CN1196965C - 电致变色显示器和电解沉积型显示器 - Google Patents

电致变色显示器和电解沉积型显示器 Download PDF

Info

Publication number
CN1196965C
CN1196965C CNB018087027A CN01808702A CN1196965C CN 1196965 C CN1196965 C CN 1196965C CN B018087027 A CNB018087027 A CN B018087027A CN 01808702 A CN01808702 A CN 01808702A CN 1196965 C CN1196965 C CN 1196965C
Authority
CN
China
Prior art keywords
electrode
display device
electrolytic deposition
electrolyte layers
polymer solids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018087027A
Other languages
English (en)
Other versions
CN1426543A (zh
Inventor
篠崎研二
安田章夫
野田和宏
宇高融
桑原美詠子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Deutschland GmbH
Sony Corp
Original Assignee
Sony International Europe GmbH
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony International Europe GmbH, Sony Corp filed Critical Sony International Europe GmbH
Publication of CN1426543A publication Critical patent/CN1426543A/zh
Application granted granted Critical
Publication of CN1196965C publication Critical patent/CN1196965C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • G02F1/1508Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode using a solid electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • G02F2001/1635Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor the pixel comprises active switching elements, e.g. TFT
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F2001/164Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect the electrolyte is made of polymers

Abstract

在每一个由TFT作为驱动装置驱动的透明象素电极和普通电极之间插入聚合物层和聚合物固体电解质层,聚合物层和透明象素电极接触放置,具有通过电化学氧化或还原改变颜色的电活性;聚合物固体电解质层和聚合物层接触放置且含有着色剂。因为电化学氧化或还原能够产生颜色变化,所以能够提高对比度和黑色浓度,在长期使用后不会产生青铜色。

