CN1215224A - 晶体管及其制造方法 - Google Patents

晶体管及其制造方法 Download PDF

Info

Publication number
CN1215224A
CN1215224A CN98116322A CN98116322A CN1215224A CN 1215224 A CN1215224 A CN 1215224A CN 98116322 A CN98116322 A CN 98116322A CN 98116322 A CN98116322 A CN 98116322A CN 1215224 A CN1215224 A CN 1215224A
Authority
CN
China
Prior art keywords
semiconductor layer
produce
grid
mask
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98116322A
Other languages
English (en)
Other versions
CN1154165C (zh
Inventor
张宏勇
高山彻
竹村保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP05078997A external-priority patent/JP3137797B2/ja
Priority claimed from JP07899893A external-priority patent/JP3637069B2/ja
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1215224A publication Critical patent/CN1215224A/zh
Application granted granted Critical
Publication of CN1154165C publication Critical patent/CN1154165C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate

Abstract

一种制造薄膜晶体管的方法,该方法包括:使非晶硅膜结晶化;在其上形成栅绝缘膜和栅电极、以自对准方式注入杂质,粘附一含有加速硅膜结晶化的催化元素的被覆层,以及将所得结构在低于衬底变形温度的温度下退火,以激活已掺入的杂质。按另一方案,可用离子注入法或类似法将催化元素引入杂质区而掺入该结构。

