CN1148451A - 综合多光纤数字交叉连接的定时结构 - Google Patents

综合多光纤数字交叉连接的定时结构 Download PDF

Info

Publication number
CN1148451A
CN1148451A CN94195019A CN94195019A CN1148451A CN 1148451 A CN1148451 A CN 1148451A CN 94195019 A CN94195019 A CN 94195019A CN 94195019 A CN94195019 A CN 94195019A CN 1148451 A CN1148451 A CN 1148451A
Authority
CN
China
Prior art keywords
wideband
timing
signal
broadband
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN94195019A
Other languages
English (en)
Other versions
CN1080043C (zh
Inventor
E·劳伦斯·里德
卡里·D·汉森
史蒂文·D·森塞尔
理查德·施罗德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent Holdings Inc
Original Assignee
DSC Communications Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSC Communications Corp filed Critical DSC Communications Corp
Publication of CN1148451A publication Critical patent/CN1148451A/zh
Application granted granted Critical
Publication of CN1080043C publication Critical patent/CN1080043C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/10Packet switching elements characterised by the switching fabric construction
    • H04L49/104Asynchronous transfer mode [ATM] switching fabrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3081ATM peripheral units, e.g. policing, insertion or extraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/0039Topology
    • H04J2203/0041Star, e.g. cross-connect, concentrator, subscriber group equipment, remote electronics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET

Abstract

一种用于综合包括宽带、广带、和窄带交叉连接矩阵的宽带、广带、和窄带子系统(14-18)的定时结构采用一个具有第一频率宽带时基(100),一个具有第二频率的广带时基(102),一个具有第三频率的窄带时基(104),当该集成系统(14-18)未共同放置时,宽带,广带及窄带时基(100-104)相互独立,在宽带和广带时基(100,102)之间,在所述广带和窄带时基(102,104)之间的接口提供频率调整,无论在时基(100-104)内何处进行信号复用及冗余设备交换,可采用相位校准电路和方法调整信号相位。

