CN1201821C - 难溶性化合物的稳定复合体 - Google Patents

难溶性化合物的稳定复合体 Download PDF

Info

Publication number
CN1201821C
CN1201821C CNB991194063A CN99119406A CN1201821C CN 1201821 C CN1201821 C CN 1201821C CN B991194063 A CNB991194063 A CN B991194063A CN 99119406 A CN99119406 A CN 99119406A CN 1201821 C CN1201821 C CN 1201821C
Authority
CN
China
Prior art keywords
ionomer
complex
compound
active compound
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB991194063A
Other languages
English (en)
Other versions
CN1251312A (zh
Inventor
安东尼奥·A·阿尔瓦诺
万塔妮·蒲厄巴蒂
哈普里特·K·桑德胡
内夫尼特·哈尔戈文达斯·沙阿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26798138&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1201821(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN1251312A publication Critical patent/CN1251312A/zh
Application granted granted Critical
Publication of CN1201821C publication Critical patent/CN1201821C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors

Abstract

公开了一种难溶性的化合物分子分散在水不溶离子聚合物中的稳定水不溶复合体。可用的不溶离子聚合物具有的分子量大于约80,000道尔顿以及玻璃转化温度等于或大于约50℃。化合物以无定形态微沉淀在离子共聚物中。根据本发明的复合体显著提高难溶性的治疗活性化合物的生物有效性。