Description

电致变色显示器和电解沉积型显示器
技术领域
本发明涉及一种电致变色显示器(electrochromic display device)和一种电解沉积型显示器(electrodeposition-type display device),这些显示器使用的显示材料是通过电化学氧化和还原能使其颜色变化的材料,本发明还涉及使用这些显示器的显示装置(display apparatus)。
背景技术
随着网络在近年来的传播,以前以印刷物形式分发的文件已经开始用所谓的电子文件形式传送。另外,越来越多的书籍和杂志也开始用所谓的电子出版物的形式发送。
访问这些类型信息的传统方法是通过计算机的CRT或液晶显示器阅读。但是,应当指出的是,由于人体机能的原因,这些发射式显示器会使人产生疲劳感,用户经受不了这种长期阅读。另外,这种阅读方式的一个缺点是用户只能在安装有计算机的地方阅读。
随着近年来笔记本型计算机的发展,出现了可用作便携式显示器的装置。但是,因为除了显示器是发射式的原因外,由于耗能问题也使得人们不能用这些显示装置阅读几小时或更长时间。近年来人们还开发了反射式液晶显示器,有可能用低功率驱动液晶显示器。但是,无显像情况下的液晶(黑白显示器)反射率是30%,这些显示器的清晰度比纸件印刷品差得多。因此,用户易于疲劳,不能进行长时间阅读。
为了解决这些问题,人们正在开发所谓纸状显示器或电子纸的装置。它们主要是通过在电场中利用电泳移动色料粒子或旋转二色性粒子(dichromatic particle)使它们代表的符号染色。但是,这些方法产生的问题是粒子间隙吸收光,因此将使对比度降低,除非将驱动电压升高到100V或更高,否则写入速度不能达到实际应用的要求(1秒之内)。
从高对比度的观点看,通过电化学机理产生颜色的电致变色装置(ECD)比电泳系统优越,并已实际应用于光控玻璃及手表或钟表显示器上。但是,因为光控玻璃及钟表或手表显示器本身不需要矩阵驱动(matrix drive),所以它们并不能应用在诸如电子纸的显示器上。另外,黑色的质量一般较差,而且它们的反射率也很低。
由其使用目的所致,诸如电子纸的显示器不可避免地要连续暴露在诸如阳光或室内灯光的光线下。在实际用作光控玻璃及钟表显示器的电致变色显示装置类型中,某些有机材料用于形成黑色部分。但是一般来说,有机材料的耐光性差,长期使用后将成为青铜色,并且黑色光密度降低。另外,日本公开专利平4-73764中公开的矩阵驱动显示装置也是公知的。但是,驱动装置仅仅构成液晶显示装置的一部分。
考虑到这些技术问题,本发明的目的是提供一种通过矩阵驱动操作的并且能够提高对比度和黑色光密度的电致变色显示器和电致变色显示装置。
本发明的另一个目的是提供一种能够保持高的黑色光密度并且即使在长期使用后也不会出现变为青铜色的问题的电致变色显示器和电致变色显示装置。
发明内容
为了克服上述问题,本发明的电致变色显示器包括:由驱动装置控制的第一个透明电极;聚合物材料层,和该透明电极接触放置,并且具有电活性以通过电化学氧化或还原而改变颜色;聚合物固体电解层,和该聚合物材料层接触放置且含有着色剂;第二个电极,该电极的位置是使聚合物材料层和聚合物固体电解层插入第一个透明电极和第二个电极之间。
在具有上述结构的电致变色显示器中,当在第一个透明电极和第二个电极之间通电时,插入第一个透明电极和第二个电极之间的聚合物材料层被电活化,其颜色改变。因为和聚合物材料层邻接的聚合物固体电解层含有着色剂,所以聚合物材料层颜色改变时的对比度将得到提高。因为第一个透明电极是用驱动装置控制的,所以当使用多个驱动装置时可以使用矩阵驱动。
本发明的电解沉积型显示器包括:由驱动装置控制的第一个透明电极;含有着色剂和金属离子的聚合物固体电解层;第二个电极,该电极的位置是使聚合物固体电解层插入第一个透明电极和第二个电极之间。
在具有上述结构的电解沉积型显示器中,当在第一个透明电极和第二个电极之间通电时,聚合物固体电解层中含有的金属离子在聚合物固体电解层中进行电化学沉积,其颜色改变。因为聚合物固体电解层含有着色剂,所以聚合物材料层颜色改变时的对比度将得到提高。用驱动装置时可以使用矩阵驱动。
当以薄片(sheet)形式排列多个都具有本发明的电致变色显示器结构的电致变色显示元件或都具有本发明的电解沉积型显示器结构的电解沉积型显示元件时,就形成了电致变色显示装置或电解沉积型显示装置。
生产本发明的电致变色显示装置或电解沉积型显示装置的方法包括:在透明支撑结构上形成透明象素电极和驱动装置的步骤;在已形成透明象素电极和驱动装置的透明支撑结构上形成通过电化学氧化或还原能够电活化且颜色可变的聚合物材料层和含有着色剂的聚合物固体电解层的步骤,或形成含有金属离子和着色剂的聚合物固体电解层的步骤;形成与透明象素电极相对的普通电极的步骤。
按照上述生产方法可以生产包括多个都具有电解沉积型显示器结构的电解沉积型显示元件或多个以薄片形式排列的都具有电解沉积型显示器结构的电解沉积型显示元件的电致变色显示装置或电解沉积型显示装置。
附图说明
图1示出本发明第一个实施方案的电致变色显示装置的片断透视图;图2是本发明第一个实施方案的电致变色显示装置的横断面图;图3示出本发明第二个实施方案的电解沉积型显示装置的片断透视图;图4是本发明第二个实施方案的电解沉积型显示装置的横断面图;图5A、5B和5C分别是示出本发明第三个实施方案的生产电致变色显示装置方法的各个步骤的横断面图,其中,图5A是进行完形成TFT和透明象素电极步骤后的横断面图,图5B是进行完浸没在电解沉积容器步骤后的横断面图,图5C是进行完形成聚合物固体电解层步骤后的横断面图;图6A、6B和6C是示出图5A、5B和5C所示的本发明第三个实施方案的生产电致变色显示装置方法的步骤后继续进行的各个步骤的横断面图,其中,图6A是进行完压配支撑结构步骤后的横断面图,图6B是进行完结合步骤后的横断面图,图6C是进行完粘附密封材料步骤后的横断面图;图7A、7B和7C分别是示出本发明第四个实施方案的生产电致变色显示装置方法的各个步骤的横断面图,其中,图7A是进行完形成TFT和透明象素电极步骤后的横断面图,图7B是进行完形成聚合物固体电解层步骤后的横断面图,图7C是进行完浸没在电解沉积容器步骤后的横断面图;图8A、8B和8C是示出本发明第五个实施方案的生产电解沉积型显示装置方法的各个步骤的横断面图,其中,图8A是进行完形成TFT和透明象素电极步骤后的横断面图,图8B是进行完形成聚合物固体电解层步骤后的横断面图,图8C是进行完压配支撑结构步骤后的横断面图;图9A和9B是示出图8A、8B和8C所示的本发明第五个实施方案的生产电解沉积型显示装置方法的步骤后继续进行的各个步骤的横断面图,其中,图9A是进行完结合步骤后的横断面图,图9B是进行完粘附密封材料步骤后的横断面图;图10是本发明第六个实施方案的电致变色显示装置或电解沉积型显示装置的一个表面的结构平面图,上面显示有透明象素电极;图11是本发明第六个实施方案的电致变色显示装置或电解沉积型显示装置的一个表面的结构平面图,上面显示有普通电极;图12是本发明第六个实施方案的电致变色显示装置或电解沉积型显示装置的电路图;图13是测试结果座标图,该图示出在本发明的电解沉积型显示装置中电流密度和光密度(色密度)的关系。
具体实施方式
现在参照附图说明本发明一些实施方案的电致变色显示装置。在这些实施方案的所有电致变色显示装置的结构中,每一个都具有电致变色显示器结构的多个电致变色显示元件是以薄片形式排列的。
