果对这个假设给予了支持,它显示出在开始生长界面处缺陷发生得很急剧,而且浓度最高。在这一点上,当与浓度受控的氧化剂气体一起使用时,对其它先质,特别是有机金属型,也许是优点。
本领域众所周知的方法可用来制造稀土元素化合物。前述实验中所用的Er(HFAC)3,可由Morris等人在“无机合成”,Vol.9,S.Y.Tyree,editor;McGraw Hill,New York,(1967)p.39叙述过的对已知的合成Al(HFAC)3的过程加以改变而制成。这种合成法是一个改进,优于Berg和Acosta〔Anal.Chim.Acta,40,101,(1968)〕所描述的在无水溶液条件下合成Er(HFAC)3的方法;从而避免中间合成Er(HFAC)3一水化物,该一水化物在能被用于CVD工艺之前,必须在真空下放在五氧化磷之上升高温度脱水。而新的合成法也明显地比文献所述的制造方法快和容易。文献的方法难以处理结晶体和油的混合物,需要多次再结晶,使每一步骤都有很大的产品损失。所有的操作都采用标准的Schlenk管和干燥箱技术在氮气下进行。
将4.11克(.015克分子)的脱水ErCl3放在100毫升的CCl4中,装入一200毫升的带有回流冷凝器、压力平衡滴液漏斗以及进气管的3颈烧瓶中。搅动悬浮液,加入9.57克的1,1,1,5,5,5六氟-2,4-戊二酮化物。几分钟后,该溶液从无色转变成淡红色并且放出HCl气体。接着添加配位体,分馏该溶液1小时。再将该热溶液抽吸过滤,并且经6小时冷却至-10℃。可以看到在烧瓶中形成淡红色的结晶。滤出该晶体,用冷CCl4洗涤,再在100℃,10-2乇下升华二次。就可获得7.9克(67%)纯净的Er(HFAC)3产品。
可以预料,上述合成法也可以用来以相同的方式制造其它稀土元素的其它复合物,只需要用相当的稀土三氯化物去替换ErCl3和用适当的配位体去替换HFAC。
对许多样品进行了光致发光测量。测量时,用工作在514nm的Ar离子激光器作激发光源,并和一Cygnrs FTIR来检测所发射的辐射。含Er浓度为2×1019原子/厘米3的2微米薄膜的典型光谱示于图2。这幅光谱在10K下获得,且随着温度的升高,发光很陡地衰落。在200K,该信号强度降低到原强度的50分之一,而在室温则不能测到。
虽然参照最佳实施例已经披露和具体地描述了本发明,但本领域的技术人员都知道,在不离开本发明的精神范围的条件下,可以进行形式上和细节方面的其它改变。

Claims (20)

1.一种光学有源外延薄膜,包括由硅、锗或硅-锗构成的半导体,所述薄膜含有浓度从约8×1018至约小于8×1019原子/厘米3的稀土元素,且基本上无稀土硅化物和锗化物析出。
3.如权利要求1所述的光学有源薄膜,其特征在于:所述半导体为硅。
3.如权利要求2所述的光学有源薄膜,其特征在于:所述薄膜含有浓度从约8×1018至小于约8×1019原子/厘米3的铒,且基本上无铒的硅化物析出。
4.如权利要求3所述的光学有源薄膜,其特征在于:还包括约4×1019原子/厘米3的氧。
5.如权利要求1所述的光学有源薄膜,其特征在于:所述半导体为锗。
6、如权利要求5所述的光学有源薄膜,其特征在于:所述稀土元素为铒,所述薄膜基本上无锗化铒析出物。
7.如权利要求1所述的光学有源薄膜,其特征在于:所述半导体是硅-锗。
8.如权利要求7所述的光学有源薄膜,其特征在于:所述稀土元素为铒,所述薄膜基本上无锗化铒和硅化铒析出物。
9.如权利要求1所述的光学有源薄膜,其特征在于:还包括氧原子。
10.如权利要求1所述的光学有源薄膜,其特征在于:还包括氟原子。
11.如权利要求1所述的光学有源薄膜,其特征在于:还包括碳原子。
12.如权利要求9所述的光学有源薄膜,其特征在于:所述氧原子的浓度为约4×1019原子/厘米3
13.如权利要求10所述的光学有源薄膜,其特征在于:所述氟原子的浓度为约4×1019原子/厘米3
14.如权利要求11所述的光学有源薄膜,其特征在于:所述碳原子的浓度为4×1019原子/厘米3
15.一种光电子器件,包括一衬底和附着其上的外延半导体薄膜,所述外延半导体薄膜包括由硅、锗或硅-锗构成的半导体,所述薄膜含有浓度从约8×1018至小于约8×1019原子/厘米3的稀土元素,且基本上无稀土硅化物和锗化物析出。
16.如权利要求15所述的光电子器件,其特征在于:所述稀土元素为单相的铒元素。
17.如权利要求15所述的光电子器件,其特征在于:所述衬底包括一单晶硅片。
18.如权利要求15所述的光电子器件,其特征在于:所述薄膜还包括从约1017至约1019原子/厘米3的氧。
19.如权利要求15所述的光电子器件,其特征在于:所述薄膜还包括从约1017至约1019原子/厘米3的氟。
20.如权利要求15所述的光电子器件,其特征在于:所述薄膜还包括从约1017至约1019原子/厘米3的碳。
CN99123482A 1992-08-31 1999-11-09 稀土掺杂的半导体薄膜 Expired - Fee Related CN1114225C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/940,416 1992-08-31
US07/940,416 US5322813A (en) 1992-08-31 1992-08-31 Method of making supersaturated rare earth doped semiconductor layers by chemical vapor deposition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN93117079A Division CN1054234C (zh) 1992-08-31 1993-08-30 化学汽相沉积过饱和稀土掺杂的半导体层