Description

综合多光纤数字交叉连接的定时结构
本发明一般地涉及电信系统领域。更具体地,本发明涉及综合多光纤数字交叉连接系统的定时结构。
数字交叉连接系统是电信传输网络是一个不可分割的部分。它们日益为包括交换载波、长途载波和竞争旁路载波的所有服务的提供者所利用。一般来说,现存的数字交叉系统结构已经基于一种单芯方式,在这种方式中所有的交叉连接是通过一个单一的交换节点或光纤作出的。为了处理当前的传输网络使用的分层信号结构,这些单一的交换节点已经被串联地连接了。
因为新的数据、话音和图像的应用正在引起在网络业务特性的根本的变化,网络结构也被要求包容、适应这种变化。代替按照过去那种以话音数据占主导的情况,网络业务将日益增加进行数据组的高速数据传输。包括帧中继、交换多兆比特数据服务和异步传输模式(ATM)的用户应用及新网络技术正在推动传输网络朝着同步光网络或SONET的方向上发展。SONET是一种设计为在中心局交换系统之间实现中间距会合的新的传输媒介。它确定用于复用业务以及操作和维护程序的光信号和同步帧结构。
SONET导致网络的复杂性的多方面的增加。存在着镶嵌在新的宽带和广带(wideband)结构,诸如同步有效负荷包络(SPE)中的信号格式的宽的变化。DS1信号提供了用于北美的主要传输速率。DS1帧能够传输24 DSO(64kbs)的话音或数据信道。DS1信号可以以多种方式映射进入新的SONETSTS-1SPE中。1)DS1信号可以经M1/3复用器复用进入DS3帧,及DS3信号可以被异步映射进入STS-1 SPE中。2)DS1信号可被同步或异步映射进入浮动的VT1.5的有效负荷及VT1.5信号可被在STS-1 SPE中复用。3)DS1信号可被映射进入锁定的VT1.5有效负荷及锁定的VT1.5信号可被复用进入STS-1 SPE。但是,这些方式产生三种不兼容的广带结构,这些结构必须单独地修整、复用和交换以保证端对端信号的完整性。这种分析产生这样的一个事实,即,网络不再能够透明地传送通信业务。因为网络必须识别不同的有效负荷以在各用户间无损伤地传输业务,数字交叉连接系统必须能够同样处理所有的三种格式。
因此,已经认识到综合了窄带、广带和宽带的子系统以择径和操作电路以及基于单元的业务的数字交叉连接系统的优点。为了实现这样的任务,一种适合分布式硬件结构唯一的定时结构被实现,该结构使用分别的定时基准信号并在某些定时接口上实现数据信号的频率码速调整和相位校准。
按照本发明,提供一种综合多光纤交叉连接系统的定时结构和方法。
按照本发明的一个方面,一种用于综合宽带、广带和窄带子系统的定时结构使用了具有第一频率的宽带时基、具有第二频率的广带时基、和具有第三频率的窄带时基。当综合的光纤未被放置在同一地点,但与长距离光链路相链接时,宽带、广带和窄带时基互相是独立的。频率码速调整是在宽带和广带时基之间,广带和窄带时基之间的接口上提供的。相位校准电路和方法被用于调整信号的相位,无论在何处在这些时基内信号复用和冗余设备交换被执行。
当调整各时基间的频率时,宽带、广带、和窄带时基之间的边界被选择为使电路的复杂性最小和SONET指示符处理最少。通过利用缓冲和伺服,实现在被选择的各个点上的相位校准。伺服技术大大地减少了实现相位校准所要求的缓冲深度。
按照本发明的另一方面,一种用于定时综合的宽带、广带和窄带子系统的方法,该方法包括在第一频率操作宽带子系统,在第二频率操作广带子系统,和在第三频率操作窄带子系统的步骤。因此该三个频率包括三个独立的具有选择为在它们之间易于进行频率码速调整的边界的时基。在时基内的相位校准也被执行以便信号复用和冗余设备交换可以实现。
为了更好地理解本发明,可以参照各个附图,其中:
图1是综合多光纤数字交叉连接系统硬件结构的一个实施例的高级方框图;
图2是表示同步和定时分配的简化方框图;
图3是表示定时岛概念的简化方框图;
图4是各分别的时基和它们之间的接口的方框图,在该接口处进行相位校准;
图5是表示一个示例性数据流的简化方框图;
图6是相位校准缓冲器及其环境的简化方框图;
图7是宽带和广带接口定时的简化方框图;
图8是广带和低速单元定时的简化方框图;
图9是表示伺服机构的示例性实施例的简化方框图。
本发明的优选实施例及其优点通过参照图1-7可被更好地理解,相同标号被用于各个附图中的相同和对应的部件。
I.硬件结构
参照图1,表示出一种综合多光纤数字交叉连接系统10的高级硬件结构方框框图。综合多光纤数字交叉连接系统10包括一个管理和控制子系统12,该子系统提供告警处理和供给,人工接入,定时和通信控制和对于系统10的类似的管理功能。管理和控制子系统12包括分离的和独立的用于交叉连接矩阵20-24的定时子系统,如果它们彼此没有位于紧密接近的位置。当没有处于共同的位置时,独立的时基被提供给各宽带14、广带16、和窄带子系统18。
管理和控制子系统12包括一定时/通信控制器25,该定时/通信控制器25包括三个单元:控制26、同步27、和通信28。如果交叉连接子系统14-18被共同放置,诸如在一个各子系统相互紧密放置的小系统中,可以利用一个公共的定时/通信控制器25。如果子系统不是共同放置的,利用一个分离的定时/通信控制器25,提供分离和独立的定时基准信号给每个子系统14-18。这种定时方案产生一种唯一的定时结构,其中三个时基使用于一个综合的系统10之内。因此,建议在该系统的时基边界和其他各点上进行频率码速调整和相位校准。
管理和控制子系统12经标准通信接口或用于长距离的光链路被连接到宽带、广带、和窄带子系统14-18。在系统10中的光链路已被称为综合局链路或IOL,并在下文可以这样称呼。每个宽带、广带、和窄带子系统14-18包括一个分离的矩阵20-24,用于在每个水平上的信号交叉连接。宽带矩阵20可以是一个最好在STS-1的速率上交换信号的无阻塞三级空分结构。广带矩阵22可以也是在VT1.5或VT2速率上交换信号的三级空分结构。此外,矩阵20和22两者可以用于多矩阵的信道以分别在STS-3C和VT3的速率上交换较高速率的信号。窄带矩阵24提供冗余的非阻塞双时隙交换矩阵平面来以包括DSO的较低速率交叉连接信号。支持北美和欧洲两者的速率和格式。系统10支持在DS1和DS3速率上的异步终端和在包括OC-3和OC-12的STS-1和OC-N速率上的同步SONET终端。
宽带矩阵20还分别利用光综合的局链路(IOL)34和36连接到相关的高速光(HSO)和电(HSE)单元货架式寄存器30和32。在IOL上传输的信号最好是以利用附加字段作出一些修改的OC-12标准的帧格式,携载用于内部故障覆盖的专用信号、通信信道、超帧指示符信号、和与网络的终端相关的信息。每个IOL携载12个类似STS-1的(STS-1P)信号和多个非标准附加信号。STS-1P帧具有与标准STS-1信号相同的额定频率和帧结构,该标准STS-1带有以专用方式使用的某些区及线路开销字段在系统10中每个IOL已被限定具有长达最长2000米的长度。IOL的长距离能力提供了在机架的物理安排上的灵活性,实现多种平面布置和使安置及呼叫成本最小。
如图所示,包括OC-3和OC-12信号的OC-N信号经IOL34被线路端接在连接到宽带矩阵20的高速光单元30。全电的STS-1和DS3线路终端被设置在高速电单元32中。网络信号以STS-1的速率通过宽带矩阵20被交叉连接。与OC-N或电的STS-1信号相关的STS-1同步有效负荷包络(SPE)被在锁定到宽带时基上的STS-1P帧中交叉连接。DS3的交叉连接是按照SONET标准,通过异步映射DS3信号进入STS-1 SPE信号进行的,然后STS-1 SPE信号再被映射进入STS-1P帧。
宽带矩阵20另外经光链路(IOL)40被连接到广带子系统16。广带子系统16经另一个光链路42被连接到窄带子系统18。如上所述,光链路(IOL)34、36、40、和42在长度上可以长达2000米并适合于携载12个STS-1P的有效负荷和其他用于维护、控制、故障覆盖的附加信号。在光链路IOL 34、36、40和42上的双向业务是标准OC-12的帧格式。
宽带矩阵20通过接口单元或辅助信号处理器(TSP)50连接到广带矩阵22。辅助信号处理器52也起到宽带矩阵22与窄带子系统18之间,和广带矩阵22与低速单元(LS)54之间的接口作用。辅助信号处理器50-54在综合多光纤数字交叉连接系统10的定时结构中起到重要的作用。其细节描述在下面。
