CN1162881A - 无线传输系统 - Google Patents

无线传输系统 Download PDF

Info

Publication number
CN1162881A
CN1162881A CN96122471A CN96122471A CN1162881A CN 1162881 A CN1162881 A CN 1162881A CN 96122471 A CN96122471 A CN 96122471A CN 96122471 A CN96122471 A CN 96122471A CN 1162881 A CN1162881 A CN 1162881A
Authority
CN
China
Prior art keywords
mentioned
substation
provides
modulating
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96122471A
Other languages
English (en)
Other versions
CN1084983C (zh
Inventor
板谷英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN1162881A publication Critical patent/CN1162881A/zh
Application granted granted Critical
Publication of CN1084983C publication Critical patent/CN1084983C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]

Abstract

这里提供的无线传输系统包括一个主站和许多通过无线信道被连接到主站的串联连接的子站。第一接收单元接收已用扩频方式调制的大量调制波。相应地,为了解调调制波中预定的调制波,解调单元具有可以仅处理预定的基带信号的能力。另一方面,由第一发送单元在指向邻近子站的第一发送方向上,发送由第一接收单元接收的调制波,这样,这个调制波不用调制或解调的中间过程,就可以被转发了。

Description

无线传输系统
本发明涉及一种无线传输系统,特别是,该无线传输系统包含一个主站和通过无线信道连接到主站的一系列的子站。
随着移动通信最近的发展,移动终端的数量正在迅速增长。为了解决移动终端的增加数量并且也满足对移动终端的要求,比如减少尺寸和功耗,微蜂窝复盖范围变得越来越小了,导致基站数量的增加。结果,要求短距离的结构,用来连接许多基站和一个用于移动通信交换站的高速多链路通信网。
多媒体发展的结果,也需要这种短距离,高速多链路通信网连接到主站和子站。也就是说,它需要高速传输路径延伸到主站,为实现这一点,需要有短距离;高速多链路通信网。
传统上,在有线传输路径情况下,例如使用光缆作为通信网的多链路,由于占用道路和使用土地等许多限制,不大可能以较低的开消及时地完成网络的安装工作。由于这个原因,使用无线传输系统实现这样的链路。
下面将用一个移动通信的无线传输系统作为例子阐述这一点。在移动通信中,提供一个无线传输系统把多个移动通信的基站与一个集中器站(中心站)相连,这个集中器站把基站集中连接到移动通信交换站。这个无线传输系统分为相对型和多向型。在相对型的无线传输系统中,提供给集中站单独的天线或分布的无线设备,以便使其对应相应的基站。相应地,如果基站数量增加了,在天线的安装空间、安装的花费、频率分配、相互干扰等方面出现许多问题。另一方面,在多向型的无线传输系统中,用一个广角定向的天线或无方向(全方向)天线配置集中站,代替与单独的基站相对应的天线,并且用时分多路复用技术的方法,如TDMA实施通信。这样,既使基站数量增加了,多向型不会有与相对型有关的问题,即关于天线安装空间、频率分配和相互干扰的问题。但是,广角定向天线或无向型天线是很昂贵的,并且因为传播能量的散射,天线具有很低的天线增益,使得需要天线增加传输输出。增加传输的输出使天线设备的成本增加,并且发热。
在这些无线传输的类型系统中,集中器站直接与许多基站来回地发送和接收无线微波。在此期间,如果基站在相对末端终点基站经无线信道像链一样彼此串连,被连接到独立的集中器站,并且处于链中的基站设计成一个中继站,那么上述问题就可以解决。作为这样一个无线传输系统,传统中继系统参照图10,在这个系统中,大量的基站是彼此串联连接。