Description

晶体管及其制造方法
本发明涉及一种薄膜晶体管(TFT)及其制造方法。依本发明的薄膜晶体管可以做在诸如玻璃的绝缘衬底上,也可做在如由晶体硅制成的衬底上。特别是本发明涉及一种通过结晶化和热退火激活等工艺步骤来制造的薄膜晶体管。
近来,对包含一绝缘衬底并在其上设有一薄膜有源层(有时也称之为有源区)的绝缘棚型半导体器件进行了有效地研究。特别是,对薄膜型绝缘栅晶体管即通常所说的薄膜晶体管(TFT)的研究付出了极大的努力。将多个TFT做在透明的绝缘衬底上,主要是为了用它们来控制矩阵驱动显示装置的每个象素或驱动电路。根据TFT所用的半导体的材料和状态,可将TFT分为非晶硅TFT和结晶硅TFT。
在上述的诸多TFT中,非晶TFT的制造可不必经受高温工艺过程。非晶TFT早已投入实用,因为当把它们制做在大面积衬底上时,其成品率高。一般在实际的非晶硅TFT中采用倒梯型(也称之为底棚型)非晶硅TFT。此类非晶硅TFT的棚电极设在有源区的下方。
制造现有的TFT的工艺步骤包括:在一衬底上形成一栅电极;形成做为栅绝缘膜的非晶硅膜和有源层;以及在非晶硅膜上形成一N型结晶细密的硅膜,以设置源和漏区。然而、由于N型硅膜与作为基底而设置的非晶硅膜的腐蚀速率几乎相同,所以该工艺要求额外的步骤,例如设置一腐蚀终止层和类似层。
作为一种克服上述问题的措施,提供一种用离子掺杂工艺,将高速离子直接注入到非晶硅膜中形成源和漏的方法。
但该法尚有不尽人意之处,因为它产生的离子注入区的结晶性被明显损伤。这些区的电导率低,因而尚不适于实用。也曾提出,用激光束和类似的光能使这些区退火,以增大其结晶性,然而,此法不适用于批量生产。
目前实际有用的方法是靠加热使非晶硅结晶化的方法。但是此法要求在600℃或以上的温度的退火。因而由于衬底的问题此工艺也不受欢迎。更具体地说,一般用于非晶硅TFT的无碱玻璃衬底在600℃或低一些温度下即开始变形(如Corning#7059玻璃衬底软化点在593℃)。在600℃的退火会使玻璃衬底收缩或变形。
而且,600℃的退火会损伤先前在低温下制作的非晶硅的特性。更具体地说,使有源区也经受在600℃的结晶化,而完全丧失了有利的特性,即非晶硅TFT不再具有它的低漏电流之特征。这问题要求结晶化工艺能在更低温度下进行(最好是在低于玻璃的变形温度50℃或再低些的温度)。
一般,处于非晶态的半导体具有低的电场迁移率。因而,它们不能用于要求高速运作的TFT。而且,P型非晶硅的电场迁移率极低。这就使P沟TFT(PMOS TFT)的制造行不通。以此推断得不到互补的MOS电路,因为为实现CMOS必须P沟TFT与N沟TFT(NMOS TFT)相结合。
与非晶半导体相比,晶体半导体具有更高的电场迁移率,因而适用于高速运作的TFT。结晶硅的优点还在于,用它容易制作CMOS电路,因为由结晶硅不仅能得到NMOS TFT,而且还能得到PMOS TFT。因此提出一种具有称为单片结构的有源矩阵驱动的液晶显示器,不仅在有源矩阵部分,而且在外围电路(例如驱动电路)均由CMOS的晶体TFT组成。由于这些原因,使得对使用结晶硅的TFT的研究及开发最近更加活跃。
对非晶硅用激光或光强相等的强光辐照可以得到结晶硅。然而,此工艺不适于批量生产;而且不稳定,因为激光输出本身就不稳定,还因为工艺过程太短。
一种使非晶硅结晶化的实际可行的工艺最近是采用热处理,即热结晶化。此工艺能生产出质量均匀的结晶硅,不管批量如何。但该工艺仍存在问题,尚待解决。
一般,热结晶化要求在大约600℃实施长时间的退火,或在高达1000℃温度,或甚至更高的温度退火。后种工艺使得对衬底材料的选择变窄,因为它不能应用于除石英衬底以外的衬底,前述的处理还有另一些问题。
具体地说,使用廉价的无碱玻璃衬底(如Corning#7059玻璃衬底)来制造TFT的工艺过程包括:
在衬底上淀积一层非晶硅膜;
在600℃或更高的温度经24小时或更长的时间使非晶硅膜结晶化;
淀积一层棚绝缘膜;
形成棚电极;
引入杂质(用离子注入或离子掺杂);
在600℃或更高的温度经24小时或更长的时间退火使掺入的杂质激活;
形成层间绝缘体;以及
形成源和漏区。
在上述工艺步骤中,发现第六步使掺入的杂质激活最成问题。大多数无碱玻璃在600℃附近(如Corning#7059玻璃的软化温度为593℃)会变形。这就意味着,在该步必须考虑衬底的收缩。在第二步中,即退火步骤,衬底的收缩是不成问题的,因为还未在衬底上构成图形。然而,在第六步,在衬底上已构成电路图形,若衬底收缩,则在后几步不能进行掩模对准。这显然会降低成品率。这就要求在较低的温度下进行第六步,最好在比玻璃变形温度低50℃或再低些的温度下进行。
如前所述,使用激光可降低工艺温度。但是该工艺的可靠性差,因为不仅激光不稳定,而且还由于在被激光辐照的部位(源和漏区)与未被激光辐照的部位(有源区即栅电极下方的区域)之间的温升不同而产生应力。
因而使用激光来制造TFT是困难的,目前尚未发现其它有效的措施来克服这些问题。本发明为上述困难提供一种解决办法。即本发明之目的在于提出一种克服上述问题并适于批量生产的工艺。
作为本发明者们广泛研究的结果,发现基本上为非晶的硅膜的结晶化可借助加入微量催化材料而被加速。按此方法,结晶化可以在较低的温度较短的时间内完成。优选的催化材料包括一些纯金属即:镍(Ni)、铁(Fe)、钴(Co)和铂(Pt),或一种化合物,如本文所列举的元素的硅化物。具体地说,根据本发明的工艺包括:在非晶硅膜之上或之下并与之接触形成一种含有薄膜、颗粒、团块等形状的催化元素的材料,以及在一适当的温度,一般在580℃或再低些,最好在550℃或再低些将形成的材料热退火使之结晶化。另一种方法是,不必形成一种含催化元素与非晶硅膜接触的材料,代之以用诸如离子注入等方法将催化元素掺入非晶硅膜中。
当然,提高退火的温度可以缩短结晶化的周期。而且,随着镍、铁、钴或铂浓度的增加而使结晶化的周期变短、结晶化的温度变低。通过深入的研究,本发明者们发现,至少一种上述催化元素的掺入浓度在1×1017cm-3以上方能加速结晶化,其浓度最好在5×1018cm-3或更高些。
但,上列各催化材料对硅不利。因而,最好将其浓度控制到尽可能低的水平。通过研究,本发明者们发现总浓度的优选范围在1×1020cm-3或再低些。特别是,在有源层,催化材料的浓度必须控制到1×1018cm-3或以下,最好低于1×1017cm-3,低于1×1016cm-3则更好。
图1(A)-1(E)示意表示按本发明的一个实施方案(实施例1)的工艺所得到的按顺序的结构剖面图;
图2(A)-2(E)示意表示按本发明的另一实施方案(实施例2)的工艺所得到的按顺序的结构剖面图;
图3(A)-3(E)示意表示按本发明的又一实施方案(实施例3)的工艺所所到的按顺序的结构剖面图;以及
图4(A)-4(E)示意表示按本发明的再一个实施方案(实施例4)的工艺所得到的按顺序的结构剖面图。
如前所述,本发明者们已注意到催化元素的作用,并发现可以利用这些元素来克服已有技术工艺中的问题。一种依本发明的一实施方案制作TFT的工艺包括:形成一棚电极;
淀积一栅绝缘膜;
淀积一层非晶硅膜;
用离子注入或离子掺杂将杂质引入非晶硅膜内;
在该硅膜上形成含一种催化元素的物质膜;
在550℃或550℃以下热处理不长于8小时使掺入的杂质激活;以及
形成源和漏电极。
一种按本发明另一实施方案的工艺包括:
形成一棚电极;
淀积一层栅绝缘膜;
淀积一层非晶硅膜;
用离子注入或离子掺杂将杂质引入非晶硅膜;
用离子注入或离子掺杂将催化元素引入该硅膜;
在550℃或低于550℃热处理不长于8小时使掺入的杂质激活;以及
形成源和漏电极。
在上述工艺步骤中,第四步与其后的一步之次序是可调换的。即,掺杂步骤既可在引入催化元素步骤之前,也可在其后进行。主要是引入源和漏区的催化元素显著地加速了这两区的结晶化。因此在550℃或以下的温度足以能完成激活,一般在500℃或再低些温度进行。退火8小时或更短些,一般是退火4小时或更短些已足够。特别是,发现当用离子注入或离子掺杂将催化元素引入硅膜时,结晶化进行得极其迅速,因为发现元素是均匀地分布在硅膜中。
在杂质掺杂中,可使用掩模将催化元素掺入硅膜中。按自对准方式,从栅电极背后照射可以得到该掩膜。
另一种按本发明的又一实施方案制作TFT的工艺包括:
淀积一层非晶硅膜;
将非晶硅膜在600℃或其以上的温度加热24小时或更长些,使其结晶化;
淀积一层栅绝缘膜;
形成一栅电极;
用离子注入或离子掺杂将杂质引入非晶硅膜;
在硅膜上淀积一层含一种催化元素的膜;
在600℃或其以下热处理不长于8小时使掺入的杂质激活;
形成层间绝缘体;以及
形成源和漏电极。
再一种按本发明的一实施方案制作TFT的工艺包括:
淀积一层非晶硅膜;
在600℃或其以上将非晶硅膜加热24小时或更长些,使其结晶化;
淀积一层栅绝缘膜;
形成一栅电极;
用离子注入或离子掺杂将杂质引入非晶硅膜;
用离子注入或离子掺杂将一种催化元素引入该硅膜;
在600℃或其以下热处理不长于8小时使掺入的杂质激活;
形成层间绝缘体;以及
形成源和漏电极。
在上述工艺步骤中,第5步和其下一步的次序可以颠倒。即,掺杂步骤既可在引入催化元素步骤之前也可在其后进行。主要是引入源和漏区的催化元素显著地加速了这两区的结晶化。因而,在600℃或其以下足以进行激活,一般在550℃或其以下。对退火而言,8小时或短些,一般用4小时或短些已经足够。特别是,当用离子注入或离子掺杂将催化元素引入硅膜时,发现结晶化进行得极其迅速,因为发现元素均匀分布在硅膜中。
本发明的工艺之特征在于,该工艺包括,加入对硅不利的催化元素,但在有源区的浓度被压到极低水平1×1018cm-3或其以下。即,所有的前述工艺均包括,在掺杂时为有源区提供一掩模或棚电极。因而,催化元素不会直接接触到或注入进有源区。而保持TFT的可靠性和特性不被削弱。特别是,将Ni掺入杂质区其浓度为有源区的10倍或以上,再择优设定退火温度和时间,可以使杂质区被激活并同时保持非晶态。因为退火是在热平衡下完成的,不会碰到激光退火中出现的温度差。
下面参照非限定的实施例,对本发明做更详细的说明。但应了解此非对本发明的限制。实施例1