广带子系统16支持包括DS1和欧洲的2048KHZ或E1信号的线路终端。包括DS3和STS-1的较高速率的网络信号可以通过宽带子系统14接入广带子系统16。DS1终端是在远程和/或本地低速单元子系统54和56执行的,其中远程低速单元54通过另外的辅助信号处理器60经IOL 58连接到广带矩阵。广带信号在改进的含有非标准有效负荷包络能够携载VT2信号的同步信道中被交叉连接。异步信号,诸如DS1、E1、和VT信号被映射进入广带改进的信道,用于内部的非标准传输和交叉连接。E1、DS1C、和DS2的入口和异步交叉连接是通过利用标准SONET映射规范,分别将这些信号映射入VT2、VT3和VT6有效负荷包络而提供的。矩阵传输格式(MTF)信号含有28个信道,每个信道都能携载一VT2有效负荷。如图1所示,广带矩阵22和辅助信号处理器50、52、和60,及低速单元56,和变换单元59之间的信号业务都是以矩阵传输格式。对于矩阵传输格式的详细讨论,请参照名称为Integrated Multi-Rate Cross-Connect System(Attorney Docek No.36560-773)共有申请,援引于此以资参考。
窄带矩阵24通过窄带接口单元62连接到广带子系统16。连接到窄带矩阵24的交叉连接接口单元64提供了包括DS1和DS3带宽的多速率的信号的电终端。窄带子系统18一般被安排为通过广带子系统16接入网络业务。包括DS0的低速信号通过窄带矩阵24被交叉连接。对于综合多光纤数字交叉连接系统硬件结构的更详细的描述,请参照名称为IntegratedMulti-Rate Cross-Connect ystem,(Attorney Docket No.36560-773)的共有申请。
II.定时结构
参照图2,表示出综合多光纤数字交叉连接系统10的定时分布方案80。如上所述,当宽带、广带、和窄带子系统14-18没有共同放置时,独立的各自定时子系统82-86被设置在定时/通信控制器25(图1)中。每个定时子系统82-86包括一个独立的分级时钟(stratum_level clock)。该分级时钟可以是一个分级3E或分级3的压控振荡器(未示出)或更好些。该分级的压控振荡器可被锁定到一个外部源上,或可以依靠一些已知存储技术以相对于一个外部基准的最新频率内容支持精度(保存操作模式)。一般,外部基准具有追溯到基本基准源的可跟踪性,基本标准源包括DS1、OC-N、64/8 kbs复合时钟、2.048MHZ罗兰(Loran)系统、和E1信号类型。
宽带、广带、和窄带定时子系统82-86被锁定到分配给每个子系统的一对局定时基准信号88中所选择的一个上。馈送两组定时基准信号88,以提供冗余度和当出故障时在它们之间转换的能力。局定时基准信号88可以来源于一对局定时信号馈送器(BITS)。另一种方案,局定时基准信号88可从自网络接收的信号中导出,诸如所选择的来自DS1间距92的在低速单元54中生成的DS1信号90,或来自接收的光信号96(诸如上述的OC-3或OC-12信号)的在高速单元货架式寄存器30和32中产生的DS1和E1信号94。一般来说,所有宽带、广带、和窄带子系统14-18是以一个可追踪到同一源的频率彼此同步地操作。但是,当一个或多个子系统正在在保存模式下运行时或经受某种非正常定时时,各子系统之间的频率校准变为是需要的。
每个光纤定时子系统82-86根据选择的局定时基准信号88产生定时信号并分配它们到相关联的光纤的矩阵上。得到的定时信号被进一步测试和通过矩阵20-24分层地分配到子系统14-18中的每个子系统。
参照图3,表示出在综合多光纤数字交叉连接系统10中独立的宽带、广带、和窄带时基100-104的概念。因为宽带、广带、和窄带子系统14-18是利用独立的定时子系统82-86操作,在与每个光纤相连的时基100-104之间的边界上需要进行频率校准。时基100-104不是物理实体;它们仅用于说明围绕在不同的定时子系统82-86情况下操作的系统部件的边境。如上所述,定时信息和信号是被分层地从宽带和广带矩阵20和22分配到它们的相应时基的各个端点。
如图所示,宽带时基100包括高速单元30和32、宽带矩阵20、和光链路34、36、和40。宽带时基100和广带时基102之间的频率校准是在位于广带子系统16中的辅助信号处理器50中进行的。广带时基102包括辅助信号处理器52和60、低速单元54、和光链路58和42,其中在广带和窄带时基102和104之间的频率校准是在窄带接口子系统62中进行的。时基的边界和因此频率校准的地点被选择为使电路复杂性及当从一个时基转移到下一个时,SONET的指示符移动最小。例如,在进站方向,对于被映射到STS-1SPE的DS3的宽带和广带时基100和102之间的边界是在STS-1端接的位置。通过选择这个点作为边界,避免了用于定时校准的更多的指示符的移动。数据流和频率校准的更详细的描述如下文所示。
参照图4,表示出时基100-104和在系统10中执行相位校准的各个点的简化方框图。在系统10中的冗余度是由表示冗余部件的A和B指示的。简言之,描述表示在图4中用于每个子系统14-18的各个系统部件。在宽带子系统14中,矩阵20的A拷贝被连接到IOL-MUX 120的A拷贝,后者用于将信号多路分解到IOL34(或36)上,并连接在高速(HS)单元架122中的IOL MUX 124的A拷贝。高速单元架122可以包括高速光单元30,或者高速电单元32,或者两个单元。同样,矩阵20的B拷贝经IOL34’或36’通过IOL-MUX 124的B拷贝,被连接到在高速单元架122中的IOL-MUX 120的B拷贝。矩阵24的A和B拷贝也被连接到IOL-MUX 126的A和B拷贝,后者用于IOL连接广带子系统16中的相关的IOL-MUX 130的A和B拷贝。
在广带子系统16中的IOL-MUX 130的A和B拷贝多路分解出12个在每个IOL上携载的STS-1P的信号并提供它们到辅助信号处理器50的12个拷贝。如图所示,存在一个提供用于冗余和备份的附加的备用辅助信号处理器(SP)。然后辅助信号处理器50被连接到三级广带矩阵22的始发和终止级136的A和B拷贝。同样,矩阵22包括中央级138的A和B拷贝,因此级138也连接到始发和终止级140和150的相关A和B拷贝。
始发和终止级140的拷贝被连接到辅助信号处理器60和IOL-MUX的A和B拷贝142,拷贝142经IOL 58和58”提供连接和信号复用到低速单元架144。在图4所示的配置中,低速单元架被安排为远程设备,该设备有必要使用IOL和IOL-MUX142和146。连接到IOL-MUX的拷贝146是STS-1 MUX的拷贝148,拷贝148然后被连接到低速单元54。
广带始发和终止级拷贝150经辅助信号处理器52、IOL-MUX拷贝152、IOL42和42’、和IOL-MUX拷贝156连接到窄带子系统18。窄带子系统还包括连接到IOL-MUX156的相应拷贝的STS-1 MUX拷贝158,和用作窄带子系统18与广带子系统16之间一个接口单元的窄带单元控制器(UC)160的相应拷贝。
当连接广带子系统16到宽带子系统14时,相关连的IOL 40和40’是宽带时基100的一部分。从广带辅助信号处理器发送到IOL-MUX 130的信号被定时循环到从宽带子系统14接收的IOL信号上。因此,对于IOL-MUX 130的定时方案是在从宽带矩阵20接收的IOL 40和40’上的数据中导出的。传输到宽带矩阵20的IOL信号的帧相位被从利用伺服机构接收的IOL信号的相位偏移,将在下文描述。
在每个时基100-104之中,所有信号具有共同的频率,但不必须进行相位校准。由于不同的电缆长度,相位偏移主要是由不同的传播延迟引起的。相关信号的相位校准在进行信号的复用时是需要的。另外,在平面的冗余设备的交换被允许的场合,要求并行冗余数据的相位校准,以保证无差错交换。无差错交换处理可以包括检测性能的降低,和放弃选择当前的有效平面,并同时选择其它的平面。
当SONET信号跨越时基边界时,在系统10中使用现有技术所公知的SONET指示符处理电路和技术,在数据横跨时基边界时,从一个频率改变到下一个频率。指示符的处理提供一种允许有效负荷在独立于这些容器的实际内容的STS-1P容器内的灵活和动态对准的方法。一般来说,有效负荷的开始是以一个指示符为基准的,但该有效负荷本身允许在容器内“浮动”。如果在各帧速率之间存在着一个频偏,则伴随着相应的正的或负的填充字节或比特,该指示符的值按照需要被递增或递减。以这种方式,实现了时基之间的频率码速调整。指示符处理电路和技术的更详细的讨论可以通过参考以下文件来找到:美国国家标准T1.105,部分9关于有效负荷指示符;CCITT G.709建议,部分3关于指示符;和Bellcore文件TR-NWT-000253,部分3.5关于有效负荷指示符,所有这些文件援引于此以资参考。