Publications (2)

Publication Number Publication Date
CN1255736A CN1255736A (zh) 2000-06-07
CN1114225C true CN1114225C (zh) 2003-07-09

Family

ID=25474795

Family Applications (3)

Application Number Title Priority Date Filing Date
CN93117079A Expired - Fee Related CN1054234C (zh) 1992-08-31 1993-08-30 化学汽相沉积过饱和稀土掺杂的半导体层
CN99123481A Expired - Fee Related CN1117389C (zh) 1992-08-31 1999-11-09 化学汽相淀积稀土掺杂的半导体层
CN99123482A Expired - Fee Related CN1114225C (zh) 1992-08-31 1999-11-09 稀土掺杂的半导体薄膜

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN93117079A Expired - Fee Related CN1054234C (zh) 1992-08-31 1993-08-30 化学汽相沉积过饱和稀土掺杂的半导体层
CN99123481A Expired - Fee Related CN1117389C (zh) 1992-08-31 1999-11-09 化学汽相淀积稀土掺杂的半导体层

Country Status (11)

Country Link
US (3) US5322813A (zh)
EP (1) EP0586321B1 (zh)
JP (1) JPH0785467B2 (zh)
KR (1) KR970008339B1 (zh)
CN (3) CN1054234C (zh)
AT (1) ATE166491T1 (zh)
CA (1) CA2095449C (zh)
DE (1) DE69318653T2 (zh)
ES (1) ES2116426T3 (zh)
MX (1) MX9305267A (zh)
TW (1) TW229325B (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873549A (en) * 1987-03-03 1989-10-10 Mita Industrial Co., Ltd. Device for detecting the life of an image forming process unit, opening of a seal of the unit and attachment of the unit to an image forming apparatus
EP0650200B1 (en) * 1993-10-20 1999-03-10 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno Solid state electro-luminescent device and process for fabrication thereof
US6093246A (en) * 1995-09-08 2000-07-25 Sandia Corporation Photonic crystal devices formed by a charged-particle beam
US5976941A (en) * 1997-06-06 1999-11-02 The Whitaker Corporation Ultrahigh vacuum deposition of silicon (Si-Ge) on HMIC substrates
US6040225A (en) * 1997-08-29 2000-03-21 The Whitaker Corporation Method of fabricating polysilicon based resistors in Si-Ge heterojunction devices
US6130471A (en) * 1997-08-29 2000-10-10 The Whitaker Corporation Ballasting of high power silicon-germanium heterojunction biploar transistors
KR100377716B1 (ko) * 1998-02-25 2003-03-26 인터내셔널 비지네스 머신즈 코포레이션 광학적 방사를 위해 희토류 원소로 도핑된 실리콘 구조체 및 방사방법
WO2000000811A2 (en) 1998-06-29 2000-01-06 San Diego State University Foundation Method and apparatus for determination of carbon-halogen compounds and applications thereof
US6140669A (en) * 1999-02-20 2000-10-31 Ohio University Gallium nitride doped with rare earth ions and method and structure for achieving visible light emission
US6143072A (en) * 1999-04-06 2000-11-07 Ut-Battelle, Llc Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate
US6255669B1 (en) * 1999-04-23 2001-07-03 The University Of Cincinnati Visible light emitting device formed from wide band gap semiconductor doped with a rare earth element
KR100510996B1 (ko) * 1999-12-30 2005-08-31 주식회사 하이닉스반도체 선택적 에피텍셜 성장 공정의 최적화 방법
US6519543B1 (en) * 2000-05-09 2003-02-11 Agere Systems Inc. Calibration method for quantitative elemental analysis
US6734453B2 (en) 2000-08-08 2004-05-11 Translucent Photonics, Inc. Devices with optical gain in silicon
KR100384892B1 (ko) * 2000-12-01 2003-05-22 한국전자통신연구원 에르븀이 도핑된 실리콘나노점의 형성 방법
US6853447B2 (en) * 2001-02-12 2005-02-08 Analytical Spectral Devices, Inc. System and method for the collection of spectral image data
US6894772B2 (en) * 2001-02-12 2005-05-17 Analytical Spectral Devices System and method for grouping reflectance data
JP2002334868A (ja) * 2001-05-10 2002-11-22 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
US20030111013A1 (en) * 2001-12-19 2003-06-19 Oosterlaken Theodorus Gerardus Maria Method for the deposition of silicon germanium layers
US6771369B2 (en) * 2002-03-12 2004-08-03 Analytical Spectral Devices, Inc. System and method for pharmacy validation and inspection