图1表示按本发明的一个实施方案的工艺所得到的按步序的结构剖面图。参照图1,在Corning#7059玻璃衬底1上形成一层厚度为3000-8000钽膜,并构成图形,形成栅电极2。然后,将钽膜表面阳极氧化,形成厚度为1000-3000例如2000的阳极氧化膜3。然后用等离子CVD淀积一层厚度为1000-5000例如1500的氮化硅膜4。紧接着用等离子CVD在其上淀积一层厚度为200-1500例如500的本征(I-型)非晶硅膜。将最后得到的非晶硅膜构图得到半导体区域5,如图1(A)所示。
将所得到衬底表面被覆以光刻胶,并从衬底背面曝光,以形成与栅电极图形一致的掩模6,如图1(B)所示。
用离子掺杂,使用所得到的掩模6,将磷作为杂质注入半导体区5。用磷化氢(PH3)作为掺杂气体进行离子掺杂,所用的加速电压在60-90KV,例如80KV,所用的剂量在1×1015-8×1015cm-2范围。在此情况下,磷的掺入剂量为2×1015cm-2。以此方法形成N型杂质区7a和7b,如图1(C)所示。
然后,用掩模6通过离子掺杂注入镍离子。所用的剂量为2×1013-2×1014cm-2,更具体地讲例如是5×1013cm-2。其结果,发现镍在N型杂质区26a和26b中的浓度大约5×1018cm-3。如此就得到了如图1(D)所示的结构。
然后,将所得结构在含分压强最好为0.1-1大气压的氢的氢气氛中在500℃退火4小时。以此方法激活杂质。因为镍离子已事先注入到杂质区,由于镍对结晶化的催化作用,发现在这些区域中的结晶化被加快了。这样就激活了杂质区7a和7b。
随后用等离子CVD淀积3000厚的氧化硅膜8,作为层间绝缘体,在其上形成接触孔以便为TFT的源和漏区,用含金属材料如氮化钛和铝的多层膜,建立带互连9a和9b的电极。这就完成了一个完整的薄膜晶体管,如图1(E)所示。
用二次离子质谱仪(SIMS)测量按上述工艺制得的TFT的杂质区和有源区的镍浓度。测得杂质区含镍浓度为1×1018-5×1018cm-3。这与低于探查极限1×1016m-3的有源区的浓度形成明显的对照。实施例2
图2表示用本发明的一实施方案所得到的各步序结构的剖面图。参照图2,在Corning#7059玻璃衬底11上形成厚度为3000-8000例如5000的钽膜,并构图形成栅电极12。然后,用阳极氧化法,使钽膜的表面形成厚度为1000-3000例如2000的阳极氧化膜。然后,用等离子CVD法淀积厚度为1000-5000例如为1500的氮化硅膜14。紧接着,在其上用等离子CVD淀积厚度为200-1500例如在本例中为500的本征(I型)非晶硅膜。将得到的非晶硅膜构图以得到半导体区15,如图2(A)所示。
在所得衬底的表面上被覆一层光刻胶,从衬底的背面曝光以形成与图2(B)所示棚电极图形一致的掩模16。
通过离子掺杂法,用所得的掩模16,以磷作杂质注入半导体区15。用磷化氢(PH3)作掺杂气体完成离子掺杂,所加的加速电压在60-90KV,例如用80KV,剂量在1×1015-8×1015cm-2。在本例中掺入磷所用的剂量为2×1015cm-2。以此方式,形成了N型杂质区17a和17b,如图2(C)所示。
然后,用溅射法在整个表面上淀积厚度为5-200例如20的一层硅化镍膜(以化学式表达为NiSix,此处X为0.4-2.5例如2.0)18。由于所得到的膜薄至大约20,看来好像一些团粒,而不像连续的膜。在本例中膜的外观并不那么重要。这样就得到了如图2(D)所示之结构。
然后,将所得结构在含氢的气氛中退火,所用的温度为450℃,时间4小时,氢的分压强最好为0.1-1大气压。以此方式,激活杂质。因为硅化镍膜18是预先淀积的,由它扩散镍原子,对N型杂质区17a和17b的结晶化起催化剂作用。这样就加速了这些区的结晶化,使杂质区17a和17b激活。
随后,用等离子CVD淀积一层3000厚氧化硅膜19作为层间绝缘体,并在其上形成接触孔,以便为TFT的源和漏区,用含金属材料如氮化钛和铝的多层膜,建立带互连20a和20b的电极。这就完成了一个完整的薄膜晶体管,如图2(E)所示。
用二次离子质谱仪(SIMS)测量按上述工艺制得的TFT的杂质区和有源区镍的浓度。测得杂质区含镍浓度为1×1018-3×1018。这与在1×1016-5×1016范围的有源区浓度成鲜明的对照。实施例3
图3表示用本发明另一实施方案的工艺所制得的各步序结构的剖面图。参照图3,在一块Corning#7059玻璃衬底110上用溅射法形成一层2000厚的氧化硅膜111,作为底膜。然后,用等离子CVD在其上淀积厚度为500-1500,例如1500的本征(I型)非晶硅膜。然后,在氮气氛中600℃退火48小时,使非晶硅膜结晶化。退火之后,将硅膜构成图形形成岛状硅区112,用溅射法在其上淀积一层1000厚的氧化硅膜113作为栅绝缘膜。溅射工艺是在含氧和氩的气氛中以氧化硅作为溅射的靶进行的,氩对氧之比不高于0.5,例如为0.1或0.1以下。在工艺过程中,衬底的温度保持在200-400℃,例如350℃。
然后,用减压CVD淀积厚度为6000-8000例如6000的含磷为0.1-2%的硅膜。淀积氧化硅膜的步骤最好与淀积硅膜的步骤连续进行。将所得的硅膜构图形成栅电极114,如图3(A)所示。
然后,用等离子掺杂,用栅电极作掩模,将磷作为杂质引入硅区。用磷化氢(PH3)作为掺杂气体,进行掺杂,所用的加速电压为60-90KV,例如为80KV,所用的剂量为1×1015-8×1015cm-2。在本实施例中所掺杂的磷的剂量为2×1015cm-2。以此方式,形成了N型杂质区115a和115b,如图3(B)所示。
腐蚀杂质区上的氧化硅膜113以露出杂质区115,在整个表面上用溅射法淀积厚度为5-200,例如20的硅化镍膜(用化学式NiSix表示,此处X为0.4-2.5,例如2.0)116。由于所得的膜大约为20之薄,看来好像团粒,不像连续膜。在本例中,该膜的外观不那么重要。这样就得到了如图3(C)所示之结构。
然后,把所得结构放入氮气氛中在500℃退火4小时以激活杂质。因为镍从预先淀积在其上的硅化镍膜扩散进入N型杂质区115a和115b,发现经退火加速了结晶化的发生。以此方式,激活了杂质区115a和115b。所得结构如图3(D)所示。
然后,用等离子CVD淀积6000厚的氧化硅膜117作为层间绝缘层,以在其上开出接触孔用含金属材料,如氮化钛和铝的多层膜为TFT的源和漏区形成带互连118a和118b的电极。最后,将所得结构在1大气压的氢气氛中在350℃退火30分钟。这样就完成了一完整的薄膜晶体管,如图3(E)所示。
用二次离子质谱仪(SIMS)测量按上述工艺制得的TFT的源和漏区以及有源区镍的浓度。发现源和漏区的含镍浓度为1×1018-5×1018cm-3。这与低于探查极限1×1016cm-3的有源区的浓度成鲜明的对比。实施例4
图4表示用本发明另一实施方案的工艺所制得的各步序结构的剂面图。参照图4,在一块Corning#7059玻璃衬底29上,用溅射法形成一层2000厚的氧化硅膜作底膜。然后,用等离子CVD在其上淀积一层本征(I型)非晶硅膜,其厚度在500-1500范围,例如1500。然后,在氮气氛中,在600℃退火48小时,使非晶硅膜结晶化。退火之后,将硅膜构图形成岛状硅膜22。
然后,用等离子CVD,使用四乙氧硅烷(TEOS;Si(OC2H5)4)和氧作为原材料淀积一层1000存的氧化硅膜23作为棚绝缘膜。于是在原始气体材料中添加三氯乙烯。在薄膜淀积开始之前,以400SCCM(每分标准立方厘米)的流量向反应腔通氧气,当将总压力保持在5Pa,衬底温度为300℃,并施加150W的RF功率时,在反应腔内产生等离子体。这种状态保持10分钟。然后,以分别为300SCCM,15SCCM和2SCCM的流量向反应腔通入氧、TEOS和三氯乙烯,淀积氧化硅膜。在淀积薄膜期间,使衬底温度、RF功率和总压强分别保持在300℃、75W和5Pa。当完成薄膜淀积时,给反应腔通入压力为100Torr的氢气,以完成在350℃的氢退火35分钟。
随后,用溅射法淀积厚度在3000-8000,例如为6000的钽膜。可以用钛、钨、钼或硅代替钽。然而,该膜必须有足够高的耐热性能,以耐得住后来的激活处理。氧化硅膜23和钽膜的两步淀积步骤最好连续进行。将钽膜构图形成TFT的栅电极24。再将钽膜表面阳极氧化,在其表面上形成氧化层25。阳极氧化是在含1-5%的洒石酸的乙二醇溶液中进行的。于是得到2000厚的氧化层,如图4(A)。
以栅电极作为掩模用等离子掺杂,将磷作为杂质注入硅区。用磷化氢(PH3)作掺杂气体进行掺杂工艺,所用的加速电压80KV。在此例中,以2×1015cm-3的剂量掺入磷。以此方式,形成了N型杂质区26a和26b。可以看到,在此情况所建立的杂质区26偏离了栅电极24,如图4(B)所示。
然后,用离子掺杂以栅电极作掩模注入镍离子。引入镍所用的剂量在2×1013-2×1014cm-2的范围,例如更具体地用5×1013cm-2。其结果,发现镍在N型杂质区26a和26b内的浓度大约为5×1018cm-3。于是得到如图4(C)所示之结构。
然后将所得的结构在氮气氛中在500℃退火4小时,以激活杂质。由于镍离子预先被注入N型杂质区26a和26b,发现由于镍对结晶化的催化作用,加速了这些区域内的再结晶化的进行。于是使杂质区26a和26b激活。所得结构如图4(D)所示。
随后,用TEOS作原材料,用等离子CVD淀积2000厚的氧化硅膜27作为层间绝缘体,在其上形成接触孔,用含金属材料如氮化钛和铝的多层膜为TFT的源和漏区形成带互连28a和28b的电极。于是完成了完整的半导体电路,如图4(E)所示。
发现这样制作的薄膜晶体管,在栅电压为10V时,其场效应迁移率在70-100cm2/Vs范围,当给栅极施加-20V电压时,其阀值电压为2.5-4.0V,漏电流为10-13A或更低。
本发明借助在4小时之短的期间内,在500℃之低的温度下将掺入的杂质激活,提高了薄膜晶体管的生产量。因而本发明提供一种解决现有技术问题的方法,由于在600℃或其以上所进行的高温工艺中,已遇到玻璃衬底变形这样严重的问题,在上述这样低的温度下实现了结晶化避免了玻璃衬底收缩和弯曲。
上面列举的本发明的优点还包括能一次处理大面积的衬底。更具体地说,由大面积衬底切成多个半导体电路(如矩阵电路)。因而明显地可以降低电路的单个成本。当应用于液晶显示器的生产时,根据本发明的工艺可提高生产率并改进了显示器的性能。由上述可见,本发明可广泛用于工业生产。
尽管参照具体的实施例详细地叙述了本发明,但本领域的技术人员应该明了,不脱离本发明的精神和范畴可以进行各式各样的变化和改型。