除频率码速调整外,在综合多光纤数字交叉连接系统10中还必须实现多点的相位校准。在一个时基中相位偏移主要是由各冗余系统之间的传播延迟的变化引起的。例如,因为IOL 58和58’携载的辅助信号处理器60与低速单元架144之间的数据、额外开销、和定时信息可能在长度上不同,从它们接收的信息的相位不能相位同步。在示例性的系统10中,携载A和B拷贝的并行信息的IOL的不同长度L可以被高达100米长度进行相加或相减。由相位不校准引起的第二个影响是在矩阵本身开始的相位偏斜。在诸如系统10的全冗余系统中,要求相位校准以保证基于性能监视或其它规定的A和B拷贝之间的无差错交换。再者,在信号复用被执行的情况下,要求相位校准以进行正确的操作。
具体来说,在所有执行STS-1P信号复用的场合的IOL-MUX120、124、130、142、146、152、和156都需要相位校准。另外,因为在辅助信号处理器50、52和60和STS-1 MUX 148和158中执行辅助信号复用,在这些位置上需要相位校准以保证正确的信号复用。
冗余设备选择或平面交换是在高速和低速单元30、32和54中进行的。冗余设备的转换还在辅助信号处理器50和IOL-MUX 130,辅助信号处理器60和IOL-MUX142,辅助信号处理器52和IOL-MUX152之间,及辅助信号处理器50、60和52和始发和终止矩阵级136、140和150之间提供。因此,在这些位置上需要相位校准以保证正确的冗余部件的转换。
III.数据和定时操作—宽带子系统
在描述相位校准之前,可以以说明性的方式更为详细地描述系统10中的数据流和定时方案。在宽带光纤14中,从宽带定时子系统82接收的基准定时和相关的帧信号88(图2),在选择一组作为有效定时基准信号之前被校准和被测试。基准定时信号可以在6.48MHZ下运行。选择的基准定时信号然后被分层地分配给矩阵20和接着分配给其各个子系统。选择的定时基准信号被传输到矩阵20,将被用作内部振荡器(未示出)的基准,用于产生51.84MHZ的时钟,例如用来传输信号通过矩阵20和用于定时与矩阵20相关的出站IOL-MUX。与IOL-MUX120和126相连的振荡器(未示出)也产生一个运行在622MHZ的时钟信号,例如从选择的有效基准定时信号中。
在操作中,SONET OC-N信号,诸如OC-3和OC-12在宽带子系统14内的高速光单元30中被端接。对按照上述的Bellcore TR253定义的OC-N信号的所有区和线路的额外开销字段的接入在高速光单元30中被提供。如图4所示,进站STS-1 SPE信号利用指示符处理被映射到锁定于宽带时基100的STS-1P信号中。这些进站信号被发送到修整器(未示出)的冗余拷贝,在那里它们被修整以便传输到IOL-MUX 124。将要在下文更详细地描述的位于IOL-MUX 124上的校准缓冲器被用于将接收的STS-1P的信号校准进站IOL-MUX的定时方案,因为达到IOL-MUX 124的STS-1P信号可以从不同的单元始发并可以相位校准到不同的IOL。另外,伺服技术也被用于相位校准。由于电缆长度的不同,IOL-MUX的定时方案可以不同而因此要求相位校准。
出站的STS-1P信号在接口单元30被复用成OC-N信号且额外开销信息被插入适当的额外开销字段。出站信号被频率对准,但不需要相位校准。因为要求相位校准以允许同步复用和冗余设备的转换,相位校准缓冲器被设置在高速光单元30中。
DS3和电STS-1信号在高速电单元32被端接。当STS-1信号被端接时,STS-1 SPE信号通过利用指示符处理被映射进入锁定到宽带时基100上的STS-1P信号中。另一方面,DS3信号被异步映射进入在利用宽带定时的DS3接口产生的STS-1P SPE信号中。产生的STS-1P信号被发送到IOL-MUX 124的冗余拷贝,用于接入A和B矩阵平面20的两者。STS-1P信号被复用到IOL 36和36’上以便传输到矩阵20。在出站方向,IOL信号在IOL-MUX 124被多路分解为STS-1P信号和然后被发送到高速电单元32。单元32可以进入矩阵平面20并能够独立地从任何IOL拷贝中选择出站STS-1P信号。
IV.数据和定时操作-广带子系统
定时信息在广带子系统中被同样地分配。在广带定时子系统84中(图2)产生的冗余定时信号被直接提供到广带矩阵22的中央级138。这些冗余定时信号被测试并选出一组作为有效定时基准。然后矩阵中央级138的每个平面提供一组选择的定时信号到始发和终止级136、140、和150,这些始发和终止级也测试和选择一组有效定时信号。所选择的定时信号然后被馈送到辅助信号处理器50、52和60,及IOL-MUX142和152。接收的定时信号再次被测试且其中之一被选择。选择的广带定时信号然后被用于时间函数并作为连接到辅助信号处理器50、52、60的IOL42、42’、58和58’的一个基准(当它们在主定时模式中被使用时)。IOL-MUX152和142也利用广带定时并以主定时模式操作。IOL40和40’利用宽带定时。IOL-MUX130从由宽带IOL-MUX126源生的IOL40抽取定时并操作在定时从属模式的IOL中。
辅助信号处理器50和52提供广带接口到宽带和窄带子系统14和18。辅助信号处理器60提供接口到低速单元架54。当用作到窄带子系统18或到低速单元54的接口时,辅助信号处理器52和60提供用于处在主定时模式中的相关的IOL信号的定时。当用作到宽带子系统14的连接时,IOL定时被锁定到处于从属定时模式中的宽带定时上。
在主定时模式中,在IOL或IOL-12信号上的出站信号是以选择的时钟和自广带矩阵22接收的帧信号为基准。IOL-12信号类似于具有在专有方式中所使用的某些区段和线路额外开销的OC-12信号。选择的时钟信号被用作例如运行在622MHZ振荡器的基准,及选择的帧信号被用作初始化出站IOL定时方案的帧相位。帧信号还被发送到IOL-MUX156或144以被用作伺服处理的基准信号。进站IOL-12信号被循环定时到在窄带子系统18和/或低速单元54的出站定时方案上。进站信号的帧相位通过广带伺服处理被校准到进站辅助信号处理器的定时方案上。对于IOL-MUX152和/或142的定时是以类似方式从广带时基得到的。
当操作在从属定时模式时,进站IOL-12信号都被锁定到用于频率和帧相位两者的宽带时基上。对于IOL-MUX130的定时是从进站IOL-12信号得到的。例如622MHZH时钟是从接收的数据得到的及一帧信号是基于IOL-12的成帧而产生的。出站IOL-12信号被循环定时到进站时基上。通过IOL-MUX130出站帧从进站帧上偏移以补偿IOL-12的电缆长度的差。
由于要求处理的信号的特性,异步和同步辅助处理器单元都是可以利用的。异步辅助处理器单元被提供以端接携载DS3有效负荷的STS-1 SPE信号和同步辅助处理器单元被提供以端接携载VT有效负荷的STS-1 SPE信号。
在IOL-MUX130接收的进站业务被多路分解为STS-1P字节并传输到辅助信号处理器50的异步辅助处理器单元。一对接收的信号通过相位校准缓冲器与辅助信号处理器IOL定时方案的进站帧相位校准,以允许冗余平面交换。当检测到某些被监视的数据,例如线路BIP-8和信道ID异常时,可以进行平面的选择和交换。其它的监视变化的性能包括:告警指示符信号、黄色、帧超出、帧差错监视。STS-1P信号被进一步处理以端接STS-1通道并利用IOL定时方案抽取DS3信号。这标志着宽带时基100的结束点和广带时基102的开始,在这个位置上它们之间的边界被穿过。通过利用指示符翻译和DS3的去同步而进行端接STS-1通道和产生DS3信号的处理使得能从宽带时基100到广带时基102的自然前进。
抽取的DS3信号然后利用与该DS3信号一起接收的时钟信号被进一步处理以抽取DS1信号。抽取的DS1信号通过去同步器电路(未示出)进行平滑并然后利用进站辅助信号处理器定时方案被映射进入广带矩阵有效负荷包络。矩阵的有效负荷包络然后利用辅助信号处理器定时方案被传输到矩阵22。
从来自异步辅助处理器单元的广带矩阵22的MTF数据流中产生出站STS-1P帧。根据信号的性能监视,从一个矩阵数据平面选出数据。DS1信号被从由辅助信号处理器定时方案定时的矩阵有效负荷包络帧中抽取。DS1信号利用由去同步器电路(未示出)产生的时钟进行传输。DS3帧是根据44MHZ振荡器(未示出)产生的。利用IOL定时方案产生STS-1P帧且S3信号被异步映射到STS-1 SPE帧。这一点被选为出站信号的宽带和广带时基100和102之间的接口以实现无缝时基变换但要求无附加的指示符移动。STS-1P帧被相位校准到出站辅助信号处理器IOL定时方案上。出站信号通过利用相位校准缓冲器被校准到IOL-MUX130的出站帧相位上。被校准的信号然后被复用,用于在IOL40和40’上进行传输到宽带子系统14。