WO2004066345A2 (en) * 2003-01-22 2004-08-05 Group Iv Semiconductor Inc. Doped semiconductor nanocrystal layers and preparation thereof
US7440180B2 (en) * 2004-02-13 2008-10-21 Tang Yin S Integration of rare-earth doped amplifiers into semiconductor structures and uses of same
US7163878B2 (en) * 2004-11-12 2007-01-16 Texas Instruments Incorporated Ultra-shallow arsenic junction formation in silicon germanium
CN100385693C (zh) * 2005-08-18 2008-04-30 中国科学院半导体研究所 用等离子体处理提高硅基晶体薄膜发光的方法
DE102006031300A1 (de) * 2006-06-29 2008-01-03 Schmid Technology Systems Gmbh Verfahren zur Dotierung von Siliziummaterial für Solarzellen, entsprechend dotiertes Siliziummaterial und Solarzelle
US20080138955A1 (en) * 2006-12-12 2008-06-12 Zhiyuan Ye Formation of epitaxial layer containing silicon
US8283201B2 (en) * 2008-06-05 2012-10-09 American Air Liquide, Inc. Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
US8269253B2 (en) * 2009-06-08 2012-09-18 International Rectifier Corporation Rare earth enhanced high electron mobility transistor and method for fabricating same
CN102828242B (zh) * 2012-09-06 2015-05-27 西安隆基硅材料股份有限公司 含有下转换发光量子点的晶体硅及其制备方法
US9481917B2 (en) * 2012-12-20 2016-11-01 United Technologies Corporation Gaseous based desulfurization of alloys
WO2015017395A1 (en) * 2013-07-30 2015-02-05 Board Of Regents, The University Of Texas System Sample transfer to high vacuum transition flow
US9850573B1 (en) 2016-06-23 2017-12-26 Applied Materials, Inc. Non-line of sight deposition of erbium based plasma resistant ceramic coating
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10975469B2 (en) 2017-03-17 2021-04-13 Applied Materials, Inc. Plasma resistant coating of porous body by atomic layer deposition
GB201812765D0 (en) * 2018-08-06 2018-09-19 Univ London Queen Mary Substrate layer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900116C3 (de) * 1969-01-02 1978-10-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zum Herstellen hxxochreiner, aus Silicium bestehender einkristalliner Schichten
US4385946A (en) * 1981-06-19 1983-05-31 Bell Telephone Laboratories, Incorporated Rapid alteration of ion implant dopant species to create regions of opposite conductivity
US4618381A (en) * 1983-05-26 1986-10-21 Fuji Electric Corporate Research And Development Ltd. Method for adding impurities to semiconductor base material
DE3319134A1 (de) * 1983-05-26 1985-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Optoelektronisches bauelement, insbesondere eine laserdiode oder eine leuchtdiode
US4800173A (en) * 1986-02-20 1989-01-24 Canon Kabushiki Kaisha Process for preparing Si or Ge epitaxial film using fluorine oxidant
US4826288A (en) * 1987-04-09 1989-05-02 Polaroid Corporation, Patent Department Method for fabricating optical fibers having cores with high rare earth content
US5248890A (en) * 1989-05-13 1993-09-28 Forschungszentrum Julich Gmbh Valance specific lanthanide doped optoelectronic metal fluoride semiconductor device
US5296048A (en) * 1989-05-31 1994-03-22 International Business Machines Corporation Class of magnetic materials for solid state devices
FR2650704B1 (fr) * 1989-08-01 1994-05-06 Thomson Csf Procede de fabrication par epitaxie de couches monocristallines de materiaux a parametres de mailles differents
JPH042699A (ja) * 1990-04-18 1992-01-07 Mitsubishi Electric Corp 結晶成長方法
US5119460A (en) * 1991-04-25 1992-06-02 At&T Bell Laboratories Erbium-doped planar optical device
US5107538A (en) * 1991-06-06 1992-04-21 At&T Bell Laboratories Optical waveguide system comprising a rare-earth Si-based optical device
US5511946A (en) * 1994-12-08 1996-04-30 General Electric Company Cooled airfoil tip corner