图10是表示传统中继类型的无线传输系统方框图。例如,集中器站101在6.3Mbps上发送一个多路信号到也作为串联中继站的基站102。例如,6.3Mbps多路信号有四个时隙。这个6.3Mbps传送四个1.5Mbps基带信号被发送到独立的四个基站。在基站102中,解调器102a解调6.3Mbps的多路信号,获得四个分离的1.5Mbps基带信号,并且仅输出终端设备102b预定的基带信号。剩下的三个1.5Mbps基带信号提供给调制器102c,当调制器103c留下1.5Mbps空闲时隙时,调制器102c产生一个6.3Mbps的生成一个6.3Mbps的多路信号,并且把信号传送给其后的基站103。
在基站103中,解调器103a解调6.3Mbps的多路信号,获得三个分离的1.5Mbps的基带信号,并且仅输出终端设备103b预定的基带信号。剩下的两个1.5Mbps的基带信号提供给一个调制器103c留下两个空闲时隙时,生成一个6.3Mbps的多路信号,并且把信号传送给一个其后的基站(未表示)。
用相似的方法,用各自预定的1.5Mbps的基带信号分别提供给四个基站。
但是,在图10所示的传统无线传输系统中,每个基站必须要具备处理一个6.3Mbps的多路信号的调制解调能力。特别是在远离集中器站101的基站的调制解调器的情况下,需要处理一个6.3Mbps的多路信号,但是这些多路信号实际上处理着空闲时隙,它除了不可服务的这些空闲时隙是不能使用的通信。也就是说,传统的系统出现的问题是每个基站必须配备比对中继信号所需能力还要高的调制解调器。另外,远离集中器站101的基站也占用对应6.3Mbps的频带,从频率的有效使用的角度出发是不希望这样的。还有一个问题也可能发生,如果在紧靠集中器站101的上流侧基站的调制解调器有故障发生时,那么就没有信号被传送到下流侧的基站。
本发明的目的是提供一种无线传输系统,该无线传输系统配备有能仅处理对其预定的基带信号的调制解调器,并且还能实施中继操作。
为了实现上述目的,提供一个具有一个主站和通过无线信道被连接到主站的许多串联子站的无线传输系统。该无线传输系统包括:在每个子站都提供的第一接收装置,它接收用扩频方法调制的许多调制波,并且在第一个传输方向上发送;在每个子站中提供的解调装置,它由第一个接收装置所接收到的调制波中用扩频方法解调出其预定的调制波;及在每个子站中提供的第一个发送装置,它把由第一个接收装置在第一传输方向上接收的调制波传送给邻近的子站之一。
以示例的方式说明本发明的最优实施例的附图时,从下列描述中,本发明的上述和其它目标、特征和优点都可以表现出来。
图的简单描述
图1是说明本发明第一实施例原理图;
图2表示的是第一实施例的全部配置的框图;
图3表示的是主站内部排列的框图;
图4表示的是子站内部排列的框图;
图5表示的是一个RF信号和基带信号图;
图6表示的是根据第二实施例的子站内部排列的框图;
图7表示的是根据第三实施例的子站内部排列的框图;
图8表示的是根据第四实施例的子站内部排列的框图;
图9表示的是根据第五实施例的子站内部排列的框图;
图10表示的是许多串联连接的基站的传统无线传输系统的配置框图。
最佳实施例的描述
参照图,将在下文描述根据本发明的实施例。
首先参照图1,下面说明依照本发明的第一实施例的一个无线传输系统的理论上配置。第一实施例包括(此时以子站2为例)在每个子站中提供第一接收装置2a,它接收许多由被扩频方法调制的调制波,并在第一传输方向上发送;在每个子站中提供的解调装置2b,它用扩频方法解调从第一接收装置2a接收的调制波中对其预定的调制波;并在每个子站中提供第一发送装置2c,它把在第一个传输方向上由第一接收装置2a接收的调制波传送给邻近的子站之一。
第一实施例还包括在每个子站中提供的第二接收装置2d,它接收许多用扩频方法调制的调制波,并且在与第一传输方向恰好对应的第二传输方向上发送。在每个子站中提供的调制装置2e,它用扩频方法调制发送的基带信号,并在每个子站中提供的第二传送装置外,它把由第二接收装置2d接收的调制波连同由调制装置2e获得的调制波,在第二传送方向上传送给邻近的子站之一或一个主站。
参照图2到图4,下面将根据第一实施例的配置更详细地描述。其后顺序参照图2到图4详细描述来解释在图2到图4表示的与在图1中表示相对应的元素。
图2表示的是第一实施例的全部配置的框图。在图2中,主站1相当于连接到用于移动通信的交换站(未显示)的集中器站(中心站),并且在毫米波段或亚毫米波段上,相对于子站20,在相对的短距离(如100米)执行信号的传送和接收,这些信号是用扩频(SS)技术调制的。
相当于移动通信基站的子站20,仅解调从主站10传来的调制信号中对其所预定的信号,并且通过无线把解调信号传送到在它的服务区域中出现的移动站21和22。同时,子站20不用再重新生成信号,就可以把从主站10的调制信号转送到子站30。而且,子站20调制从移动站21和22传来的基带信号,并且连同从子站30传来的调制信号通过无线传送到主站10。
同样,子站30也相当于一个移动通信基站,并且在毫米波段或亚毫米波段以一个相对短的距离(例如100米)执行对应于子站20的信号接收和传送。子站30仅解调从主站10和通过子站20转送所传送调制信号中对其所预定的信号,并且把解调信号通过无线传输到在它的服务范围内出现的移动站31和32。同时,子站30不用重新生成信号,把从主站10和通过子站20转送的调制信号转送到相对短距离(例如100米)的一个邻近子站(未表示)。而且,子站30调制从移动站31和32传来的基带信号,并且连同从邻近子站传来的调制信号一起通过无线传送给子站20。
其它的子站,可以在不超过系统允许数量范围内(如20),以一个链接的形式串联起来。被连接的子站在设备和操作上同子站20和子站30是相同的。
图3表示的是主站10内部配置框图。在图3中,接口部分(INTF)11用作对公用网和这个系统的接口,并把接口部分(INTF)连接到用于移动通信的交换站(在图3的左手侧)。接口部分11被连接到发送部分12和接收部分15。发送部分12调制从接口部分11和被连接到发送部分12和接收部分15。发送部分12调制从接口部分11和被指定的单个子站提供的基带信号,并通过作为传输波的天线形成设备13从天线14发送被调制的信号。接收设备15解调经天线14和形成设备13输入的接地波,并且把获得的基带信号提供给接口部分11。
在发送部分12中,调制部分(MOD)12a采用PN编码第一图型的扩频技术,调制一个1.5Mbps的基带信号,这个信号是接口部分11提供的并且被指定对第一子站,调制部分(MOD)12a还把产生RF信号提供给合成器(H)12b。同时,调制部分(MOD)12e采用PN编码第二图型的扩频技术,调制一个1.5Mbps的基带信号,这个信号是接口部分11提供并被指定对第二子站,调制部分(MOD)12e还把生成的RF信号提供给合成器12b。提供的调制部分的数量与安装的子站的数量相对应。安装的子站数可以在不超过最大值允许的限度内增加或减少,例如20。利用各子站唯一的图型,由一个最大长度代码数组(以数组)的代码生成器生成PN编码(未表示)。
在合成器12b中,合成由各调制部分输出的RF信号,并把被合成的信号通过一个高输出放大器12c和抑制无用波的带通滤波器12d提供给天线形成设备13。由合成器12b合成的RF信号如图5所示,在从调制部分12a提供的RF信号S1中沿着频率座标轴迭加在从调制部分12e提供的RF的信号S2上(用虚线指示“S1+S2”)。在图5中,B1和B2表示在调制部分12a和12e分别被调制之前的基带信号,并分别对应于RF信号S1和S2
在接收部分15中,通过一个频带限制的带通滤波器15d和一个低噪声放大器15c,把接收波提供给分配器(H)15b。分配器15b把接收波分配给解调部分(DEM)15a和15e。提供给解调部分的数量与安装的子站的数量相对应。利用PN编码的第一图型由扩频技术的方法向解调部分15a提供解调信号,并且把产生的基带信号提供给接口部分11,作为由第一个子站被传送的一个基带信号。同时,利用PN编码第二图型的扩频技术的方法向解调部分15e提供解调信号,并且把产生的基带信号提供给接口部分11,作为由第二子站被传送的基带信号。其它的解调部分,无论多少都执行相同的操作。仅要求每个解调部分,具有解调1.5Mbps的基带信号的能力。依据扩频技术采用不同PN编码的图型从独立子站被集中发送来的信号可以被分别再现。
图4是表示子站的内部配置的框图。所有子站具有相同的配置。
从天线41接收的扩频信号通过天线共享设备42的天线,带宽限制的带通滤波器43和低燥声放大器44,提供给分配器(H)45。由分配器45在一个方向上定向的接收信号,提供给解调部分(DEM)46。在解调部分(DEM)46中,这个信号需经过用这个子站所具备的PN编码方法的扩频解调,并且对这个站预定的基带信号被提取出来,提供给移动通信基站设备(MDS)47。移动通信基站设备47把提供给它的基带信号用无线从天线48发送到这个子站服务范围内的移动站。
分配器45在其它方向上接收预定的信号通过一个高输出放大器49和抑制无用波的带通滤波器50,供给天线共享设备51,并且从天线52发送出去。也就是说,在这个过程中由分配器45定向的接收信号,不用再生就可以转发。
由天线52接收的扩频信号通过无线共享设备51,带宽限定的带通滤波器53和一个低噪声放大器54提供给一个合成器(H)55。另一方面,由天线48接收在这个子站服务范围内从移动站发送来的信号,并移动通信基站设备47解调这个信号,以便获得一个基带信号。这个基带信号提供给调制部分(MOD)56,在这个调制部分中,这个基带信号由配置给这个子站的PN编码装置进行扩频调制,然后提供给合成器55。合成器55把调制部分56来的调制信号与从其它子站传送来的并且已经过扩频调制的接收信号合成起来。合成的信号通过高输出放大器57和抑制无用波的带通滤波器58提供给天线共享设备42,并从天线41发送出去。也就是说,从其它子站传来的信号不用再生就可以转发。
例如,假设以1.5Mbps的信息传输速率发送基带信号,并经过1.5GHz的扩频在50GHz频带上发送,这个处理增益(扩展增益)GP是从1.5GHz/1.5Mbps中获得,虽然这个值几乎是1.5Mbps的1000倍(30dB)。另一方面,例如,在子站20情况下,与上面提到的不用再生就可转发情况相同,在每个子站中提供产生13db(=10log20)S/N恶化的相同的噪声电平。但是,因为有30db的处理增益GP,确定在最末端上的子站有足够的S/N,最终的S/N是17db(=30db-13db)。
被安装的子站数量是20,并且邻近子站相距100米时,在主站和最末端子站之间的距离约为2km。这样,甚至在被连接到通常的高速有线传输路径时,这样区域的无线传输系统可以得到满意的功能。
同样分配给每个子站基带信号的信息传送速率为1.5Mbps,可以同时传送24个信道的64Kbps的电话信号。粗略计算,这相当于在直径100米的子站业务区域内的24个移动站可以同时通信,这样保证了它的实用性。
另外,因为调制和解调都用了扩频技术,在任意邻近站之间的传输路径仅占用对应为一个子站预定的一个基带信号的频带。因而,可以比在传统系统中更有效地利用频率。而且,当由每个子站转发信号时不用执行调制/解调,因此,即使上游侧子站的调制解调器发生故障,下游侧的子站也不会受影响。
在图1中的第一接收装置2a对应在图4中的天线41、天线共享设备43、带通滤波器43和低噪声放大器44,在图1中的解调装置2b对应图4中的解调部分46,在图1中的第一发送装置2c对应图4中的高输出放大器49、带通滤波器50、天线共享设备51和天线52,在图1中的第二接收装置2d对应天线52、天线共享设备51、带通滤波器53和低噪声放大器54,在图1中的调制装置2e对应图4中的调制部分56,在图1中的第二发送装置2f对应图4中的高输出的放大器57、带通滤波器58、天线共享设备42和天线51。
现在将描述第二实施例。第二实施例在配置上基本与第一实施例相似,只是在子站的配置有些不同。因此,在下面第二实施例的描述中,只说明了子站的配置,至于其它部分可以参照说明第一实施例配置的图2和3。
图6表示的是依照第二实施例的子站的内部配置框图。需要说明的是所有子站具有相同的配置。在图6中,与表在第一实施例子站的内部配置的图4具有相同的单元使用相同的参考号,并对于这些单元的描述也省略了。
在第二个实施例中,在IF的频带上执行调制/解调。尤其,从低噪声放大器44输出的RF信号输入到频率变换部分61。把来自本地振荡部分62的本地振荡信号提供频率变换部分61,并使RF信号频率变换获取一个IF信号。这个IF信号通过一个寄生抑制带通滤波器63和一个IF放大器64提供给一个分配器(H)65。IF信号通过分配器65,在由被规定子站的PN编码装置的解调部分(DEM)66一个方向上产生IF信号,被扩频解调。对这个站提取预定的基带信号提供给移动通信基站设备47。由分配器65在其它方向上规定的IF信号输入到频率变换部分67。频率变换部分67也用从本地振荡部分62供给的本地振荡信号,并且IF信号呈交给频率变换获得RF信号。这个RF信号经寄生抑制带通滤波器68提供给高输出放大器49。
如上所述,把IF信号提供给解调部分66,这样与第一实施例中的解调部分相比,解调部分66可以很容易用数字电路构成,在第一个实例中,它被设计成毫米波或亚毫米波带处理RF信号。相应地,解调部分66可以降低费用。因为使用量很大。需要低成本的子站,并且可以提供满足要求的系统。
用来自本地振荡部分62提供给频率变换部分61相同的本地振荡信号,提供给频率变换部分67,频率变换部分61执行RF信号到IF信号的频率变换,而频率变换部分67执行反向变换,即IF信号到RF信号的频率变换。这样,即使本地振荡信号的频率有波动,从频率变换部分67输出的RF信号的频率总是等于输入到频率变换部分61的RF信号的频率。
从低噪声放大器54输出的RF信号输入到频率变换部分69。频率变换部分69用从本地振荡部分75供给本地振荡信号,并把RF信号呈交给频率变换获得IF信号,这个IF信号通过寄生抑制带通滤波器70和IF放大器71提供给合成器(H)72。另一方面从移动通信基站设备47供给的基带信号呈交给调制部分(MOD)73,利用从规定给这个子站的PN编码进行扩频调制,并且,调制部分(MOD)73输出产生的IF频带的调制信号到合成器72。合成器72把来自IF放大器71的IF信号和来自调制73的IF信号合成,并把合成器72产生的信号提供给频率变换部分74。频率变换部分74用来自本地振荡部分75提供的本地振荡信号,并在这个IF信号上执行频率变换,获得RF信号。RF信号通过寄生抑制带通滤波器76提供给高输出的放大器57。
如上所见,调制部分73也携带输出IF波段的处理。相应地;与在第一个实施例中调制部分相比,这个调制部分73可很容易采用数字电路构成,它被设计成毫米波和亚毫米波带的调制,有可能提供低成本的设备。
用来自本地振荡部分75提供给频率变换部分69相同的本地振荡信号,提供给频率变换部分74,频率变换部分69执行RF信号到IF信号频率变换,而频率变换部分74执行反变换,即IF信号到RF信号的频率变换。这样,即使本地振荡信号的频率产生波动,从频率变换部分74输出的RF信号的频率总等于输入到频率变换部分69的RF信号的频率。
现在将描述第三个实施例。第三个实施例在配置上基本与第二个实施例相同,只是在子站的配置中有局部差别。因此,在下面对第三实施例的描述中,仅说明这个区别部分,对于其它部分,可以参照第二个实施例配置的描述。
图7表示的是依照第三个实施例的子站的内部配置框图。在图7中,按照第二个实施例在子站的内部配置中那些相对应的配置部分采用相同的参考号,并省略了这些单元的描述。
第三个实施例中,在IF频率上执行调制/解调,一个本地振荡部分77分别提供给接收侧和发送侧。而且,本地振荡部分77的振荡频率根据解调部分66的频率波动信息进行控制。特别是由本地振荡部分77产生相同的本地振荡信号提供给频率变换部分61、67、69和74。由于解调部分66基于接收信号再生载波,并且基于这个载波执行解调,它内在地检测在载波的频率中的波动。这个频率波动信息提供给本地振荡部分77,以便本地振荡部分77可以用频率波动信息稳定振荡频率。结果,本地振荡部分77可以从主站的载波来同相本地振荡信号,提供给频率变换部分61、67、69和74。但是,从每个子站输出的传输RF信号有很小的频率波动。
如上所述,在第三个实施例中,每个子站需要配置一个单独的本地振荡部分,这使它有可能提供低成本的子站。而且,由于每个子站有从主站发送信号同相传输能力,每个子站输出的传输RF信号的频率波动可以减少,并且在接收站解调RF信号也很方便。
在第三个实施例中,虽然根据解调部分66的频率波动信息,控制本地振荡部分77的振荡频率,但是本地振荡部分77可以由接收侧和发送侧简单地共享。
现在将描述第四个实施例。第四个实施例在配置上基本与第一个实施例相同,只是在子站的配置上有局部差别。因此,在下面对第四个实施例的描述中,仅说明这些差别,对其余部分可以参考第一个实施例的配置描述。
图8表示的是依照第四个实施例的子站的内部配置框图。在图8中与表示第一实施例的子站内部配置的图4出现相同的部分采用相同的参考号,并且省略了这些单元的描述。
第四个实施例中,由分配器在一个方向上产生的接收RF信号输入到频率变换部分81。把来自本地振荡部分82的本地振荡信号提供给频率变换部分81,并由频率变换把RF信号变换成IF信号。解调部分(DEM)83利用分配给这个子站的PN编码在这个IF信号上实施扩频解调。对这个站提取预定的基带信号提供给移动通信基站设备47。
另一方面,从移动通信基站设备47提供的基带信号呈交调制部分84,用分配给这个子站的PN编码的方式,进行扩频调制,并把它产生IF频带的调制信号提供给频率变换部分85。频率变换部分85从本地振荡部分82提供本地振荡信号,并通过频率变换部分85把IF信号变换到RF信号。RF信号提供给合成器(H)55。
由于基于接收信号再生载频,并基于再生载频实施解调,解调部分83内在地检测在载波的频率中的波动。这个频率波动信息提供给本地振荡部分82,以便本地振荡部分82使用这个信息稳定振荡频率。结果,本地振荡部分82能够以主站的载波同相的本地振荡信号提供给频率变换部分81和85。但是从每个子站输出的传输RF的信号具有很小的频率波动。
如上所述,与第三个实施例一样,在第四个实施例中的每个子站需要配有一个单独的本地振荡部分,这样就有可能提供低成本的子站。而且,因为由于每个子站有与从主站发送信号传输同相能力,所以从每个子站输出的传送RF信号的频率波动可以减小,并且简化了在接收站RF信号的解调。另外,与第三个实施例相比,频率变换部分数量可能减少一半。
在第四个实施例中,虽然根据解调部分83来的频率波动信息,控制本地振荡部分82的振荡频率,本地振荡部分82可以仅由接收分配给发送侧。
现在将描述第五个实施例。第五个实施例在配置上基本与第一个实施例相同,只是在子站的配置上有局部差别。因此,在下面第五个实施例的描述中,仅解释有差别的部分,对于其余的部分,可以参考第一个实施例配置的描述。
图9是表示依据第五个实施例的子站内部配置的框图。在图9中,依据第一个实施例在图4中表示子站内部配置相对应的那些部分,使用相同的参考号,并且省略了对于这些部分的描述。
在第五个实施例中,带通滤波器43和58分别被连接到接收和发送天线91和92,而不是共用一个天线。同时带通滤波器50和53分别连接到发送和接收天线93和94。相应地,省掉了在第一个实施例的子站中提供的天线共享设备。
通常,使用一个电路作为毫米或亚毫米波段的天线共享设备,但是,这个电路是很贵的,另一方面,天线的增益是与天线的口径面积成正比,而与发送或接收无线波长成反此;因为在毫米或亚毫米波段的情况下,甚至一个小尺寸的天线也可以获得很高的天线增益。相应地,即使尺寸很小的天线也可以分别用于发送和接收,而不是用一根天线进行发送和接收,天线的增益也不会出问题。而且,由于使用天线的尺寸很小,而在它的成本或安装空间的影响是很小的。另外,传能器的隔离有近25到30db,并在对发送和接收分别使用天线的情况下,在天线间的耦合度比这个值小。由于这些原因,第五个实施例分别使用发送和接收的小尺寸天线的配置,并省掉了天线共享设备。
最近,使用条型线的平面天线已经对卫星广播的接收器中实际使用这一技术可以用于第五个实施例,以便在一个单独的印制板上形成两个天线,在这种情况下,可以提供低成本的子站。另外,由于没有使用传能器,这个子站可以很容易由一个单块的微波IC(MMIC)构成,并在这种情况下,它的尺寸和成本可以进一步降低。
虽然在前面的描述中,本发明的实施例是应用于移动通信系统,这个发明可以应用连接家庭和中心站的高速多媒通信网。
如上所述,依据本发明,用扩频技术处理调制的信号;因此,解调和调制部分仅要求选择具有预定的基带信号或从那里发送的基带信号的能力。而子站可以不用同样地解调或调制就可以转发信号。
另外,由于使用了扩频方法,被占用的发送路径仅是对应一个子站预定的基带信号的频带,这样,允许频率的有效使用。
当信号被转发时,信号是不用被解调或调制,因此,即使上游侧基站的调制解调器出现故障,下游侧的基站不会受影响。
前面仅是本发明原理的说明。另外,由于在技术上这些技巧将很容易地产生许多修改和改变,所以表示和描述的确切构造和应用并不是对本发明的限制,相应地,在附加权利要求及其等效物中,所有适当的修改和等效物可以认为在本发明的范围内。

Claims (14)

1.一种无线传输系统,它具有一个主站和经无线信道连接到主站的许多串联的子站,它包括:
在每个子站中提供的第一接收装置,用于接收用扩频方式调制并在第一传输方向上发送的许多调制波;
在每个子站中提供的解调装置,用于从上述由第一接收装置接收的许多调制波中,用扩频的方式解调对其预定的调制波;
每个子站中提供的第一发送装置,用于把在第一发送方向上,上述第一接收装置所接收的那些调制波发送给邻近的子站之一。
2.依据权利要求1的无线传输系统,还包括在每个子站中提供的分配装置,用于把上述由第一接收装置接收的那些调制波直接给上述解调装置和上述第一发送装置。
3.依照权利要求1的无线传输系统还包括:
在每个子站中提供的第二接收装置,用于接收用扩频方式调制的、并在与第一个传输方向上恰好相反的第二发送方向上发送来的许多调制波;
在每个子站中提供的调制装置,用于用扩频的方式调制其发送的基带信号;
在每个子站中提供的第二发送装置,用于与上述由第二接收装置所接收的许多调制波一起,把在第二传输方向上由调制装置获得的调制波发送到邻近的子站之一或主站。
4.依据权利要求3的无线传输系统,其中,上述第二传输装置包括合成装置,用于把许多由上述第二接收装置接收到的调制波与由上述调制装置获得的调制波合成起来。
5.依据权利要求3的无线传输系统,还包括:
在每个子站中提供的第一天线,它由上述第一接收装置和上述第二发送装置共享,
在每个子站中提供的第二天线,它由上述第二接收装置和上述第一发送装置共享;
6.依据权利要求3的无线传输系统,还包括:
在每个子站中提供的第一本地振荡装置,用于产生一个本地的振荡信号;
在每个子站中提供的第一变换装置,利用从第一本地振荡装置的振荡信号,它执行由上述第一接收装置接收的许多调制波,从无线频率到中频的变换;
在每个子站中提供的分路装置,用于把大量从上述第一变换装置的调制波在两个方向上输出,并把一个方向上的调制波供给上述解调装置;
每个子站中提供的第二变换装置,它利用从上述第一本地振荡装置的振荡信号,执行由上述分路装置所指定的另一方向的调制波的中频到无线频率的变换,并把变换波提供给上述第一发送装置;
在每个子站中提供的第二本地振荡装置,用于产生一个本地振荡信号;
在每个子站中提供的第三变换装置,它用来自上述第二本地振荡装置的本地振荡信号,执行由上述第二接收装置所接收的上述许多的调制波,从无线频率到中频的变换;
在每个子站中提供的合成装置,用于把从上述第二变换装置输出的许多调制波与从上述调制装置输出的调制波合成起来;
在每个子站中提供的第四变换装置,它利用来自上述第二本地振荡装置的本地振荡信号,执行由上述合成装置合成的调制波的中频到无线频率的变换,并将变换波供给上述第二发送装置。
7.依据权利要求3的无线传输系统,还包括:
在每个子站中提供的本地振荡装置,用于产生一个本地振荡信号;
在每个子站中提供的第一变换装置,它利用来自本地振荡装置的本地振荡信号,执行由上述第一接收装置接收的上述许多调制波的无线频率到中频的变换;
在每个子站中提供的分路装置,它把从上述第一变换装置输出的许多调制波指定在两方向(two courses)上输出,并且把一个方向上的调制波提供给上述解调装置;
在每个子站中提供的第二变换装置,它利用来自上述本地振荡装置的本地振荡信号,由上述分路装置指定在另一方向的调制波执行从中频到无线频率的变换,并把变换波提供给上述第一发送装置;
在每个子站中提供的第三变换装置,它利用来自上述本地振荡装置的本地振荡信号,执行由上述第二接收装置接收的许多调制波的无线频率到中频的变换;
在每个子站中提供的合成装置,它把由上述第二变换装置输出的许多调制波与从上述调制装置输出的调制波合成起来;
在每个子站中提供的第四变换装置,它用来自上述本地振荡装置的本地振荡信号,执行由上述合成装置合成的调制波从中频到无线频率的变换,并把变换波提供给上述第二发送装置。
8.依据权利要求7的无线传输系统,其中,上述本地振荡装置具有一个根据上述解调装置检测的频率偏差信号而控制的本地振荡频率。
9.依据权利要求3的无线传输系统,还包括:
在每个子站中提供的本地振荡装置,用于产生本地振荡信号;
在每个子站中提供的分路装置,用于把由上述第一接收装置接收的许多调制波指定在两个方向上,并把一个方向上的调制波提供给上述第一发送装置;
在每个子站中提供的第一变换装置,它利用来自上述本地振荡装置的本地振荡信号,由上述分路装置指定的另一方向的调制波执行从无线频率到中频的变换,并把变换波提供给上述解调装置;
在每个子站中提供的第二变换装置,它利用来自上述本地振荡装置的本地振荡信号,从上述调制装置输出的调制波执行从中频到无线频率的变换;
在每个子站中提供的合成装置,它把从上述第二变换装置输出的调制波与由上述第二接收装置所接收的许多调制波合成起来,并把合成波提供给上述第二发送装置。
10.依据权利要求9的无线传输系统,其中,上述本地振荡装置具有根据上述解调装置检测的频率偏差信号而控制的本地振荡频率。
11.依据权利要求3的无线传输系统,还包括:
在每个子站中提供的第一天线,供上述第一接收装置使用;
在每个子站中提供的第二天线,供上述第一发送装置使用;
在每个子站中提供的第三天线,供上述第二接收装置使用;
在每个子站中提供的第四天线,供上述第二发送装置使用。
12.依据权利要求1的无线传输系统,还包括:
在主站中提供的许多主站调制装置,用于用扩频的方式调制对预定子站的基带信号;
在主站中提供的主站发送装置,用于在第一传输方向上,发送从上述许多主站调制装置获得的许多调制波;
在主站中提供的主站接收装置,用于接收用扩频方法调制的、并在与第一传输方向上正好相反的第二传输方向上发送来的许多调制波;
在主站中提供的许多主站解调装置,用于用扩频的方式解调由上述主站接收装置所接收的许多调制波,并且提取从各子站发送的基带信号。
13.依据权利要求12的无线传输系统,还包括在主站中提供的主站天线,并由上述主站发送装置和上述主站接收装置共享。
14.根据权利要求1的无线传输系统,其中,每个子站都是移动通信的基站。
CN96122471A 1996-04-18 1996-10-15 无线传输系统 Expired - Fee Related CN1084983C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP096336/96 1996-04-18
JP9633696A JP3657343B2 (ja) 1996-04-18 1996-04-18 無線伝送システム

Publications (2)

Publication Number Publication Date
CN1162881A true CN1162881A (zh) 1997-10-22
CN1084983C CN1084983C (zh) 2002-05-15

Family

ID=14162181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96122471A Expired - Fee Related CN1084983C (zh) 1996-04-18 1996-10-15 无线传输系统

Country Status (4)

Country Link
US (1) US5903592A (zh)
JP (1) JP3657343B2 (zh)
CN (1) CN1084983C (zh)
GB (1) GB2312355B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1523124A3 (en) * 1997-07-09 2007-04-25 Matsushita Electric Industrial Co., Ltd. Transmission of data between a central device and a plurality of remote devices
US8050345B1 (en) * 1999-08-09 2011-11-01 Kamilo Feher QAM and GMSK systems
US7548787B2 (en) 2005-08-03 2009-06-16 Kamilo Feher Medical diagnostic and communication system
US6246884B1 (en) * 1998-08-19 2001-06-12 Sigmaone Communications Corporation System and method for measuring and locating a mobile station signal in a wireless communication system
US9373251B2 (en) 1999-08-09 2016-06-21 Kamilo Feher Base station devices and automobile wireless communication systems
US9307407B1 (en) 1999-08-09 2016-04-05 Kamilo Feher DNA and fingerprint authentication of mobile devices
US9813270B2 (en) 1999-08-09 2017-11-07 Kamilo Feher Heart rate sensor and medical diagnostics wireless devices
US7260369B2 (en) 2005-08-03 2007-08-21 Kamilo Feher Location finder, tracker, communication and remote control system
US6904266B1 (en) * 2002-02-19 2005-06-07 Navini Networks, Inc. Wireless enhancer using a switch matrix
US7421004B2 (en) * 2004-10-05 2008-09-02 Kamilo Feher Broadband, ultra wideband and ultra narrowband reconfigurable interoperable systems
US7359449B2 (en) 2004-10-05 2008-04-15 Kamilo Feher Data communication for wired and wireless communication
US10009956B1 (en) 2017-09-02 2018-06-26 Kamilo Feher OFDM, 3G and 4G cellular multimode systems and wireless mobile networks
US7280810B2 (en) * 2005-08-03 2007-10-09 Kamilo Feher Multimode communication system
EP2075929A4 (en) * 2006-10-18 2014-01-15 Fujitsu Ltd WIRELESS BASE STATION, RELAY STATION, WIRELESS RELAY SYSTEM, AND WIRELESS RELAY METHOD

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182928A (ja) * 1982-04-20 1983-10-26 Nec Corp 無線中継方式
JPS60107936A (ja) * 1983-11-16 1985-06-13 Fujitsu Ltd デイジタル無線中継装置
JP2635579B2 (ja) * 1987-03-26 1997-07-30 東京電力株式会社 情報通信システム
JP2635581B2 (ja) * 1987-03-26 1997-07-30 東京電力株式会社 情報通信ネツトワーク
JP2635580B2 (ja) * 1987-03-26 1997-07-30 東京電力株式会社 情報通信システム
AU672054B2 (en) * 1992-12-30 1996-09-19 Radio Communication Systems Ltd. Bothway RF repeater for personal communications systems
JPH06334598A (ja) * 1993-05-24 1994-12-02 Nippon Telegr & Teleph Corp <Ntt> スペクトル拡散通信方式
FI103442B (fi) * 1993-09-24 1999-06-30 Nokia Telecommunications Oy Digitaalinen radiolinkkijärjestelmä ja radiolinkkilaite
US5708684A (en) * 1994-11-07 1998-01-13 Fujitsu Limited Radio equipment

Also Published As

Publication number Publication date
JP3657343B2 (ja) 2005-06-08
JPH09284254A (ja) 1997-10-31
GB9621162D0 (en) 1996-11-27
GB2312355A (en) 1997-10-22
CN1084983C (zh) 2002-05-15
US5903592A (en) 1999-05-11
GB2312355B (en) 2000-03-22

Similar Documents

Publication Publication Date Title
CN1084983C (zh) 无线传输系统
US6973304B2 (en) Multimode service radio communication method and apparatus
CN1185882C (zh) 无线基站系统、中央控制站及其信号处理方法
CA2321207C (en) Improved centrally located equipment for wireless telephone system
CN100391116C (zh) 在通信系统中发送信号的方法和设备
CN1364343A (zh) 多频段多模式无线接收机和相关的共用电路部件的方法
CN1816181A (zh) 基站设备实现射频拉远的中频传输方法及中频接口
CN108141235A (zh) 带有多个天线和至少一个中央通信装置的机动车辆
CN100407596C (zh) 可构成多种移动通信设备的装置及其构成的移动通信设备
CN100544235C (zh) 无线通信系统
CN105340197B (zh) 中继器系统和方法
CN100399723C (zh) 混合多点卫星广播系统中有效利用频率的系统和方法
JPH05136724A (ja) 移動体無線通信システム
CN1262002A (zh) 卫星广播系统以及广播卫星
CN1345128A (zh) 无线电系统、天线设备、和用于产生极化变化的发射信号的极化调制器
US6301465B1 (en) Adaptive transceiver architecture for real time allocation of communications resources in a satellite based telecommunication system
CN1276594C (zh) 增加卫星通信系统中馈线链路容量的系统与方法
CN100499413C (zh) 应用在车辆导航信息发布系统中的调频数据广播系统
US7164707B2 (en) Cellular radio communication system cellular radio communication method and rake reception method
RU2054804C1 (ru) Спутниковая система связи
JPH10507882A (ja) デジタルセルラ移動通信網のための基地局システム
CN1158804C (zh) 嵌入式数字波束交换
JPS6315775B2 (zh)
JPH0463577B2 (zh)
CN1630213A (zh) 数字通信系统和方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020515

Termination date: 20131015