CN1167105C - 与硅具有稳定结晶界面的半导体结构的制造方法 - Google Patents

与硅具有稳定结晶界面的半导体结构的制造方法 Download PDF

Info

Publication number
CN1167105C
CN1167105C CNB001366033A CN00136603A CN1167105C CN 1167105 C CN1167105 C CN 1167105C CN B001366033 A CNB001366033 A CN B001366033A CN 00136603 A CN00136603 A CN 00136603A CN 1167105 C CN1167105 C CN 1167105C
Authority
CN
China
Prior art keywords
interface
semiconductor structure
silicon
forms
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB001366033A
Other languages
English (en)
Other versions
CN1301038A (zh
Inventor
־
俞志毅
���˹��ء���³��
王军
��������ķ������
拉文德拉纳特·德鲁帕德
加迈尔·拉姆达尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN1301038A publication Critical patent/CN1301038A/zh
Application granted granted Critical
Publication of CN1167105C publication Critical patent/CN1167105C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers

Abstract

一种半导体结构的制造方法,包括以下工序:提供具有表面(12)的硅衬底(10);在硅衬底表面上形成界面(14),该界面的特征在于硅、氮和金属的单原子层;和在界面上形成一层或多层单晶氧化物(26)。该界面包括硅、氮和MSiN2形式的金属的原子层,M是金属。在第二实施例中,该界面包括硅、金属以及BaSi[N1-xOx]2形式的氮和氧的混合物,其中M是金属,X是0≤X<1。