用于连接到宽带子系统14的同步辅助信号处理器的定时分配类似于上述的异步子系统。与异步辅助信号处理一样,从IOL接收的STS-1P信号被对准到辅助IOL定时方案上,该电路被频率锁定到IOL定时,这样可以实现设备的转换。STS-1P信号利用从IOL定时方案得到的定时信号被处理以抽取发送的SPE。IOL定时方案还被用于处理SPE以端接STS-1通道和抽取VT有效负荷。VT有效负荷被写入VT指示符缓冲器(未示出),用于利用基于IOL的定时信号的指示符处理。在以这种方式的实施中,时基边界被选在VT指示符处理器缓冲器的进站侧处于对进站业务的宽带时基100的结束点和广带时基102的开始之处。VT有效负荷被从缓冲器读出并映射进入通过使用辅助信号处理器定时方案产生的VT帧。这些VT帧然后利用进站辅助信号处理器定时被映射到矩阵有效负荷包络帧并传输到矩阵22。
对于VT至VT的交叉连接,矩阵有效负荷包络信号被直接传输到矩阵22。当于要求门户功能以用于与VT映射异步时,由矩阵有效负荷包络携载的VT信号被端接以抽取异步信号,这些信号然后被去同步。这些异步信号利用去同步器电路(未示出)产生的时钟进行发送。该异步信号被映射到矩阵有效负荷容量帧SPE。
对于出站方向,定时方案被反向。辅助信号处理器定时方案被利用直至利用STS指示符处理使STS-1SPE被映射到在IOL定时方案中的STS-1P帧。对于VT至VT交叉连接,VT信号被从由矩阵22接收的矩阵有效负荷包络帧中抽取,并直接被映射到STS-1SPE中。因为VT信号和STS-1 SPE两者都是根据辅助信号处理器定时的,所以不要求VT指示符处理。
V.数据和定时操作--窄带子系统
如图2所示,在窄带光纤108中的定时是从窄带定时子系统86中得到的。但是,如图3和4所示,链接窄带子系统18到广带子系统16的IOL跨线42和42’是广带时基102的一部分。广带和窄带时基之间的接口位于窄带接口或单元控制器(UC)子系统160中。用于IOL-MUX156的定时方案是从出站IOL数据中得到的。进站IOL-MUX帧相位利用伺服技术从出站帧相位偏移。
在窄带子系统18中,时钟信号从IOL-MUX156被分配到对应的STS-1P MUX158,该158利用该时钟信号作为它的定时方案的基准。IOL-MUX定时方案被用作接口单元160的广带侧的定时基准。广带接口单元定时方案的进站和出站帧相位是由STS-1P MUX158产生的帧信号确定的。
相对于在窄带IOL-MUX156接收的广带子系统16的出站业务被多路分解为STS-1P信号并被传输到STS-1P MUX158。STS-1P信号被端接在STS-1P MUX158并从SPE中抽取VT或矩阵有效负荷容量信号。抽取的VT或矩阵有效负荷容量信号和相关的帧信号然后利用STS-1P MUXD出站定时方案被传输到窄带接口单元160。
到达接口单元160的VT或矩阵有效负荷容量信号被端接及其中的有效负荷利用从广带时基102得到的定时信号被抽取。对于字节同步映射的VT、DS0信号可以直接从VT中抽取。对于异步映射的VT或矩阵有效负荷容量帧,异步信号从同步帧中抽取及DS0信号从异步信号中抽取。无论在哪种情况下,DS0信号利用广带接口单元定时方案被写入滑动缓冲器(未示出)并利用窄带时基104从缓冲器中读出。滑动缓冲器用作出站方向的广带和窄带时基之间的接口。并且利用窄带时基104对DS0信号做进一步处理。
进站DS0信号利用窄带定时被映射到一异步信号,例如DS1或DS1C,或者直接映射到字节同步映射的VT。使用的映射类型取决于在广带子系统16执行的交叉连接的类型。除DS0信号可被直接映射到VT SPE的字节同步映射VT外,DS0信号被映射到一个异步帧。如果广带交叉连接是到VT映射的STS-1 SPE,则异步信号被映射到对应的VT类型。如果广带交叉连接是到DS3映射的STS-1SPE或是到低速单元54,则异步信号被映射到矩阵有效负荷容量信号。对于字节同步映射,异步信号被映射到通过利用窄带定时产生的VT SPE。当利用字节同步映射时,DS0信号被直接映射到VT SPE。VT帧是利用广带接口单元定时方案产生的且VT SPE利用指示符处理被映射到VT帧中。对于字节同步VT,VT的指示符处理器用于进站业务的广带和窄带时基102和104之间的接口。
对于矩阵有效负荷容量帧和异步映射VT信号,异步信号被异步地映射到VT或利用广带接口定时方案产生的矩阵有效负荷容量SPE。广带和窄带时基102和104之间的接口处在异步信号被映射到SPE的点上。异步映射的SPE被直接映射到VT或矩阵有效负荷容量帧而没有指示符的处理,因为两个信号被锁定到相同的定时方案上。
VT或矩阵有效负荷容量信号利用复用这些信号为STS-1 SPE的广带接口单元定时方案,被发送到相关的STS-1P MUX158。在STS-1 MUX16产生的STS-1 P帧及SPE被校准到进站STS-1P MUX定时方案上。产生的STS-1P信号然后被发送到IOL-MUX156。其上的校准缓冲器被用于将STS-1P信号相位校准到进站IOL-MUX定时方案。校准的信号然后被复用到IOL42和42’上,用于传输到广带辅助信号处理器52。
VI.相位校准
如上所述,在综合多光纤数字交叉连接系统10中的相位校准是通过利用包括校准缓冲和伺服若干种技术实现的。进行伺服是一种调节严重相位失调,以便减小所要求校准缓冲器的深度和进一步校准该信号的有关缓冲的延迟的技术。这些技术在下文将被详细描述。
图5表示用于说明校准缓冲和伺服的机构和方法的宽带子系统14的简化数据流。宽带网络接口单元200从网络接收有效负荷并在STS-1P容器中将其打包。STS-1P容器被发送到IOL-MUX202的A和B拷贝,这些拷贝复用各个信号到一IOL上。每个IOL能够携载12个校准的并复用成一个IOL-12信号的STS-IP容器。如上所述,IOL-12信号类似于OC-12信号,专门使用某些区段和线路额外开销字段。STS-1P容器由宽带矩阵206的IOL-MUX204接收、交叉连接、并然后通过IOL-MUX208被发送出站到一个IOL上。IOL-MUX拷贝210然后提供出站STS-1P信号到网络接口单元212,该单元从STS-1P容器抽取有效负荷并发送一个拷贝到该网络。
参照图6,网络接口TSP200从网络接收有效负荷#1。有效负荷#1被打包成一STS-1P#1容器且IOL-MUX202的进站多路复用器部分将其在IOL上发送到IOL-MUX204的多路分配器部分和矩阵206。如图所示,定时子系统220提供冗余定时信号给矩阵206。如图所示,根据矩阵定时和帧相位产生出站IOL-12信号。在网络接口200的定时是从出站IOL-12信号中得到的。从出站IOL-12得到的IOL定时被进一步用于产生进站STS-1P容器和进站IOL-12信号。注意,网络接口200从IOL-MUX202的A和B拷贝中接收IOL定时。根据特定参数的性能监视,冗余定时信号被测试、校准、并选择一个拷贝作为有效信号。被选择的IOL定时方案用作在网络接口单元200中的一个内部振荡器(未示出)的基准。以这种方式,进站信号被从矩阵定时方案中得到并能跟踪该方案。但是,没有伺服和相位校准,进站IOL-12信号的帧相位相对于矩阵定时方案被延迟了在IOL上的往返传输时间。
相位校准缓冲器被用于校准在系统10中的要求的各个点上的数据信号。一般,数据信号在一定时方案上被写入校准缓冲器并利用一个公共的第二定时方案从其读取。缓冲器深度是由在系统中最大预期的或规定的相位偏移确定的。当遇到大的相位失调时,使用伺服技术减小相位校准信号所要求的缓冲量。
参照图6所示的具体例子,从矩阵206在IOL-MUX204上接收的出站STS-1P容器利用校准缓冲器230被校准到出站IOL定时方案上。校准缓冲器230调节由于在伺服机构的不精确或不完全校准和通过矩阵206的累加的附加偏移所致的相位偏移。在IOL-MUX202的多路分配器部分接收的出站业务被多路分解为STS-1P信号并传输到接口单元200。如图所示,出站STS-1P容器由接口单元200从IOL-MUX202的A和B拷贝两者所接收。因为两个拷贝由于不同电缆长度的原因可能超出帧相位,接收的STS-1P信号通过利用相位校准缓冲器232和234被与接口单元200的出站帧相位校准。