Also Published As

Publication number Publication date
KR970008339B1 (ko) 1997-05-23
ES2116426T3 (es) 1998-07-16
CN1255735A (zh) 2000-06-07
KR940004714A (ko) 1994-03-15
US5646425A (en) 1997-07-08
MX9305267A (es) 1994-02-28
CA2095449C (en) 1997-09-16
TW229325B (zh) 1994-09-01
DE69318653D1 (de) 1998-06-25
JPH06177062A (ja) 1994-06-24
CN1085353A (zh) 1994-04-13
EP0586321B1 (en) 1998-05-20
CN1117389C (zh) 2003-08-06
EP0586321A2 (en) 1994-03-09
DE69318653T2 (de) 1999-02-04
ATE166491T1 (de) 1998-06-15
CN1054234C (zh) 2000-07-05
CA2095449A1 (en) 1994-03-01
CN1255736A (zh) 2000-06-07
EP0586321A3 (en) 1996-03-27
US5534079A (en) 1996-07-09
US5322813A (en) 1994-06-21
JPH0785467B2 (ja) 1995-09-13

Similar Documents

Publication Publication Date Title
CN1114225C (zh) 稀土掺杂的半导体薄膜
US7498272B2 (en) Method of depositing rare earth oxide thin films
Nishizawa et al. Silicon molecular layer epitaxy
Kuech et al. Disilane: A new silicon doping source in metalorganic chemical vapor deposition of GaAs
WO1986002951A1 (en) Method of growing crystalline layers by vapour phase epitaxy
US5300185A (en) Method of manufacturing III-V group compound semiconductor
US4988640A (en) Method of doping and implanting using arsine, antimony, and phosphine substitutes
Greve et al. Growth Rate of Doped and Undoped Silicon by Ultra‐High Vacuum Chemical Vapor Deposition
Moore et al. High mobility InP epitaxial layers prepared by atmospheric pressure MOVPE using trimethylindium dissociated from an adduct with 1, 2-bis (diphenyl phosphino) ethane
US5410178A (en) Semiconductor films
Rogers et al. Erbium‐doped silicon films grown by plasma‐enhanced chemical‐vapor deposition
Beach et al. Erbium-Doped Silicon Prepared by UHV/CVD
Greenwald et al. Mocvd Erbium Sourcesa
Smith Epitaxial growth of GaAs by low-pressure MOCVD
Aina et al. Sims and photoluminescence evaluation of high purity InP grown by organometallic vapor phase epitaxy
JPS60169563A (ja) テルル化金属の製造方法及び装置
Koizumi 2.2 n-type diamond growth and the semiconducting properties
WO2003044840A1 (en) Reactive codoping of gaalinp compound semiconductors
Hunt The Growth and Characterization of Gallium and Indium Based Semiconductor Materials
Hahn Direct growth of mercury (1-x) cadmium (x) telluride by cold wall, pyrolytic OMVPE
Cape et al. Research on multibandgap solar cells. Annual subcontract report, 1 March 1984-31 March 1985
Huh Organometallic vapor phase epitaxy of ZnSe with novel Zn and Se sources
Babushkina et al. Effects of growth conditions on the photoluminescence spectra of epitaxial GaAs films made by the hydride method
Varhue et al. Low Temperature Epitaxial Growth of Rare Earth Doped Silicon and Silicon Germanium Alloys
Giapis Experimental studies of the metalorganic chemical vapor deposition and doping of zinc selenide

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030709

Termination date: 20110830