Description

难溶性化合物的稳定复合体
本发明提供含有水不溶复合体的药学组合物,这种药学组合物由分散在离子聚合物中的无定形治疗活性化合物(即药物)组成。根据本发明的复合体使得难溶性治疗活性化合物的生物有效性显著提高。
治疗活性化合物的生物有效性通常受(i)化合物的溶解度/溶解速率和(ii)化合物通过患者胃肠膜的分配系数/渗透性影响。治疗活性化合物生物有效性差的主要原因是上述化合物的溶解度/溶解速率低。差的生物有效性也伴有因病人对治疗活性化合物(例如药物)不稳定的吸收造成的不希望的病人的变异性和不可预测的剂量/治疗效果。
几种技术被用于改善难溶性治疗活性化合物的生物有效性。这些技术总结如下。
1.微粒大小的减少:难溶性治疗活性化合物经常被机械研磨以减少化合物的微粒大小并增加表面积。见Lachman等,工业制药的理论和实践,第2章,第45页(1986)。通过喷射碾磨机获得的平均微粒大小一般在1-10μm的范围。类似地,在有保护胶或聚合物存在时对治疗活性化合物湿磨一般产生的化合物微粒大小在约300-800nm的范围。根据本技术,将治疗活性化合物和聚合物分散在水中并通过研磨介质如微珠(0.2-0.5mm)进行研磨。见美国专利5,494,683。然而,微粒尺寸的减小只能改善治疗活性化合物的溶解速率,而不能改善在溶解平衡时化合物的总量。
2.固体分散体
2.1熔化法:根据本技术,将一种治疗活性化合物分散到非离子聚合物中以形成固体分散体。一般地,将非离子聚合物(例如Pluronic和聚乙二醇)在高于其熔点的温度下熔化,在搅拌下治疗活性化合物就溶解到熔融的聚合物中。见美国专利5,281,420。然后将得到的熔融物冷却到室温。作为这一工艺的结果,治疗活性化合物熔融进聚合物中,并在冷却时以无定形的形式沉淀出。无定形态的化合物一般比该化合物最初的结晶态有较快的溶解速率。因而,通过使化合物在无定形态这一工艺能改善生物有效性。然而,由于非离子聚合物在水中的溶解度较大和熔点低,治疗活性化合物的无定形态不能保持其稳定性并在暴露在高的湿度和高温时最终转变回结晶态,而高的湿度和高温是在长期储存中经常遇到的。见Yoshinka等,J.Pharm.Sci.83:1700-1750(1994)。因此,这一技术不适于治疗活性化合物的大多数制剂形式,并且肯定不适用于那些难溶性的治疗活性化合物。
2.2共沉淀:
在另外的改善难溶性治疗活性化合物的生物有效性的现有方法中,将化合物和非离子亲水聚合物,例如聚乙烯基吡咯烷酮溶解在有机溶剂中。通过蒸发去掉溶剂,在这一过程中治疗活性化合物沉淀在亲水聚合物基质中。见H.G.Britain,药物固体的物理特性,药品和制药科学,70卷(MarcelDekker公司,纽约,1995)。由于聚合物的吸湿特性和在水中的溶解度,这种聚合物不能保护治疗活性化合物的无定形态免受热和潮气的作用。这样,在亲水聚合物基质中的治疗活性化合物不能保持在无定形态并在贮存中最终转变成结晶态。因而,这一方法对改善难溶性治疗活性化合物的生物有效性也是不实用的。
3.自乳化药物传递系统(SEDDS):
在这一系统中,将治疗活性化合物溶解在合适的油和乳化剂混合物中。产生的脂制剂在暴露在胃肠流体时,形成非常细微的乳化液或微乳化液。由于油珠的表面积大,溶解在这种油中的难溶性治疗活性化合物的生物有效性显著增加。见P.P.Constantinides,Pharm.Res.12(11):1561-1572(1995)。应用这一系统的主要要求是治疗活性化合物必须在油中是可溶的,而且一旦溶解在油中必须保持在溶液中的稳定形式。因而对大多治疗活性化合物来说SEDDS不是一个有用的可共供选择的办法,因为这些化合物在基于油的溶液中的溶解性有限以及稳定性不好。
我们已经吃惊地发现当难溶性治疗活性化合物(一般以结晶态)在水不溶的分子量大于约80,000道尔顿和玻璃转化温度等于或大于约50℃的离子聚合物中是分子分散的,化合物(现在以无定形态)的物理稳定性即使在高湿度和温度的储存条件下也保持很长时间。由于该离子聚合物的分子量高以及玻璃转化温度高,同时由于它在水中相对不溶,该离子聚合物以其无定形态固定治疗活性化合物,因此提供了化合物优良的稳定性,这比通过现有方法提供的都优良。另外,由于在该化合物/聚合物复合体中化合物的溶解度增加,治疗活性化合物的生物有效性也显著增加。因而这一方法对提高难溶性治疗活性化合物的生物有效性特别有用。
本发明提供一种含有一种稳定的,不溶于水的复合体的药学组合物,这种复合体由一种不溶于水的分子量大于约80,000道尔顿和玻璃转化温度等于或大于约50℃的离子聚合物载体大分子,和一种无定形治疗活性化合物组成,其中,治疗活性化合物以稳定的无定形态掺合或分散在离子聚合物中以产生化合物/聚合物复合体。本发明的另一方面是不溶于水的化合物/聚合物复合体。本发明的复合体通过治疗活性化合物在离子载体的微沉淀形成。
本发明的化合物/聚合物复合体可以是固体的形式(如糊、颗粒、粉末),固体形式能填入胶囊或压成片剂。粉末状的复合体还可充分粉化或微米化形成稳定的液体悬浮液或半固体分散体。本发明的复合体可在体内肠胃外给药之前通过如γ-辐射或电子束辐射来消毒。
本发明涉及一种稳定的水不溶的复合体,这种稳定的水不溶的复合体由一种分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃水不溶的离子聚合物载体,和一种以稳定的无定形态存在的治疗活性化合物组成。本发明还涉及制造这种复合体和含有这种复合体的药物制剂的方法。本发明的复合体的优点包括能充分增加相对不溶的治疗活性化合物的生物利用率以及能延长这种化合物的传递时间(即,将这种的复合体缓释入血流)。
在本文中,下列术语具有下列含义。
“化合物/聚合物复合体”或“水不溶复合体”是指一种物理稳定的产品,该产品是根据本文所述的方法将治疗活性化合物和水不溶离子聚合物共沉淀(“微沉淀”)形成的。
“分散”是指治疗活性化合物在离子聚合物中的随机分布。
“溶解速率”是指特殊的化合物在体外溶于生理性流体的速度。
“离子聚合物”或“离子载体聚合物”包括阴离子(带负电荷)和阳离子(带正电荷)聚合物。
“微沉淀”是指将化合物,特别是治疗活性化合物分子分散于聚合物中的任何方法。
“分子分散”是指治疗活性化合物是以细分的最终状态存在于聚合物中。见,例如M.G.Vachon等,微包囊杂志,14(3):281-301(1997);M.A.和Vandelli等,微包囊杂志,10(1):55-65(1993)。
“病人”是指人类患者。
“难溶性治疗活性化合物”是指水溶解度小于1mg/mL,通常小于100μg/mL的治疗活性化合物。
本发明一方面关于药物组合物,包括一种稳定的水不溶复合体,该复合体由离子聚合物的载体大分子和在无定形态稳定的治疗活性化合物组成。当化合物的溶解性差,从而很难达到所述化合物的需要的口服生物利用率时,使用这种化合物/聚合物复合体是特别优选的。
根据本发明,当难溶性结晶态的治疗活性化合物和分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃的水不溶离子聚合物进行微沉淀时,该化合物以无定形态分子分散于该离子聚合物中,生成稳定的水不溶复合体。微沉淀可通过例如下列任何一种方法来实现,每种方法都在下文中进一步说明。
a)喷雾干燥法或冷冻干燥法
b)溶剂控制的沉淀
c)pH控制的沉淀
d)热熔挤出工艺
e)超临界流体技术
一旦治疗活性化合物这样分散于离子聚合物中,即使是在长期的储存中也保持着其无定形结构,即它是“稳定的”。此外,离子聚合物保护化合物不受有害的外部环境因素如潮湿和热的影响,因此保持着增强的溶解性和因此增强的生物利用率。
根据本发明包含于复合体无定形态的治疗活性化合物比该化合物在结晶态的生物利用率显著提高,并且在长期贮存中很稳定。此外,由于复合体在肠胃流体中控制的溶解速率,复合体提供给分散于化合物/聚合物复合体中的治疗活性化合物以缓释特性。
本发明可用于任何治疗活性化合物,特别是在水中的溶解度小手1mg/mL,特别是小于100μg/mL的治疗活性化合物。这样的难溶性治疗活性化合物包括,例如类维生素A和蛋白酶抑制剂。特别地,本发明特别适用于下列治疗化合物:
Figure C9911940600261
Figure C9911940600271
在结晶态时,上述化合物I具有特别差的水溶解度(<10μg/mL)和生物利用率。
本发明还可用于化合物tolcapone(由Roche Laboratories公司销售,商标名Tasmar),化合物1,3-顺-视黄酸(可自Roche Laboratories公司购得,商标名ACCUTANE),化合物saquinavir(由Roche Laboratories公司销售,商标名FORTOVASETM)和下列化合物:
根据本发明,适用的离子聚合物是阳离子或阴离子聚合物,其分子量大于80,000道尔顿,玻璃态转化温度等于或大于50℃,并且是相对不溶于水且优选具有pH依赖性溶解度的。这样的聚合物的实例包括聚丙烯酸酯(例如Eudragit,Rohm America),几丁聚糖,Carbopol(BF Goodrich),聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素。根据本发明,水不溶复合体还可是由上述离子聚合物的两种或多种的混合物组成的(见,例如实施例9和10)。
特别优选的阴离子聚合物包括EugragitL100-55(甲基丙烯酸和丙烯酸乙酯共聚物)和EugragitL100或EugragitS100(甲基丙烯酸和甲基丙烯酸甲酯共聚物),所有这些均购自Rohm America。EugragitL100-55在pH大于5.5时是可溶的,当pH小于5.5时,几乎不溶。EugragitL100-55的分子量大约250,000D,玻璃态转化温度是110℃。EugragitL100在pH大于6是可溶的,当pH小于6,几乎不溶。EugragitL100的分子量约为135,000D,玻璃态转化温度大约150℃。EugragitS100在pH大于7是可溶的,当pH小于7,几乎不溶。EugragitS100的分子量约为135,000D,玻璃态转化温度大约160℃。
特别优选的阳离子聚合物包括EugragitE(Rohm America),这是一种二甲基氨基乙基甲基丙烯酸酯和中性甲基丙烯酸酯的共聚物。这种聚合物在pH小于4是可溶的,当pH大于4,几乎不溶。EugragitE的分子量约为150,000D,玻璃态转化温度约为50℃。
包含本发明的水不溶复合体的本发明药物组合物可以本领域已知的方式制造,例如,常规的混合,研磨,封入胶囊,溶解,浓缩,成粒的方法或冷冻干燥工艺。除了水不溶复合体外,这些药物组合物还可包括除了离子聚合物外的治疗惰性的无机或有机载体(“制药可接受的载体”)和/或赋形剂。用于片剂、糖衣片剂、糖衣丸和硬胶囊的制药可接受的载体包括乳糖、玉米淀粉或其衍生物、滑石粉、硬脂酸或其盐。适用于软胶囊的载体包括植物油、蜡、脂肪和半固体或液体多元醇。
本发明药物组合物还可含有防腐剂、增溶剂、稳定剂、润湿剂、乳化剂、甜味剂、着色剂、增香剂、改变渗透压的盐、缓冲剂、包衣剂或抗氧化剂。这些组合物还可含有另外的治疗活性化合物或超过一种的治疗活性化合物/聚合物复合体。
制备方法
在本发明的一个实施方案中,本发明的水不溶复合体是采用下列方法之一来制备。
a)喷雾干燥法或冷冻干燥法:将治疗活性化合物和离子聚合物溶于共同的低沸点溶剂,如乙醇、甲醇、丙酮等。通过喷雾干燥或冷冻干燥的方法,将溶剂蒸发掉,留下治疗活性化合物以无定形态微沉淀于离子聚合物基质中。对于那些在优选的溶剂中无充分的溶解度(>5%)的治疗活性化合物,这一技术是不优选的。
b)溶剂控制的沉淀:将治疗活性化合物和离子聚合物溶于共同的溶剂中,例如二甲基乙酰胺、二甲基甲酰胺等。将治疗活性化合物/聚合物溶液加至冷水(2℃-5℃)中,调至适当的pH。需要的pH取决于使用的聚合物,并是本领域技术人员易于确定的。这导致治疗活性化合微沉淀于聚合物基质中。微沉淀物用水介质清洗几次,直至残留的溶剂降至该溶剂允许的极限。每种溶剂“允许的极限”是按照国际调和联合会准则(InternationalConference on Harmonization(ICH)guideline)确定的。
c)pH控制的沉淀法:在本工艺中,治疗活性化合物在离子聚合物中的微沉淀通过剧烈改变溶液的pH来控制。将治疗活性化合物和离子聚合物在高pH(例如pH~9)溶解并通过降低溶液的pH(例如至~1)而沉淀,或反之亦然。这种方法特别适用于具有pH依赖性溶解度的治疗活性化合物。
d)热熔挤出工艺:治疗活性化合物在具有热塑性的离子聚合物中的微沉淀可通过热熔挤出工艺来实现。在合适的混料机中,将结晶态的治疗活性化合物和聚合物混合,并连续不断地运送到温控的挤压机中,导致治疗活性化合物分子分散于熔融的离子聚合物中。将得到的挤出物冷却至室温并研磨成细粉。
e)超临界流体技术:将治疗活性化合物和离子聚合物溶于超临界流体如液氮或液态二氧化碳中。通过蒸发除去超临界流体,留下治疗活性化合物微沉淀于聚合物基质中。在另一方法中,治疗活性化合物和离子聚合物溶于适当的溶剂中。通过将溶液喷入作为逆溶剂的超流体中形成微沉淀的粉末。
在本发明的另一实施方案中,制备药物制剂可根据上述步骤中的任何一步,加上最后一步即通过本领域已知的方法将本发明化合物/聚合物复合体制成制剂。
在本发明的优选实施方案中,治疗活性化合物和离子聚合物溶于有机溶剂。之后,化合物和离子聚合物几乎同时共沉淀,优选在水溶液中并优选在化合物或聚合物均不能溶解的pH条件下。
用于溶解治疗活性化合物和离子聚合物的有机溶剂应当对所用的难溶性化合物和聚合物均有良好的溶解性。这些溶剂包括乙醇、甲醇、丙酮二甲基亚砜、二甲基乙酰胺、二甲基甲酰胺、N-甲基吡咯烷酮、Transcutol(二乙二醇单乙基醚,Gattefosse,公司)、呋喃亚甲基乙二醇(glycofural)、丙烯碳酸酯、四氢呋喃、聚乙二醇和丙二醇。
共沉淀治疗活性化合物和离子聚合物时所选择的pH取决于每种要沉淀的具体聚合物和化合物的溶解性。本领域技术人员能容易地确定共沉淀每种聚合物和治疗活性化合物的结合所需的优选pH。在一个使用了选自EudragitL100-55,EudragitL100和EudragitS100的阴离子聚合物的优选实施方案中,溶液在pH低于4时发生沉淀。在另一个使用了EudragitE100的阳离子聚合物的优选实施方案中,溶液在pH大于4时发生沉淀。
获得本发明的稳定的水不溶复合体所必需的治疗活性化合物和聚合物的用量可根据使用的特定的化合物和聚合物,以及特殊的溶剂和沉淀参数而变化。例如,化合物占复合体重量的约0.1-80%。类似地,聚合物通常占复合体重量的不低于20%。优选化合物在复合体中大约占30-70重量%,更优选大约40-60重量%。最优选化合物大约占50%。对于加入了化合物I的复合体,化合物在复合体中约占30-70%,更优选约50%。
一旦化合物/聚合物从溶液中沉淀出来,得到的复合体可通过本领域技术人员已知的步骤从溶液中回收,例如通过过滤、离心、清洗等。然后用本领域已知的方法将回收的物质干燥(风干、烘干或真空干燥)并将得到的固体研磨、粉化或微米化成细粉。然后可将复合体细粉分散于载体中形成药物制剂。
为了获得希望的治疗效果,根据本发明的药物制剂可以任何合适的途径对患者给药。优选的给药途径包括肠胃外给药和口服。
根据本发明的药物制剂包括治疗有效量的治疗活性化合物。治疗有效量是指在这样的剂量和时间下,获得希望的治疗效果必需的量。而且,这样的用量必须是在如此用量下,全部的治疗有益效果超过毒性或不希望的副作用。化合物的治疗有效量经常根据处理的患者病情、年龄和体重而变化。因此,给药方案通常要适应于每个特殊病例中个体的需要量并且是在本领域技术的范围内。
举例来说,对于上述化合物I,对于一个体重约70公斤的成年人给药,合适的日剂量是约10-10,000mg,优选200-1000mg,尽管可能会超过上限,如果这样会指出。
治疗活性化合物日剂量的给药方式可以是单剂量、分剂量,或对于肠胃外给药,可以是皮下注射。
下列实施例参照附图,其中
图1是实施例4的化合物/聚合物复合体与单独药物以及药物与聚合物的物理状态混合物对比的粉末x-射线衍射图谱。
图2是实施例4的化合物/聚合物复合体暴露在加速的应力状态下与未加压(起初)的混合物/聚合物复合体对比的粉末x-射线衍射图谱。
图3是实施例4化合物/聚合物复合体在狗体内的血浆浓度曲线。
图4是化合物II和化合物/聚合物复合体(实施例11)根据本发明微沉淀后的粉末x-射线衍射图谱。
图5是化合物III和化合物/聚合物复合体(实施例13)根据本发明微沉淀后的粉末x-射线衍射图谱。
图6是化合物IV和化合物/聚合物复合体(实施例15)根据本发明微沉淀后的粉末x-射线衍射图谱。
图7是化合物V和化合物/聚合物复合体(实施例16)根据本发明微沉淀后的粉末x-射线衍射图谱。
实施例
下列实施例说明制备本发明的水不溶化合物/聚合物复合体以及含有该复合体的药物制剂的方法。
对于本文所报道的实施例,试验过的化合物是化合物I、II、III、IV和V,上文给出了它们的结构。这些化合物几乎不溶于肠胃的流体。在本发明之前,化合物I的结晶不溶态是能得到的该化合物唯一稳定的形态。
一般步骤
适用于实施例1的步骤(微米化化合物)
使用流体能量磨将化合物I微粉化,产生平均颗粒大小为10微米。这一步骤不改变化合物I的结晶态。
适用于实施例2的步骤(毫微化的化合物)
将10%的化合物I悬浮液在含有5%Klucel EF(羟丙基纤维素,AqualonCorp.)作为保护胶体防止凝聚的水介质中湿磨。在Dynomill中以批处理的方式研磨24小时,用0.25mm玻璃珠作为研磨介质。得到的悬浮液的平均颗粒大小是700nm,干燥悬浮液后得到的残留物说明化合物是以结晶态存在。
适用于实施例3的步骤(Pluronic F68分散体)
使用热熔技术制备90%Pluronic F68(聚合物)的10%化合物II的分散体。在60℃将化合物混入熔融的Pluronic F68中,然后将分散体加热至180℃以溶解化合物I。将溶液冷却至室温生成固体物质。熔融分散体的粉末x-射线衍射(“XRD”)图谱与Pluronic F68的相似。这一XRD显示化合物I是以无定形态存在于固体分散体中。通过这一技术得到的固体分散体在用于用药动物前进一步分散于水介质中。
适用于实施例4-12和15-16的步骤(根据本发明的分子分散)
根据本发明的方法,将化合物I、II、IV或V和在每个例子中标明的特定聚合物(例如,EudragitL100-55、EudragitL100或EudragitS100)溶在二甲基乳酰胺中。
将产生的溶液在pH2下缓慢加入到冷(2℃-5℃)的水溶液中,引起化合物和共聚物作为一种不溶基质共沉淀,其中化合物分子分散在聚合物中。在每种情况下用冷(2℃-5℃)水溶液在pH2清洗沉淀数次直到残留的二甲基乳酰胺低于0.2%。沉淀在40℃下强制空气炉干燥24小时至潮气低于2%,并使用一个Fitz Mill(Fitzpatrick)和前刀在低速下研磨,0号筛过筛至所需的微粒大小。要求的平均微粒大小在5-400μm是90%。
适用于实施例13-14的步骤(化合物III)
根据上述的方法,将化合物III和在每个例子中标明的特定聚合物(例如,EudragitL100-55、EudragitL100、羟丙基甲基纤维素邻苯二甲酸酯(HP-50)或EudragitS100)溶在乙醇中。
将产生的溶液要么在40℃真空炉干燥24小时,直到干燥时损失的重量少于2%,或者换之以喷雾干燥。作为这一工艺的结果,化合物和共聚物共沉淀为一种不溶基质,其中化合物分子分散在聚合物中。产生的干燥薄膜用杵/研钵研磨,并过60目的筛子。
数据
下表1总结了实施例1-16的结果。表1详细说明各个治疗活性化合物、以及适用的情况下制备的化合物/聚合物复合体、制备化合物/聚合物复合体的方法和每一实施例得到产品的物理特性。
                                        表1:例1-14总结
   例#           组成(%w/w)     制备方法     所得产品特性
    1   化合物I             100%(微米化)     流体能量磨   XRD-晶体,微粒大小50%-10μm
    2   化合物I             67%Kluel EF         33%     使用0.25mm的玻璃珠湿磨   XRD-晶体,微粒大小50%-0.7μm
    3   化合物I             10%Pluronic F68        90%     在约180℃热熔挤出   XRD-无定形
    4   化合物I             30%Eudragit L100-55    70%     溶剂控制的沉淀   XRD-无定形(图1和2)
    5   化合物I             50%Eudragit L100-55    50%     溶剂控制的沉淀   XRD-无定形
    6   化合物I             70%Eudragit L100-55    30%     溶剂控制的沉淀   XRD-无定形
    7   化合物I             30%Eudragit L100       70%     溶剂控制的沉淀   XRD-无定形
    8   化合物I             50%Eudragit L100       50%     溶剂控制的沉淀   XRD-无定形
    9   化合物I             15%Eudragit L100-55    42.5%Eudragit S100       42.5%     溶剂控制的沉淀   XRD-无定形
    10   化合物I             30%Eudragit L100-55    35%Eudragit S100       35%     溶剂控制的沉淀   XRD-无定形
    11   化合物II            30%Eudragit L100       70%     溶剂控制的沉淀   XRD-无定形(图4)
    12   化合物II            30%HP-50*             70%     溶剂控制的沉淀   XRD-无定形
    13   化合物III           30%Eudragit L100       70%     喷雾干燥   XRD-无定形(图5)
    14   化合物III           50%Eudragit L100       50%     喷雾干燥   XRD-无定形
    15   化合物IV            20%Eudragit L100       80%     溶剂控制的沉淀   XRD-无定形(图6)
    16   化合物V             30%Eudragit L100       70%     溶剂控制的沉淀   XRD-无定形(图7)
*羟丙基甲基纤维素邻苯二甲酸酯
在实施例4得到的复合体粉末x-射线衍射(“XRD”)图谱如图1和表1所示。即根据本发明当化合物I包括在离子聚合物中时,它显现无定形态。
表1和图4-7也表明本发明的方法在提供化合物II、III、IV和V在无定形态很有用。
化合物I被包含到离子聚合物中,该保护化合物免受外界环境例如潮气和热的影响。这一结果在图2说明,其中通过粉末X-射线衍射表明,包埋在聚合物中的化合物I即使在加速的贮存条件下也保持无定形特性。复合体即使在加速的条件下也保持无定形态的能力归因于聚合物的高分子量(>80,000)、高玻璃转化温度(>50℃)和水不溶性。
另外,如下表2所示,根据本发明当化合物I分子分散在离子聚合物中时,化合物I在狗中的生物有效性比当化合物以传统方式(微米化或湿磨)施加到动物时意想不到地高。在表2也表明了从通过热熔方法用PluronicF68(含聚氧乙烯和聚氧丙烯链的非离子水溶聚合物,BASF)制备的固体分散的化合物I获得的生物有效性。尽管以固体分散的化合物的生物有效性比当该化合物被微米化或存在于湿磨悬浮液中好,对药学产品而言固体分散的生物稳定性是不令人满意的,因为显然化合物通过在外界条件下在一个月的贮存时间复原到其结晶态。上述结果表明在非离子水溶聚合物中制备固体分散药学产品的技术是不适用的。
表2:对四只动物(两雄两雌)单剂量口服(10mg/kg)*后化合物I在狗中的生物有效性
    制剂     AUC0-∞/剂量(nghml)/(mg/kg)   %生物有效性**
    微米化药物悬浮液(实施例1)     29.5±8.3     3.85
    湿磨药物悬浮液(实施例2)     86.1±13.7     11.2
    Pluronic F68固体悬浮液***(实施例3)     532±152     69.5
    化合物/聚合物复合体(实施例4)     529±189     69.1
    化合物/聚合物复合体(实施例5)     560±72     73.1
    化合物/聚合物复合体(实施例6)     588±399     76.8
    化合物/聚合物复合体(实施例7)     604±124     78.9
    化合物/聚合物复合体(实施例8)     768±387     100.3
    化合物/聚合物复合体(实施例9)     415±152     54.2
    化合物/聚合物复合体(实施例10)     264±152     34.5
*结果是对四只动物(两雄两雌)的平均值(有标准偏差)。
**同单剂量静脉施药比较。
***在40℃、75%PH、1wk、开放下暴露后转变为结晶态。
图3表明以实施例4生产的化合物/聚合物复合体不同批次的血浆-时间曲线。这些实验的结果(总结在图3),表明批与批之间的可重复性和一致性。批与批之间的可重复性和一致性是旨在施用于人类患者的任何制剂的一个重要方面。
图4-7表明化合物II、III、IV和V也能使用这种方法转变成无定形态。
总而言之,通过上面表1和2和图1、2和4-7显示的数据,在实施例4-16获得的化合物/聚合物复合体粉末X-射线衍射图谱表明根据本发明分子分散难溶性化合物转变成无定形态,并表明无定形化合物在长期贮存中保持优良的稳定性。

Claims (35)

1.一种药物组合物,它含一种选自下列化合物的治疗活性的、稳定的无定形化合物和一种不溶于水的离子聚合物的水不溶性复合体和一种载体:
Figure C991194060002C1
该离子聚合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,粉末x-射线衍射测定显示,其中治疗活性化合物主要以无定形态分子分散在不溶于水的离子聚合物中,其在水不溶性复合体中的量不低于10重量%,而不溶于水的离子聚合物在水不溶性复合体中的量不低于20重量%。
2.如权利要求1所述的药物组合物,其特征在于离子聚合物是二甲基氨基乙基甲基丙烯酸酯和中性甲基丙烯酸酯的共聚物。
3.如权利要求2所述的药物组合物,其特征在于离子聚合物是EudragitE。
4.如权利要求1所述的药物组合物,其特征在于离子聚合物是甲基丙烯酸和丙烯酸乙酯共聚物或甲基丙烯酸和甲基丙烯酸甲酯共聚物。
5.如权利要求4所述的药物组合物,其特征在于该离子聚合物选自Eudragit L100-55、Eudragit-L100和Eudragit S-100
6.如权利要求1所述的药物组合物,其特征在于离子聚合物选自聚乙酸邻苯二甲酸乙烯醇酯、乙酸邻苯二甲酸纤维素酯、聚氰基丙烯酸酯、羟丙基甲基纤维素邻苯二甲酸酯、乙酸三邻苯二甲酸纤维素酯、乙酰琥珀酸羟丙基甲基纤维素酯、羧甲基纤维素和低取代羟丙基纤维素。
7.如权利要求1所述的药物组合物,其特征在于离子聚合物的溶解度是pH依赖的。
8.如权利要求7所述的药物组合物,其特征在于离子聚合物在大于pH4时是不溶的。
9.如权利要求1所述的药物组合物,其特征在于离子聚合物和在结晶态的治疗活性化合物在大于pH4时都是相对不溶的。
10.如权利要求7所述的药物组合物,其特征在于离子聚合物在小于pH4时是不溶的。
11.如权利要求1所述的药物组合物,其特征在于离子聚合物和在结晶态的治疗活性化合物在小于pH4时都是相对不溶的。
12.如权利要求1所述的药物组合物,其特征在于治疗活性化合物为化合物I。
13.如权利要求1所述的药物组合物,其特征在于治疗活性化合物在不溶于水的复合体中基于上述复合体的重量为30%到70%。
14.一种制备药物组合物的方法,该药学制剂含一种选自下列化合物的稳定的无定形治疗活性化合物和一种离子聚合物的不溶于水的复合体:
Figure C991194060006C1
所述离子聚合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,粉末x-射线衍射测定显示,其中治疗活性化合物主要以无定形态存在于复合体中,其在复合体中的量不低于10重量%,而离子聚合物在复合体中的量不低于20重量%,该方法包括:
(a)将治疗活性化合物和离子聚合物溶解在有机溶剂中;
(b)在离子聚合物难溶的pH下将步骤(a)的溶液与水溶液接触,从而将治疗活性化合物和离子聚合物微沉淀为化合物/聚合物复合体;
(c)制备包括上面步骤(b)的化合物/聚合物复合体的药学制剂。
15.如权利要求14所述的方法,其特征在于在步骤(a),治疗活性化合物和离子聚合物溶解在选自乙醇、甲醇、二甲基亚砜、二甲基乙酰胺、二甲基甲酰胺、N-甲基吡咯烷酮、二乙二醇单乙基醚、呋喃亚甲基乙二醇、丙烯碳酸酯、四氢呋喃、聚乙二醇和丙二醇的溶剂中。
16.如权利要求14所述的方法,其特征在于在步骤(b),通过喷雾干燥或冷冻干燥去除溶剂进行微沉淀。
17.如权利要求14所述的方法,其特征在于在步骤(a),通过调节pH溶解不溶性的治疗活性化合物和离子化合物聚合物。
18.如权利要求14所述的方法,其特征在于在步骤(b)后去除残留的溶剂。
19.如权利要求18所述的方法,其特征在于通过清洗化合物/聚合物复合体去除残留溶剂。
20.如权利要求18所述的方法,其特征在于通过蒸发或干燥去除残留溶剂。
21.如权利要求20所述的方法,其特征在于通过喷雾干燥去除残留溶剂。
22.一种制备药学制剂的方法,该药学制剂含一种选自下列化合物的稳定的无定形治疗活性化合物和一种离子聚合物的不溶于水的复合体:
所述离子聚合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,粉末x-射线衍射测定显示,治疗活性化合物主要以无定形态存在于复合体中,其在复合体中的量不低于10重量%,而离子聚合物在复合体中的量不低于20重量%,该方法包括:
(a)将在结晶态的治疗活性化合物和离子聚合物溶解在有机溶剂中;
(b)在离子聚合物和治疗活性化合物将作为化合物/聚合物基质沉淀的pH下将步骤(a)的产物与水溶液接触;
(c)清洗化合物/聚合物基质;
(d)干燥化合物/聚合物基质;
(e)制备掺合在上述步骤(b)中清洗和干燥的化合物/聚合物基质中的药学制剂。
23.如权利要求22所述的方法,其特征在于离子聚合物选自EudragitE100、Eudragit L100、Eudragit L100-55和Eudragit S100
24.一种制备含一种选自下列化合物的稳定的无定形化合物和一种离子聚合物的不溶于水的复合体的方法:
Figure C991194060010C1
Figure C991194060011C1
所述离子聚合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,粉末x-射线衍射测定显示,化合物主要以无定形态存在于复合体中,其在复合体中的量不低于10重量%,而离子聚合物在复合体中的量不低于20重量%,该方法包括:
(a)将治疗活性化合物和离子聚合物融化在一起;并
(b)将步骤(a)产生的混合物冷却。
25.一种制备药学制剂的方法,该药学制剂含一种选自下列化合物的稳定的无定形治疗活性化合物和一种离子聚合物的不溶于水的复合体:
Figure C991194060012C1
所述离子聚合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,粉末x-射线衍射测定显示,治疗活性化合物主要以无定形态存在于复合体中,其在复合体中的量不低于10重量%,而离子聚合物在复合体中的量不低于20重量%,该方法包括:
(a)将治疗活性化合物和离子聚合物溶解在超临界流体中;
(b)去除超临界流体使得治疗活性化合物在离子聚合物基质进行微沉淀;并
(c)制备包括上述步骤(b)的产物的药学制剂。
26.如权利要求25所述的方法,其特征在于在步骤(a)使用的超临界流体选自液氮和液态二氧化碳。
27.如权利要求25所述的方法,其特征在于在步骤(b)通过蒸发完成超临界流体的去除。
28.一种稳定的不溶于水的复合体,通过如下制备:
(a)将化合物I
和不溶于水的离子聚合物溶解在合适的溶剂中,这种离子化合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或
多种的混合物;并
(b)将化合物I和离子聚合物作为化合物/聚合物复合体共沉淀,粉末x-射线衍射测定显示,化合物I分子分散在化合物/聚合物复合体中,其在复合体中的量不低于10重量%,而离子聚合物在复合体中的量不低于20重量%。
29.如权利要求28所述的复合体,其特征在于步骤(b)的沉淀是在离子聚合物难溶的pH下将步骤(a)的溶液与水溶液接触进行的。
30.一种含一种选自下列化合物的稳定的无定形化合物和一种不溶于水的离子聚合物的不溶于水的复合体:
Figure C991194060015C1
这种离子化合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,粉末x-射线衍射测定显示,治疗活性化合物主要以无定形态存在于复合体中,其在复合体中的量不低于10重量%,而离子聚合物在复合体中的量不低于20重量%。
31.如权利要求30所述的复合体,其特征在于无定形化合物在结晶态是难溶的。
32.如权利要求30所述的复合体,其特征在于所述的无定形态化合物是化合物I。
33.一种稳定一种无定形态化合物的方法,所述无定形态是由粉末x-射线衍射测定的,该无定形态化合物选自下列化合物:
包括将该化合物分子分散在一种不溶于水的离子聚合物中,这种离子聚合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,得到水不溶性复合体,其中无定形态化合物在复合体中的量不低于10重量%,而离子聚合物在复合体中的量不低于20重量%。
34.一种将难溶性的结晶态化合物转变为稳定的所述化合物的无定形态的方法,所述无定形态是由粉末x-射线衍射测定的,该化合物选自下列化合物:
Figure C991194060018C1
Figure C991194060019C1
包括将该化合物分子分散在一种不溶于水的离子聚合物中,这种离子聚合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,得到水不溶性复合体,其中无定形态化合物在复合体中的量不低于10重量%,而离子聚合物在复合体中的量不低于20重量%。
35.一种水不溶性复合体,其包含以稳定的无定形态的分子分散在一种不溶于水的离子聚合物中的治疗活性化合物,所述治疗活性化合物选自下列化合物:
Figure C991194060019C2
Figure C991194060020C1
这种离子聚合物的分子量大于80,000道尔顿且玻璃态转化温度等于或大于50℃,其选自聚丙烯酸酯,几丁聚糖,羧酸乙烯基聚合物,聚乙酸邻苯二甲酸乙烯醇酯,乙酸邻苯二甲酸纤维素酯,聚氰基丙烯酸酯,羟丙基甲基纤维素邻苯二甲酸酯,乙酸三邻苯二甲酸纤维素酯,乙酰琥珀酸羟丙基甲基纤维素酯,羧甲基纤维素和低取代羟丙基纤维素,或上述离子聚合物的两种或多种的混合物,粉末x-射线衍射测定显示,治疗活性化合物主要以无定形态分子分散在不溶于水的离子聚合物中,其在水不溶性复合体中的量不低于10重量%,而不溶于水的离子聚合物在水不溶性复合体中的量不低于20重量%。
CNB991194063A 1998-09-22 1999-09-21 难溶性化合物的稳定复合体 Expired - Lifetime CN1201821C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10133698P 1998-09-22 1998-09-22
US60/101,336 1998-09-22
US13653199P 1999-05-28 1999-05-28
US60/136,531 1999-05-28

Publications (2)

Publication Number Publication Date
CN1251312A CN1251312A (zh) 2000-04-26
CN1201821C true CN1201821C (zh) 2005-05-18

Family

ID=26798138

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991194063A Expired - Lifetime CN1201821C (zh) 1998-09-22 1999-09-21 难溶性化合物的稳定复合体

Country Status (33)

Country Link
US (1) US6350786B1 (zh)
EP (1) EP0988863B2 (zh)
JP (5) JP2000095708A (zh)
KR (1) KR100362019B1 (zh)
CN (1) CN1201821C (zh)
AR (2) AR022096A1 (zh)
AT (1) ATE265232T1 (zh)
AU (1) AU770745B2 (zh)
BR (1) BR9904283A (zh)
CA (1) CA2282906C (zh)
CO (1) CO5140077A1 (zh)
CZ (1) CZ300215B6 (zh)
DE (1) DE69916733T3 (zh)
DK (1) DK0988863T4 (zh)
ES (1) ES2218918T5 (zh)
HK (1) HK1026632A1 (zh)
HR (1) HRP990287B1 (zh)
HU (1) HU228341B1 (zh)
ID (1) ID24034A (zh)
IL (1) IL131957A (zh)
MA (1) MA26692A1 (zh)
MY (1) MY124377A (zh)
NO (1) NO326928B1 (zh)
NZ (1) NZ337884A (zh)
PE (1) PE20001049A1 (zh)
PL (1) PL202757B1 (zh)
PT (1) PT988863E (zh)
RS (1) RS50193B (zh)
RU (1) RU2240827C2 (zh)
SG (1) SG97131A1 (zh)
SI (1) SI0988863T2 (zh)
TR (1) TR199902324A3 (zh)
TW (1) TWI234465B (zh)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2307482T3 (es) 1999-02-10 2008-12-01 Pfizer Products Inc. Dispersiones farmaceuticas solidas.
US6440959B1 (en) 1999-04-21 2002-08-27 Hoffman-La Roche Inc. Pyrazolobenzodiazepines
CO5210860A1 (es) * 1999-10-01 2002-10-30 Hoffmann La Roche Nuevos derivados de pirimidina-2,4,6-triona
US6313143B1 (en) * 1999-12-16 2001-11-06 Hoffmann-La Roche Inc. Substituted pyrroles
AU5543801A (en) * 2000-05-16 2001-11-26 Ortho Mcneil Pharm Inc Process for coating medical devices using super-critical carbon dioxide
US6482847B2 (en) * 2000-10-03 2002-11-19 Hoffmann-La Roche Inc. Amorphous form of cell cycle inhibitor having improved solubility and bioavailability
US6469179B1 (en) 2000-10-03 2002-10-22 Hoffmann-La Roche Inc. Amorphous form of cell cycle inhibitor having improved solubility and bioavailability
US20050048126A1 (en) 2000-12-22 2005-03-03 Barrett Rabinow Formulation to render an antimicrobial drug potent against organisms normally considered to be resistant to the drug
US9700866B2 (en) 2000-12-22 2017-07-11 Baxter International Inc. Surfactant systems for delivery of organic compounds
US8067032B2 (en) 2000-12-22 2011-11-29 Baxter International Inc. Method for preparing submicron particles of antineoplastic agents
US6548531B2 (en) 2001-02-09 2003-04-15 Hoffmann-La Roche Inc. Method for cancer therapy
US6716845B2 (en) 2001-03-30 2004-04-06 Hoffmann-La Roche Inc. Barbituric acid derivatives
AU2002310567B2 (en) * 2001-05-30 2005-10-20 Csir Method of encapsulating an active substance
US20030044514A1 (en) * 2001-06-13 2003-03-06 Richard Robert E. Using supercritical fluids to infuse therapeutic on a medical device
WO2002102373A1 (en) * 2001-06-15 2002-12-27 F. Hoffmann-La Roche Ag Method for administration of cancer therapeutic
JP2004534812A (ja) 2001-06-22 2004-11-18 ファイザー・プロダクツ・インク 薬物および中性ポリマーの分散物の医薬組成物
MXPA03011933A (es) 2001-06-22 2004-03-26 Pfizer Prod Inc Composiciones farmaceuticas de farmacos y polimeros acidos neutralizados.
US20060003012A9 (en) 2001-09-26 2006-01-05 Sean Brynjelsen Preparation of submicron solid particle suspensions by sonication of multiphase systems
CA2461349C (en) 2001-09-26 2011-11-29 Baxter International Inc. Preparation of submicron sized nanoparticles via dispersion and solvent or liquid phase removal
US20030139373A1 (en) * 2001-11-20 2003-07-24 Breimer Lars Holger Method for cancer therapy
MXPA04007433A (es) 2002-02-01 2004-10-11 Pfizer Prod Inc Procedimiento para preparar dispersiones solidas amorfas homogeneas de farmaco secadas por pulverizacion utilizando un dispositivo de secado por pulverizacion modificado.
DE60329188D1 (de) 2002-08-12 2009-10-22 Bend Res Inc Arzneizubereitungen bestehend aus arzneimitteln in halb-geordneter form und polymeren
DE10351087A1 (de) * 2003-10-31 2005-05-25 Bayer Technology Services Gmbh Feste Wirkstoff-Formulierung
WO2005046697A1 (ja) * 2003-11-14 2005-05-26 Ajinomoto Co., Inc. フェニルアラニン誘導体の徐放性経口投与製剤
PL1683524T3 (pl) * 2003-11-14 2011-06-30 Ea Pharma Co Ltd Stała dyspersja lub preparat farmaceutyczny stałej dyspersji pochodnej fenyloalaniny
JP4787240B2 (ja) * 2004-04-01 2011-10-05 ユニベルシテ・ド・リエージュ ピリミジン−2,4,6−トリオンのシクロデキストリン包接複合体
AR049915A1 (es) * 2004-06-14 2006-09-13 Anacor Pharmaceuticals Inc Compuestos con contenido de boro y metodos de uso de los mismos
WO2006062980A2 (en) * 2004-12-07 2006-06-15 Nektar Therapeutics Stable non-crystalline formulation comprising tiagabine
CN101115469A (zh) * 2004-12-28 2008-01-30 卫材R&D管理有限公司 速崩片及其制造方法
EP1848430B1 (en) * 2004-12-31 2017-08-02 Dr. Reddy's Laboratories Ltd. Novel benzylamine derivatives as cetp inhibitors
US8604055B2 (en) 2004-12-31 2013-12-10 Dr. Reddy's Laboratories Ltd. Substituted benzylamino quinolines as cholesterol ester-transfer protein inhibitors
EP1690528A1 (de) * 2005-02-11 2006-08-16 Abbott GmbH & Co. KG Herstellung von Dosierungsformen mit einer festen Dispersion eines mikrokristallinen Wirkstoffs
JP2008540629A (ja) * 2005-05-19 2008-11-20 ファイザー・インク 非晶形のvegf−r阻害剤を含む医薬組成物
EP1767194A1 (de) * 2005-06-09 2007-03-28 Helm AG Verfahren zur Herstellung von Adsorbaten des Drospirenons
CN102603581B (zh) * 2005-06-22 2015-06-24 普莱希科公司 作为蛋白质激酶抑制剂的吡咯并[2,3-b]吡啶衍生物
US20080031944A1 (en) * 2006-08-04 2008-02-07 Cima Labs Inc. Stabilization of lorazepam
TW200815033A (en) * 2006-08-10 2008-04-01 Cipla Ltd Antiretroviral solid oral composition
US20080107725A1 (en) * 2006-10-13 2008-05-08 Albano Antonio A Pharmaceutical Solid Dosage Forms Comprising Amorphous Compounds Micro-Embedded in Ionic Water-Insoluble Polymers
WO2008063888A2 (en) 2006-11-22 2008-05-29 Plexxikon, Inc. Compounds modulating c-fms and/or c-kit activity and uses therefor
PE20081581A1 (es) * 2006-12-21 2008-11-12 Plexxikon Inc COMPUESTOS PIRROLO[2,3-b]PIRIDINAS COMO MODULADORES DE QUINASA
WO2008079909A1 (en) * 2006-12-21 2008-07-03 Plexxikon, Inc. Pyrrolo [2,3-b] pyridines as kinase modulators
EP2127677A4 (en) * 2006-12-27 2012-05-02 Astellas Pharma Inc AMINO ALKYL METHACRYLATE COPOLYMER FOR MAINTAINING THE SOLUBILITY OF A HEAVY WATER-SOLUBLE MEDICAMENT
JP2010526848A (ja) * 2007-05-11 2010-08-05 エフ.ホフマン−ラ ロシュ アーゲー 難溶性薬物用の医薬組成物
US8426467B2 (en) 2007-05-22 2013-04-23 Baxter International Inc. Colored esmolol concentrate
US8722736B2 (en) 2007-05-22 2014-05-13 Baxter International Inc. Multi-dose concentrate esmolol with benzyl alcohol
EP1997479A1 (en) * 2007-05-31 2008-12-03 Helm AG Stabilized amorphous candesartan cilexetil compositions for oral administration
US20100190777A1 (en) 2007-07-17 2010-07-29 Plexxikon Inc. Compounds and methods for kinase modulation, and indications therefor
AU2008312321A1 (en) * 2007-10-19 2009-04-23 Purdue Research Foundation Solid formulations of crystalline compounds
US8632805B2 (en) * 2008-06-20 2014-01-21 Mutual Pharmaceutical Company, Inc. Controlled-release formulations, method of manufacture, and use thereof
US7794750B2 (en) * 2008-06-20 2010-09-14 Mutual Pharmaceutical Company, Inc. Controlled-release formulations, method of manufacture, and use thereof
US20100099696A1 (en) * 2008-10-16 2010-04-22 Anthony Edward Soscia Tamper resistant oral dosage forms containing an embolizing agent
KR20100073454A (ko) * 2008-12-23 2010-07-01 국립암센터 트란스글루타미나제 억제제로 사용되는 신규한 피라졸로디아제핀계 화합물, 이의 제조방법 및 이를 포함하는 조성물
CR20170089A (es) * 2009-04-03 2017-07-17 Plexxikon Inc Composiciones del acido propano-1--sulfonico {3-[5-(4-cloro-fenil)-1h-pirrolo [2,3-b] piridina-3-carbonil] -2,4-difluoro-fenil}-amida y el uso de las mismas
US8329724B2 (en) 2009-08-03 2012-12-11 Hoffmann-La Roche Inc. Process for the manufacture of pharmaceutically active compounds
NZ599866A (en) 2009-11-06 2014-09-26 Plexxikon Inc Compounds and methods for kinase modulation, and indications therefor
CN103153306A (zh) * 2010-05-31 2013-06-12 安斯泰来制药有限公司 三唑化合物的固体分散体
MA34948B1 (fr) 2011-02-07 2014-03-01 Plexxikon Inc Composes et procedes de modulation de kinase, et leurs indications
KR20140006879A (ko) 2011-02-17 2014-01-16 에프. 호프만-라 로슈 아게 고온 용융 압출에 의해 활성 약학 성분을 과냉된 액체 상태로부터 제어되는 방식으로 결정화시키는 방법
TWI558702B (zh) 2011-02-21 2016-11-21 普雷辛肯公司 醫藥活性物質的固態形式
MX2014001849A (es) 2011-08-18 2014-10-24 Reddys Lab Ltd Dr Compuestos de amina heterociclicos sustituidos como inhibidores de proteina de transferencia de ester colesterilo (cetp).
WO2013037396A1 (en) * 2011-09-12 2013-03-21 Bioneer A/S Solution of polymer in api for a solid dosage form
CN103958511A (zh) 2011-09-27 2014-07-30 雷迪博士实验室有限公司 作为胆固醇酯转移蛋白(CETP)抑制剂用于治疗动脉粥样硬化的5-苄基氨基甲基-6-氨基吡唑并[3,4-b]吡啶衍生物
SG11201401459YA (en) * 2011-10-14 2014-07-30 Array Biopharma Inc Solid dispersions of a erb2 (her2) inhibitor
EP4252855A3 (en) 2012-03-23 2023-11-15 Array Biopharma, Inc. Compounds for use in the treatment of brain metastases in a patient with erbb2+ breast cancer
US20140128431A1 (en) 2012-04-03 2014-05-08 Hoffmann-Laroche Inc. Pharmaceutical composition with improved bioavailability, safety and tolerability
EP2649989B1 (en) 2012-04-13 2017-10-18 King Saud University Method for preparing a solid dispersion, solid dispersion obtained thereby and use thereof
US9150570B2 (en) 2012-05-31 2015-10-06 Plexxikon Inc. Synthesis of heterocyclic compounds
JO3339B1 (ar) * 2012-09-11 2019-03-13 Shanghai Inst Pharmaceutical Ind شكل مستقر غير متبلور من الأغوميلاتين وعملية تحضيره والتركيبات الدوائية التي تحتوي عليه
AU2013346501B2 (en) 2012-11-19 2017-07-13 Dr. Reddy's Laboratories Ltd. Pharmaceutical compositions of CETP inhibitors
RU2015128794A (ru) * 2012-12-20 2017-01-25 КАШИВ ФАРМА, ЭлЭлСи Композиция перорально распадающейся таблетки, обеспечивающая повышенную биодоступность
JP6192244B2 (ja) 2013-01-22 2017-09-06 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 改良されたバイオアベイラビリティを有する薬学的組成物
TWI615157B (zh) 2013-02-06 2018-02-21 大塚製藥股份有限公司 包括不定形西洛他唑的固體分散劑
WO2015038376A1 (en) * 2013-09-11 2015-03-19 3M Innovative Properties Company Coating compositions, dental structures thereof and methods for generating contrast
EP3076951B1 (en) * 2013-12-05 2020-09-30 Celal Albayrak Process for the production of drug formulations for oral administration
PT107846B (pt) * 2014-08-01 2019-03-22 Hovione Farm S A Produção de nano- partículas de dispersões sólidas amorfas por co-precipitação controlada
CA2987517A1 (en) * 2015-05-29 2016-12-08 Sun Pharmaceutical Industries Limited Oral pharmaceutical composition of isotretinoin
WO2018108079A1 (zh) * 2016-12-13 2018-06-21 南京药捷安康生物科技有限公司 多激酶抑制剂化合物、其晶型及用途
MA49059A (fr) 2017-04-28 2021-03-24 Seagen Inc Traitement des cancers positifs à her2
KR102082775B1 (ko) * 2017-05-02 2020-02-28 주식회사 삼양바이오팜 수용해도 및 생체이용율이 개선된 조성물
RU2725879C2 (ru) * 2018-07-26 2020-07-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский Государственный медицинский университет" Министерства здравоохранения Российской Федерации Интерполимерный носитель для пероральных систем контролируемой доставки активных фармацевтических ингредиентов
CN113056457A (zh) 2018-12-03 2021-06-29 H.隆德贝克有限公司 4-((1R,3S)-6-氯-3-苯基-2,3-二氢-1H-茚-1-基)-1,2,2-三甲基哌嗪和4-((1R,3S)-6-氯-3-(苯基-d5)-2,3-二氢-1H-茚-1-基)-2,2-二甲基-1-(甲基-d3)哌嗪的前药
EP4093379A1 (en) 2020-01-24 2022-11-30 Nanocopoeia LLC Amorphous solid dispersions of dasatinib and uses thereof
JP2023513045A (ja) 2020-01-31 2023-03-30 ナノコピーア リミテッド ライアビリティ カンパニー 非晶質ニロチニブ微粒子及びその使用
WO2021177320A1 (ja) 2020-03-03 2021-09-10 デクセリアルズ株式会社 画像表示装置の製造方法
WO2021222739A1 (en) 2020-04-30 2021-11-04 Nanocopoeia, Llc Orally disintegrating tablet comprising amorphous solid dispersion of nilotinib

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118816A (en) * 1975-04-08 1976-10-19 Meiji Seika Kaisha Ltd A process for stabilizing non-crystalloidal solid
US4344934A (en) * 1978-11-20 1982-08-17 American Home Products Corporation Therapeutic compositions with enhanced bioavailability
JPS62155263A (ja) * 1985-11-27 1987-07-10 シンテツクス(ユ−・エス・エイ)インコ−ポレイテツド アモルフアス−ベンズイミダゾ−ル誘導体
CZ280738B6 (cs) * 1988-02-10 1996-04-17 F. Hoffmann - La Roche And Co., Aktiengesellschaft Substituované pyrroly, jejich použití pro výrobu léčiv a léčiva na jejich bázi
JP2528706B2 (ja) 1988-05-30 1996-08-28 ゼリア新薬工業株式会社 ジヒドロピリジン化合物の製剤組成物
USRE36736E (en) 1989-02-06 2000-06-13 Hoffman-La Roche Inc. Substituted pyrroles
JPH0729926B2 (ja) 1989-07-25 1995-04-05 大塚製薬株式会社 易吸収性製剤用組成物
US5399363A (en) 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
EP0580860B2 (en) 1991-04-16 2004-12-15 Nippon Shinyaku Company, Limited Method of manufacturing solid dispersion
US5281420A (en) 1992-05-19 1994-01-25 The Procter & Gamble Company Solid dispersion compositions of tebufelone
TW493991B (en) 1995-05-08 2002-07-11 Novartis Ag Pharmaceutical composition for oral administration of active agent having low water solubility and process for preparation of the same
GB9511220D0 (en) 1995-06-02 1995-07-26 Glaxo Group Ltd Solid dispersions
WO1997004782A1 (fr) * 1995-07-26 1997-02-13 Kyowa Hakko Kogyo Co., Ltd. Dispersion solide ou preparation a dispersion solide de derives xanthine
WO1997008950A1 (en) 1995-09-07 1997-03-13 Fuisz Technologies, Ltd. System for rendering substantially non-dissoluble bio-affecting agents bio-available
DE19548624A1 (de) 1995-12-23 1997-06-26 Boehringer Mannheim Gmbh Neue Barbitursäure-Derivate, Verfahren zu deren Herstellung und diese Verbindungen enthaltende Arzneimittel
JPH09208459A (ja) * 1996-02-07 1997-08-12 Eisai Co Ltd 溶解性を改良した製剤
NZ332234A (en) 1996-03-12 2000-06-23 Pg Txl Company Lp Water soluble paclitaxel prodrugs formed by conjugating paclitaxel or docetaxel with a polyglutamic acid polymer and use for treating cancer
AU3483497A (en) * 1996-06-28 1998-01-21 Schering Corporation Solid solution of an antifungal agent with enhanced bioavailability
PE91598A1 (es) 1996-07-29 1998-12-24 Hoffmann La Roche Pirroles sustituidos
US6229011B1 (en) 1997-08-22 2001-05-08 Hoffman-La Roche Inc. N-aroylphenylalanine derivative VCAM-1 inhibitors
CN1127500C (zh) 1998-03-17 2003-11-12 弗·哈夫曼-拉罗切有限公司 抑制细胞增殖的取代双吲哚基马来酰亚胺

Also Published As

Publication number Publication date
YU47399A (zh) 2002-08-12
AU4880799A (en) 2000-03-23
ATE265232T1 (de) 2004-05-15
DK0988863T3 (da) 2004-08-30
CZ300215B6 (cs) 2009-03-18
HU228341B1 (en) 2013-03-28
HK1026632A1 (en) 2000-12-22
RS50193B (sr) 2009-05-06
KR20000023426A (ko) 2000-04-25
ID24034A (id) 2000-07-06
NO994583L (no) 2000-03-23
CZ330499A3 (cs) 2000-04-12
HRP990287B1 (en) 2004-12-31
HU9903189D0 (en) 1999-11-29
JP2016196515A (ja) 2016-11-24
EP0988863B1 (en) 2004-04-28
SG97131A1 (en) 2003-07-18
TR199902324A2 (xx) 2000-04-21
CN1251312A (zh) 2000-04-26
BR9904283A (pt) 2000-09-26
SI0988863T2 (sl) 2009-08-31
CA2282906C (en) 2010-07-20
AU770745B2 (en) 2004-03-04
HRP990287A2 (en) 2000-06-30
PE20001049A1 (es) 2000-10-17
JP6253135B2 (ja) 2017-12-27
MY124377A (en) 2006-06-30
MA26692A1 (fr) 2004-12-20
KR100362019B1 (ko) 2002-11-23
ES2218918T5 (es) 2009-06-23
TWI234465B (en) 2005-06-21
NO326928B1 (no) 2009-03-16
NZ337884A (en) 2001-02-23
DE69916733T2 (de) 2005-03-31
TR199902324A3 (tr) 2000-04-21
AR080892A2 (es) 2012-05-16
AR022096A1 (es) 2002-09-04
JP6534979B2 (ja) 2019-06-26
EP0988863B2 (en) 2009-03-18
DE69916733D1 (de) 2004-06-03
EP0988863A3 (en) 2000-08-09
JP2000095708A (ja) 2000-04-04
JP2015187170A (ja) 2015-10-29
SI0988863T1 (en) 2004-08-31
JP2007224048A (ja) 2007-09-06
HUP9903189A3 (en) 2009-07-28
NO994583D0 (no) 1999-09-21
CO5140077A1 (es) 2002-03-22
PT988863E (pt) 2004-07-30
DE69916733T3 (de) 2009-09-24
EP0988863A2 (en) 2000-03-29
US6350786B1 (en) 2002-02-26
DK0988863T4 (da) 2009-06-08
CA2282906A1 (en) 2000-03-22
ES2218918T3 (es) 2004-11-16
PL202757B1 (pl) 2009-07-31
PL335592A1 (en) 2000-03-27
IL131957A (en) 2005-06-19
HUP9903189A2 (hu) 2000-06-28
IL131957A0 (en) 2001-03-19
JP2013035875A (ja) 2013-02-21
RU2240827C2 (ru) 2004-11-27

Similar Documents

Publication Publication Date Title
CN1201821C (zh) 难溶性化合物的稳定复合体
ES2731881T3 (es) Composiciones que comprenden compuestos activos lipófilos y método para su preparación
CA2384670C (en) Nanoparticulate compositions comprising amorphous cyclosporine and methods of making and using such compositions
CN1147472C (zh) 具有组蛋白脱乙酰酶抑制剂活性的苯甲酰胺制剂
CN1206984C (zh) 具有外涂一种杀真菌剂和一种聚合物的核心的药丸
CA2258683C (en) Oral composition comprising a triazole antifungal compound
JP5232472B2 (ja) 向上された生体利用効率を備えるプランルカスト固体分散体組成物およびその固体分散体の製造方法
JP6265999B2 (ja) 光学活性のトルバプタンを含む注射用持効性製剤及びその製造方法
CN1210065C (zh) 具有改善溶出性能的普仑司特的固体分散体系及其制备方法
CN1468231A (zh) 细胞周期抑制剂的无定形形式
EP1755682A1 (en) Solid pharmaceutical formulation
WO2007141806A1 (en) Pharmaceutical formulations comprising oxcarbazepine and methods thereof
US20110129540A1 (en) Polymer of acrylic or methacrylic type comprising alpha-tocopherol grafts
JP5841609B2 (ja) Hcv感染症を処置するための医薬組成物
KR20150003603A (ko) 신규한 타크로리무스 담지 액정 나노입자 및 그의 제조방법
EP4346796A1 (en) Delayed release compositions of dimethyl fumarate
CN1210019C (zh) Ii型胶原水溶性分散组合物及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050518