从网络接收的进站STS-1信号被线路端接,以抽取有效负荷,该有效负荷然后被映射到利用指示符处理的接口单元200中产生的STS-1P容器。进站DS3信号通过利用进站接口单元的定时方案被映射到STS-1 SPE。含有DS3信号的SPE被直接映射到利用固定的指示符的STS-1容器。产生的STS-1P容器被全部相位校准到进站接口单元定时方案并发送到利用接口单元定时方案的IOL-MUX202的复用器部分。接收的信号通过相位校准缓冲器222和224被校准到IOL-MUX的进站帧相位。经相位校准的STS-1P的信号然后在IOL上被传输到矩阵206。
图7表示在广带子系统16(图1)中与辅助信号处理器相关联的相位校准缓冲器的使用,其中辅助信号处理器302提供到宽带子系统14(图1)的接口。当连接广带子系统16到宽带子系统14时,相关IOL是宽带时基100的一部分及从辅助信号处理器302传输到连接的IOL-MUX304的信号被循环定时到从宽带子系统接收的IOL信号上。IOL-MUX304的操作和到宽带子系统14的连接是与到高速光和电单元  架的连接是相同的。IOL-MUX304的时基是从自宽带矩阵20(图1)接收的IOL数据流中得到的。发送到宽带矩阵20的IOL信号的帧相位被从利用伺服机制接收的IOL信号的相位进行偏移。IOL-MUX304的时基被用作辅助信号处理器302的IOL侧的定时基准。因为宽带和广带时基间边界位于辅助信号处理器302上,辅助信号处理器的矩阵侧是广带时基102的一部分。
每个辅助信号处理器302从IOL-MUX304的A和B拷贝接收时钟和STS-1P信号。定时信号被测试、校准、和选择一个拷贝作为有效拷贝。有效时钟被用作例如51.84MHZ振荡器的基准,该振荡器用作TSP IOL定时方案的基础。按照成帧额外开销定义的有效STS-1P信号的帧相位被用作定位TSP IOL定时方案的进站帧相位。TSP IOL定时方案的出站帧相位从进站帧相位偏移过与在IOL-MUX304上伺服偏移的相同幅度。
如图7所示,在IOL-MUX304从宽带子系统14接收的进站业务被多路分解为STS-1P信号和然后被发送到辅助信号处理器302。一对接收的信号通过利用在辅助信号处理器302上的相位校准缓冲器被与TSP IOL定时方案的进站帧相位校准,以便可以实现无差错的平面选择和转换。
在辅助信号处理器302中产生出站STS-1P帧。STS-1P帧被相位校准到出站TSP IOL定时方案的。发送到IOL-MUX304的STS-1P信号被不精确地彼此校准,因为TSP IOL定时方案在各个独立的振荡器上操作。出站信号通过在IOL-MUX304中的相位校准缓冲器被校准到IOL-MUX304的出站帧相位上。被校准的STS-1P信号然后可以被复用到IOL信号上,以便传输到宽带子系统14。
参照图8,表示出在广带子系统16和低速单元货架式寄存器144之间起接口作用的辅助信号处理器中相位校准缓冲。对于起到广带子系统16和窄带子系统18之间接口作用的辅助信号处理器的定时是类似的,因此在这里不特别描述了。来自广带时基102的定时信号通过广带矩阵中心级138分配到始发和端接单元136、140、和150(图4),和然后分配到连接到辅助信号处理器322(图8)的IOL-MUX324。辅助信号处理器的定时方案是在每个辅助信号处理器中产生的,并不直接由广带时基102定时。辅助信号处理器的IOL定时方案是以与连接到宽带子系统14的辅助信号处理器相同方式,从进站IOL信号中得到的。但是,因为IOL定时被定位至广带定时,两个定时方案具有相同的平均频率。两个定时方案之间的接口要求调整围绕IOL环路产生的少量的抖动和漂移。出站辅助信号处理器定时的帧相位被链接到广带时基信号的帧相位上。进站定时的帧相位被伺服到广带矩阵上。
如图8所示,在IOL-MUX324接收到广带定时的两个拷贝。各时钟被相位校准、测试、且选择一个拷贝作为用于IOL-MUX定时方案的有效基准。一个振荡器利用选择的有效时钟产生一个622MHZ时钟。产生的时钟和有效出站帧信号为出站IOL-MUX定时方案提供了基础利用在IOL-MUX324中的校准缓冲器,在IOL-MUX324从辅助信号处理器322接收的STS-1P信号被校准到IOL-MUX定时方案。被相位校准的STS-1P然后被复用到出站IOL,以便传输到低速单元330或窄带子系统18。
进站IOL信号被循环定时到低速单元330的出站信号上。在IOL-MUX326上的电路(未示出)确定接收的相对于本地定时方案的IOL信号的相位。进站IOL信号的相位在定时单元330被伺服以提供在辅助信号处理器322接收的进站信号的粗校准。对于IOL-MUX324的进站定时是从进站IOL数据导出的。IOL信号被多路分解至STS-1P信号并利用从进站IOL-MUX定时方案导出的定时信号发送到辅助信号处理器322。STS-1P信号由辅助信号处理器322从两个IOL-MUX拷贝324接收。接收的STS-1P信号然后通过在辅助信号处理器322中的相位校准缓冲器被校准到进站辅助信号处理器定时方案上。两个拷贝被监视且一个拷贝被选为用于在辅助信号处理器322中进行处理的有效拷贝。
图6还更详细地表示伺服被要求的一种情况。表示出一个数据通道,其中两个进站有效负荷信号,有效负荷#1和有效负荷#2被接收和传输到两个不同的IOL的矩阵206,其中一个IOL的长度是2米,和另一个是2000米。有效负荷#2在网络接口单元240上接收,发送到IOL-MUX242,并在2000米IOL上传输到IOL-MUX244。该两个进站信号然后通过IOL-MUX246由矩阵206交叉连接到相同的出站IOL上。伺服调整STS-1P容器的成帧以便它们近似同相到达矩阵206。如上所述,用相位的精调是利用相位校准缓冲器进行的。伺服帧调整补偿在IOL上的往返延迟。一般来说,每个进站STS-1P容器的开始和IOL-12帧的开始事先抵消掉在2米长度和2000米长度之间IOL上的传输延迟差。
参照图9,表示出在系统10中伺服技术的示例性实施。一般来说,伺服被用于系统10中调整在源端信号的相位。如图所示,矩阵340连接到IOL-MUX342,向其提供矩阵定时并从其接收STS-1P容器。IOL-MUX342包括含有进站偏移值的伺服寄存器344。进站偏移值代表了进站IOL-12信号帧相对于矩阵帧的偏移。IOL-MUX342多路分解从一个链接到IOL-MUX346的IOL上接收的进站IOL-12业务。IOL-MUX346包括含有出站偏移值的偏移寄存器348。出站偏移值规定了相对于从出站IOL-12信号得到的帧的进站IOL-12的信号帧将被产生的位置。在偏移寄存器348中的出站偏移值是从在伺服寄存器344中的进站偏移值得到的。网络接口350和352从网络接收有效负荷,将其打包成STS-1P容器并提供它们到IOL-MUX346,以便传输到矩阵340。每个网络接口350和352还分别具有偏移寄存器354和356,用于存储STS-1P偏移值。STS-1P偏移值被用于调整STS-1P帧,以便它们在适当的定时窗口期间全都到达矩阵340。STS-1P偏移值是将通过已知常数到偏移寄存器348中的出站偏移值来计算的。
当初始化时,在伺服寄存器344中的进站偏移值被设置以使对于所有通过矩阵340的STS-1P信号的帧开始在一规定的定时窗口内从矩阵340到达出站IOL-MUX。进站偏移值被分析地确定的并根据经验来验证。例如对于系统10内的宽带矩阵20,在所有伺服寄存器中的进站偏移值已经设置为19。为了初始化一个具体的IOL的伺服机构,读出伺服寄存器344中的值并将要求值,即19与未伺服调整的当前值间的差值进行计算。差或Δ值然后被用于调整偏移寄存器348中的出站偏移值。通过利用经调整的出站偏移值,在伺服寄存器344中的值被验证以确定其正确性。在偏移寄存器354中的STS-1P的偏移值然后通过加一个常数到偏移寄存器348中的值而被确定。例如,对于在高速电单元32中的DS3接口,该常数是29。
一个类似的伺服机构被用于校准在广带辅助信号处理器52从窄带子系统18和从低速单元架144接收的信号。一般,从宽带子系统14接收的信号不要求经伺服进行相位校准,因为该接收的信号在它们被交叉连接之前已被端接。伺服技术也可以用于使在广带中央级138(图4)的相位偏移最小。在中央级138接收信号的相位被与其本地定时方案的相位进行比较,以确定每个辅助信号处理器子系统的一个偏移值。这些偏移值经管理和控制子系统12发送到辅助信号处理器子系统。这些偏移值被用于调整相对于辅助信号处理器中出站信号的进站信号的相位,使要求的校准缓冲深度最小化。
虽然已经详细地描述了本发明及其优点,应当理解,在不超出按照所附的权利要求书所限定的本发明的精神和范围的情况下可以作出各种改变、替换、和变化。