第一个实施方案
如图1和2所示,该实施方案的电致变色显示装置的特征在于:以薄片形式排列多个电致变色显示器,每一个电致变色显示器都包括一个透明象素电极12,该电极作为由TFT(薄膜晶体管)13控制的第一个透明电极,TFT用作驱动装置;聚合物层14,电化学氧化或还原能够使该聚合物层电活化从而使其颜色改变;和聚合物层14接触并含有着色剂的聚合物固体电解层15;和第一个透明电极相对的作为第二个电极的普通电极16,该普通电极一般被该象素及其它象素使用。
透明象素电极12和TFT 13的每一个组合都形成一个象素,大量象素以矩阵模式排列在透明支撑结构11上。例如,可以用诸如石英玻璃板或白纸板玻璃板的透明玻璃基底作为透明支撑结构11。除此之外,其它材料也可接受,即,如聚萘二甲酸乙二(醇)酯和聚对苯二甲酸乙二(醇)酯的酯类;如聚酰胺、聚碳酸酯和乙酸纤维素的纤维素脂;如聚偏二氟乙烯、聚四氟乙烯共聚六氟丙烯的氟化聚合物;如聚氧化乙烯(polyoxymethylene)的聚醚;如聚缩醛、聚苯乙烯、聚乙烯、聚丙烯和甲基戊烯(metylpentene)聚合物的聚烯烃;如聚酰亚胺-酰胺和聚醚酰亚胺的聚酰亚胺。如果使用这些合成树脂,则可以形成不易弯曲的刚性基底,也可以形成可弯曲的膜状结构。
透明象素电极12是由基本上以矩形或正方形图案形成的透明导电膜制成的,如图1所示,各个象素是隔离的。在其中的局部区域,每一个象素都设置有TFT 13。这里优选使用ITO膜,该膜是In2O3和SnO2的混合物,或优选使用用SnO2或In2O3涂层的膜。在ITO膜或SnO2或In2O3涂层的膜中掺杂Sn或Sb也是可以接受的,也可以使用MgO或ZnO。
在每一个象素中形成的TFT 13是由图中未示出的线路(wiring)所选定的,用于控制相关的透明象素电极12。TFT 13能够非常有效地防止象素间交调失真(cross-talk)。例如,形成的TFT 13占据透明象素电极的一部分。另一种替代方案是透明象素电极12与TFT 13在堆垛方向上的高度不同。门线路和数据线路与TFT 13连接,其门电极与每一个门线路连接,TFT 13的一个源极和漏极与数据线路连接,其它的源极(source)和漏极(drain)与透明象素电极12进行电连接。如果非TFT 13的驱动装置能够在扁平型显示器中使用的矩形驱动电路中形成在透明基底上,则可以用不同的材料制造这些驱动装置。
透明象素电极12与TFT 13和聚合物层14接触,聚合物层14就是聚合物材料层。聚合物层14由聚合的电致变色材料制成,这种材料是电活性材料。电化学氧化或还原能够使聚合物层14的颜色改变,当在作为电容的相对电极之一的透明象素电极12上施加电势差时,聚合物层14变为黑色。聚合物层14优选由通过电解合成得到的所谓导电聚合物制成。这是因为导电性能够加速电子交换相互作用并且能够确保染色和脱色的快速反应。优选聚合物的例子示于表1。将吡咯、噻吩、薁和苯胺的衍生物进行电解氧化聚合得到的其它材料也可以使用。还可以使用这些材料与表1所示聚合物及其衍生物相结合的材料。
                                表1
    聚合物   氧化电势(相对于Li+/Li)   还原电势(相对于Li+/Li)   库仑效率
    聚吡咯     2.85     2.6   99%或更高
    聚苯胺     4.2     4.0   99%或更高
    聚薁     3.6     3.2   99%或更高
    聚噻吩     4.5     3.6     96%
    聚吲哚     3.8     3.5     95%
    聚咔唑     3.7     3.6     81%
在上表所示的聚合物材料中(聚吡咯、聚苯胺、聚薁、聚噻吩、聚吲哚和聚咔唑),一种特别优选的材料是聚吡咯。原因是相对于其它材料,其具有1)低的氧化电势,2)高的库仑效率,3)氧化时变成黑色,和4)长的重复寿命。优选低氧化电势的材料的原因是氧化电势较低的材料在染色状态下稳定。需要具有高库仑效率的材料的原因是高库仑效率能够最大限度地抑制副反应。当库仑效率接近100%时,几乎不会发生副反应,并能产生较低寿命的器件。作为文档显示,氧化时变成黑色是一个很重要的性质。在完全氧化时聚吡咯是黑色,而其它材料是绿色或红黑色。因此,使用聚吡咯能够提高黑色浓度并且能够改善对比度。另外,长的重复寿命是聚吡咯的另一个有用的性质。
形成的聚合物固体电解层15与变色聚合物14接触。如果形成聚合物固体电解层15的聚合物固体电解质和作为电致变色材料的聚合物材料相复合,其优点是能够降低由于染色和脱色造成的体积变化所产生的聚合物材料下落或粉碎的可能性,这样就能够增加其持久性。
作为形成聚合物固体电解层15的聚合物固体电解质中使用的母体聚合物,可以使用的材料的例子是其框架结构单元表示为-(C-C-O)n-、-(C-C(CH3)-O)n-、-(C-C-N)n-或-(C-C-S)n-的聚环氧乙烷、聚环氧丙烷、聚乙烯亚胺和聚苯乙烯硫醚。在形成所有这些材料的主链结构中可以加入支链。聚甲基丙烯酸甲酯、聚偏二氟乙烯、聚偏二氯乙烯和聚碳酸酯也是优选的。
当形成聚合物固体电解层15时,优选在母体聚合物中加入大量增塑剂。例如,当母体聚合物是亲水性的时,优选的增塑剂的例子是水、乙醇、异丙醇及其混合物。如果母体聚合物是疏水性的时,优选的增塑剂的例子是碳酸异丙烯酯、碳酸二甲酯、碳酸亚乙酯、γ-羟丁基内酯(butylolactone),乙腈、环丁砜、二甲氧基乙烷、乙醇、异丙醇、二甲基甲酰胺、二甲亚砜、二甲基乙酰胺、正甲基吡咯烷酮及其混合物。
聚合物固体电解质是通过将电解质熔入母体聚合物形成的,可以用作电解质的材料的例子是锂盐,如LiCl、LiBr、LiI、LiBF4、LiClO4、LiPF6或LiCF3SO3;钾盐,如KCl、KI或KBr;钠盐,如NaCl、NaI、NaBr;或四烷基铵盐,如四亚乙基铵盐、硼四亚乙基氟化铵、四亚乙基高氯酸铵、硼四亚丁基氟化铵、四丁基高氯酸铵或四丁基卤化铵。上述4-铵盐的烷基链可以是不规则链。
如果聚合物固体电解质和作为电致变色材料的聚合物材料相复合,则其优点是能够降低由于染色和脱色造成的体积变化所产生的聚合物材料下落或粉碎的可能性,这样就能够增加其持久性。聚合物固体电解质是用下述方法得到的:首先在已经用合适的方法制得的第一个电极上形成聚合物固体电解材料,然后在盛有吡咯单体的电解沉积容器中进行电解氧化聚合。
聚合物固体电解层15含有用于提高对比度的着色剂。如上所述,在聚合物层14变为黑色的情况下,用具有高隐蔽性能的白色材料作为底色。可以用白色颗粒作为这种材料,如二氧化钛、碳酸钙、二氧化硅、氧化镁或氧化铝(aluminum oxide)的颗粒。
当使用无机颗粒时,着色剂的混和比优选为约1-20wt%,更优选约1-10wt%,进一步更优选约5-10wt%。无机白色颗粒如氧化钛颗粒不能溶于聚合物,只是分散在其中。因此,如果混和比提高,则无机颗粒将聚集成团,导致不均匀的光密度。另外,因为那些无机颗粒没有离子导电性,所以混和比的提高将导致聚合物固体电解质的导电性下降。考虑到这两种因素,将混和比的上限设定为约20wt%。
在混入无机颗粒作为着色剂的情况下,优选将聚合物固体电解层15的厚度调节为20-200μm,更优选50-150μm,进一步更优选70-150μm。聚合物固体电解层15越薄越好,因为电极间的电阻下降有助于降低染色/脱色时间和能量消耗。但是,该层的厚度不能薄至20μm或更薄,因为机械强度将降至造成针孔和裂纹的程度。另外,如果该层过薄,混入的白色颗粒的量必然减少,白电平(光密度)将不足够高。
当使用颜料时,着色剂的混和比可以是10wt%,因为颜料的染色效率比无机颗粒的染色效率高得多。因此,即使电化学稳定的颜料的用量很少时,所有的电化学稳定的颜料也都可形成一定的对比度。通常优选用油溶性染料作为颜料。
在相对于第一个透明电极的一侧,形成作为第二个电极的普通电极16。普通电极可以用任何电化学稳定的材料制成。优选的材料是铂、铬、铝、钴、钯等。可以通过在支撑结构17上形成诸如金属膜的导体膜来制备普通电极。如果预先或其后的任何时候提供主反应使用的金属,则可以用炭(carbon)作为普通电极。为了使炭负载在电极上,一种方法是用树脂制备碳墨,然后将其印到基底表面上。使用炭可以降低电极成本。
支撑结构17不一定透明,可以使用易于夹持普通电极16和聚合物固体电解层15的基底或膜。其中的一些例子是诸如石英玻璃板和白纸板玻璃板的玻璃板,陶瓷基底,纸质基底和木质基底。除此之外,也可使用其它材料,如合成的树脂基底,即,如聚萘二甲酸乙二醇酯和聚对苯二甲酸乙二醇酯的酯类;如聚酰胺、聚碳酸酯和乙酸纤维素的纤维素脂;如聚偏二氟乙烯、聚四氟乙烯共六氟丙烯的氟化聚合物;如聚氧化亚甲基的聚醚;如聚缩醛、聚苯乙烯、聚乙烯、聚丙烯和甲基戊烯聚合物的聚烯烃;如聚酰亚胺-酰胺和聚醚酰亚胺的聚酰亚胺。如果使用这些合成树脂,则可以形成不易弯曲的刚性基底,也可以形成可弯曲的膜状结构。如果普通电极16的刚性足够大,则可以不用支撑结构17。
如图2所示,为了将第一个透明电极和第二个电极面对面放置,沿周边形成密封树脂部分18,以固定支撑结构11和17。密封树脂部分18易于固定这些支撑结构11和17及其它插件,即,透明象素电极12、TFT 13、聚合物层14、聚合物固体电解层15和普通电极16。
使用上述结构,该实施方案的电致变色显示装置能够通过使用TFT 13进行矩阵驱动,通过选择合适的用于聚合物层14的材料,该实施方案的电致变色显示装置能够提高对比度和黑色光密度。
第二个实施方案
如图3和4所示,该实施方案的电解沉积型显示装置的特征在于:以薄片形式排列多个电解沉积型显示器,每一个电解沉积型显示器都包括一个透明象素电极22,该电极作为由TFT(薄膜晶体管)23控制的第一个透明电极,TFT用作驱动装置;含有金属离子和着色剂的聚合物固体电解层25;和第一个透明电极相对的作为第二个电极的普通电极26,该普通电极一般被该象素及其它象素使用。
在该实施方案的电解沉积型显示装置中,透明象素电极22和TFT 23的每一个组合都形成一个象素,大量象素以矩阵模式排列在透明支撑结构21上。与第一个实施方案相类似,例如,可以用诸如石英玻璃板或白纸板玻璃板的透明玻璃基底作为透明支撑结构21。除此之外,其它材料也可接受,即,如聚萘二甲酸乙二醇酯和聚对苯二甲酸乙二醇酯的酯类;如聚酰胺、聚碳酸酯和乙酸纤维素的纤维素脂;如聚偏二氟乙烯、聚四氟乙烯共六氟丙烯的氟化聚合物;如聚氧化亚甲基的聚醚;如聚缩醛、聚苯乙烯、聚乙烯、聚丙烯和甲基戊烯聚合物的聚烯烃;如聚酰亚胺-酰胺和聚醚酰亚胺的聚酰亚胺。如果使用这些合成树脂,则可以形成不易弯曲的刚性基底,也可以形成可弯曲的膜状结构。
透明象素电极22是由基本上以矩形或正方形图案形成的透明导电膜制成的,如图3所示,各个象素是隔离的。在其中的局部区域,每一个象素都设置有TFT 23。这里优选使用ITO膜,该膜是In2O3和SnO2的混合物,或优选使用用SnO2或In2O3涂层的膜。在ITO膜或SnO2或In2O3涂层的膜中掺杂Sn或Sb也是可以接受的,也可以使用MgO或ZnO。
在每一个象素中形成的TFT 23是由图中未示出的线路所选定的,用于控制相关的透明象素电极22。TFT 23能够非常有效地防止象素间交调失真。例如,形成的TFT 23占据透明象素电极的一部分。另一种替代方案是透明象素电极22与TFT 23在堆垛方向上的高度不同。门线路和数据线路与TFT23连接,其门电极与每一个门线路连接,TFT 23的一个源极和漏极与数据线路连接,其它的源极和漏极与透明象素电极22进行电连接。如果非TFT23的驱动装置能够在扁平型显示器中使用的矩形驱动电路中形成在透明基底上,则可以用不同的材料制造这些驱动装置。
在该实施方案的电解沉积型显示装置中,聚合物固体电解层25含有用于变色的金属离子。用于变色的金属离子进行所谓电解电镀的电化学沉积,并以相反反应进行往复洗脱,这样就能够显示。能够通过电化学沉积和洗脱进行染色和脱色的金属离子虽然不限于特定种类的金属,但是这样的金属离子的一些例子是铋、铜、银、锂、铁、铬、镍和镉离子及其混合物。特别优选的金属离子是铋和银离子,因为易于进行往复反应,并且沉积时变色度高。
作为形成聚合物固体电解层25的聚合物固体电解质中使用的母体聚合物,可以使用的材料的例子是其框架结构单元表示为-(C-C-O)n-、-(C-C(CH3)-O)n-、-(C-C-N)n-或-(C-C-S)n-的聚环氧乙烷、聚环氧丙烷、聚乙烯亚胺和聚苯乙烯硫醚。在形成所有这些材料的主链结构中可以加入支链。聚甲基丙烯酸甲酯、聚偏二氟乙烯、聚偏二氯乙烯和聚碳酸酯也是优选的。
当形成聚合物固体电解层25时,优选在母体聚合物中加入大量增塑剂。例如,当母体聚合物是亲水性的时,优选的增塑剂的例子是水、乙醇、异丙醇及其混合物。如果母体聚合物是疏水性的时,优选的增塑剂的例子是碳酸异丙烯酯、碳酸二甲酯、碳酸亚乙酯、γ-羟丁基内酯,乙腈、环丁砜、二甲氧基乙烷、乙醇、异丙醇、二甲基甲酰胺、二甲亚砜、二甲基乙酰胺、正甲基吡咯烷酮及其混合物。
聚合物固体电解质是通过将电解质熔入母体聚合物形成的,可以用作电解质的材料的例子是锂盐,如LiCl、LiBr、LiI、LiBF4、LiClO4、LiPF6或LiCF3SO3;钾盐,如KCl、KI或KBr;钠盐,如NaCl、NaI、NaBr;或四烷基铵盐,如四亚乙基铵盐、硼四亚乙基氟化铵、四亚乙基高氯酸铵、硼四亚丁基氟化铵、四丁基高氯酸铵或四丁基卤化铵。上述4-铵盐的烷基链可以是不规则链。
聚合物固体电解层25含有用于提高对比度的着色剂。如上所述,在金属离子变为黑色的情况下,用具有高隐蔽性能的白色材料作为底色。可以用白色颗粒作为这种材料,如二氧化钛、碳酸钙、二氧化硅、氧化镁或氧化铝的颗粒。另外还可以使用用于染色的颜料。
当使用无机颗粒时,着色剂的混和比优选为约1-20wt%,更优选约1-10wt%,进一步更优选约5-10wt%。在混入无机颗粒作为着色剂的情况下,优选将聚合物固体电解层25的厚度调节为20-200μm,更优选50-150μm,进一步更优选70-150μm。其原因与第一个实施方案中解释的相同。此处省略解释是为了避免重复。
基于颜料的着色剂的混和比可以是10wt%,因为颜料的染色效率比无机颗粒的染色效率高得多。因此,即使电化学稳定的颜料的用量很少时,所有的电化学稳定的颜料也都可形成一定的对比度。通常优选用油溶性染料作为颜料。
在相对于第一个透明电极的一侧,形成作为第二个电极的普通电极26。普通电极可以用任何电化学稳定的材料制成。优选的材料是铂、铬、铝、钴、钯等。可以通过在支撑结构27上形成诸如金属膜的导体膜来制备普通电极。如果预先或其后的任何时候提供主反应使用的金属,则可以用炭作为普通电极。为了使炭负载在电极上,一种方法是用树脂制备碳墨,然后将其印到基底表面上。使用炭可以降低电极成本。
支撑结构27不一定透明,可以使用易于夹持普通电极26和聚合物固体电解层25的基底或膜。可以使用的材料与第一个实施方案中的支撑结构的材料相同。另外,如图4所示,为了将第一个透明电极和第二个电极面对面放置,沿周边形成密封树脂部分28,以固定支撑结构21和27。密封树脂部分28易于固定这些支撑结构21和27及其它插件,即,透明象素电极22、TFT 23、聚合物层24、聚合物固体电解层25和普通电极26。
使用上述结构,该实施方案的电解沉积型显示装置能够通过使用TFT23进行矩阵驱动,通过使用含在聚合物固体电解层25中的金属离子,该实施方案的电解沉积型显示装置能够提高对比度和黑色光密度。
第三个实施方案
该实施方案涉及生产第一个实施方案的电致变色显示装置的方法。下面参照图5A-5C和图6A-6C并按照生产步骤的顺序说明该方法。
首先参看图5A,在如玻璃基底的透明支撑结构31上为每一个象素都形成ITO膜形式的透明象素电极和薄膜晶体管33。例如,用公知的半导体生产技术形成薄膜晶体管33,用如气相沉积或溅射的技术形成ITO膜。每一个象素形成一个透明象素电极32和一个薄膜晶体管33,大量象素在透明支撑结构31上排列成阵列式。
在透明支撑结构31上形成透明象素电极32和薄膜晶体管33后,形成能够和驱动电路34相连的导线部分。然后将整体浸没在盛于电解沉积容器35的电解沉积液体36中。电解沉积液体36的作用是电解沉积如聚吡咯的聚合物层。驱动电路34为每一个透明象素电极32供电,在每一个透明象素电极32上电解沉积如聚吡咯的聚合物层(图中未示出)。在该工艺中,透明象素电极32通过电解沉积液体36和电解沉积电极37相对。然后再次将整体浸没在盛于电解沉积容器中的不含变色聚合物(如,吡咯)的电解沉积液体中,通过将聚合物层脱离子使透明象素电极的顶部一次性恢复到透明状态。然后将透明支撑结构31从电解沉积液体中取出,用乙醇洗涤,然后进行真空干燥。
然后如图5C所示,在透明支撑结构31上形成聚合物固体电解层38。首先将作为聚合物固体电解层38的母体聚合物的合成树脂与形成电解质的材料如锂盐、钾盐、钠盐或四烷基铵盐混和,另外将作为着色剂的白色颗粒分散在其中以制备该材料。对这种聚合物固体电解材料涂层,形成聚合物固体电解层38。
与之并行的是,在聚对苯二甲酸乙二醇酯形式的支撑结构40上形成适当厚度的钯膜形式的普通电极39。如图6A所示,将支撑结构40上的普通电极39与未熟化的聚合物固体电解层38压配(press-fit)在一起,然后如图6B所示将它们结合在一起。结合后,在支撑结构40和透明支撑结构31之间形成通过真空干燥胶凝的聚合物固体电解层。然后如图6C所示将密封件41粘附在结合处的端部,这样就制成了电致变色显示装置。
在该实施方案中,因为电活性聚合物层是通过浸没在盛于电解沉积容器35的电解沉积液体36中并通电而沉积形成的,所以在透明电极上形成的聚合物层是和透明电极复合在一起的。因此,能够防止聚合物层下落或其它不希望的情况发生,并可共心形成在透明象素电极32上。
第四个实施方案
该实施方案涉及另一种生产第一个实施方案的电致变色显示装置的方法,该方法是第三个实施方案的改进方法。下面参照图7A-7C并按照生产步骤的顺序说明该方法。
与第三个实施方案的生产方法类似,首先参看图7A,在如玻璃基底的透明支撑结构31上为每一个象素都形成ITO膜形式的透明象素电极和薄膜晶体管33。例如,用公知的半导体生产技术形成薄膜晶体管33,用如气相沉积或溅射的技术形成ITO膜。每一个象素形成一个透明象素电极32和一个薄膜晶体管33,大量象素在透明支撑结构31上排列成阵列式。还要形成能够和后续步骤中的驱动电路相连的导线部分(lead portion)(图中未示出)。
然后如图7B所示,在透明支撑结构31上形成聚合物固体电解层38。首先将作为聚合物固体电解层38的母体聚合物的合成树脂与形成电解质的材料如锂盐、钾盐、钠盐或四烷基铵盐混和,另外将作为着色剂的白色颗粒分散在其中以制备该材料。对这种聚合物固体电解材料涂层,形成聚合物固体电解层38。在这一步骤中,将聚合物固体电解层38干燥和胶凝。
将透明支撑结构31上的聚合物固体电解层38干燥和胶凝后,如图7C所示将整体浸没在盛于电解沉积容器35的电解沉积液体36中。电解沉积液体36的作用是电解沉积如聚吡咯的聚合物层。驱动电路34为每一个透明象素电极32供电,在每一个透明象素电极32上电解沉积如聚吡咯的聚合物层(图中未示出)。在该工艺中,透明象素电极32通过电解沉积液体36和电解沉积电极37相对。电解沉积后,立即按照图6A-6C所示的步骤将作为第二个电极的支撑结构和普通电极表面结合在一起,这样就制成了电致变色显示装置。
第五个实施方案
该实施方案涉及生产第二个实施方案的电解沉积型显示装置的方法。下面参照图8A-8C和图9A-9B并按照生产步骤的顺序说明该方法。
首先参看图8A,在如玻璃基底的透明支撑结构51上为每一个象素都形成ITO膜形式的透明象素电极和薄膜晶体管53。例如,用公知的半导体生产技术形成薄膜晶体管53,用如气相沉积或溅射的技术形成ITO膜。每一个象素形成一个透明象素电极52和一个薄膜晶体管53,大量象素在透明支撑结构51上排列成阵列式(matrix array)。
在透明支撑结构51上形成透明象素电极52和薄膜晶体管53后,如图8B所示,在透明支撑结构51上形成聚合物固体电解层54。在形成聚合物固体电解层54的工艺中,将作为聚合物固体电解层54的母体聚合物的合成树脂、形成电解质的材料如锂盐、钾盐、钠盐或四烷基铵盐与产生金属离子的试剂如氯化铋混和在一起,另外将作为着色剂的白色颗粒分散在其中以制备该材料。对这种聚合物固体电解材料涂层,形成聚合物固体电解层54。
与之并行的是如图8C所示,在聚对苯二甲酸乙二醇酯形式的支撑结构56上形成适当厚度的钯膜形式的普通电极55。将支撑结构56上的普通电极55与未熟化的聚合物固体电解层54压配在一起,然后如图9A所示将它们结合在一起。结合后,在支撑结构56和透明支撑结构51之间形成通过真空干燥胶凝的聚合物固体电解层。然后如图9B所示将密封件57粘附在结合处的端部,这样就制成了电解沉积型显示装置。
在该实施方案中,因为金属离子和电解质是在制备聚合物固体电解层54的步骤中一起引入的,所以聚合物固体电解层54和变色材料在相对容易的工艺中结合在一起,生产方法因此而得以简化。
第六个实施方案
该实施方案的电致变色显示装置或电解沉积型显示装置是其中的电势检测器电极64、65作为独立于第一个透明电极和第二个电极(普通电极)的第三电极形成的一个例子。这些电势检测器电极64、65作为电绝缘部件和透明象素电极或普通电极一起置于透明支撑结构的主平面(common plane)上,它们用于检测透明支撑结构上的透明象素电极或普通电极的电势。
图10是一个表面的平面图,上面显示有透明象素电极。在透明支撑结构61上,每一个象素形成一个透明象素电极63和一个作为驱动装置的TFT62,大量象素排列成阵列式。检测透明象素电极电势的电势检测器电极64形成在象素之间的空间内,延伸成交叉图案,其端部(以黑点表示)是厚约1000nm的银或铝电极。和端部相连的线路部分是宽约1μm的银或铝线性线路部分。因为电势检测器电极64是和透明象素电极63一起形成于主平面上的电绝缘部件,所以能够精确检测透明象素电极63的电势,因此能够精确检测透明象素电极63内发生的反应。优选用不会自发洗脱入与反应绝对无关的介质中的稳定金属材料作为电势检测器电极64的材料。可以选择类似于第二个电极的材料,如铂、铬、铝、钴、钯或银。
图11是一个表面的平面图,上面显示有普通电极。在支撑结构66上形成普通电极,还以类似于倒π型图案形成电势检测器电极65。因为电势检测器电极65是和普通电极67一起形成于主平面上的电绝缘部件,所以能够精确检测普通电极67的电势,因此能够精确检测普通电极67内发生的反应。优选用不会自发洗脱入与反应绝对无关的介质中的稳定金属材料作为电势检测器电极65的材料。可以选择类似于第二个电极的材料,如铂、铬、铝、钴、钯或银。因为制备电势检测器电极65的材料与制备主平面上的普通电极的材料可以相同,所以在电势检测器电极65和普通电极67之间的空间内易于形成图案。
图12是具有电势检测器电极76的电致变色显示装置或电解沉积型显示装置的电路图。大量均由TFT74和透明象素电极75构成的象素排列成阵列式,其中的一个电容相对电极作为普通电极。该电路图中提供有用于选择各自象素的数据线路驱动电路72、72a及门线路驱动电路,来自信号控制器71的信号选择预定数据线路78和门线路77。电势检测器电极76的结构是与信号控制器71相连,象素部分的电势由电势检测器电极76提供的信号检测。即,选择不会自发洗脱入与反应绝对无关的介质中的稳定金属材料作为电势检测器电极76的材料,电极76能够精确检测电致变色或金属沉降溶解的主反应的进度。当通过用电势检测器电极76的检测证实已经进行了足够的沉积或电化学反应时,停止其进一步的反应。
下面结合其生产方法说明一些实施例。尽管本发明的各种效果是通过这些实施例说明的,但本发明决不限于这些实施例。
实施例1
(制造显示电极)
在10×10cm大、1.5mm厚的玻璃基底上形成150μm节距的ITO膜和TFT(薄膜晶体管)的二维排列。用公知技术形成基底与驱动电路相连的导线部分后,将整体固定在电解沉积容器中(参见图5B)。将1M的四氟硼酸四乙基铵和0.1M的吡咯溶解在碳酸异丙烯中制备电解沉积液体。然后由驱动电路为各个象素供应0.2μA的电流直到供应的电量达到20μC。结果,黑色的聚吡咯沉积在每一个ITO上。
然后将玻璃基底固定在盛有通过将1M的四氟硼酸四乙基铵溶解在碳酸异丙烯中得到的电解沉积液体的电解沉积容器中,将每一个象素电极的电压调节到1V(相对于Ag+/Ag参考电极),然后将电解聚合时掺杂的聚吡咯去离子化。聚吡咯变为浅黄色透明状。将基底取出并用乙醇洗涤后进行真空干燥。
(调节和涂覆聚合物固体电解质)
将1重量份的分子量约为350000的聚偏二氟乙烯混入10重量份的碳酸异丙烯和碳酸亚乙酯的比为1∶1的溶剂混合物中,该溶剂混合物含有1.7重量份的硼四丁基氟化铵,将混合物加热到120℃,制备均匀的溶液。然后在溶液中加入0.2重量份的平均粒度为0.5μm的二氧化钛,用均化器使其均匀分散。然后用刮墨刀将其涂覆在玻璃基底上,涂层厚度为60μm,然后迅速与将在下面说明的作为第二个电极的普通电极结合,在110℃和0.1Mpa下真空干燥1小时。这样就在两个电极间形成胶凝的聚合物固体电解质。用粘结剂密封有结合缝的端面。
(第二个电极(反电极,普通电极))
通过溅射技术在10×10cm大、0.5mm厚的聚对苯二甲酸乙二醇酯膜上形成3000的钯膜。用聚合物固体电解质涂覆后立即压配。
(驱动和评价显示性能)
使用公知的有源矩阵驱动电路,在染色时用每一个象素5μC的电量氧化显示电极,脱色时用相同的电量还原显示电极,这样在黑色显示和无色(白色)显示之间进行切换。无色显示的反射率为70%,染色时(黑色)显示部分的光密度(OD)约为1.3(反射率为5%)。因此,能够得到1∶12的反射对比度。样品保持染色状态后,开启电路,使样品保持原样不动。一星期后,显示部分的光密度约为1.0,并且证实该样品具有储存能力。重复染色和脱色循环,染色时黑色浓度下降到1.0或更低时的重复循环次数约为八百万次。
实施例2
预先将聚合物固体电解质涂覆在TFT基底上,然后象实施例1那样干燥和胶凝。然后将基底放入电解沉积容器,象实施例1那样通电。结果,聚吡咯以与聚合物固体电解质的母体聚合物复合的形式沉积在ITO电极上。将基底从电解沉积容器中取出后迅速与反电极(第二个电极)结合,然后在相同条件下干燥样品。
当象实施例1那样驱动和评价样品时,重复循环次数约为三千万次,其它性能相同。
实施例3
(制造显示电极,制备和涂覆聚合物固体电解质)
在10×10cm大、1.5mm厚的玻璃基底上形成150μm节距的ITO膜和TFT(薄膜晶体管)的二维排列。然后将1重量份的分子量约为350000的聚偏二氟乙烯混入10重量份的水和异丙醇的比为1∶1的溶剂混合物中,该溶剂混合物含有1.7重量份的溴化锂和1.7重量份的氯化铋,将混合物加热到120℃,制备均匀的溶液。然后在溶液中加入0.2重量份的平均粒度为0.5μm的二氧化钛,用均化器使其均匀分散。然后用刮墨刀将其涂覆在玻璃基底上,涂层厚度为60μm,然后迅速与将在下面说明的作为第二个电极的普通电极结合,在110℃和0.1Mpa下真空干燥1小时。这样就在两个电极间形成胶凝的聚合物固体电解质。用粘结剂密封有结合缝的端面。
(第二个电极(反电极,普通电极))
通过溅射技术在10×10cm大、0.5mm厚的聚对苯二甲酸乙二醇酯膜上形成3000的钯膜。用聚合物固体电解质涂覆后立即压配。
(驱动和评价显示性能)
使用公知的有源矩阵驱动电路,在染色时用每一个象素5μC的电量氧化显示电极,脱色时用相同的电量还原显示电极,这样在黑色显示和无色(白色)显示之间进行切换。无色显示的反射率为70%,染色时(黑色)显示部分的光密度(OD)约为0.8(反射率为13%)。因此,能够得到1∶5的反射对比度。样品保持染色状态后,开启电路,使样品保持原样不动。一星期后观察到显示器的光密度基本没有变化,并且证实该样品具有储存能力。重复染色和脱色循环,染色时黑色浓度下降到1.0或更低时的重复循环次数约为八百万次。
实施例4
用与实施例3相同的条件制备样品,不同之处是使用聚偏氟氯乙烯、LiBF4和AgClO4的混合物。当象实施例3那样驱动和评价样品时,重复循环次数约为三千万次,其它性能相同。
实施例5
下面测试供给电解沉积型显示装置的象素电极的电量和沉积的银所造成的变色浓度(光密度)的关系。测试结果示于图13。为了得到好的可视字符,字符部分的浓度一般至少为1.0的光密度值(OD),优选至少为1.5。因此,从图13所示的结果可以看出:需要的电量大约不低于5mC/cm2,优选不低于10mC/cm2。低于该范围的电量将产生弱的字符,难以阅读。高于1.5的光密度将产生足够高的可见度。但是,即使将光密度升高到高于该值时,可见度也不会改善很多,因为人的意识已达到饱和。另外,当光密度高于1.5时,因为大量的金属如银沉积,所以相反反应(脱色反应)将变得不充分,同时会发生不完全熄灭。因此优选将供给的电量调节到20mC/cm2或低于20mC/cm2
根据上述结构,本发明的电致变色显示器和装置能够通过使用在各个象素中形成的驱动装置进行矩阵驱动,并且能够通过使用和聚合物固体电解质接触的通过电化学氧化和还原能够变色的聚合物材料提高对比度和黑色浓度。
电解沉积型显示器和装置能够克服变为青铜色的问题,即使长期使用后也能保持高的黑色浓度,因为聚合物固体电解质含有金属离子。
本发明的生产电致变色显示装置或电解沉积型显示装置的方法能够很容易地生产具有上述结构的电致变色显示装置或电解沉积型显示装置。

Claims (19)

1、一种电致变色显示器,包括:由驱动装置控制的第一个透明电极;聚合物材料层,和所述透明电极接触放置,并且具有电活性以通过电化学氧化或还原而改变颜色;聚合物固体电解层,和所述聚合物材料层接触放置且含有着色剂;第二个电极,该电极的位置是使所述聚合物材料层和所述聚合物固体电解层插入所述第一个透明电极和所述第二个电极之间,
其中形成所述聚合物材料层的聚合物材料是聚吡咯、聚苯胺、聚噻吩、聚薁或其混合物。
2、根据权利要求1的电致变色显示器,其中,形成所述聚合物固体电解层的聚合物固体电解质是其框架结构单元表示为-(C-C-O)n-、-(C-C(CH3)-O)n-、-(C-C-N)n-或-(C-C-S)n-的聚环氧乙烷、聚环氧丙烷、聚乙烯亚胺和聚苯乙烯硫醚,或包括任何上述材料作为主链结构且具有支链的聚合物材料,或聚甲基丙烯酸甲酯、聚偏二氟乙烯、聚偏二氯乙烯、聚碳酸酯或其与金属盐或烷基铵盐混合的混合物或层合物。
3、根据权利要求1的电致变色显示器,其中,在所述聚合物固体电解层中加入增塑剂,所述增塑剂选自水、乙醇、异丙醇、碳酸异丙烯酯、碳酸二甲酯、碳酸亚乙酯、γ-羟丁基内酯,乙腈、环丁砜、二甲氧基乙烷、二甲基甲酰胺、二甲亚砜或其混合物。
4、根据权利要求1的电致变色显示器,其中,所述着色剂是无机颜料、有机颜料或染料。
5、根据权利要求4的电致变色显示器,其中,所述无机颜料是二氧化钛、碳酸钙、氧化镁或氧化铝的粉末。
6、根据权利要求1的电致变色显示器,其中,所述第一个透明电极含有SnO2、In2O3或其混合物作为主要组分。
7、根据权利要求1的电致变色显示器,其中,所述第二个电极是金属薄膜。
8、根据权利要求1的电致变色显示器,其还包括独立于所述第一个透明电极和所述第二个电极的第三电极。
9、根据权利要求1的电致变色显示器,其中,所述第三电极作为电绝缘部件和所述第一个透明电极和所述第二个电极一起置于主平面上。
10、一种电解沉积型显示器,包括:由驱动装置控制的第一个透明电极;含有着色剂和金属离子的聚合物固体电解层;第二个电极,该电极的位置是使所述聚合物固体电解层插入所述第一个透明电极和所述第二个电极之间,
其中所述金属离子是铋、铜、银、锂、铁、铬、镍或镉离子或其混合物。
11、根据权利要求10的电解沉积型显示器,其中,形成所述聚合物固体电解层的聚合物固体电解质是其框架结构单元表示为-(C-C-O)n-、-(C-C(CH3)-O)n-、-(C-C-N)n-或-(C-C-S)n-的聚环氧乙烷、聚环氧丙烷、聚乙烯亚胺和聚苯乙烯硫醚,或包括任何上述材料作为主链结构且具有支链的聚合物材料,或聚甲基丙烯酸甲酯、聚偏二氟乙烯、聚偏二氯乙烯、聚碳酸酯或其与金属盐或烷基铵盐混合的混合物或层合物。
12、根据权利要求10的电解沉积型显示器,其中,在所述聚合物固体电解层中加入增塑剂,所述增塑剂选自水、乙醇、异丙醇、碳酸异丙烯酯、碳酸二甲酯、碳酸亚乙酯、γ-羟丁基内酯,乙腈、环丁砜、二甲氧基乙烷、二甲基甲酰胺、二甲亚砜或其混合物。
13、根据权利要求10的电解沉积型显示器,其中,所述着色剂是无机颜料、有机颜料或染料。
14、根据权利要求13的电解沉积型显示器,其中,所述无机颜料是二氧化钛、碳酸钙、氧化镁或氧化铝的粉末。
15、根据权利要求10的电解沉积型显示器,其中,所述第一个透明电极含有SnO2、In2O3或其混合物作为主要组分。
16、根据权利要求10的电解沉积型显示器,其中,所述第二个电极是金属薄膜。
17、根据权利要求10的电解沉积型显示器,其中,在所述聚合物固体电解层和所述第二个电极之间放置能够引入和释放离子的聚合物材料层或能够产生电化学氧化还原反应的聚合物材料层。
18、根据权利要求17的电解沉积型显示器,其中,所述聚合物材料层含有炭。
19、根据权利要求10的电解沉积型显示器,其中,所述电极间供应的电量调节为不小于5mC/cm2且不大于20mC/cm2
CNB018087027A 2000-12-27 2001-12-27 电致变色显示器和电解沉积型显示器 Expired - Fee Related CN1196965C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP398012/2000 2000-12-27
JP2000398012 2000-12-27
JP373610/2001 2001-12-07
JP2001373610A JP2002258327A (ja) 2000-12-27 2001-12-07 エレクトロクロミック表示素子及びエレクトロデポジション型表示素子

Publications (2)

Publication Number Publication Date
CN1426543A CN1426543A (zh) 2003-06-25
CN1196965C true CN1196965C (zh) 2005-04-13

Family

ID=26606859

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018087027A Expired - Fee Related CN1196965C (zh) 2000-12-27 2001-12-27 电致变色显示器和电解沉积型显示器

Country Status (6)

Country Link
US (2) US6992808B2 (zh)
EP (1) EP1347330A4 (zh)
JP (1) JP2002258327A (zh)
KR (1) KR20020077512A (zh)
CN (1) CN1196965C (zh)
WO (1) WO2002052339A1 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826124B2 (en) * 2001-06-25 2010-11-02 University Of Washington Through Its Center For Commercialization Flexible panel based on electrochromic polymers
DE50211637D1 (de) * 2001-11-30 2008-03-20 Siemens Ag Elektrochromes farbsystem
JP2003241227A (ja) * 2002-02-14 2003-08-27 Sony Corp 電気化学表示素子及び電気化学表示装置
JP3951950B2 (ja) * 2002-05-31 2007-08-01 ソニー株式会社 表示装置の駆動方法
US7808691B2 (en) * 2002-06-25 2010-10-05 University Of Washington Green electrochromic materials
EP1582914A4 (en) * 2002-11-28 2007-01-17 Konica Minolta Holdings Inc DISPLAY ELEMENT, DISPLAY AND MANUFACTURING PROCESS FOR DISPLAY
JP2004279628A (ja) * 2003-03-14 2004-10-07 Sony Corp 電気化学表示装置
JP2004309946A (ja) * 2003-04-10 2004-11-04 Sony Corp 電気化学表示装置及びその製造方法
JP4534436B2 (ja) * 2003-06-27 2010-09-01 ソニー株式会社 表示素子、表示装置及びこれらの製造方法
JP2005049770A (ja) 2003-07-31 2005-02-24 Sanyo Electric Co Ltd エレクトロクロミック表示装置
WO2005012993A1 (ja) 2003-07-31 2005-02-10 Sanyo Electric Co., Ltd. エレクトロクロミック表示装置
TWI352252B (en) 2003-09-18 2011-11-11 Dainippon Ink & Chemicals Ionic conductor and electrochemical display elemen
US20080297878A1 (en) * 2003-10-01 2008-12-04 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
US8064120B2 (en) * 2004-03-12 2011-11-22 The Boeing Company Aircraft cabin services system including zone controllers for lighting control modules and dimmable windows
JP4569140B2 (ja) * 2004-03-18 2010-10-27 ソニー株式会社 電気化学表示装置および電気化学表示方法
JP4569149B2 (ja) * 2004-03-30 2010-10-27 ソニー株式会社 電気化学表示装置および電気化学表示方法
KR100663032B1 (ko) * 2004-09-21 2006-12-28 주식회사 엘지화학 공융혼합물을 포함하는 전해질 및 이를 이용한 전기 변색소자
KR101133759B1 (ko) 2004-12-28 2012-04-09 삼성전자주식회사 전기 영동 표시 장치 및 그 제조 방법
JP4751112B2 (ja) 2005-07-04 2011-08-17 株式会社 日立ディスプレイズ 表示装置及びその製造方法
TWI272837B (en) * 2005-10-06 2007-02-01 Asia Optical Co Inc Method for rapidly changing color of light source and image device using the method
JP5061507B2 (ja) * 2006-06-05 2012-10-31 富士ゼロックス株式会社 表示素子
WO2007149091A1 (en) * 2006-06-23 2007-12-27 E.I. Du Pont De Nemours And Company Electrochromic electrolyte blends
US8004740B2 (en) 2006-11-09 2011-08-23 International Business Machines Corporation Device and system for reflective digital light processing (DLP)
US7764416B2 (en) * 2006-12-04 2010-07-27 3M Innovative Properties Company Electrochromic device based on layer by layer deposition
US8643932B2 (en) * 2007-07-18 2014-02-04 Canon Kabushiki Kaisha Reflection type display apparatus and method for driving this apparatus
KR100982412B1 (ko) * 2008-05-29 2010-09-15 (주)에이디에스 전기광학소자 및 이의 제작 방법
US9782949B2 (en) 2008-05-30 2017-10-10 Corning Incorporated Glass laminated articles and layered articles
US7876490B2 (en) * 2008-07-24 2011-01-25 Canon Kabushiki Kaisha Reflection type display apparatus
NZ592553A (en) * 2008-10-06 2013-07-26 Clearboard Pty Ltd A whiteboard with a blind extendable between a transparent panel and a surface behind the panel to control visibility of the surface
US8686988B2 (en) * 2008-12-08 2014-04-01 Konica Minolta Holdings, Inc. Method for driving electrochemical display element
TWI395809B (zh) * 2009-09-11 2013-05-11 Ind Tech Res Inst 多色系太陽光電電變色裝置
KR101720586B1 (ko) * 2010-03-16 2017-03-30 삼성전자주식회사 능동형 전기변색소자 및 그 제조 방법
US8729551B2 (en) * 2010-03-17 2014-05-20 Samsung Display Co., Ltd. Flat panel display
CN101859046A (zh) * 2010-05-27 2010-10-13 天津大学 聚乙烯吡咯烷酮基固体电解质的制备方法
TW201222117A (en) * 2010-11-26 2012-06-01 J Touch Corp Touch-controlled electrochromic device
CN102109725B (zh) * 2011-01-24 2012-11-07 电子科技大学 一种电致变色器件及其制备方法
EP2607950B1 (en) * 2011-12-22 2014-05-21 Acreo Swedish ICT AB Fixed image display device and method of manufacturing the same
KR101884839B1 (ko) * 2012-04-06 2018-08-02 삼성전자주식회사 반사형 컬러 표시 소자
CN103045228B (zh) * 2012-11-28 2015-03-25 宁波祢若电子科技有限公司 电致变色材料及电致变色器件
FR3003044B1 (fr) * 2013-03-07 2016-07-29 Centre Nat Rech Scient Dispositif electrochrome a quatre ou trois couches
CN104108266B (zh) * 2013-04-17 2017-07-11 赛恩倍吉科技顾问(深圳)有限公司 电子书写板
CN104108265A (zh) * 2013-04-17 2014-10-22 鸿富锦精密工业(深圳)有限公司 电子书写板
KR20150031917A (ko) * 2013-09-17 2015-03-25 엘지이노텍 주식회사 전극 플레이트와 이를 이용하는 전기변색 플레이트, 전기변색 미러 및 디스플레이 장치
CN104570534B (zh) * 2013-10-09 2017-10-10 中国科学院宁波材料技术与工程研究所 全固态无机电致变色器件及其制备方法
JP6318633B2 (ja) * 2014-01-15 2018-05-09 株式会社リコー エレクトロクロミック表示装置及びその製造方法
CN105573002B (zh) * 2014-10-09 2019-04-19 中国科学院宁波材料技术与工程研究所 一种具有信息存储功能的显示器件及其制备方法
CN104834146B (zh) * 2015-05-25 2018-05-01 京东方科技集团股份有限公司 一种显示器件、其制作方法、其驱动方法及显示装置
CN105093568B (zh) * 2015-08-10 2018-07-03 京东方科技集团股份有限公司 显示器件及装置、液态金属材料及制备模具、方法和装置
KR102369920B1 (ko) * 2017-06-15 2022-03-03 엘지이노텍 주식회사 전기변색소자
KR20180034031A (ko) * 2016-09-27 2018-04-04 삼성전자주식회사 전기화학 거울
US20220035215A1 (en) * 2018-09-17 2022-02-03 The Regents Of The University Of Calfornia High-efficiency electrodeposition for coating electrochromic films
EP4121816A1 (en) 2020-03-19 2023-01-25 Freshape SA Electrochromic device and method for producing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH594263A5 (zh) * 1975-11-29 1977-12-30 Ebauches Sa
JPS5461576U (zh) * 1977-10-11 1979-04-28
JPS5461576A (en) 1977-10-25 1979-05-17 Seiko Epson Corp Electronic wrist watch
JPS58207027A (ja) 1982-05-27 1983-12-02 Nec Corp 全固体型エレクトロクロミツク表示装置
DE3373557D1 (en) 1983-06-30 1987-10-15 Ibm Electrochromic display employing potentiostatic erasure
US4573768A (en) * 1983-12-05 1986-03-04 The Signal Companies, Inc. Electrochromic devices
US4571029A (en) * 1983-12-29 1986-02-18 The United States Of America As Represented By The United States Department Of Energy Electro-optical switching and memory display device
JPS63291037A (ja) 1987-05-22 1988-11-28 Ube Ind Ltd エレクトロクロミック素子及びその製造法
US4993810A (en) * 1989-04-14 1991-02-19 Ford Motor Company Electrochromic devices comprising metal salts in an ion conductive material
US5293546A (en) * 1991-04-17 1994-03-08 Martin Marietta Corporation Oxide coated metal grid electrode structure in display devices
GB9117709D0 (en) * 1991-08-14 1991-10-02 Nat Res Dev Solid polymer electrolytes
JP3132630B2 (ja) * 1994-08-25 2001-02-05 科学技術振興事業団 チオフェン誘導体の重合体とその製造法
US5923456A (en) * 1997-12-19 1999-07-13 Rockwell International Corporation Reversible electrochemical mirror
US6400491B1 (en) * 1997-12-19 2002-06-04 Innovative Technology Licensing, Llc Fast-switching reversible electrochemical mirror (REM)
DE19845881A1 (de) * 1998-10-06 2000-04-13 Bayer Ag Anordnung auf Basis von Poly-(3,4,-dioxythiophen)-Derivaten, die mit Protonen elektrochrom geschaltet werden
JP2002162652A (ja) * 2000-01-31 2002-06-07 Fujitsu Ltd シート状表示装置、樹脂球状体、及びマイクロカプセル

Also Published As

Publication number Publication date
CN1426543A (zh) 2003-06-25
EP1347330A4 (en) 2008-07-09
JP2002258327A (ja) 2002-09-11
US7312914B2 (en) 2007-12-25
KR20020077512A (ko) 2002-10-11
US20030156314A1 (en) 2003-08-21
EP1347330A1 (en) 2003-09-24
WO2002052339A1 (fr) 2002-07-04
US20060028707A1 (en) 2006-02-09
US6992808B2 (en) 2006-01-31

Similar Documents

Publication Publication Date Title
CN1196965C (zh) 电致变色显示器和电解沉积型显示器
CN1288492C (zh) 显示单元及其驱动方法
CN101802700B (zh) 电致变色显示元件及其制造方法
CN101750830B (zh) 显示介质和显示装置
CN1668971A (zh) 显示设备驱动方法
CN1945415A (zh) 显示元件
CN1239953C (zh) 显示器元件及其生产方法
CN1990820A (zh) 电变色膜
JP2002287173A (ja) エレクトロクロミック表示素子及びその製造方法
CN1656415A (zh) 显示装置的驱动方法
CN1639297A (zh) 电化学器件
JP2006146252A (ja) エレクトロデポジション型表示素子、エレクトロデポジション型表示装置、及びエレクトロデポジション型表示装置の製造方法
JP4036045B2 (ja) 表示装置及びその駆動方法
JP2004020928A (ja) エレクトロクロミック表示素子及びその製造方法、エレクトロクロミック表示装置
JP4508544B2 (ja) 電気化学表示装置
CN100362416C (zh) 显示装置及其驱动方法
JP2002287172A (ja) エレクトロクロミック表示素子及びエレクトロクロミック表示装置
JP4433669B2 (ja) エレクトロデポジション型表示装置
JP4506171B2 (ja) 電気化学調光装置及びその製造方法
JP2004294931A (ja) 電気化学的調光装置及びその製造方法
JP2004309946A (ja) 電気化学表示装置及びその製造方法
JP2005031192A (ja) シート型表示装置とその製造方法
JP4497283B2 (ja) 電気化学表示装置およびその製造方法
JP2005189384A (ja) 電気化学調光装置及びその駆動方法
JP2005140814A (ja) 電気化学調光装置及び高分子電解質

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050413

Termination date: 20151227

EXPY Termination of patent right or utility model