Description

与硅具有稳定结晶界面 的半导体结构的制造方法
技术领域
本发明一般而言涉及在硅衬底与氧化物或氮化物之间有结晶碱土金属硅氮基界面的半导体结构的制造方法,特别是涉及包括碱土金属、硅和氮原子层的界面的制造方法。
背景技术
对于在多种器件应用的硅上后续外延生长单晶薄膜,例如对于非易失性高密度存储器和逻辑器件的铁电或高介电常数氧化物,大多需要有序且稳定的硅(Si)表面。特别是对于单晶氧化物例如钙钛矿的后续生长,在Si表面上建立有序过渡层是关键的。
关于在Si(100)上生长这些氧化物例如BaO和BaTiO3的某些报道是基于BaSi2(立方晶)模型,这是采用在大于850℃的温度反应外延,在Si(100)上淀积四分之一单层Ba。例如可见R.McKee等在Appl.Phys.Lett.59(7),pp 782-784(1991.8.12);R.McKee等在Appl.Phys.Lett.63(20),pp 2818-2820(1993.11.15);R.McKee等在Mat.Res.Soc.Symp.Proc.,Vol.21,pp.131-135(1991);R.A.McKee,F.J.Walker和M.F.Chisholm,“硅上的结晶氧化物:五分之一单层”,Phys.Rev.Lett.81(14),3014-7(1998.10.5);1993.7.6授予的美国专利5225031,名称是“在硅衬底上外延淀积氧化物的工艺和采用这种工艺制备的结构”;1996.1.9授予的美国专利5482003,名称是“在衬底上淀积外延碱土金属氧化物的工艺和采用这种工艺制备的结构”。但是,这种结构的原子级别模拟表明温度升高时其不易稳定。
已经完成采用SrO缓冲层在硅(100)上生长SrTiO3。参见T.Tambo等在Jpn.J.Appl.Phys.,Vol.37(1998),pp.4454-4459。但是,SrO缓冲层较厚(100埃),因而限制了晶体管薄膜的应用,在整个生长过程不能保持结晶性。
而且,已经采用Sr或Ti的厚金属氧化物缓冲层(60-120埃)在硅上生长SrTiO3。参见B.K.Moon等在Jpn.J.Appl.Phys.,Vol.33(1994),pp.1472-1477。这些厚缓冲层会限制晶体管的应用。
发明内容
因此,本发明的目的是提供与硅之间具备薄的、稳定结晶界面的制造方法。
本发明提供了一种半导体结构的制造方法,其特征在于包括以下工序:提供具有表面的硅衬底;在硅衬底表面上形成界面,所述界面包括(a)金属、(b)硅以及(c)氮或氮和氧的混合物的单原子层;和在界面上形成一层或多层单晶氧化物或氮化物。
本发明的新型界面性质更加稳定,在工艺过程中原子更易于保持其结晶性。
附图说明
图1-2是其上形成有根据本发明界面的洁净半导体衬底的剖面图。
图3-6是具有根据本发明由氮化硅形成的界面的半导体衬底的剖面图。
图7-8是根据本发明在图1-6所示结构上形成的碱土金属氮化物层的剖面图。
图9-12是根据本发明在图1-8的结构上形成的钙钛矿的剖面图。
图13是根据本发明的图12各层的一个实施例的原子结构的侧视图。
图14是沿图13的界面的视线AA的顶视图。
图15是包括衬底界面和邻近原子层的沿图13视线AA的顶视图。
具体实施方式
为了在硅(Si)衬底与一层或多层单晶氧化物或氮化物之间形成新型界面,可以采用各种方法。对于以下两种情况将提供几个例子,即初始Si衬底具有洁净表面,和初始Si衬底表面上具有氮化硅(Si3N4等)。Si3N4是非晶的而不是单晶,为了在衬底上另外生长单晶材料,设置单晶氮化物作为界面是必需的。
现在参见附图,其中对相同元件通篇采用相同的数字标记表示,图1和2是具有洁净表面12的Si衬底10的半导体结构。采用任何传统的清洁工艺可以获得洁净(2×1)表面12,例如通过在大于或等于850℃的温度热淀积SiO2,或者通过在大于或等于300℃的温度,在超高真空中从氢终端的Si(1×1)表面去除氢。氢终端是一个公知工艺,其中氢在表面12与硅原子的悬挂键松散地键合,构成结晶结构。在N2分压小于或等于1×10-6mBar的生长室内,在小于或等于900℃的温度,通过向表面12同时或依次提供可控量的金属、Si和活性氮,可以形成结晶材料的界面14。施加于表面12形成界面14的金属可以是任何金属,但是在优选实施例中包括碱土金属,例如钡(Ba)或锶(Sr)。
在使用Ba、Si和活性氮形成BaSiN2作为界面14时,采用反射高能量电子衍射(RHEED)技术监测生长,这种技术在已有技术中有许多资料并且能够在原地使用,即在进行曝光的同时在生长室内进行。RHEED技术用于检测或检出表面结晶结构,在本工艺中由于形成BaSiN2原子层而快速改变为强烈尖锐的条纹。当然应该知道一旦提供特定的制造工艺,随之也可以不必对每一衬底实施RHEED技术。