Claims (51)

1.一种用于综合包括宽带、广带、和窄带交叉连接矩阵的宽带、广带、和窄带子系统的定时结构,包括:
一个具有第一频率并包含所述宽带交叉连接矩阵的宽带时基;
一个具有第二频率并包含所述广带交叉连接矩阵的广带时基;
一个具有第三频率并包含所述窄带交叉连接矩阵的窄带时基;
一个连接在所述宽带和广带交叉连接矩阵之间的宽带-广带接口,用于传送所述第一和第二频率之间的数据;及
一个连接在所述广带和窄带交叉连接矩阵之间的广带-窄带接口,用于传送在所述第二和第三频率之间的数据。
2.按照权利要求1所述的定时结构,还包括:
第一和第二冗余定时基准信号;
连接在所述宽带矩阵上用于接收所述第一和第二冗余定时基准信号的宽带定时子系统,所述宽带矩阵选择一个所述冗余定时基准信号作为一有效定时信号并从中产生宽带定时信号,用于遍布所述宽带时基的分配;
连接在所述广带矩阵上用于接收所述第一和第二冗余定时基准信号的广带定时子系统,所述广带矩阵选择一个所述冗余定时基准信号作为一有效定时信号并从中产生广带定时信号,用于遍布所述广带时基的分配;
连接在所述窄带矩阵上用于接收所述第一和第二冗余定时基准信号的窄带定时子系统,所述窄带矩阵选择一个所述冗余定时基准信号作为一有效定时信号并从中产生窄带定时信号,用于遍布所述窄带时基的分配。
3.按照权利要求1所述的定时结构,其中所述宽带子系统还包括高速线路终端单元和连接所述高速线路终端单元到所述宽带交叉连接矩阵的长距离光链路,和连接所述宽带交叉连接矩阵到所述宽带子系统的长距离光链路,所述宽带时基包括所述高速线路终端单元和所述长距离光链路。
4.按照权利要求3所述的定时结构,还包括用于循环定时所述宽带子系统的出站业务到所述长距离光链路上的进站业务上的电路。
5.按照权利要求3所述的定时结构,还包括用于与所述光链路相关联的相位校准的电路。
6.按照权利要求5所述的定时结构,其中宽带子系统包括交叉连接矩阵的冗余拷贝、光链路、和多路复用器、和用于监视所述冗余拷贝,选择一个作为有效拷贝的电路、及用于转换所述有效拷贝到另外一个拷贝的电路。
7.按照权利要求1所述的定时结构,其中所述广带子系统还包括低速线路终端单元和连接到所述广带交叉连接矩阵至其的长距离光链路,所述广带时基包括所述低速线路终端单元和所述长距离光链路。
8.按照权利要求7所述的定时结构,还包括用于循环定时进站业务到长距离光链路上出站业务的电路。
9.按照权利要求7所述的定时结构,还包括用于与所述光链路相关联的相位校准的电路。
10.按照权利要求9所述的定时结构,其中广带子系统包括交叉连接矩阵的冗余拷贝、光链路、和多路复用器、和用于监视所述冗余拷贝,选择一个作为有效拷贝的电路、及用于转换所述有效拷贝到另一个拷贝的电路。
11.按照权利要求1所述的定时结构,其中所述窄带交叉连接矩阵通过长距离光链路连接到所述广带交叉连接矩阵上,所述广带时基包括在它们之间的所述长距离光链路。
12.按照权利要求11所述的定时结构,还包括用于与所述光链路相关联的相位校准的电路。
13.按照权利要求12所述的定时结构,其中窄带子系统包括交叉连接矩阵的冗余拷贝、光链路、和多路复用器、和用于监视所述冗余拷贝,选择一个作为有效拷贝的电路、及用于转换所述有效拷贝到另一个拷贝的电路。
14.按照权利要求11所述的定时结构,还包括用于环路定时所述广带子系统的进站业务到所述长距离链路上的出站业务的电路。
15.按照权利要求1所述的定时结构,其中所述宽带-广带接口包括指示符处理电路,用于所述宽带和广带时基的所述第一和第二频率之间的频率调整。
16.按照权利要求1所述的定时结构,其中所述广带-窄带接口包括指示符处理电路,用于所述广带和窄带时基的所述第二和第三频率之间的频率调整。
17.按照权利要求2所述的定时结构,其中:
所述宽带子系统还包括高速线路终端单元和连接所述高速线路终端单元到所述宽带交叉矩阵的长距离光链路,和连接所述宽带交叉连接矩阵到所述广带子系统的长距离光链路;
所述广带子系统还包括低速线路终端单元和连接所述广带交叉连接矩阵至其的长距离光链路;
所述窄带交叉连接矩阵通过长距离光链路连接到所述广带交叉连接矩阵上;
每个所述光链路携载多个复用的信号,该定时结构还包括用于与各所述光链路相关联的相位校准的电路。
18.按照权利要求17所述的定时结构,其中所述相位校准电路包括用于在接收相位上接收数据和在输出相位上输出数据的相位校准缓冲器。
19.按照权利要求17所述的定时结构,其中所述相位校准电路包括伺服电路。
20.按照权利要求19所述的定时结构,其中所述伺服电路包括用于存储代表在所述光链路上的进站信号和一个本地定时方案之间的相位偏移的偏移值的偏移寄存器。
21.按照权利要求20所述的定时结构,其中所述伺服电路还包括用于利用所述偏移值调整所述进站信号的相位的电路。
22.按照权利要求2所述的定时结构,其中所述广带子系统还包括复用进站和出站信号到和从所述广带矩阵的辅助信号处理器,该定时结构还包括用于与每个所述辅助信号处理器相关联的相位校准的电路。
23.按照权利要求22所述的定时结构,其中所述相位校准电路包括:
用于在接收相位上接收数据和在输出相位上输出数据的相位校准缓冲器;及
一个伺服电路。
24.按照权利要求23所述的定时结构,其中所述伺服电路包括:
一个用于存储代表进站信号和一个本地定时方案之间的相位偏移的偏移值的偏移寄存器;和
用于利用所述偏移值调整所述进站信号的相位的电路。
25.按照权利要求2述的定时结构,还包括用于监视所述第一和第二冗余定时基准信号并选择之一作为有效定时基准信号的电路。
26.按照权利要求25所述的定时结构,还包括用于在第一和第二冗余定时基准信号之间进行转换的电路。
27.一种用于定时包括宽带、广带、和窄带交叉连接矩阵的综合宽带、广带、和窄带子系统的方法,包括以下步骤:
在第一频率上进行宽带频率交叉连接;
在第二频率上进行广带频率交叉连接;
在第三频率上进行窄带频率交叉连接;
接口所述宽带和广带交叉连接矩阵,用于传送所述第一和第二频率之间的数据;和
接口所述广带和窄带交叉连接矩阵,用于传送所述第二和第三频率之间的数据。
28.按照权利要求27所述的定时方法,还包括以下步骤:
产生第一和第二冗余定时基准信号;
分配所述第一和第二冗余定时基准信号到连接至所述宽带矩阵的宽带定时子系统,所述宽带矩阵选择一个所述冗余定时基准信号作为有效定时信号并从中产生宽带定时信号,用于分配遍布到所述宽带时基;
分配所述第一和第二冗余定时基准信号到连接到所述广带矩阵的广带定时子系统,所述广带矩阵选择一个所述冗余定时基准信号作为有效定时信号和从中产生广带定时信号,用于遍布所述广带时基的分配;
分配所述第一和第二冗余定时基准信号到连接到所述窄带矩阵的窄带定时子系统,所述窄带矩阵选择一个所述冗余定时基准信号作为有效定时信号并从中产生在带定时信号,用于遍布到所述窄带时基的分配。
29.按照权利要求28所述的定时方法,还包括以下步骤:
监视和测试所述第一和第二定时基准信号;和
去选择所述已选择的有效定时信号并选择另一个冗余定时基准信号。
30.按照权利要求28所述的定时方法,还包括以下步骤:将进站业务循环定时到连接高速线路终端单元到所述宽带交叉连接矩阵和连接所述宽带交叉连接矩阵到所述广带子系统的长距离光链路上的相应各子系统的出站业务。
31.按照权利要求30所述的定时方法,还包括校准在所述光链路上的信号的相位的步骤。
32.按照权利要求27所述的定时方法,还包括将进站业务循环定时到连接低速线路终端单元到所述广带交叉连接矩阵的长距离光链路上出站业务的步骤。
33.按照权利要求32所述的定时方法,还包括校准在所述光链路上的信号的相位的步骤。
34.按照权利要求33所述的定时方法,还包括以下步骤:
从交叉连接矩阵、各光链路和各复用器的冗余拷贝中选择一个有效的拷贝;和
响应于检测有效拷贝中的检测性能故障,转换到另一个冗余拷贝。
35.按照权利要求34所述的定时方法,还包括以下步骤:
从交叉连接矩阵、各光链路和各复用器的冗余拷贝中选择一个有效的拷贝;和
响应于检测有效拷贝中的的性能故障,转换到另一个冗余拷贝。
36.按照权利要求27所述的定时方法,还包括将进站业务循环定时到在连接所述窄带交叉连接矩阵到所述广带子系统的长距离光链路的出站业务上的步骤。
37.按照权利要求27所述的定时方法,其中所述宽带-广带接口的步骤包括用于所述宽带和广带时基的第一和第二频率间的频率调整的指示符处理的步骤。
38.按照权利要求27所述的定时方法,其中所述广带--窄带接口的步骤包括用于所述广带和窄带时基的第二和第三频率间的频率调整的指示符处理的步骤。
39.按照权利要求27所述的定时方法,还包括以下步骤:
信号的复用和多路分解;和
校准各被复用的信号的相位。
40.按照权利要求39所述的定时方法,其中所述相位校准步骤包括在接收相位上接收和缓冲数据,及在输出相位上输出数据的步骤。
41.按照权利要求39所述的定时方法,其中所述相位校准步骤包括伺服步骤。
42.按照权利要求41所述的定时方法,其中所述伺服步骤包括以下步骤:
确定被复用的信号和本地定时方案之间的相位偏移;
在一偏移寄存器中存储所述相位偏移;
利用所述偏移值调整所述进站信号的相位。
43.按照权利要求27所述的定时方法,还包括以下步骤:
在冗余设备之间进行转换;及
通过可转换的设备校准待发送信号。
44.按照权利要求43所述的定时方法,其中所述相位校准步骤还包括以下步骤:
在接收相位上接收和缓冲数据,及在输出相位上输出数据;和
进行伺服。
45.按照权利要求44所述的定时方法,其中所述伺服步骤还包括以下步骤:
确定一进站复用的信号和本地定时方案之间的相位偏移;
在一偏移寄存器中存储所述相位偏移;
利用所述偏移值调整所述进站信号的相位。
46.一种用于综合包括宽带和广带交叉连接矩阵的宽带和广带子系统的定时结构,包括:
一个具有第一频率并包含所述宽带交叉连接矩阵的宽带时基;
一个具有第二频率并包含所述广带交叉连接矩阵的广带时基;和
一个连接在所述宽带和广带交叉连接矩阵之间的宽带-广带接口,用于传送所述第一和第二频率之间的数据。
47.按照权利要求46所述的定时结构,还综合一个具有窄带交叉连接矩阵的窄带子系统,还包括:
一个具有第三频率并包含所述窄带交叉连接矩阵的窄带时基;和
一个连接在所述广带和窄带交叉连接矩阵之间的广带-窄带接口,用于传送所述第二和第三频率之间的数据。
48.按照权利要求5所述的定时结构,其中所述综合的宽带、广带、和窄带光纤包括冗余信号传输平面,和用于在所述冗余信号传输平面上在各相位已校准的信号间进行选择性地转换的电路。
49.按照权利要求27所述的定时方法,其中所述宽带、广带、和窄带子系统包括冗余信号传输平面,该方法还包括以下步骤:
在所述冗余信号传输平面上校准信号相位;
在所述冗余信号传输平面上在所述相位已校准的信号之间进行选择性地转换。
50.按照权利要求49所述的定时方法,其中所述冗余信号传输平面包括冗余光纤链路,所述选择性地转换步骤包括在各冗余光纤链路之间进行选择性地转换的步骤。
51.按照权利要求39所述的定时方法,还包括在所述相位已校准的信号之间进行选择性地转换的步骤。
CN94195019A 1993-12-30 1994-12-21 综合多光纤数字交叉连接的定时装置 Expired - Fee Related CN1080043C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/176,125 1993-12-30
US08/176,125 US5526359A (en) 1993-12-30 1993-12-30 Integrated multi-fabric digital cross-connect timing architecture