Claims (45)

1.绝缘栅场效应晶体管的一种制造方法,其特征在于,它包括下列步骤:
在衬底上制取栅极;
在所述栅极上制取栅绝缘层;
在所述栅极上方制取半导体层,所述栅绝缘层夹在所述栅极与
所述半导体层之间将栅极与所述半导体层彼此绝缘起来;
在所述半导体层上方制取掩模,其中所述掩模相对于所述栅极自行调整形成;
往所述半导体层的第一区中以相对于所述掩模自行调整的方式引入金属离子;
往所述半导体层的第二区中以相对于所述掩模自行调整的方式引入杂质离子以制取源区和漏区。
2.如权利要求1所述的方法,其特征在于,所述栅绝缘层通过阳极氧化所述栅极制取。
3.如权利要求1所述的方法,其特征在于,所述第一区和所述第二区彼此相同。
4.如权利要求1所述的方法,其特征在于,所述金属选自由Ni、Fe、Co和Pt组成的金属群。
5.如权利要求1所述的方法,其特征在于,所述掩模由光致抗蚀材料组成。
6.如权利要求1所述的方法,其特征在于,所述半导体层由硅组成。
7.如权利要求1所述的方法,其特征在于,它还包括下列步骤:
制取源区、漏区和设在所述源区与漏区之间的有源区,其中所述源区和漏区含浓度高于1×1017原子/立方厘米的催化物质,所述有源区含浓度低于1×1017原子/立方厘米的催化物质。
8.如权利要求1所述的方法,其特征在于,所述衬底由玻璃制成,所述掩模则通过从所述玻璃衬底背面照光制取。
9.如权利要求1所述的方法,其特征在于,它还包括在引入所述金属离子之后对所述半导体层进行退火以便晶化所述半导体层的至少一部分的步骤。
10.绝缘栅场效应晶体管的一种制造方法,其特征在于,它包括下列步骤:
在衬底上制取栅极;
在所述栅极上制取棚绝缘层;
在所述栅极上方制取半导体层,所述栅绝缘层夹在所述半导体层与所述栅极之间将所述半导体层与所述栅极彼此绝缘起来;
在所述半导体导体层上方制取掩模,其中所述掩模是以相对于所述栅极自行调整的方式制取的;
在上面形成有所述掩模的所述半导体层上制取含金属的膜层;
往所述半导体层的第一区中以相对于所述掩模自行调整的方式引入杂质离子以制取源区和漏区。
11.如权利要求10所述的方法,其特征在于,它还包括这样的步骤:以相对于所述掩模自行调整的方式将所述金属或所述金属的硅化物从所述含金属的膜层扩散到所述半导体层的第二区中。
12.如权利要求10所述的方法,其特征在于,所述栅绝缘层通过阳极氧化所述栅极制取。
13.如权利要求11所述的方法,其特征在于,所述第一区和所述第二区彼此相同。
14.如权利要求10所述的方法,其特征在于,所述金属选自由Ni、Fe、Co和Pt组成的金属群。
15.如权利要求10所述的方法,其特征在于,所述掩模由光致抗蚀材料组成。
16.如权利要求10所述的方法,其特征在于,所述含金属的膜层由金属硅化物组成。
17.如权利要求10所述的方法,其特征在于,所述半导体层由硅组成。
18.如权利要求10所述的方法,其特征在于,它还包括这样的步骤:制取源区、漏区和介于所述源区与漏区之间的有源区,其中所述源区和漏区含浓度高于1×1017原子/立方厘米的催化物质,所述有源区含浓度低于1×1017原子/立方厘米的催化物质。
19.如权利要求10所述的方法,其特征在于,所述这衬底由玻璃制成,所述掩模通过从所述玻璃衬底背面照光制取。
20.如权利要求10所述的方法,其特征在于,它还包括在形成所述含金属的膜层之后对所述这半导体层进行退火以晶体所述半导体层的至少一部分的步骤。
21.半导体器件的一种制造方法,其特征在于,它包括下列步骤:
在衬底上制取半导体层;
在所述半导体上制取栅绝缘层;
在所述栅绝缘膜上的所述半导体层上方制取栅极;
以所述栅极作为掩模在所述栅绝缘层上制取线路图形,从而使所述半导体除所述栅极下方以外的表面曝光;
以所述栅极作为掩模,往所述半导体层的第一区引入杂质离子,以制取源区和漏区;
清除掉与所述半导体层以所述栅极作为掩模的曝光表面接触的含金属膜层。
22.如权利要求21所述的方法,其特征在于,它还包括将所述金属或所述金属的硅化物扩散到所述半导体层的第二区中的步骤。
23.如权利要求22所述的方法,其特征在于,所述第一区和所述第二区彼此相同。
24.如权利要求21所述的方法,其特征在于,所述杂质离子在所述形成线路图形之前通过所述栅绝缘层引入所述半导体层中。
25.如权利要求21所述的方法,其特征在于,所述金属选自由Ni、Fe、Co和Pt组成的金属群。
26.如权利要求21所述的方法,其特征在于,所述含金属的膜层由金属硅化物组成。
27.如权利要求21所述的方法,其特征在于,所述半导体层由硅组成。
28.如权利要求21所述的方法,其特征在于,它还包括这样的步骤:制取源区、漏区和介在所述源区与漏区之间的有源区,其中所述源区和漏区含浓度高于1×1017原子/立方厘米的催化物质,所述有源区含浓度低于1×1017原子/立方厘米的催化物质。
29.如权利要求21所述的方法,其特征在于,它还包括在除去所述含金属的膜层之后对所述半导体层进行退火以晶化所述半导体层的至少一部分的步骤。
30.半导体器件的一种制造方法,其特征在于,它包括下列步骤:
在衬底上制取半导体层;
在所述半导体层上制取栅绝缘膜;
在所述栅绝缘膜上制取栅极;
以所述栅极作为掩模往所述半导体层的第一区中引入杂质离子,以制取源区和漏区;和
以所述栅极作为掩模往所述半导体层的第二区中引入金属离子。
31.如权利要求30所述的方法,其特征在于,它还包括在引入所述杂质离子和所述金属离子之前阳极氧化所述栅极以在所述栅极上形成阳极氧化层的步骤。
32.如权利要求30所述的方法,其特征在于,所述第一区和所述第二区彼此相同。
33.如权利要求30所述的方法,其特征在于,所述金属选自由Ni、Fe、Co和Pt组成的金属群。
34.如权利要求30所述的方法,其特征在于,所述半导体层由硅组成。
35.如权利要求30所述的方法,其特征在于,它还包括在引入金属离子之后对所述半导体层进行退火以晶化所述半导体层的至少一部分的步骤。
36.绝缘栅场效应晶体管的一种制造方法,其特征在于,它包括下列步骤:
在衬底上制取栅极;
在所述栅极上制取栅绝缘层;
在所述栅极上方制取半导体层,所述栅绝缘层夹在所述半导体层与所述栅极之间将所述半导体层与所述栅极彼此绝缘;
在所述半导体层上方制取掩模,其中所述掩模是以相对于所述栅极自行调整的方式制取的;
在上面形成有所述掩模的所述半导体层上制取含金属膜层以便将所述金属引入所述半导体层的一个区;
除去至少位于所述掩模上的一部分所述金属;和
以相对于所述掩模自行调整的方式往所述半导体层中引入杂质离子以制取源区和漏区。
37.半导体器件的一种制造方法,其特征在于,它包括下列步骤:
在衬底上制取半导体层;
在所述半导体层上制取栅绝缘层;
在所述栅绝缘膜上的所述半导体层上方制取栅极;
以所述栅极作为掩模在所述栅绝缘层上制取取线路图形从而将半导体层所述栅极下面以外的部分曝光;
以所述栅极作为掩模,往所述半导体层中引入杂质离子以制取源区和漏区;
清除掉所述半导体层上面形成有所述栅极的含金属膜层;和
除去所述含金属膜层位于所述栅极上方的一部分。
38.晶体管的一种制造方法,其特征在于,它包括下列步骤:
在衬底上制取栅极;
在所述栅极上方制取栅绝缘膜;
在所述栅绝缘膜上制取非晶硅膜;和
往所述与所述栅极在一直线上的非晶硅膜中加入促进所述非晶硅膜晶化的催化物质和作为掺杂剂的杂质,其中所述催化物质以不高于1×1020原子/立方厘米的浓度加入所述非晶硅膜层中。
39.如权利要求38所述的方法,其特征在于,它还包括这样的步骤:制取源区、漏区和夹在所述源区与漏区之间的有源区,其中所述源区和漏区含浓度高于1×1017原子/立方厘米的催化物质,所述有源区含浓度低于1×1017原子/立方厘米的催化物质。
40.晶体管的一种制造方法,其特征在于,它包括下列步骤:
在衬底上制取栅极;
在所述栅极上方制取非晶硅膜;
往与所述栅极在一条直线上的所述非晶硅膜中引入作为掺杂剂的杂质;和
将含催化物质的材料粘附到所述非晶硅膜上,其中所述非晶硅膜中所含所述催化物质的浓度不高于1×1020原子/立方厘米。
41.如权利要求40所述的方法,其特征在于,它还包括这样的步骤:制取源区、漏区和夹在所述源区与所述漏区之间的有源区,其中所述源区和漏区含浓度高于1×1017原子/立方厘米的催化物质,所述有源区含浓度低于1×1017原子/立方厘米的催化物质。
42.绝缘栅场效应晶体管的一种制造方法,其特征在于,它包括下列步骤:
在玻璃衬底上制取栅极;
在所述栅极上制取栅绝缘层;
在所述栅极上方制取半导体层,所述栅绝缘层夹在所述半导体层与所述栅极之间所述半导体层与所述栅极彼此绝缘起来;
在所述半导体层上方制取掩模,其中所述掩模以相对于所述电极自行调整的方式制取;
以相对于所述掩模自行调整的方式往所述半导体层中引入杂质以制取源区和漏区;和
在上面形成有所述掩模的所述半导体层上制取金属硅化物层。
43.如权利要求42所述的方法,其特征在于,所述掩模通过从所述玻璃衬底背面照光制取。
44.如权利要求42所述的方法,其特征在于,所述金属硅化物层在至少所述源区和漏区上形成。
45.如权利要求42所述的方法,其特征在于,所述金属硅化物层溅射淀积到所述半导体层上。
CNB98116322XA 1993-03-12 1998-07-15 晶体管及其制造方法 Expired - Fee Related CN1154165C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP78997/1993 1993-03-12
JP78997/93 1993-03-12
JP05078997A JP3137797B2 (ja) 1993-03-12 1993-03-12 薄膜トランジスタおよびその作製方法
JP78998/93 1993-03-12
JP07899893A JP3637069B2 (ja) 1993-03-12 1993-03-12 半導体装置の作製方法
JP78998/1993 1993-03-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN94104268A Division CN1095204C (zh) 1993-03-12 1994-03-12 半导体器件和晶体管

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2004100351663A Division CN1542929B (zh) 1993-03-12 1994-03-12 半导体器件的制造方法

Publications (2)

Publication Number Publication Date
CN1215224A true CN1215224A (zh) 1999-04-28
CN1154165C CN1154165C (zh) 2004-06-16

Family

ID=26420038

Family Applications (4)

Application Number Title Priority Date Filing Date
CN94104268A Expired - Lifetime CN1095204C (zh) 1993-03-12 1994-03-12 半导体器件和晶体管
CN2004100351663A Expired - Fee Related CN1542929B (zh) 1993-03-12 1994-03-12 半导体器件的制造方法
CNB98116322XA Expired - Fee Related CN1154165C (zh) 1993-03-12 1998-07-15 晶体管及其制造方法
CNB981163211A Expired - Lifetime CN1154192C (zh) 1993-03-12 1998-07-15 薄膜晶体管

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN94104268A Expired - Lifetime CN1095204C (zh) 1993-03-12 1994-03-12 半导体器件和晶体管
CN2004100351663A Expired - Fee Related CN1542929B (zh) 1993-03-12 1994-03-12 半导体器件的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB981163211A Expired - Lifetime CN1154192C (zh) 1993-03-12 1998-07-15 薄膜晶体管

Country Status (3)

Country Link
US (4) US5595944A (zh)
KR (2) KR100203982B1 (zh)
CN (4) CN1095204C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316631C (zh) * 2000-02-22 2007-05-16 株式会社半导体能源研究所 半导体器件及其制造方法
US7915102B2 (en) 2005-06-23 2011-03-29 Samsung Mobile Display Co., Ltd. Methods of fabricating thin film transistor and organic light emitting display device using the same
CN101233531B (zh) * 2005-07-29 2012-05-30 株式会社半导体能源研究所 半导体装置的制造方法

Families Citing this family (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052569C (zh) * 1992-08-27 2000-05-17 株式会社半导体能源研究所 制造半导体器件的方法
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TW232751B (en) * 1992-10-09 1994-10-21 Semiconductor Energy Res Co Ltd Semiconductor device and method for forming the same
US6323071B1 (en) 1992-12-04 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
US5403762A (en) * 1993-06-30 1995-04-04 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a TFT
TW226478B (en) * 1992-12-04 1994-07-11 Semiconductor Energy Res Co Ltd Semiconductor device and method for manufacturing the same
TW425637B (en) * 1993-01-18 2001-03-11 Semiconductor Energy Lab Method of fabricating mis semiconductor device
KR0171923B1 (ko) * 1993-02-15 1999-02-01 순페이 야마자끼 반도체장치 제작방법
JP3562588B2 (ja) 1993-02-15 2004-09-08 株式会社半導体エネルギー研究所 半導体装置の製造方法
US6997985B1 (en) 1993-02-15 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US5985741A (en) * 1993-02-15 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
TW241377B (zh) 1993-03-12 1995-02-21 Semiconductor Energy Res Co Ltd
JP3637069B2 (ja) 1993-03-12 2005-04-06 株式会社半導体エネルギー研究所 半導体装置の作製方法
CN1095204C (zh) * 1993-03-12 2002-11-27 株式会社半导体能源研究所 半导体器件和晶体管
US6413805B1 (en) 1993-03-12 2002-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6090646A (en) 1993-05-26 2000-07-18 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
KR100355938B1 (ko) * 1993-05-26 2002-12-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치제작방법
US5818076A (en) * 1993-05-26 1998-10-06 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
KR100186886B1 (ko) * 1993-05-26 1999-04-15 야마자끼 승페이 반도체장치 제작방법
US5663077A (en) 1993-07-27 1997-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
TW357415B (en) 1993-07-27 1999-05-01 Semiconductor Engrgy Lab Semiconductor device and process for fabricating the same
JP2814049B2 (ja) 1993-08-27 1998-10-22 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
TW297142B (zh) * 1993-09-20 1997-02-01 Handotai Energy Kenkyusho Kk
TW264575B (zh) 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
US6798023B1 (en) * 1993-12-02 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first insulating film, second insulating film comprising organic resin on the first insulating film, and pixel electrode over the second insulating film
US5869362A (en) * 1993-12-02 1999-02-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
CN1328761C (zh) 1993-12-02 2007-07-25 株式会社半导体能源研究所 半导体器件的制造方法
KR100319332B1 (ko) * 1993-12-22 2002-04-22 야마자끼 순페이 반도체장치및전자광학장치
JP3221473B2 (ja) 1994-02-03 2001-10-22 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6884698B1 (en) * 1994-02-23 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with crystallization of amorphous silicon
TW273639B (en) * 1994-07-01 1996-04-01 Handotai Energy Kenkyusho Kk Method for producing semiconductor device
JPH0869967A (ja) * 1994-08-26 1996-03-12 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
TW395008B (en) * 1994-08-29 2000-06-21 Semiconductor Energy Lab Semiconductor circuit for electro-optical device and method of manufacturing the same
JP3442500B2 (ja) 1994-08-31 2003-09-02 株式会社半導体エネルギー研究所 半導体回路の作製方法
TW374247B (en) * 1994-09-15 1999-11-11 Semiconductor Energy Lab Co Ltd Method of fabricating semiconductor device
US5915174A (en) * 1994-09-30 1999-06-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6300659B1 (en) 1994-09-30 2001-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and fabrication method for same
TW297950B (zh) 1994-12-16 1997-02-11 Handotai Energy Kenkyusho Kk
JP3469337B2 (ja) * 1994-12-16 2003-11-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4130237B2 (ja) * 1995-01-28 2008-08-06 株式会社半導体エネルギー研究所 結晶性珪素膜の作製方法及び半導体装置の作製方法
US5834327A (en) * 1995-03-18 1998-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
KR100265179B1 (ko) * 1995-03-27 2000-09-15 야마자끼 순페이 반도체장치와 그의 제작방법
JP4056571B2 (ja) 1995-08-02 2008-03-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3295679B2 (ja) * 1995-08-04 2002-06-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5977559A (en) * 1995-09-29 1999-11-02 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor having a catalyst element in its active regions
JPH09146108A (ja) 1995-11-17 1997-06-06 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP3917205B2 (ja) * 1995-11-30 2007-05-23 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3907726B2 (ja) 1995-12-09 2007-04-18 株式会社半導体エネルギー研究所 微結晶シリコン膜の作製方法、半導体装置の作製方法及び光電変換装置の作製方法
JP3124480B2 (ja) 1995-12-12 2001-01-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW319912B (zh) * 1995-12-15 1997-11-11 Handotai Energy Kenkyusho Kk
US6204101B1 (en) 1995-12-15 2001-03-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP3963974B2 (ja) * 1995-12-20 2007-08-22 株式会社半導体エネルギー研究所 液晶電気光学装置
US5985740A (en) * 1996-01-19 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device including reduction of a catalyst
JP3729955B2 (ja) * 1996-01-19 2005-12-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6478263B1 (en) * 1997-01-17 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
JP3645380B2 (ja) 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法、情報端末、ヘッドマウントディスプレイ、ナビゲーションシステム、携帯電話、ビデオカメラ、投射型表示装置
JP3645378B2 (ja) 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3645379B2 (ja) * 1996-01-19 2005-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5888858A (en) * 1996-01-20 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6180439B1 (en) 1996-01-26 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US7056381B1 (en) * 1996-01-26 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US6465287B1 (en) 1996-01-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device using a metal catalyst and high temperature crystallization
US6063654A (en) * 1996-02-20 2000-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor involving laser treatment
TW317643B (zh) 1996-02-23 1997-10-11 Handotai Energy Kenkyusho Kk
TW374196B (en) 1996-02-23 1999-11-11 Semiconductor Energy Lab Co Ltd Semiconductor thin film and method for manufacturing the same and semiconductor device and method for manufacturing the same
TW335503B (en) 1996-02-23 1998-07-01 Semiconductor Energy Lab Kk Semiconductor thin film and manufacturing method and semiconductor device and its manufacturing method
JP3472024B2 (ja) 1996-02-26 2003-12-02 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6100562A (en) * 1996-03-17 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP3240258B2 (ja) * 1996-03-21 2001-12-17 シャープ株式会社 半導体装置、薄膜トランジスタ及びその製造方法、ならびに液晶表示装置及びその製造方法
US6746905B1 (en) * 1996-06-20 2004-06-08 Kabushiki Kaisha Toshiba Thin film transistor and manufacturing process therefor
US6133119A (en) 1996-07-08 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method manufacturing same
JP3607016B2 (ja) * 1996-10-02 2005-01-05 株式会社半導体エネルギー研究所 半導体装置およびその作製方法、並びに携帯型の情報処理端末、ヘッドマウントディスプレイ、ナビゲーションシステム、携帯電話、カメラおよびプロジェクター
TW451284B (en) * 1996-10-15 2001-08-21 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
KR100297498B1 (ko) 1996-11-20 2001-10-24 윤덕용 마이크로파를이용한다결정박막의제조방법
JP3788649B2 (ja) * 1996-11-22 2006-06-21 株式会社半導体エネルギー研究所 液晶表示装置
JPH10199807A (ja) 1996-12-27 1998-07-31 Semiconductor Energy Lab Co Ltd 結晶性珪素膜の作製方法
US6011275A (en) 1996-12-30 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR100399291B1 (ko) * 1997-01-27 2004-01-24 가부시키가이샤 아드반스트 디스프레이 반도체 박막트랜지스터, 그 제조방법, 반도체 박막트랜지스터어레이 기판 및 해당 반도체 박막트랜지스터어레이 기판을 사용한 액정표시장치
US6376214B1 (en) * 1997-02-18 2002-04-23 Smithkline Beecham Corporation DNA encoding a novel homolog of CSBP/p38 MAP kinase
JP4242461B2 (ja) 1997-02-24 2009-03-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3544280B2 (ja) 1997-03-27 2004-07-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH10282414A (ja) * 1997-04-09 1998-10-23 Canon Inc ズームレンズ
US6339013B1 (en) 1997-05-13 2002-01-15 The Board Of Trustees Of The University Of Arkansas Method of doping silicon, metal doped silicon, method of making solar cells, and solar cells
JP3376247B2 (ja) * 1997-05-30 2003-02-10 株式会社半導体エネルギー研究所 薄膜トランジスタ及び薄膜トランジスタを用いた半導体装置
US6541793B2 (en) 1997-05-30 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6307214B1 (en) 1997-06-06 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
JP3844561B2 (ja) * 1997-06-10 2006-11-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6501094B1 (en) 1997-06-11 2002-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a bottom gate type thin film transistor
JP3717634B2 (ja) * 1997-06-17 2005-11-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6066547A (en) * 1997-06-20 2000-05-23 Sharp Laboratories Of America, Inc. Thin-film transistor polycrystalline film formation by nickel induced, rapid thermal annealing method
JP3830623B2 (ja) 1997-07-14 2006-10-04 株式会社半導体エネルギー研究所 結晶性半導体膜の作製方法
JP3295346B2 (ja) 1997-07-14 2002-06-24 株式会社半導体エネルギー研究所 結晶性珪素膜の作製方法及びそれを用いた薄膜トランジスタ
JP3939399B2 (ja) 1997-07-22 2007-07-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH1140498A (ja) 1997-07-22 1999-02-12 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP4318768B2 (ja) 1997-07-23 2009-08-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4180689B2 (ja) * 1997-07-24 2008-11-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6680223B1 (en) * 1997-09-23 2004-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR100510438B1 (ko) * 1997-09-24 2005-10-21 삼성전자주식회사 비정질 실리콘의 결정화방법
US6013930A (en) 1997-09-24 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having laminated source and drain regions and method for producing the same
KR100269600B1 (ko) * 1997-09-24 2000-10-16 김영환 박막트랜지스터의 제조방법
US6218219B1 (en) 1997-09-29 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
JPH11112002A (ja) * 1997-10-07 1999-04-23 Semiconductor Energy Lab Co Ltd 半導体装置およびその製造方法
US5937315A (en) * 1997-11-07 1999-08-10 Advanced Micro Devices, Inc. Self-aligned silicide gate technology for advanced submicron MOS devices
US6346437B1 (en) * 1998-07-16 2002-02-12 Sharp Laboratories Of America, Inc. Single crystal TFT from continuous transition metal delivery method
US6558986B1 (en) * 1998-09-03 2003-05-06 Lg.Philips Lcd Co., Ltd Method of crystallizing amorphous silicon thin film and method of fabricating polysilicon thin film transistor using the crystallization method
US6297080B1 (en) * 1998-11-09 2001-10-02 Lg. Philips Lcd Co. Ltd. Method of crystallizing a silicon film and a method of manufacturing a liquid crystal display apparatus
US6489952B1 (en) * 1998-11-17 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Active matrix type semiconductor display device
JP2000174282A (ja) 1998-12-03 2000-06-23 Semiconductor Energy Lab Co Ltd 半導体装置
JP4076648B2 (ja) 1998-12-18 2008-04-16 株式会社半導体エネルギー研究所 半導体装置
JP4008133B2 (ja) * 1998-12-25 2007-11-14 株式会社半導体エネルギー研究所 半導体装置
US8158980B2 (en) 2001-04-19 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor
JP4202502B2 (ja) * 1998-12-28 2008-12-24 株式会社半導体エネルギー研究所 半導体装置
US6291364B1 (en) * 1999-08-31 2001-09-18 Micron Technology, Inc. Method and apparatus for stabilizing high pressure oxidation of a semiconductor device
US7232742B1 (en) 1999-11-26 2007-06-19 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes forming a material with a high tensile stress in contact with a semiconductor film to getter impurities from the semiconductor film
TW456048B (en) * 2000-06-30 2001-09-21 Hannstar Display Corp Manufacturing method for polysilicon thin film transistor liquid crystal display panel
US6954747B1 (en) * 2000-11-14 2005-10-11 Microsoft Corporation Methods for comparing versions of a program
US7045444B2 (en) 2000-12-19 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device that includes selectively adding a noble gas element
US6858480B2 (en) 2001-01-18 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
TW586141B (en) * 2001-01-19 2004-05-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US7115453B2 (en) * 2001-01-29 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2002231627A (ja) * 2001-01-30 2002-08-16 Semiconductor Energy Lab Co Ltd 光電変換装置の作製方法
US7141822B2 (en) 2001-02-09 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP4993810B2 (ja) 2001-02-16 2012-08-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5088993B2 (ja) 2001-02-16 2012-12-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4718700B2 (ja) 2001-03-16 2011-07-06 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7052943B2 (en) 2001-03-16 2006-05-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6812081B2 (en) * 2001-03-26 2004-11-02 Semiconductor Energy Laboratory Co.,.Ltd. Method of manufacturing semiconductor device
KR100426380B1 (ko) * 2001-03-30 2004-04-08 주승기 실리콘 박막의 결정화 방법 및 이를 이용한 반도체 소자제조 방법
SG108878A1 (en) * 2001-10-30 2005-02-28 Semiconductor Energy Lab Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
JP2003163221A (ja) * 2001-11-28 2003-06-06 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
KR100447893B1 (ko) * 2001-12-26 2004-09-08 엘지.필립스 엘시디 주식회사 박막 트랜지스터 제조방법
WO2003088280A1 (en) * 2002-04-08 2003-10-23 Council Of Scientific And Industrial Research Process for the production of neodymium-iron-boron permanent magnet alloy powder
US6667215B2 (en) * 2002-05-02 2003-12-23 3M Innovative Properties Method of making transistors
US20060049428A1 (en) * 2002-07-05 2006-03-09 Van Der Zaag Pieter J Tft electronic devices and their manufacture
US7374976B2 (en) * 2002-11-22 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin film transistor
US20050048706A1 (en) * 2003-08-27 2005-03-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7288480B2 (en) * 2004-04-23 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit and method for manufacturing the same, CPU, memory, electronic card and electronic device
KR100666552B1 (ko) 2004-06-30 2007-01-09 삼성에스디아이 주식회사 반도체 소자의 제조 방법 및 이 방법에 의하여 제조되는반도체 소자
KR100666563B1 (ko) 2004-07-05 2007-01-09 삼성에스디아이 주식회사 반도체 장치의 제조 방법 및 이 방법에 의하여 제조되는반도체 장치
TWI382455B (zh) * 2004-11-04 2013-01-11 Semiconductor Energy Lab 半導體裝置和其製造方法
US7575959B2 (en) * 2004-11-26 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8003449B2 (en) 2004-11-26 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having a reverse staggered thin film transistor
US20060197088A1 (en) * 2005-03-07 2006-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20070072382A1 (en) * 2005-09-28 2007-03-29 Fujitsu Limited Method of manufacturing semiconductor device
JP5352081B2 (ja) * 2006-12-20 2013-11-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101410926B1 (ko) * 2007-02-16 2014-06-24 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
CN101515544B (zh) * 2008-02-22 2011-06-15 中芯国际集成电路制造(上海)有限公司 一种多晶栅的生长方法
US7968880B2 (en) * 2008-03-01 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US7821012B2 (en) * 2008-03-18 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
CN102709185A (zh) * 2011-07-25 2012-10-03 京东方科技集团股份有限公司 含有多晶硅有源层的薄膜晶体管、其制造方法及阵列基板
CN103123902A (zh) * 2013-01-16 2013-05-29 京东方科技集团股份有限公司 半导体层结构、多晶硅薄膜晶体管、制作方法、显示装置
US8955357B2 (en) * 2013-03-15 2015-02-17 Lighting Science Group Corporation System and methods of embedding material in a glass substrate
KR102308905B1 (ko) * 2014-11-21 2021-10-06 삼성디스플레이 주식회사 박막 트랜지스터, 박막 트랜지스터의 제조 방법 및 박막 트랜지스터를 구비한 유기 발광 표시 장치

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378628A (en) * 1981-08-27 1983-04-05 Bell Telephone Laboratories, Incorporated Cobalt silicide metallization for semiconductor integrated circuits
FR2527385B1 (fr) * 1982-04-13 1987-05-22 Suwa Seikosha Kk Transistor a couche mince et panneau d'affichage a cristaux liquides utilisant ce type de transistor
US4619034A (en) * 1983-05-02 1986-10-28 Ncr Corporation Method of making laser recrystallized silicon-on-insulator nonvolatile memory device
JPH0693509B2 (ja) * 1983-08-26 1994-11-16 シャープ株式会社 薄膜トランジスタ
JPH0687503B2 (ja) * 1987-03-11 1994-11-02 株式会社日立製作所 薄膜半導体装置
US4965213A (en) * 1988-02-01 1990-10-23 Texas Instruments Incorporated Silicon-on-insulator transistor with body node to source node connection
US5248623A (en) * 1988-02-19 1993-09-28 Nippondenso Co., Ltd. Method for making a polycrystalline diode having high breakdown
JPH0242419A (ja) * 1988-08-02 1990-02-13 Hitachi Ltd 半導体装置およびその製造方法
JPH0283941A (ja) * 1988-09-21 1990-03-26 Fuji Xerox Co Ltd 薄膜トランジスタの製造方法
US5037766A (en) * 1988-12-06 1991-08-06 Industrial Technology Research Institute Method of fabricating a thin film polysilicon thin film transistor or resistor
JP2508851B2 (ja) * 1989-08-23 1996-06-19 日本電気株式会社 液晶表示素子用アクティブマトリクス基板とその製造方法
US4925812A (en) * 1989-09-21 1990-05-15 International Rectifier Corporation Platinum diffusion process
US5124769A (en) * 1990-03-02 1992-06-23 Nippon Telegraph And Telephone Corporation Thin film transistor
JP2775503B2 (ja) * 1990-03-13 1998-07-16 三菱電機株式会社 接合ゲート型電界効果トランジスタの製造方法
US5147826A (en) * 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
US5064775A (en) * 1990-09-04 1991-11-12 Industrial Technology Research Institute Method of fabricating an improved polycrystalline silicon thin film transistor
IT1244119B (it) * 1990-11-29 1994-07-05 Cons Ric Microelettronica Processo di introduzione e diffusione di ioni di platino in una fetta di silicio
JP3506445B2 (ja) * 1992-05-12 2004-03-15 沖電気工業株式会社 半導体装置の製造方法
US5266507A (en) * 1992-05-18 1993-11-30 Industrial Technology Research Institute Method of fabricating an offset dual gate thin film field effect transistor
US5252502A (en) * 1992-08-03 1993-10-12 Texas Instruments Incorporated Method of making MOS VLSI semiconductor device with metal gate
US5275851A (en) * 1993-03-03 1994-01-04 The Penn State Research Foundation Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
CN1095204C (zh) * 1993-03-12 2002-11-27 株式会社半导体能源研究所 半导体器件和晶体管

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316631C (zh) * 2000-02-22 2007-05-16 株式会社半导体能源研究所 半导体器件及其制造方法
US7915102B2 (en) 2005-06-23 2011-03-29 Samsung Mobile Display Co., Ltd. Methods of fabricating thin film transistor and organic light emitting display device using the same
CN101233531B (zh) * 2005-07-29 2012-05-30 株式会社半导体能源研究所 半导体装置的制造方法

Also Published As

Publication number Publication date
CN1108004A (zh) 1995-09-06
CN1542929A (zh) 2004-11-03
US5646424A (en) 1997-07-08
CN1542929B (zh) 2012-05-30
US6060725A (en) 2000-05-09
US5773846A (en) 1998-06-30
KR100203982B1 (ko) 1999-06-15
CN1154165C (zh) 2004-06-16
KR940022913A (ko) 1994-10-21
CN1154192C (zh) 2004-06-16
US5595944A (en) 1997-01-21
CN1095204C (zh) 2002-11-27
KR100194450B1 (en) 1999-07-01
CN1275813A (zh) 2000-12-06

Similar Documents

Publication Publication Date Title
CN1154165C (zh) 晶体管及其制造方法
CN1221018C (zh) 晶体管和半导体电路的制造方法
CN1078014C (zh) 半导体器件及其制造方法
CN1197164C (zh) 具有薄膜晶体管的器件
CN1051877C (zh) 半导体器件及其制造方法
CN1156913C (zh) 用于电子光学器件的半导体电路及其制造方法
CN1893001A (zh) 半导体器件的制造方法
CN1052110C (zh) 制造半导体器件的方法
CN1094652C (zh) 制造具有结晶半导体膜的半导体器件的方法
CN1194378C (zh) 有源矩阵型显示设备
CN1052115C (zh) 半导体器件
CN1051640C (zh) 半导体器件及其制造方法
CN1741257A (zh) 晶体管和半导体电路的制造方法
CN1487569A (zh) 薄膜晶体管的制造方法
CN1892996A (zh) 薄膜晶体管的制造方法与修补多晶硅膜层之缺陷的方法
CN1126154C (zh) 有源矩阵型显示装置
KR20040039572A (ko) 비정질 실리콘층의 탈수소화 방법 및 박막트랜지스터제조방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040616

Termination date: 20130312