以下将说明界面14的新型原子结构。
本领域技术人员应该知道,在所说明的具体实施例中,对于这些工艺推荐给定的温度和压力,但是本发明并不限于这些特定温度和压力范围。
另外,形成界面14时,氧可以与金属、硅和氮一起提供,形成混合物。氮与氧的比例实质上可以变化,但是最好在大约80%。
参见图3-6,另一种方法包括形成具有表面12的Si衬底10,并在其上形成氮化硅层16。可以采用公知可控方式有目的地形成氮化硅层16,例如在表面12上施加(箭头)活性氮。也可以在超高真空中采用硅和活性氮在Si衬底上形成氮化硅层。例如可见1999.5.25授予R.Droopad等的美国专利5907792,名称是“形成氮化硅层的方法”。至少在如下建议的两个实施例之一形成新型界面14:通过在超高真空中在700-900℃对氮化硅层16表面18施加碱土金属。更具体地,Si衬底10和非晶氮化硅层16加热到氮化硅层16的升华温度以下的温度。这种加热可以在分子束外延室中完成,或者在制备室中至少部分加热Si衬底10,之后输送到生长室完成加热。一旦Si衬底被适当加热,而且生长室压力适当地降低,则将其上具有氮化硅层16的Si衬底10的表面12暴露在金属束、最好是碱土金属束下,如图5所示。在优选实施例中,该束是由电阻加热喷射室产生的或者来自电子束蒸发源的Ba或Sr。在特定实施例中,Si衬底10和氮化硅层16暴露在Ba束中。Ba与氮化硅结合,把氮化硅层16转变成为特征在于结晶形式的BaSiN2的界面14。另外,可以在超高真空在较低温度对表面18提供碱土金属,随后在700-1000℃进行退火。在另一实施例中,可以与氮一起提供氧,形成界面14,结果是结晶形式的BaSi[N1-xOx]2
一旦形成了界面14,可以在界面14表面上形成一层或多层的单晶氧化物、氮化物或者他们的结合。但是,可选择地在界面14与单晶氧化物之间设置碱土金属氧化物层,例如BaO或SrO。这种碱土金属氧化物提供低的介电常数(对一定的用途例如存储单元是有利的),还可以防止氧从单晶氧化物迁移到Si衬底10。
参见图7和8,通过在小于或等于700℃的温度,在小于或等于1×10-5mBar的N2分压下,同时或交替地向界面14提供碱土金属和活性氮,由此形成碱土金属氮化物层22。这种碱土金属氮化硅层22的厚度例如可以是50-500埃。
参见图9-12,通过在小于或等于700℃的温度,在小于或等于1×10-5mBar的氧分压下,同时或交替地提供碱土金属氧化物、氧和过渡金属例如钛,可以在界面14的表面20或碱土金属氮化物层22的表面24上形成单晶氧化物层26,例如碱土金属钙钛矿。这种单晶氧化物层26的厚度例如可以是50-1000埃,并且将与底下的界面14或碱土金属氧化物层22基本晶格匹配。应该知道,在其他实施例中,单晶氧化物层26可以包括一层或多层。
参见图13,展示了Si衬底、界面14和碱土金属金属氧层26的原子构成的侧视图(在< 110>方向看)。为了便于观察,在相对尺寸上从大到小,所示构成包含锶原子30、硅原子32、氮原子34和钛原子36。Si衬底10仅包含硅原子32。界面14包含金属原子(在优选实施例中是锶原子30)、硅原子2和氮原子34。碱土金属氮化物层26包含锶原子30、氮(或者氮与氧的结合)原子34和钛原子36。
参见图14,是沿图13的视线AA的界面顶视图,展示了锶、硅和氮原子30、32、34的配置。
参见图15,是沿图13的视线AA的顶视图,展示了Si衬底10的界面14和顶原子层11。
对于此详述,单层等于6.8×1014个原子/cm2,原子层是一个原子厚。可见图中所示界面14包括单原子层,但是会比一个原子层更多,而Si衬底10和碱土金属金属氮化物层可能是许多原子层。注意图13,展示了仅有四个原子层的Si衬底10和仅有两个原子层的碱土金属金属氮化物层26。界面14包含一半的碱土金属单层和一半的硅单层、以及氮单层。在Si衬底10中每个锶原子30与四个硅原子32基本等距相隔。界面14中的硅原子32基本位于一行,并且在碱土金属原子之间在<110>方向基本等距相隔。在Si衬底10的原子顶层中的每个硅原子32与界面14中的氮原子34键合,界面14中的每个硅原子32与界面14中的两个氮原子34键合。界面14的氮原子在此界面结构中满足三点键合配位,这就极大地降低了界面层14的总能量,于是提高了其稳定性。界面14包括在Si衬底10表面上按2×1构型的、在<110>方向的1x和在<110>方向的2x的锶、硅和氮原子30、32、34的行。
以上说明了具有硅10的结晶薄界面14的制造方法。界面14可以包括单原子层。通过使界面14较薄而实现了较好的晶体管应用,没有牺牲覆盖氧化物层与Si衬底10的电耦合,界面14更加稳定,因为在处理过程中原子更易于保持其结晶性。这种碱土金属-Si-氮基界面也可以用做对氧和其他元素的扩散阻挡层。

Claims (12)

1.一种半导体结构的制造方法,其特征在于包括以下工序:
提供具有表面(12)的硅衬底(10);
在硅衬底表面上形成界面(14),所述界面包括(a)金属、(b)硅以及(c)氮或氮和氧的混合物的单原子层;和
在界面上形成一层或多层单晶氧化物或氮化物。
2.根据权利要求1的半导体结构的制造方法,其中,形成界面的工序包括形成2×1的重构。
3.根据权利要求1的半导体结构的制造方法,其中,形成界面的工序包括形成具有2×1重构的表面。
4.根据权利要求1的半导体结构的制造方法,其中,形成界面的工序包括在超高真空系统中形成界面。
5.根据权利要求1的半导体结构的制造方法,其中,形成界面的工序包括在化学汽相淀积系统中形成界面。
6.根据权利要求1的半导体结构的制造方法,其中,形成界面的工序包括在物理汽相淀积系统中形成界面。
7.根据权利要求1的半导体结构的制造方法,其中,所述金属包括碱土金属。
8.根据权利要求1的半导体结构的制造方法,其中,形成界面的工序包括以下工序:
形成一半的碱土金属单层;
形成一半的硅单层;和
形成氮单层。
9.根据权利要求1的半导体结构的制造方法,其中,形成界面的工序包括形成一层或多层的氧和氮的混合物单层。
10.根据权利要求1的半导体结构的制造方法,其中,单晶材料包括碱土金属。
11.根据权利要求1的半导体结构的制造方法,其中,单晶材料包括钙钛矿。
12.根据权利要求7的半导体结构的制造方法,其中,所述碱土金属选自钡和锶构成的组。
CNB001366033A 1999-12-17 2000-12-15 与硅具有稳定结晶界面的半导体结构的制造方法 Expired - Fee Related CN1167105C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/465,622 US6291319B1 (en) 1999-12-17 1999-12-17 Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
US09/465,622 1999-12-17

Publications (2)

Publication Number Publication Date
CN1301038A CN1301038A (zh) 2001-06-27
CN1167105C true CN1167105C (zh) 2004-09-15

Family

ID=23848500

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001366033A Expired - Fee Related CN1167105C (zh) 1999-12-17 2000-12-15 与硅具有稳定结晶界面的半导体结构的制造方法

Country Status (8)

Country Link
US (1) US6291319B1 (zh)
EP (1) EP1108805B1 (zh)
JP (1) JP2001223211A (zh)
KR (1) KR100676213B1 (zh)
CN (1) CN1167105C (zh)
DE (1) DE60011022T2 (zh)
SG (1) SG89364A1 (zh)
TW (1) TW464951B (zh)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479173B1 (en) * 1999-12-17 2002-11-12 Motorola, Inc. Semiconductor structure having a crystalline alkaline earth metal silicon nitride/oxide interface with silicon
US6693033B2 (en) 2000-02-10 2004-02-17 Motorola, Inc. Method of removing an amorphous oxide from a monocrystalline surface
US6501973B1 (en) 2000-06-30 2002-12-31 Motorola, Inc. Apparatus and method for measuring selected physical condition of an animate subject
EP1301941A2 (en) * 2000-07-20 2003-04-16 North Carolina State University High dielectric constant metal silicates formed by controlled metal-surface reactions
US6590236B1 (en) 2000-07-24 2003-07-08 Motorola, Inc. Semiconductor structure for use with high-frequency signals
US6555946B1 (en) 2000-07-24 2003-04-29 Motorola, Inc. Acoustic wave device and process for forming the same
WO2002013245A1 (en) * 2000-08-04 2002-02-14 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US6493497B1 (en) 2000-09-26 2002-12-10 Motorola, Inc. Electro-optic structure and process for fabricating same
US6638838B1 (en) 2000-10-02 2003-10-28 Motorola, Inc. Semiconductor structure including a partially annealed layer and method of forming the same
US6501121B1 (en) 2000-11-15 2002-12-31 Motorola, Inc. Semiconductor structure
US6559471B2 (en) 2000-12-08 2003-05-06 Motorola, Inc. Quantum well infrared photodetector and method for fabricating same
US6649287B2 (en) * 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
US6673646B2 (en) 2001-02-28 2004-01-06 Motorola, Inc. Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
WO2003001605A1 (fr) * 2001-06-21 2003-01-03 Matsushita Electric Industrial Co., Ltd. Dispositif de semi-conducteurs et procede de fabrication associe
US6709989B2 (en) * 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US6642131B2 (en) 2001-06-21 2003-11-04 Matsushita Electric Industrial Co., Ltd. Method of forming a silicon-containing metal-oxide gate dielectric by depositing a high dielectric constant film on a silicon substrate and diffusing silicon from the substrate into the high dielectric constant film
JP3773448B2 (ja) * 2001-06-21 2006-05-10 松下電器産業株式会社 半導体装置
US6531740B2 (en) 2001-07-17 2003-03-11 Motorola, Inc. Integrated impedance matching and stability network
US6646293B2 (en) 2001-07-18 2003-11-11 Motorola, Inc. Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
US6498358B1 (en) 2001-07-20 2002-12-24 Motorola, Inc. Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating
US6693298B2 (en) 2001-07-20 2004-02-17 Motorola, Inc. Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
US6667196B2 (en) 2001-07-25 2003-12-23 Motorola, Inc. Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
US6589856B2 (en) 2001-08-06 2003-07-08 Motorola, Inc. Method and apparatus for controlling anti-phase domains in semiconductor structures and devices
US6639249B2 (en) 2001-08-06 2003-10-28 Motorola, Inc. Structure and method for fabrication for a solid-state lighting device
US6673667B2 (en) 2001-08-15 2004-01-06 Motorola, Inc. Method for manufacturing a substantially integral monolithic apparatus including a plurality of semiconductor materials
US6916717B2 (en) * 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US7540920B2 (en) 2002-10-18 2009-06-02 Applied Materials, Inc. Silicon-containing layer deposition with silicon compounds
JP4065516B2 (ja) * 2002-10-21 2008-03-26 キヤノン株式会社 情報処理装置及び情報処理方法
SG169232A1 (en) * 2003-03-14 2011-03-30 Agency Science Tech & Res Substrate for growing a iii-v nitride epilayer and method for selecting the same
WO2005060007A1 (en) * 2003-08-05 2005-06-30 Nitronex Corporation Gallium nitride material transistors and methods associated with the same
US7132338B2 (en) * 2003-10-10 2006-11-07 Applied Materials, Inc. Methods to fabricate MOSFET devices using selective deposition process
US8501594B2 (en) * 2003-10-10 2013-08-06 Applied Materials, Inc. Methods for forming silicon germanium layers
US7166528B2 (en) 2003-10-10 2007-01-23 Applied Materials, Inc. Methods of selective deposition of heavily doped epitaxial SiGe
US20050145851A1 (en) * 2003-12-17 2005-07-07 Nitronex Corporation Gallium nitride material structures including isolation regions and methods
US7071498B2 (en) * 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
US7078302B2 (en) * 2004-02-23 2006-07-18 Applied Materials, Inc. Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal
US7361946B2 (en) * 2004-06-28 2008-04-22 Nitronex Corporation Semiconductor device-based sensors
US7339205B2 (en) * 2004-06-28 2008-03-04 Nitronex Corporation Gallium nitride materials and methods associated with the same
US7687827B2 (en) * 2004-07-07 2010-03-30 Nitronex Corporation III-nitride materials including low dislocation densities and methods associated with the same
JP2008519441A (ja) * 2004-10-28 2008-06-05 ニトロネックス コーポレイション 窒化ガリウム材料を用いるモノリシックマイクロ波集積回路
US7682940B2 (en) 2004-12-01 2010-03-23 Applied Materials, Inc. Use of Cl2 and/or HCl during silicon epitaxial film formation
US7312128B2 (en) * 2004-12-01 2007-12-25 Applied Materials, Inc. Selective epitaxy process with alternating gas supply
US7560352B2 (en) * 2004-12-01 2009-07-14 Applied Materials, Inc. Selective deposition
US7247889B2 (en) 2004-12-03 2007-07-24 Nitronex Corporation III-nitride material structures including silicon substrates
US7355235B2 (en) * 2004-12-22 2008-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method for high-k gate dielectrics
US7235492B2 (en) 2005-01-31 2007-06-26 Applied Materials, Inc. Low temperature etchant for treatment of silicon-containing surfaces
US7365374B2 (en) * 2005-05-03 2008-04-29 Nitronex Corporation Gallium nitride material structures including substrates and methods associated with the same
US7648927B2 (en) 2005-06-21 2010-01-19 Applied Materials, Inc. Method for forming silicon-containing materials during a photoexcitation deposition process
US7651955B2 (en) 2005-06-21 2010-01-26 Applied Materials, Inc. Method for forming silicon-containing materials during a photoexcitation deposition process
US20070066023A1 (en) * 2005-09-20 2007-03-22 Randhir Thakur Method to form a device on a soi substrate
WO2007041710A2 (en) * 2005-10-04 2007-04-12 Nitronex Corporation Gallium nitride material transistors and methods for wideband applications
US7566913B2 (en) 2005-12-02 2009-07-28 Nitronex Corporation Gallium nitride material devices including conductive regions and methods associated with the same
EP1969635B1 (en) 2005-12-02 2017-07-19 Infineon Technologies Americas Corp. Gallium nitride material devices and associated methods
US7674337B2 (en) 2006-04-07 2010-03-09 Applied Materials, Inc. Gas manifolds for use during epitaxial film formation
DE112007001814T5 (de) 2006-07-31 2009-06-04 Applied Materials, Inc., Santa Clara Verfahren zum Bilden kohlenstoffhaltiger Siliziumepitaxieschichten
US7588980B2 (en) 2006-07-31 2009-09-15 Applied Materials, Inc. Methods of controlling morphology during epitaxial layer formation
US20100269819A1 (en) * 2006-08-14 2010-10-28 Sievers Robert E Human Powered Dry Powder Inhaler and Dry Powder Inhaler Compositions
US7745848B1 (en) 2007-08-15 2010-06-29 Nitronex Corporation Gallium nitride material devices and thermal designs thereof
US7960259B2 (en) * 2007-09-26 2011-06-14 International Technology Center Semiconductor structure with coincident lattice interlayer
US8026581B2 (en) * 2008-02-05 2011-09-27 International Rectifier Corporation Gallium nitride material devices including diamond regions and methods associated with the same
US8343824B2 (en) * 2008-04-29 2013-01-01 International Rectifier Corporation Gallium nitride material processing and related device structures
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9627473B2 (en) 2015-09-08 2017-04-18 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation in III-nitride material semiconductor structures
US9799520B2 (en) 2015-09-08 2017-10-24 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation via back side implantation
US20170069721A1 (en) 2015-09-08 2017-03-09 M/A-Com Technology Solutions Holdings, Inc. Parasitic channel mitigation using silicon carbide diffusion barrier regions
US9773898B2 (en) 2015-09-08 2017-09-26 Macom Technology Solutions Holdings, Inc. III-nitride semiconductor structures comprising spatially patterned implanted species
US9806182B2 (en) 2015-09-08 2017-10-31 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using elemental diboride diffusion barrier regions
US9673281B2 (en) 2015-09-08 2017-06-06 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using rare-earth oxide and/or rare-earth nitride diffusion barrier regions
US10211294B2 (en) 2015-09-08 2019-02-19 Macom Technology Solutions Holdings, Inc. III-nitride semiconductor structures comprising low atomic mass species
US9704705B2 (en) 2015-09-08 2017-07-11 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation via reaction with active species
US11038023B2 (en) 2018-07-19 2021-06-15 Macom Technology Solutions Holdings, Inc. III-nitride material semiconductor structures on conductive silicon substrates

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482003A (en) 1991-04-10 1996-01-09 Martin Marietta Energy Systems, Inc. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process
US5225031A (en) 1991-04-10 1993-07-06 Martin Marietta Energy Systems, Inc. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process
DE4120258A1 (de) * 1991-06-19 1992-12-24 Siemens Ag Verfahren zur herstellung einer schicht aus einem hochtemperatursupraleiter-material auf einem silizium-substrat
US5208182A (en) * 1991-11-12 1993-05-04 Kopin Corporation Dislocation density reduction in gallium arsenide on silicon heterostructures
EP0568064B1 (en) 1992-05-01 1999-07-14 Texas Instruments Incorporated Pb/Bi-containing high-dielectric constant oxides using a non-Pb/Bi-containing perovskite as a buffer layer
US5514484A (en) 1992-11-05 1996-05-07 Fuji Xerox Co., Ltd. Oriented ferroelectric thin film
MXPA94009540A (es) * 1993-07-30 2005-04-29 Martin Marietta Energy Systems Procedimiento para hacer crecer una pelicula epitaxialmente sobre una superficie de oxido, y las estructuras formadas con el procedimiento.
US5450812A (en) 1993-07-30 1995-09-19 Martin Marietta Energy Systems, Inc. Process for growing a film epitaxially upon an oxide surface and structures formed with the process
JP2889492B2 (ja) 1994-05-31 1999-05-10 富士ゼロックス株式会社 酸化物薄膜の作製方法
US5830270A (en) 1996-08-05 1998-11-03 Lockheed Martin Energy Systems, Inc. CaTiO3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class
US5907792A (en) * 1997-08-25 1999-05-25 Motorola,Inc. Method of forming a silicon nitride layer
JP2000001645A (ja) * 1998-06-18 2000-01-07 Dainippon Toryo Co Ltd 防食塗料組成物
US6248459B1 (en) * 1999-03-22 2001-06-19 Motorola, Inc. Semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon
US6224669B1 (en) * 2000-09-14 2001-05-01 Motorola, Inc. Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon

Also Published As

Publication number Publication date
KR20010062133A (ko) 2001-07-07
EP1108805B1 (en) 2004-05-26
US6291319B1 (en) 2001-09-18
DE60011022T2 (de) 2005-05-25
JP2001223211A (ja) 2001-08-17
TW464951B (en) 2001-11-21
EP1108805A1 (en) 2001-06-20
CN1301038A (zh) 2001-06-27
DE60011022D1 (de) 2004-07-01
KR100676213B1 (ko) 2007-01-30
SG89364A1 (en) 2002-06-18

Similar Documents

Publication Publication Date Title
CN1167105C (zh) 与硅具有稳定结晶界面的半导体结构的制造方法
CN1185689C (zh) 具有结晶碱土金属硅氮化物/氧化物与硅界面的半导体结构
US6241821B1 (en) Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon
US6248459B1 (en) Semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon
EP1069605B1 (en) Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US6270568B1 (en) Method for fabricating a semiconductor structure with reduced leakage current density
US5801105A (en) Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
JP3482883B2 (ja) 強誘電体薄膜素子およびその製造方法
US6224669B1 (en) Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon
CN1302080A (zh) 与硅之间具有金属氧化物界面的半导体构造的制造方法
JPH10182292A (ja) 酸化物積層構造およびその製造方法
JP2646683B2 (ja) 電子デバイス用基板
CN1140914C (zh) 与硅具有结晶碱土金属氧化物界面的半导体结构制造方法
CN1475027A (zh) 具有高介电常数材料的半导体结构
CN1145195C (zh) 与硅具有结晶碱土金属氧化物界面的半导体结构
CN1334361A (zh) 在硅衬底上制备结晶碱土金属氧化物的方法
JPH03275504A (ja) 酸化物超伝導体薄膜およびその製造方法
JPH0244782A (ja) 超伝導素子およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: FREEDOM SEMICONDUCTORS CO.

Free format text: FORMER OWNER: MOTOROLA, INC.

Effective date: 20040813

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20040813

Address after: Texas in the United States

Patentee after: FreeScale Semiconductor

Address before: Illinois Instrunment

Patentee before: Motorola, Inc.

C56 Change in the name or address of the patentee

Owner name: FISICAL SEMICONDUCTOR INC.

Free format text: FORMER NAME: FREEDOM SEMICONDUCTOR CORP.

CP01 Change in the name or title of a patent holder

Address after: Texas in the United States

Patentee after: FREESCALE SEMICONDUCTOR, Inc.

Address before: Texas in the United States

Patentee before: FreeScale Semiconductor

CP01 Change in the name or title of a patent holder

Address after: Texas in the United States

Patentee after: NXP USA, Inc.

Address before: Texas in the United States

Patentee before: FREESCALE SEMICONDUCTOR, Inc.

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040915

Termination date: 20181215

CF01 Termination of patent right due to non-payment of annual fee