Publications (2)

Publication Number Publication Date
CN1148451A true CN1148451A (zh) 1997-04-23
CN1080043C CN1080043C (zh) 2002-02-27

Family

ID=22643081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94195019A Expired - Fee Related CN1080043C (zh) 1993-12-30 1994-12-21 综合多光纤数字交叉连接的定时装置

Country Status (7)

Country Link
US (1) US5526359A (zh)
EP (1) EP0738443A4 (zh)
JP (1) JPH09507354A (zh)
CN (1) CN1080043C (zh)
CA (1) CA2179167C (zh)
FI (1) FI962694A (zh)
WO (1) WO1995018493A1 (zh)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436890A (en) * 1993-12-30 1995-07-25 Dsc Communications Corporation Integrated multi-rate cross-connect system
CZ286974B6 (en) 1994-05-05 2000-08-16 Sprint Communications Co Method and apparatus for control of signaling processing system
US5991301A (en) * 1994-05-05 1999-11-23 Sprint Communications Co. L.P. Broadband telecommunications system
US6631133B1 (en) 1994-05-05 2003-10-07 Sprint Communications Company L.P. Broadband telecommunications system
US6031840A (en) * 1995-12-07 2000-02-29 Sprint Communications Co. L.P. Telecommunications system
US6181703B1 (en) 1995-09-08 2001-01-30 Sprint Communications Company L. P. System for managing telecommunications
US5920562A (en) 1996-11-22 1999-07-06 Sprint Communications Co. L.P. Systems and methods for providing enhanced services for telecommunication call
US6430195B1 (en) * 1994-05-05 2002-08-06 Sprint Communications Company L.P. Broadband telecommunications system interface
US6633561B2 (en) 1994-05-05 2003-10-14 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
GB9509216D0 (en) * 1995-05-05 1995-06-28 Plessey Telecomm Retiming arrangement for SDH data transmission system
US6687244B1 (en) 1995-11-22 2004-02-03 Sprint Communications Company, L.P. ATM transport system
WO1997028622A1 (en) * 1996-02-02 1997-08-07 Sprint Communications Company, L.P. Atm gateway system
US5802045A (en) * 1996-04-30 1998-09-01 Lucent Technologies Inc. Method of using a narrowband server to provide service features to broadband subscribers
US5886994A (en) * 1996-07-01 1999-03-23 Alcatel Usa Sourcing, L.P. Apparatus and method for mapping high density E1 signals into a digital cross-connect matrix space
US5883898A (en) * 1996-07-01 1999-03-16 Alcatel Usa Sourcing, L.P. Apparatus and method for mapping E1 signals into a digital cross-connect matrix space
US6275468B1 (en) * 1996-07-31 2001-08-14 Motorola, Inc. Automatic timing adjustment for diverse routing of HFC systems
US6501753B1 (en) 1996-09-19 2002-12-31 Qwest Communications International, Inc. Architecture and method for using an advanced intelligent network (AIN) to reduce voice switch and trunk loading
US6002689A (en) 1996-11-22 1999-12-14 Sprint Communications Co. L.P. System and method for interfacing a local communication device
AU718960B2 (en) * 1996-11-22 2000-05-04 Sprint Communications Company, L.P. System and method for transporting a call in a telecommunication network
US6014378A (en) 1996-11-22 2000-01-11 Sprint Communications Company, L.P. Telecommunications tandem system for circuit-based traffic
DE69733269D1 (de) * 1996-11-27 2005-06-16 Alcatel Usa Sourcing Lp Telekommunikationsvermittlungsstelle zur integration von telefonverkehr und video-diensten
US5901136A (en) * 1996-12-26 1999-05-04 Alcatel Usa Sourcing, L.P. System and method for controlling timing in a distributed digital cross-connect system
CA2274068C (en) * 1996-12-05 2001-02-13 Steven D. Sensel System and method for controlling timing in a distributed digital cross-connect system
US6198720B1 (en) 1996-12-26 2001-03-06 Alcatel Usa Sourcing, L.P. Distributed digital cross-connect system and method
TW357521B (en) * 1996-12-26 1999-05-01 Dsc Telecom Lp Data transfer system and method for distributed digital cross-connect system
US6067299A (en) 1997-04-16 2000-05-23 Sprint Communications Company, L.P. Communications system for providing ATM connections and echo cancellation
US6137800A (en) 1997-05-09 2000-10-24 Sprint Communications Company, L. P. System and method for connecting a call
US6704327B1 (en) 1997-05-09 2004-03-09 Sprint Communications Company, L.P. System and method for connecting a call
US6178170B1 (en) 1997-05-13 2001-01-23 Sprint Communications Company, L. P. System and method for transporting a call
US5995504A (en) * 1997-07-21 1999-11-30 Lucent Technologies, Inc. DACS network architecture
US6160806A (en) * 1997-08-14 2000-12-12 Alcatel Usa Sourcing, L.P. High density unit shelf with network interface cards and method
US5982744A (en) * 1997-08-14 1999-11-09 Alcatel Usa Sourcing, L.P. High density unit shelf and method
US6483837B1 (en) 1998-02-20 2002-11-19 Sprint Communications Company L.P. System and method for connecting a call with an interworking system
US6470019B1 (en) 1998-02-20 2002-10-22 Sprint Communications Company L.P. System and method for treating a call for call processing
US6546022B1 (en) 1998-04-03 2003-04-08 Sprint Communications Company, L.P. Method, system and apparatus for processing information in a telecommunications system
US6597701B1 (en) 1998-12-22 2003-07-22 Sprint Communications Company L.P. System and method for configuring a local service control point with a call processor in an architecture
US6888833B1 (en) 1998-12-22 2005-05-03 Sprint Communications Company L.P. System and method for processing call signaling
US6785282B1 (en) 1998-12-22 2004-08-31 Sprint Communications Company L.P. System and method for connecting a call with a gateway system
US6724765B1 (en) 1998-12-22 2004-04-20 Sprint Communications Company, L.P. Telecommunication call processing and connection system architecture
US6982950B1 (en) 1998-12-22 2006-01-03 Sprint Communications Company L.P. System and method for connecting a call in a tandem architecture
FI106761B (fi) 1999-02-19 2001-03-30 Nokia Mobile Phones Ltd Menetelmä ja piirijärjestely järjestelmien keskinäisen tahdistuksen toteuttamiseksi monimoodilaitteessa
US7079530B1 (en) 1999-02-25 2006-07-18 Sprint Communications Company L.P. System and method for caching toll free number information
US6560226B1 (en) 1999-02-25 2003-05-06 Sprint Communications Company, L.P. System and method for caching ported number information
US6646984B1 (en) * 1999-03-15 2003-11-11 Hewlett-Packard Development Company, L.P. Network topology with asymmetric fabrics
US6891836B1 (en) 1999-06-03 2005-05-10 Fujitsu Network Communications, Inc. Switching complex architecture and operation
US6317439B1 (en) 1999-06-03 2001-11-13 Fujitsu Network Communications, Inc. Architecture for a SONET line unit including optical transceiver, cross-connect and synchronization subsystem
US6396847B1 (en) * 1999-06-03 2002-05-28 Fujitsu Networks Communications, Inc. Dialable data services/TDM bandwidth management
US6674751B1 (en) * 1999-06-03 2004-01-06 Fujitsu Network Communications, Inc. Serialized bus communication and control architecture
US6498792B1 (en) 1999-06-03 2002-12-24 Fujitsu Network Communications, Inc. Method and apparatus for switching signals of multiple different communication protocols
US6816497B1 (en) 1999-11-05 2004-11-09 Sprint Communications Company, L.P. System and method for processing a call
WO2001047158A1 (fr) * 1999-12-20 2001-06-28 Kabushiki Kaisha Toshiba Emetteur et carte d'interface tributaire
US6785377B1 (en) 2000-01-19 2004-08-31 Sprint Communications Company L.P. Data calls using both constant bit rate and variable bit rate connections
US6870838B2 (en) 2000-04-11 2005-03-22 Lsi Logic Corporation Multistage digital cross connect with integral frame timing
US20030058848A1 (en) * 2000-04-11 2003-03-27 Velio Communications, Inc. Scheduling clos networks
US7301941B2 (en) * 2000-04-11 2007-11-27 Lsi Corporation Multistage digital cross connect with synchronized configuration switching
US7260092B2 (en) 2000-04-11 2007-08-21 Lsi Corporation Time slot interchanger
ITTO20001117A1 (it) * 2000-11-30 2002-05-30 Cit Alcatel Interfaccia perfezionata per reti di telecomunicazione a gerarchia sincrona.
US6973151B2 (en) * 2001-02-15 2005-12-06 Intel Corporation Dynamic phase aligning interface
US7593432B2 (en) * 2001-03-31 2009-09-22 Redback Networks Inc. Method and apparatus for deframing signals
US6950446B2 (en) * 2001-03-31 2005-09-27 Redback Networks Inc. Method and apparatus for simultaneously sync hunting signals
US6941381B2 (en) * 2001-03-31 2005-09-06 Redback Networks Inc. Method and apparatus for sync hunting signals
US7346049B2 (en) * 2002-05-17 2008-03-18 Brian Patrick Towles Scheduling connections in a multi-stage switch to retain non-blocking properties of constituent switching elements
US6848012B2 (en) 2002-09-27 2005-01-25 Broadcom Corporation Method and system for an adaptive multimode media queue
US6928495B2 (en) 2002-09-27 2005-08-09 Broadcom Corporation Method and system for an adaptive multimode media queue
US7330428B2 (en) 2002-12-11 2008-02-12 Lsi Logic Corporation Grooming switch hardware scheduler
CA2987808C (en) * 2016-01-22 2020-03-10 Guillaume Fuchs Apparatus and method for encoding or decoding an audio multi-channel signal using spectral-domain resampling
US10856310B2 (en) * 2017-02-03 2020-12-01 Qualcomm Incorporated Retuning in machine type communications

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175639A (en) * 1986-11-21 1992-12-29 Hitachi, Ltd. Optical subscriber network transmission system
CA1311818C (en) * 1987-12-29 1992-12-22 Nec Corporation Time division switching for multi-channel calls using two time switch memories acting as a frame aligner
US5142529A (en) * 1988-12-09 1992-08-25 Transwitch Corporation Method and means for transferring a data payload from a first SONET signal to a SONET signal of different frequency
US4967405A (en) * 1988-12-09 1990-10-30 Transwitch Corporation System for cross-connecting high speed digital SONET signals
US5115425A (en) * 1990-05-31 1992-05-19 At&T Bell Laboratories Switching system reliability
US5303078A (en) * 1990-12-18 1994-04-12 Bell Communications Research, Inc. Apparatus and method for large scale ATM switching
EP0496663B1 (en) * 1991-01-22 1999-12-29 Canon Kabushiki Kaisha Multimedia communication apparatus
GB2253973B (en) * 1991-03-22 1995-06-07 Plessey Telecomm Multiplex data ring transmission
US5164938A (en) * 1991-03-28 1992-11-17 Sprint International Communications Corp. Bandwidth seizing in integrated services networks
US5307342A (en) * 1991-08-30 1994-04-26 International Business Machines Corporation Heterogeneous ports switch
EP0536464B1 (en) * 1991-10-10 1998-12-09 Nec Corporation SONET DS-N desynchronizer
US5365518A (en) * 1992-03-02 1994-11-15 Alcatel Network Systems, Inc. Sonet overhead server
US5289138A (en) * 1992-07-30 1994-02-22 Amdahl Corportion Apparatus for synchronously selecting different oscillators as system clock source
US5365590A (en) * 1993-04-19 1994-11-15 Ericsson Ge Mobile Communications Inc. System for providing access to digitally encoded communications in a distributed switching network
US5436890A (en) * 1993-12-30 1995-07-25 Dsc Communications Corporation Integrated multi-rate cross-connect system

Also Published As

Publication number Publication date
FI962694A (fi) 1996-08-29
CA2179167C (en) 2000-08-01
CN1080043C (zh) 2002-02-27
US5526359A (en) 1996-06-11
EP0738443A1 (en) 1996-10-23
WO1995018493A1 (en) 1995-07-06
FI962694A0 (fi) 1996-06-28
JPH09507354A (ja) 1997-07-22
EP0738443A4 (en) 1998-09-30
CA2179167A1 (en) 1995-07-06

Similar Documents

Publication Publication Date Title
CN1080043C (zh) 综合多光纤数字交叉连接的定时装置
CN1083186C (zh) 用于终接并产生同步传输信号的处理器装置
US7193964B2 (en) Hitless protection switching
US6011802A (en) Method and system for conversion and transmission of communication signals
US7826480B1 (en) Method and apparatus for transceiving multiple services data simultaneously over SONET/SDH
AU671278B2 (en) Method for disassembling and assembling frame structures containing pointers
JP4215355B2 (ja) 通信システム
WO2003100991A2 (en) Phase and frequency drift and jitter compensation in a distributed telecommunications switch
US7133415B2 (en) SONET circuit emulation with VT compression
AU668924B2 (en) Network interfacing method and a network interface for a digital transmission network
US20130308659A1 (en) System and Method for Multiplexing PDH and Packet Data
US7457390B2 (en) Timeshared jitter attenuator in multi-channel mapping applications
US7197031B2 (en) Cross-connection of high bandwidth signal traffic across independent parallel shelves
US7085293B2 (en) Scaleable transport of TDM channels in a synchronous frame
US5490142A (en) VT group optical extension interface and VT group optical extension format method
US6891862B1 (en) Multiplex hierarchy for high capacity transport systems
CN1066162A (zh) 多路数据环路传输
US6633584B1 (en) Payload translation between frame options in synchronous digital hierarchy networks
FI106500B (fi) Multipleksointi PDH-tietoliikenneverkossa
US20020080830A1 (en) Switching of low order data structures using a high order switch
US20010053146A1 (en) Processor device for terminating and creating synchronous transport signals
WO2008127383A1 (en) An efficient scalable implementation of vcat/lcas for sdh and pdh signals
CN100490404C (zh) 一种实现同步数字传送网络中业务传输的方法
CN102025438B (zh) 一种适用于微波通信的增强型pdh帧格式以及映射方法
CN1909429B (zh) 一种延迟光同步数字传送网通道净荷数据的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee