CN1220009A - 医学成象系统中多形态数据的互补重合 - Google Patents

医学成象系统中多形态数据的互补重合 Download PDF

Info

Publication number
CN1220009A
CN1220009A CN97194922.0A CN97194922A CN1220009A CN 1220009 A CN1220009 A CN 1220009A CN 97194922 A CN97194922 A CN 97194922A CN 1220009 A CN1220009 A CN 1220009A
Authority
CN
China
Prior art keywords
data
spect
image
nuclear medicine
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97194922.0A
Other languages
English (en)
Other versions
CN1106579C (zh
Inventor
J·R·利比格
S·M·琼斯
王笑寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
ADAC Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADAC Laboratories Inc filed Critical ADAC Laboratories Inc
Publication of CN1220009A publication Critical patent/CN1220009A/zh
Application granted granted Critical
Publication of CN1106579C publication Critical patent/CN1106579C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1648Ancillary equipment for scintillation cameras, e.g. reference markers, devices for removing motion artifacts, calibration devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound

Abstract

本申请提供了将不同形态的医学图象数据互补重合的一种方法。按照这种方法,利用一个核医学成象系统对一个物体进行发射扫描以获取单光子发射计算机层析摄影(SPECT)图象数据。利用相同的核医学成象系统与发射扫描同时对该物体进行透射扫描以获取核医学透射图象数据。发射扫描是使用一个游动变焦窗口进行的,而透射扫描是使用探测器的全视场进行的。通过获知变焦窗口在每一个探测角度的位置,作为同时扫描的结果,可以将核医学透射图象数据与SPECT发射图象数据互补重合。还提供非SPECT形态的图象数据,例如X-光计算机层析摄影(X-光CT)数据、磁共振成象(MRI)数据、或正电子发射层析摄影(PET)数据,它们需要与SPECT发射数据互补重合。所以核医学透射图象数据可与不同形态的图象数据互补重合。结果,不同形态的图象数据变为与SPECT图象数据互补重合。

Description

医学成象系统中多形态数据的互补重合
发明领域
本发明属于医学成象领域。更具体地说,本发明涉及将不同成象形态的多幅医学图象互补重合(coregister)的一种方法和装置。
发明背景
在医学实践中,有许多种技术可以用于获得人体的诊断图象。这类技术的实例包括计算机层析摄影术(CT)、超声波成象、和X-光透视。CT包含多种成象方法,包括单光子发射计算机层析摄影术(SPECT)、正电子发射层析摄影术(PET)、和磁共振成象(MRI)。SPECT和PET有时也归类为通用术语“核医学”。这些成象技术,或“(成象)形态”中的每一种都分别应用不同的数据采集方法和获得具有独特特征的图象。
由于各种成象形态之间的差异,一种给定形态可能对于获得特定类型的诊断信息是特别有用的,但是对于获得其它类型的诊断信息是不足的。例如,SPECT通常用于获取器官图象,包括有关该器官的结构(解剖)信息和功能信息。但是,SPECT和其它核医学技术具有器官特异性,就是说,这些形态的图象主要显示所检测的特定器官,而有关该器官周围的解剖结构的信息则很少或没有。一般来说,在核医学技术中,首先向病人体内注入一种放射性药物。这种放射性药物浓缩在一种特定器官,例如心脏或大脑中,使得该器官产生辐射。然后利用成象设备检测这些辐射,并用以生成图象。所得图象提供了有关被检测器官的基本信息,但是一般不显示骨骼结构或其它附近器官(例如当为心脏成象时,肺)。然而,医生可能需要这类附加信息进行准确的诊断或进行适合的治疗。
在核医学中,如果医生需要除所检测的主要器官以外其它解剖结构的图象,医生通常必须借助于其它形态,例如X-射线CT或MRI。当获得一种以上形态的图象时,医生可能希望将在各个分立图象中的信息结合在一幅图象内。例如,医生可能希望看到这些图象彼此重叠的情形,从而可以使在一幅图象中表示的身体某一部位能够更容易和更精确地与其它图象相关。同一主体的不同图象的重叠有时被称为“互补重合”。按照医学成象理论,“互补重合”可以更具体地定义为这样一种方法:将同一身体区域的两幅或多幅图象结合起来,使得身体中的给定点仅由结合图象中的一个点表示(即各个图象精确地对齐)。互补重合图象可以显示在一个计算机屏幕上,或者通过某种形式的硬输出,例如纸张、X-光片、或其它类似媒体看到。
在本领域中已知有多种方法可以将用不同形态的图象互补重合。但是,简便准确地将多形态图象进行互补重合仍然是这些方法未能解决的问题。例如,可以用眼睛将利用不同形态的图象进行互补重合。更具体地说,医生可以操纵计算机系统的鼠标或跟踪球移动显示在计算机屏幕上的医学图象。但是,这种方法通常不是非常准确的,因为在利用不同形态的图象之间常常没有足够的共同信息可以用作参照点。
另一种互补重合方法采用了“标记物”。标记物是在成象过程中放置在病人身边,并且在利用两种或多种不同形态的图象中都可以看到的物体。标记物通常用于将使用核医学发射成象(即SPECT)获得的图象与利用核医学透射成象获得的图象进行互补重合。在以下的详细说明中将更加具体地讨论核医学透射成象。标记物可以由一小片金属构成,或者由填充有放射性核素物质的一个容器构成。按照这种方法,使用不同的形态进行成象扫描,每次一种形态,从而在每次扫描中标记物都放置在相对于病人身体的同一位置。由于标记物出现在所得的每一幅图象中,所以可以将不同形态的图象进行互补重合。然而,要将标记物相对于病人身体精确地定位可能仍然是困难重重。在多次扫描之间和在扫描过程中病人可能会稍微移动,如果病人相对于标记物发生移动,就很难或不可能精确地将所得的多幅图象互补重合。
因此,需要一种将多形态的医学成象数据互补重合的改进方法,这种方法能够克服上述的缺陷。特别是,需要一种方法,这种方法能够以相对简便和精确的方式将多形态医学成象数据互补重合。
发明概要
本发明提供了一种将不同形态的医学图象数据互补重合的方法。按照这种方法,使用一个核医学成象系统对一个物体进行发射扫描。在发射扫描过程中,获取单光子发射计算机层析摄影(SPECT)图象数据。与发射扫描同时,利用同一核医学成象系统对该物体进行透射扫描以获取核医学透射图象数据。将所获取的核医学透射图象数据与SPECT图象数据互补重合。提供除SPECT以外的一种形态的图象数据,该形态数据需要是已经与SPECT数据互补重合的。于是,核医学透射图象数据与其它形态的图象数据互补重合,结果,其它形态的图象数据得以与SPECT图象数据互补重合。
参照附图和以下的详细说明可以了解本发明的其它特征。
附图简介
以下仅以示例方式说明本发明,本发明并不局限于附图所示特征,在附图中相同的标号表示相似的部分,其中:
图1为一个伽马摄像医学成象系统的方块图。
图2表示用于对一个病人进行透射扫描的一个伽马摄像系统中的探测器和透射线源。
图3表示相对于两个探测器的跟踪变焦窗口和扫描透射探测窗口。
图4A和图4B表示在发射扫描中使用游动变焦窗口。
图4C和图4D表示根据用于发射扫描的游动变焦的空间偏移对透射数据的调整。
图5表示调整透射数据集矩阵的象素大小以与发射数据集矩阵的象素大小匹配的变换过程。
图6为表示使用核医学成象系统获取数据和图象生成全过程的流程图。
图7A表示一幅核医学透射图象。
图7B表示一幅核医学发射图象。
图7C表示一幅X-射线计算机层析摄影(CT)图象。
图7D表示图7B中所示的核医学发射图象与图7C所示的X-射线计算机层析摄影图象的互补重合。
图8为表示将不同形态数据互补重合的各个步骤的流程图。
发明的详细说明
下面介绍用于将使用一个医学成象系统获得的不同形态的图象互补重合的一种方法和装置。在以下的描述中,为了解释清楚,介绍了大量具体细节内容以使对本发明有彻底的了解。但是,对于本领域技术人员来说很显然,即使没有这些具体细节,本发明仍然能够实施。在另外一个例子中,以方块图的形式表示众所周知的结构和装置以避免对于本发明的不必要的模糊。
在以下说明中,除非特别指出,使用如“处理”或“计算”或“运算”或“测定”或“显示”或诸如此类的术语进行的与本发明的计算机系统功能相关的论述一般指的是计算机系统,或类似的电子计算装置的操作,即,执行一个程序以操纵和将由计算机系统的寄存器和存储器中的物理量(电子量)表示的数据变换为同样由该计算机系统存储器或寄存器中的物理量表示的其它数据。
Ⅰ.综述
在核医学成象(即,SPECT和PET)时,向病人体内注入易于累积在所检测的特定器官内的放射性药物。然后用一个伽马摄像机从身体周围的多个角度探测发射出的伽马射线、或光子。到达伽马摄像机闪烁体探测器的光子引发闪烁事件,利用光电倍增管探测这些事件,然后利用电路将所检测的信号转换成表示位置和能量信息的电信号。之后,采用一种被称为重构的方法用这些信号生成图象数据。所得图象可以称为“发射图象”。
在核医学中经常使用的另一种技术是“透射成象”。透射成象通常用于修正发射图象中的光子衰减效应。所检测器官周围的组织和骨骼结构会使从分布在器官中的放射性药物发射出的光子发生衰减。由于每个病人是不同的(不同的身高、体形等),所以对于每个病人来说所检测器官周围的组织和骨骼结构也是不同的。由于不同的组织和骨骼的衰减系数不同,所以放射性衰减是不均匀的。这种不均匀的衰减会大大降低图象质量。但是,透射图象使得伽马摄像机和计算机处理系统通过生成身体的“衰减映射”能够对不均匀衰减进行补偿。
一般来说,在透射扫描过程中,从具有已知特性的透射源发出的辐射透射穿过病人身体,然后由伽马摄像机中的一个闪烁探测器探测。通过获知从源发射出的辐射强度,和测量穿过物体并被探测的辐射强度,伽马摄像机中的一个计算机可以确定身体的不同部分在不同角度的不均匀辐射衰减。根据这些信息,利用众所周知的方法和程序可以生成人体的不均匀衰减映射图。然后在重构程序中利用这个衰减映射图对发射图象数据进行修正以消除不均匀光子衰减效应的影响。
根据本发明,在发射成象过程中使用一个核医学(伽马摄像机)程序系统同时进行透射成象。然后利用在透射扫描中所得的图象数据将发射图象数据与其它形态的图象数据进行互补重合,如下所详述的。
Ⅱ.成象系统
图1以方块图形式表示能够用于实施本发明的一个核医学成象系统。图1所示的成象系统可以用于SPECT或PET成象。该成象系统包括一个通用计算机系统112,用于处理从闪烁体探测器10和12输出的图象信息。计算机系统112还控制安装在一个机架上的探测器10和12的移动,和控制运动控制器,该控制器用于控制透射线源的移动,如下所述。
计算机系统112包括一条地址/数据总线100,用于在系统内部的数据通信;与总线100相连、用于执行指令和处理信息的一个中央处理器(CPU)101;与总线100相连、用于存储中央处理器101的信息和指令的一个随机存取存储器(RAM)102;与总线100相连、用于存储静态信息和处理器101的指令的一个只读存储器(ROM)103;与总线100相连、用于存储图象信息和指令的一个大容量存储器104;与总线100相连、用于向计算机使用者显示信息的一个显示器105,诸如一台阴极射线管显示器(CRT);与总线100相连、用于与中央处理器101进行信息通信和进行命令选择的一个字母数字输入装置106,该装置包括字母数字键和功能键;与总线相连、用于与中央处理器101传输使用者输入信息和进行命令选择的一个光标控制装置(它可以是数据输入装置106的一部分);和与总线100相连用于向处理器101传输命令选择的一个数据接口装置108。一个“硬拷贝”输出装置,例如一台打印机、也可以连接到总线100上。
图1所示的显示器105可以由一个阴极射线管(CRT)、一个液晶显示器(LCD)、或适合于向使用者显示图象和字母数字字符的其它装置构成。光标控制装置使得计算机使用者能够在显示器105的显示屏上动态地显示一个可见符号(指针)的两维移动。光标控制装置的许多实现方式在本领域中是众所周知的,包括跟踪球、指垫、鼠标、操纵杆或字母数字输入装置106上能够指示给定方向的移动或位移方式的专用键。大容量存储装置104可以是一个磁盘或光盘和盘驱动器,或其它类似装置。
计算机系统112通过总线122上的信号处理硬件电路120与探测器10和12对接。信号处理硬件120包括放大电路和模数转换电路,用于将来自探测器的信道信号转换成数字信号并传输到计算机系统112中。特别是,信号处理硬件120将探测器10和12中光电倍增管的输出转换成所探测闪烁事件的空间坐标数据和能量数据。
透射和发射数据以矩阵形式存储在存储器102中。可以使用独立的矩阵分别存储透射和发射数据。从透射扫描中获得的不均匀衰减映射也可以以矩阵形式存储在存储器102中。矩阵的每个单元,或“组元”对应于输出图象的一个象素。在不同的旋转角度获得图象矩阵以后,就可以进行层析摄影重构以生成一个器官的多片层图象或一个三维图象。
图2表示伽马摄像系统用于对一个病人5进行透射扫描的部分。当进行透射扫描时,闪烁体探测器10和12按照相对成90°关系设置,如图2所示。透射线源20和22分别用于发射伽马辐射,透过病人5到达探测器10和12。对于围绕Z-轴的各种不同角度(旋转角度),线源20平移跨越探测器10的视场,线源22平移跨越探测器12的视场。然后探测器10和12分别测量从线源20和22发出的完全透过病人身体5的辐射量。当透射线源20沿Z-轴行进时,透射检测区域10a接收经过校准的辐射。区域10a与线源20同步扫描。类似地,当线源22沿Z-轴行进时,透射区域12a接收经过校准的辐射。区域12a与组件22同步移动。使用图2所示的配置,可以与发射扫描同时进行透射扫描,只要为发射和透射扫描设定不同的辐射能量值。
A.游动变焦窗口
在某些SPCET成象应用中,例如在心脏成象时,因为器官尺寸小,需要以高分辨率图象矩阵(例如具有小的象素尺寸)对该器官进行成象。为了实现足够小的象素,有时使用一个小视场(SFOV)探测器。例如,可以使用实际视场为16″×16″、15″×15″和13″×13″的探测器。但是,对于为获取精确的身体衰减映射的透射扫描,需要使用全视场的大探测器(例如20″×15″)以避免身体的截断。所以,本发明目前优选的实施例为透射扫描使用大视场(LFOV)探测器,而为发射扫描使用一个小视场探测器。
在优选实施例中,用于发射扫描的小视场是使用一个游动变焦“窗口”或区域实现的,有关内容详细记载在美国专利US-5304806中(发明名称为“医学摄像系统中对变焦扫描区域进行自动跟踪的装置和方法”,1994年4月19日授权,并转让给本发明的受让人)。该变焦窗口探测从所检测器官(例如心脏)发射出的辐射。因为象素在变焦区域小于变焦区域以外,发射图象看起来较大,所以是“经过变焦放大的”。
在优选实施例中,变焦窗口由探测器电子部分和/或计算机系统的数据采集程序限定在每个探测器的视场内。这个窗口被限定为与每个探测器的视场部分一致,而该视场部分是与一个特定的器官例如心脏一致的。探测器电子部分对于在变焦窗口中探测到的发射辐射进行图象放大。当探测器围绕该物体转动到一个不同角度时,变焦窗口相对于探测器的表面移动(“游动”),从而使心脏(或其它被检测的器官)保持在中心和在每个变焦窗口的视场中。实际上,变焦窗口在每个旋转角度都跟踪该器官。由于变焦窗口小于探测器的整个视场,伽马摄像机的图象形成能力可以集中在变焦窗口,并且提高了所得图象的产生质量(例如提高了分辨率)。与一个双探测器系统中变焦窗口跟踪有关的内容记载在上述的美国专利US-5304806中。
B.数据采集
图3表示与本发明的双探测器透射窗口和双线源扫描配置相结合如何实现跟踪变焦窗口。变焦窗口352和354分别限定在探测器12和10的表面上,并且如箭头352a和354a所示上下移动,以便当探测器10和12围绕Z-轴旋转时能够跟踪所检测的目标。在任何给定角度,变焦窗口352和354的位置都保持固定。探测器10和12仅仅在每个旋转角度的变焦窗口352和354内接收电子信号形式的发射数据(例如计数)。虽然探测器10和12的整个视场都可以接收发射辐射,但是只有在变焦窗口352和354中检测的发射辐射被存储起来,并用于图象重构。
与在两个游动变焦窗口中采集发射数据同时,还在透射扫描检测窗口310和312中采集透射数据。一个示例性实施方案使用TI-201作为发射放射源,使用Gd-153作为透射放射源。虽然在图3中没有示出,但是还包括两个扫描线源,并且,如上所述,这两个线源与两个透射检测窗口同步移动。在围绕Z-轴的每个旋转角度,透射检测窗口310和312按照箭头312a和310a所示横跨探测器视场扫描以采集透射数据。此外,在每个旋转角度,变焦窗口352和354采取一个新的空间位置(游动)以跟踪所检测的目标。但是,与扫描透射检测窗口312和310不同,在任何给定的旋转角度,变焦窗口352和354相对于探测器表面保持静止。
本发明的透射检测窗口310和312仅仅报告在透射能量范围内的光子,而排斥检测到的其它光子,例如发射能量光子,其中包括(1)散射的透射光子;和(2)非散射的发射光子。变焦窗口352和354报告发射光子,因为线源和探测器保持准直确保没有有效的透射光子落到两个透射检测窗口310和312以外。
如图3所示,当变焦窗口352和354扫描经过与其相关的探测器视场时,透射检测窗口310和312有时与变焦窗口352和354部分重合。在这段时间内,成象系统中的电子部分进行校正,从而落入透射检测区域310和312中的发射光子不会被错误地认为是透射光子,以及在变焦窗口352和354中接收的透射光子不会被错误地认为是发射光子。如何进行这种校正的详细技术不属于本说明书的范围,对于理解本发明是不必要的。
Ⅲ.核医学发射和透射图象的互补重合
为了进行层析图象重构,在每个旋转角度所取的图象假定存在一个固定的旋转中心和成象的物体相对于该旋转中心是稳定的。但是,相对于游动的变焦区域,因为发射采集窗口相对于探测器表面移动以跟踪一个器官,发射层析照片实际上具有一个虚拟的旋转中心;就是说,成象器官变为这个虚拟的旋转中心。此外,这个虚拟的旋转中心可能与由机架和探测器机构限定的实际旋转中心不一致。应当理解,如果成象器官位于实际旋转中心,则变焦区域根本无需游动。
在优选实施例中,其中发射数据是在游动变焦区域获取的,透射数据(其与发射数据同时获得)在空间上偏移到由成象器官限定的“虚拟”旋转中心。具体地说,因为游动变焦区域对于给定旋转角度移动给定距离,在这个角度采集的透射数据也必须偏移,或“偏置”相应的移动量。所以,在透射数据和发射数据的重构过程中,身体中相同的点在透射图象中的位置与在发射图象中位置相同。就是说,透射图象(例如衰减映射)在空间上与发射图象对准。
此外,由于透射象素大于发射象素,如上所述,必须对透射数据集矩阵的象素尺寸进行调整以使之与变焦区域象素尺寸匹配。下面将详细介绍象素尺寸的调整。在已经将投射数据集进行了调整以相对于变焦区域位移和不同的象素尺寸进行修整之后,透射数据就能够有效地与发射数据互补重合,因为这两个数据集是利用相同的探测器同时获取的。
图4A和4B表示在发射扫描过程中游动变焦窗口的移动。图4A表示游动变焦窗口441位于探测器10的视场435中的初始位置(i,k)。其中显示出心脏443的图象。图4B表示在一个不同旋转角度的相同配置。游动变焦区域441已经位移了di和dk值。如图所示,游动变焦区域441已经向上移动以跟踪心脏位置,从而使心脏图象443在每个ECT旋转角度保持在变焦区域的视场中。当扫描完成时,在每一个旋转角度(θ)每一个游动变焦区域具有一个不同的偏移值(di,dk)。例如,游动变焦区域相对于探测器10和12存在di(θ)和dk(θ)值。这些偏移值存储在存储器中。例如,可以生成下列数据集,并存储在存储器中:旋转角度                  探测器10             探测器12θ0                    di(θ0),dk(θ0)      di(θ0),dk(θ0)θ1                    di(θ1),dk(θ1)      di(θ1),dk(θ1)θ2                    di(θ2),dk(θ2)      di(θ2),dk(θ2)θ3                    di(θ3),dk(θ3)      di(θ3),dk(θ3)θ4                    di(θ4),dk(θ4)      di(θ4),dk(θ4)θn                    di(θn),dk(θn)      di(θn),dk(θn)
在每个旋转角度(θ),透射数据集矩阵根据游动变焦区域在这个角度的位移量(例如di(θ),dk(θ))发生空间上的偏移。图4C和4D显示了在给定旋转角度下的这种效应。具体地说,图4C表示探测器10的透射扫描在未予补偿时的数据集矩阵。图4D表示在给定角度θ下的透射数据偏移游动变焦窗口的位移量di和dk。通过对每个探测器在每个角度(θ)下获得的每个数据集进行这样的补偿,透射数据能够有效地平移,从而它变为基于虚拟旋转中心(例如该器官),而不是机架的旋转中心。在完成空间补偿之后,将透射数据矩阵存储在存储器中。
如上所述,因为透射象素大于发射象素,成象系统调整透射数据集矩阵的象素尺寸以与变焦区域象素尺寸匹配。例如,假定变焦区域象素的放大倍数M大于1.0(例如,1.5倍),则透射扫描的象素尺寸减小,数量增加,并使用一种线性内插程序内插直到透射扫描和发射扫描获得的象素尺寸匹配。例如,假定以64×64规格的矩阵采集透射数据集矩阵。本发明将这个矩阵转换成一个较大的矩阵数据集(例如,128×128),其有效地减小了透射数据集矩阵中各个象素的尺寸,但是增加了象素数量。但是,由于发射数据的放大倍数M可能小于2倍,所以新的透射矩阵可能没有完全填满。
现在参见图5,其中表示了一个示例性透射数据集矩阵505,该矩阵为由64×64个象素组成的矩阵。矩阵505的图象数据被转换成一个较大的矩阵506(例如由一个128×128的矩阵构成)。矩阵505的透射图象数据记录在“区域”515中。展宽的区域510在变焦放大倍数小于2的情况下是空的。例如,如果变焦放大倍数为1.5,则矩阵505中的每个象素将用其相邻的象素进行线性内插,从而两个相邻的象素将在其间生成另一个象素,依此类推,直到区域515填满和将透射数据调整到1.5倍变焦放大。但是,由于矩阵506是矩阵505两维尺寸的两倍,以及由于M=1.5,所以矩阵506的边界510没有填充有效数据。
有许多种技术可以将由一个第一矩阵构成的图象转换成一个第二矩阵,该第二矩阵与第一矩阵相比包含更多,但是较小的象素。在本发明范围内可以使用众所周知的许多方法中的任何一种。
如上所述,在已经将透射数据集相对于变焦区域位移和象素尺寸进行校正之后,透射图象数据可以有效地与发射图象数据互补重合,因为这两个数据集是利用相同的成象系统(即使用相同的探测器)同时采集的。
图6为表示使用一种核医学成象系统进行数据采集和图象生成的全过程的流程图。为了与SFOV发射同时进行LFOV透射,机架首先位于一个初始旋转角度。探测器10和12按照彼此成90°的关系定位。在初始旋转角度确定游动变焦窗口的适合初始位置和大小(例如相对于闪烁体探测器),如在美国专利US-5304806中所记载的。在方框615,在这个旋转角度使用线源20和22进行透射扫描,在探测器10和12的全视场中记录成象信息(例如透射数据)。仍然在方框615,仅仅在每个探测器的游动变焦窗口区域获取来自探测器10和12的发射数据。应当理解,方框615中的透射数据采集和发射数据采集是同时进行的。
在预定的成象时间期间获得足够的透射和发射计数,此后,在方框619,成象系统将发射图象计数作为一个数据集矩阵存储在一个存储器中,并用当前的旋转角度标注这些信息。仍然在方框619,成象系统将透射图象计数作为一个数据集矩阵存储在一个存储器中,并用当前的旋转角度标注这些信息。然后在方框621,成象系统判断成象时段是否结束。如果没有,则确定一个新的旋转角度,在方框622探测器10和12恰好旋转到新旋转角度。然后返回到方框615的处理程序,从而可以完成透射扫描和发射扫描的图象数据集矩阵,并以这个新旋转角度为标注存储起来。
在方框621,如果完成了最后一个旋转角度的扫描,则处理程序继续到方框623,其中每个探测器在每个旋转角度下的透射数据集经过空间校正,而偏移到由游动变焦区域限定的虚拟旋转中心。所以,在每个角度(θ)透射数据集矩阵都根据游动变焦区域在这个角度θ的位移量发生空间上的偏移(例如di(θ),dk(θ))。如上所述,图4C和4D表示了在给定旋转角度的这种效应。在方框621的重新定位完成之后,将透射数据矩阵保存在存储器中。
在方框625,基于发射数据集的放大倍数调整透射数据集的象素大小。对于每个探测器在每个旋转角度获得的每个透射数据集矩阵执行步骤625。将这些结果保存在存储器中。
在方框627,成象系统进行透射信息的重构。该重构步骤可以是为生成不均匀衰减映射或者是为了其它目的,例如根据本发明对多形态数据的互补重合。对在不同的旋转角度获取的图象信息进行重构的方法和步骤是众所周知的。在本发明的范围内可以使用多种不同的、众所周知的重构方法中的任何一种。
在方框629,成象系统对通过游动变焦区域采集的发射数据进行重构。在重构过程中,使用众所周知的方法利用透射重构映射对身体的不均匀衰减进行校正。由于相对于游动变焦区域的位移(例如步骤263)和象素尺寸(例如步骤625)对透射重构进行了校正,可以将透射重构作为不均匀衰减映射直接应用于发射重构。发射重构和衰减校正可以以多种不同方式进行。按照本发明的一个优选实施例,是以“逐片层”的方式为基础进行的。
在上述程序610结束之后,可以将发射重构图象的各个片层显示在CRT上或利用打印机或其它等效装置产生在硬拷贝中。可以响应使用者的输入命令将选定的片层显示出来和/或打印出来。
Ⅳ.发射图象与其它形态图象的互补重合
给定成象形态(SPECT、PET、MRI、X-光CT等等)对于获得一种特定类型的信息可能是有用的,但是,如上所述,对于获得其它类型的诊断信息可能是无用的。SPECT常常用于获得一个器官的图象,其图象显示出该器官的结构(解剖)信息和功能信息。但是,SPECT只能获得很少或无法获得有关所检测器官周围的解剖结构的信息。相反,X-光CT和MRI通常提供相对较为清楚的解剖结构图象,例如肺部和骨骼结构图象。所以,常常需要将核医学发射(SPECT)图象与其它形态的图象进行互补重合。例如,医生可能希望看到与肺部的X-光CT或MRI图象互补重合的心脏的发射图象。
必须指出,使用上述计数获得的核医学透射图象还用于显示发射图象无法显示的某些解剖结构,例如肺部。但是,核医学透射图象的分辨率通常不高。所以,虽然在透射图象中可以识别出这些解剖结构,但是这些结构对于诊断来说一般都不够清楚和详细。还必须指出,如果核医学透射数据是利用相同的探测器与发射数据同时获取的,和如果按照上述方式处理,则自然可以与发射数据互补重合。所以,根据本发明,与核医学发射图象互补重合的核医学透射图象用于将核医学发射图象与其它形态的图象(例如,MRI、X-光CT等等)进行互补重合。
现在参见图7A至7D,其中表示了在一个病人胸部摄取的横轴“片层”图象的示意;就是说,由图7A至7D表示的图象位于与病人身体的长轴垂直的一个平面内。图7A表示一个核医学透射图象。该透射图象表示肺部704和病人身体的外部轮廓701。图7B表示与图7A所示身体的相同区域的核医学发射图象。图7B的发射图象详细表示了心脏706,但是没有以可以利用的分辨率显示其它解剖结构。尽管轮廓701实际上并没有出现在发射图象中,在图7B中也提供了身体的外部轮廓701,仅作为参照。虽然这里是将透射图象和发射图象分开表示的,但是仍然假定作为同时进行数据采集和如上所述处理的结果,图7B所示发射图象的数据集与图7A所示的透射图象数据集是互补重合的。
图7C表示与图7A和7B所示相同身体部分的X-光CT图象。图7C中的X-光CT图象表示病人身体的外部轮廓701。此外,X-光CT图象以比图7A的透射图象更高的分辨率表示肺部704。但是,因为图7A中的透射图象和图7C中的X-光CT图象都表示肺部704,所以这两个图象可以互补重合。在核医学透射图象与X-光CT图象互补重合之后,X-光CT图象与图7B中的核医学发射图象有效地互补重合。这是因为透射图象已经与发射图象互补重合。图7D表示图7B中的核医学发射图象与图7C中的X-光计算机层析摄影图象互补重合的图象。所得的互补重合图象以可用的清晰度同时表示出心脏706和肺部704,从而构成包含比单独观看这些图象更多信息的、可用于诊断的图象。
图8表示了将SPECT图象与非SPECT图象互补重合的全过程。在方框802,将非SPECT图象数据输入一个计算机系统。在方框804,将非SPECT图象与核医学透射图象互补重合。在方框806,将SPECT发射图象(其数据集已经与透射图象数据集互补重合)与非SPECT图象一起以互补重合的形式显示出来。
X-光CT或其它非SPECT图象与透射图象的互补重合(以便将非SPECT图象与发射图象互补重合)程序可以人工执行或自动执行。人工互补重合可以借助于一个计算机系统进行,在所说计算机系统中载有便于由使用者通过一个图解用户界面操纵图象的软件。用于执行这种功能的各种类型的软件是众所周知的和随处可以获得的。计算机系统可以是(但不需要是)用于获取图象的成象系统的一部分。作为如何利用计算机人工将图象互补重合的一个实例,假定透射图象和相同身体部分的X-光CT图象都显示在计算机系统的CRT上。一个使用者可以操纵一个鼠标或其它光标控制装置将透射图象和X-光CT图象对准,使用共同的解剖结构(例如肺部)作为可见提示。当这些图象对准之后,可以用发射图象代替显示器上的透射图象。具体地说,可以通过将显示器上与透射图象共同的参照点对齐而将发射图象显示出来。所以,可以将X-光CT图象重叠在发射图象上,或者反过来,从而所得图象是与X-光CT图象互补重合的发射图象。
或者,计算机系统可以配置能够自动地将透射图象与非SPECT图象互补重合的软件。能够将图象中的目标定位和对准的软件是有的,并且在本领域中是熟知的。这种软件可以使用例如一种边沿检测算法将不同图象中的目标定位和对准。
应当理解,用于将核医学透射图象与非SPECT图象互补重合的具体方法是不重要的;重要的是这样一种方法可以用作将SPECT(发射)图象数据与非SPECT图象数据互补重合的一种手段。
还应当理解,图7C所示的X-光CT图象仅仅是说明性的。其它非SPECT形态,特别是MRI的图象也可以按照上述方式与SPECT图象互补重合。此外,应当指出,上述互补重合技术不限于应用在横轴片层图象的互补重合方面。这种技术可以应用于利用医学成象技术获得的任何类型的视图(例如,冠状视图等)。
至此,已经介绍了用于将不同形态的医学图象互补重合的一种方法和装置。虽然已经参照具体实施例描述了本发明,但是很显然,在不脱离由权利要求书提出的本发明广泛构思和范围的前提下还可以对这些实施例作出多种改进和变化。因此,说明书和附图只能被认为是说明性的,而不是限定性的。

Claims (22)

1.用于将不同形态的医学图象数据互补重合的一种方法,该方法包括以下步骤:
使用一种核医学成象系统对一个物体进行发射扫描以获取单光子发射计算机层析摄影(SPECT)图象数据;
使用该核医学成象系统对该物体进行透射扫描以获取核医学透射图象数据,这些数据用于与SPECT图象数据互补重合;
提供一种非SPECT形态的图象数据;和
将核医学透射图象数据与非SPECT形态的图象数据互补重合,从而使非SPECT形态的图象数据变为与SPECT图象数据互补重合。
2.如权利要求1所述的一种方法,其特征在于执行透射扫描的步骤是与执行发射扫描的步骤同时进行的。
3.如权利要求2所述的一种方法,其特征在于一组位置值对应于核医学透射图象数据,将核医学透射图象数据与SPECT图象数据互补重合的步骤包括以下步骤:
确定代表SPECT图象数据单元与核医学透射图象数据的对应单元之间空间偏移的一组偏移值;和
根据这些偏移值调整相关的位置值。
4.如权利要求1所述的一种方法,其特征在于该方法是在一个计算机系统中实施的。
5.如权利要求4所述的一种方法,其特征在于该计算机系统包括一个显示器装置和一个输入装置,其中互补重合步骤包括以下步骤:
根据所说透射数据在所说显示器上显示一幅第一图象;
根据非SPECT形态的一组数据在显示器上显示一幅第二图象;和
从所说输入装置接收一组使用者输入指令,所说使用者输入指令用于人工将所说第二图象相对于所说第一图象重新定位;和
在根据使用者输入指令确定的一个位置输出基于SPECT数据的一个第三图象。
6.如权利要求4所述的一种方法,其特征在于所说计算机系统包括一个处理器,该方法还包括配置所说处理器以将所说的核医学透射数据组与第三组图象数据互补重合的步骤。
7.如权利要求6所述的一种方法,其特征在于所说互补重合步骤包括使用所说处理器自动地将SPECT数据与非SPECT形态的数据组互补重合的步骤。
8.在一个核医学成象系统中,该系统包括用于接收辐射和输出图象信息的一个探测器、用于发射辐射透过一个物体到达闪烁体探测器的一个辐射源、和一个计算机系统;用于将多种形态的医学图象数据互补重合的一种计算机实施的方法,该方法包括以下步骤:
控制所说探测器和所说辐射源对一个物体同时进行发射扫描以获取一组单光子发射计算机层析摄影(SPECT)数据和进行透射扫描以获取一组核医学透射数据;
将SPECT数据与所说核医学透射数据互补重合;
向计算机系统中输入第三组图象数据,其中所说第三组图象数据是非SPECT形态的数据;和
将所说的这组核医学透射数据与所说的第三组图象数据互补重合,以使所说的第三组图象数据与所说的SPECT数据互补重合。
9.如权利要求8所述的一种方法,其特征在于所说核医学透射数据包括一组位置值,其中将核医学透射数据与SPECT数据互补重合的步骤包括以下步骤:
确定代表SPECT图象数据单元与核医学透射图象数据的对应单元之间空间偏移的一组偏移值;和
根据这些偏移值调整相关的位置值。
10.如权利要求8所述的一种方法,其特征在于所说计算机系统包括一个显示器和一个输入装置,其中将所说的核医学透射数据组与第三组图象数据互补重合的步骤包括以下步骤:
根据所说核医学透射数据在所说显示器上显示一幅第一图象;
根据所说的第三组图象数据在显示器上显示一幅第二图象;和
从所说输入装置接收一组使用者输入指令,所说使用者输入指令规定了当显示在显示器上时第一图象与第二图象相对位置之间的变化;和
根据SPECT数据在显示器上显示一个第三图象,从而在根据所说的使用者输入指令确定的一个位置显示所说第三图象。
11.如权利要求8所述的一种方法,其特征在于所说计算机系统包括一个处理器,该方法还包括配置所说处理器以响应使用者输入指令自动地将所说核医学透射数据组与所说的第三组图象数据互补重合的步骤。
12.如权利要求8所述的一种方法,其特征在于互补重合的步骤包括使用所说处理器自动地将SPECT数据与非SPECT形态的数据组互补重合的步骤。
13.用于将不同形态的医学图象数据互补重合的一种装置,它包括:
用于使用一种核医学成象系统对一个物体进行发射扫描以获取单光子发射计算机层析摄影(SPECT)图象数据的装置;
用于使用核医学成象系统对该物体进行透射扫描以获取与SPECT图象数据互补重合的核医学透射图象数据的装置;
用于提供非SPECT形态的图象数据的装置;和
用于将所说核医学透射图象数据与非SPECT形态的图象数据互补重合,从而使非SPECT形态的图象数据变为与SPECT图象数据互补重合的装置。
14.如权利要求13所述的一种装置,其特征在于用于执行透射扫描的装置包括用于与发射扫描同时进行透射扫描的装置。
15.如权利要求14所述的一种装置,其特征在于所说核医学透射图象数据与一组位置值相关,其中用于将核医学透射图象数据与SPECT图象数据互补重合的装置包括:
用于确定代表SPECT图象数据单元与核医学透射图象数据的对应单元之间空间偏移的一组偏移值的装置;和
用于根据这些偏移值调整相关的位置值的装置。
16.如权利要求13所述的一种装置,其特征在于所说装置还包括一个计算机系统。
17.如权利要求16所述的一种装置,其特征在于所说计算机系统包括一个显示器装置和一个输入装置,其中用于互补重合的装置包括:
用于根据透射数据在显示器上显示第一图象的装置;
用于根据所说的非SPECT形态的数据组在显示器上显示第二图象的装置;和
用于从所说输入装置中接收一组使用者输入指令的装置,使用者输入指令用于将第二图象相对于第一图象人工重新定位;和
用于在由所说使用者输入指令确定的一个位置输出基于SPECT数据的一幅第三图象的装置。
18.如权利要求16所述的一种装置,其特征在于所说计算机系统包括用于自动地将所说核医学透射数据组与所说第三组图象数据互补重合的装置。
19.一种核医学成象系统,包括:
用于接收辐射和输出图象信息的一个探测器;
用于发射辐射使之透过一个物体到达闪烁体探测器的一个辐射源;和
与所说探测器和所说辐射源相连的一个计算机系统,该计算机系统包括一个处理器,该处理器用于:
控制所说探测器和辐射源对该物体同时进行发射扫描以获取一组单光子发射计算机层析摄影(SPECT)数据和对该物体进行透射扫描以获取一组核医学透射数据;
将SPECT数据与核医学透射数据互补重合;
将非SPECT形态的第三组图象数据输入所说计算机系统中;和
将这组核医学透射数据与第三组图象数据互补重合以使所说的第三组图象数据与SPECT数据互补重合。
20.如权利要求19所述的一种成象系统,其特征在于所说核医学透射数据包括一组位置值,其中处理器用于通过以下方式将所说核医学透射数据与SPECT数据互补重合:
确定代表SPECT图象数据单元与核医学透射图象数据的对应单元之间空间偏移的一组偏移值;和
根据这些偏移值调整相关的位置值。
21.如权利要求20所述的一种成象系统,其特征在于所说计算机系统还包括一个显示器和一个输入装置,其中处理器用于通过以下方式将所说核医学透射数据组与所说第三组图象数据互补重合:
根据所说核医学透射数据在所说显示器上显示一幅第一图象;
根据所说的第三组图象数据在显示器上显示一幅第二图象;和
从所说输入装置接收一组使用者输入指令,所说使用者输入指令规定了当显示在显示器上时第一图象与第二图象相对位置之间的变化;和
根据使用者输入指令和SPECT数据在显示器上显示一幅第三图象,使得所说第二图象与所说第三图象重叠显示。
22.如权利要求20所述的一种成象系统,其特征在于所说处理器还用于响应使用者输入指令自动地将核医学透射数据组与所说的第三组图象数据互补重合。
CN97194922.0A 1996-03-27 1997-02-04 医学成象系统中多形态数据的互补重合 Expired - Fee Related CN1106579C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/623,908 1996-03-27
US08/623,908 US5672877A (en) 1996-03-27 1996-03-27 Coregistration of multi-modality data in a medical imaging system

Publications (2)

Publication Number Publication Date
CN1220009A true CN1220009A (zh) 1999-06-16
CN1106579C CN1106579C (zh) 2003-04-23

Family

ID=24499868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97194922.0A Expired - Fee Related CN1106579C (zh) 1996-03-27 1997-02-04 医学成象系统中多形态数据的互补重合

Country Status (6)

Country Link
US (1) US5672877A (zh)
JP (1) JP2001502047A (zh)
CN (1) CN1106579C (zh)
AU (1) AU1954197A (zh)
DE (1) DE19781676T1 (zh)
WO (1) WO1997036190A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292712C (zh) * 2002-10-04 2007-01-03 Ge医药系统环球科技公司 多模态成像方法和装置
CN101234028B (zh) * 2007-01-30 2010-05-26 上海西门子医疗器械有限公司 Spect-ct系统中ct扫描定位像的自动生成方法
CN101953693A (zh) * 2009-07-16 2011-01-26 西门子公司 完整或部分正电子发射断层造影衰减图的基于模型的估计
CN1969295B (zh) * 2004-05-10 2011-06-08 皇家飞利浦电子股份有限公司 数据处理系统以及使用该系统的检查设备

Families Citing this family (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871013A (en) * 1995-05-31 1999-02-16 Elscint Ltd. Registration of nuclear medicine images
US7110587B1 (en) * 1995-05-31 2006-09-19 Ge Medical Systems Israel Ltd. Registration of nuclear medicine images
FR2736163B1 (fr) * 1995-06-29 1997-08-22 Sopha Medical Methode d'obtention, en medecine nucleaire, d'une image du corps d'un patient corrigee des troncatures
US6171243B1 (en) * 1997-05-30 2001-01-09 Picker International, Inc. Combination of collimated and coincidence information for positron imaging
US6174330B1 (en) * 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
JP3016427B2 (ja) * 1998-02-02 2000-03-06 日本電気株式会社 原子座標生成方法
US6195409B1 (en) 1998-05-22 2001-02-27 Harbor-Ucla Research And Education Institute Automatic scan prescription for tomographic imaging
US6233478B1 (en) 1998-09-28 2001-05-15 Advanced Research & Technology Institute Apparatus and method for constructing computed tomography image slices of an object undergoing cyclic motion
CA2252993C (en) 1998-11-06 2011-04-19 Universite De Sherbrooke Detector assembly for multi-modality scanners
US6368331B1 (en) * 1999-02-22 2002-04-09 Vtarget Ltd. Method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body
US6591127B1 (en) * 1999-03-15 2003-07-08 General Electric Company Integrated multi-modality imaging system and method
FR2793055B1 (fr) * 1999-04-29 2001-07-13 Ge Medical Syst Sa Procede et systeme de fusion de deux images radiographiques numeriques
IL130317A0 (en) * 1999-06-06 2000-06-01 Elgems Ltd Hand-held gamma camera
US6490476B1 (en) * 1999-10-14 2002-12-03 Cti Pet Systems, Inc. Combined PET and X-ray CT tomograph and method for using same
AU2001266579A1 (en) 2000-05-16 2001-11-26 Dario B. Crosetto Method and apparatus for anatomical and functional medical imaging
US8489176B1 (en) 2000-08-21 2013-07-16 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US7826889B2 (en) 2000-08-21 2010-11-02 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8036731B2 (en) 2001-01-22 2011-10-11 Spectrum Dynamics Llc Ingestible pill for diagnosing a gastrointestinal tract
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8565860B2 (en) 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
DE10048029A1 (de) * 2000-09-26 2002-04-25 Philips Corp Intellectual Pty Verfahren zur Berechnung einer zwei Abbildungen verbindenden Transformation
US6787777B1 (en) * 2000-11-09 2004-09-07 Koninklijke Philips Electronics, N.V. Nuclear imaging system and method using segmented field of view
IL157007A0 (en) 2001-01-22 2004-02-08 Target Technologies Ltd V Ingestible device
JP3860979B2 (ja) * 2001-02-28 2006-12-20 安西メディカル株式会社 ガンマカメラ装置
US7105824B2 (en) * 2002-05-09 2006-09-12 Neurologica, Corp. High resolution photon emission computed tomographic imaging tool
US7130457B2 (en) * 2001-07-17 2006-10-31 Accuimage Diagnostics Corp. Systems and graphical user interface for analyzing body images
US6901277B2 (en) * 2001-07-17 2005-05-31 Accuimage Diagnostics Corp. Methods for generating a lung report
US20030028401A1 (en) * 2001-07-17 2003-02-06 Leon Kaufman Customizable lung report generator
US7324842B2 (en) 2002-01-22 2008-01-29 Cortechs Labs, Inc. Atlas and methods for segmentation and alignment of anatomical data
US7117026B2 (en) * 2002-06-12 2006-10-03 Koninklijke Philips Electronics N.V. Physiological model based non-rigid image registration
GB2391125B (en) * 2002-07-19 2005-11-30 Mirada Solutions Ltd Registration of multi-modality data in imaging
US6661866B1 (en) 2002-08-28 2003-12-09 Ge Medical Systems Global Technology Company, Llc Integrated CT-PET system
US20040068167A1 (en) * 2002-09-13 2004-04-08 Jiang Hsieh Computer aided processing of medical images
US6906330B2 (en) * 2002-10-22 2005-06-14 Elgems Ltd. Gamma camera
EP1573495B1 (en) 2002-11-04 2009-11-04 Spectrum Dynamics LLC Apparatus and methods for imaging and attenuation correction
GB0227887D0 (en) * 2002-11-29 2003-01-08 Mirada Solutions Ltd Improvements in or relating to image registration
US20040159791A1 (en) * 2003-02-19 2004-08-19 Yaron Hefetz Pet/spect nuclear scanner
IL156569A (en) * 2003-06-22 2009-11-18 Ultraspect Ltd Improved single-plane plane emission simulation imaging method
US20050015004A1 (en) * 2003-07-17 2005-01-20 Hertel Sarah Rose Systems and methods for combining an anatomic structure and metabolic activity for an object
JP2005058428A (ja) * 2003-08-11 2005-03-10 Hitachi Ltd 病巣位置特定システム及び放射線検査装置
JP4782680B2 (ja) * 2003-08-25 2011-09-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Pet−ctシステムにおける較正画像アライメント装置及び方法
US7935055B2 (en) * 2003-09-19 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US20050080332A1 (en) * 2003-10-10 2005-04-14 Shiu Almon S. Near simultaneous computed tomography image-guided stereotactic radiotherapy
WO2006075333A2 (en) * 2005-01-13 2006-07-20 Spectrum Dynamics Llc Multi-dimensional image reconstruction and analysis for expert-system diagnosis
EP1709585B1 (en) 2004-01-13 2020-01-08 Spectrum Dynamics Medical Limited Multi-dimensional image reconstruction
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
WO2007010537A2 (en) 2005-07-19 2007-01-25 Spectrum Dynamics Llc Reconstruction stabilizer and active vision
US8571881B2 (en) 2004-11-09 2013-10-29 Spectrum Dynamics, Llc Radiopharmaceutical dispensing, administration, and imaging
US8586932B2 (en) 2004-11-09 2013-11-19 Spectrum Dynamics Llc System and method for radioactive emission measurement
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
EP1778957A4 (en) 2004-06-01 2015-12-23 Biosensors Int Group Ltd OPTIMIZING THE MEASUREMENT OF RADIOACTIVE EMISSIONS IN SPECIFIC BODY STRUCTURES
EP1766550A2 (en) * 2004-06-01 2007-03-28 Spectrum Dynamics LLC Methods of view selection for radioactive emission measurements
US20060004274A1 (en) * 2004-06-30 2006-01-05 Hawman Eric G Fusing nuclear medical images with a second imaging modality
US8090429B2 (en) * 2004-06-30 2012-01-03 Siemens Medical Solutions Usa, Inc. Systems and methods for localized image registration and fusion
ES2706542T3 (es) * 2004-07-09 2019-03-29 Hologic Inc Sistema de diagnóstico para mamografía multimodal
US7397893B2 (en) * 2004-09-27 2008-07-08 Siemens Medical Solutions Usa, Inc. Method and apparatus for simultaneous emission and transmission spect using oblique line sources
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US8615405B2 (en) 2004-11-09 2013-12-24 Biosensors International Group, Ltd. Imaging system customization using data from radiopharmaceutical-associated data carrier
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US8000773B2 (en) 2004-11-09 2011-08-16 Spectrum Dynamics Llc Radioimaging
EP1827505A4 (en) 2004-11-09 2017-07-12 Biosensors International Group, Ltd. Radioimaging
JP2008526270A (ja) * 2004-11-22 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Rtp用の改良されたデータ表現
US7265356B2 (en) * 2004-11-29 2007-09-04 The University Of Chicago Image-guided medical intervention apparatus and method
EP1828981A2 (en) * 2004-12-15 2007-09-05 Koninklijke Philips Electronics N.V. Registration of multi-modality images
CN101138010B (zh) * 2005-03-10 2011-05-18 皇家飞利浦电子股份有限公司 用于将二维和三维图像数据对准的图像处理系统和方法
US8644910B2 (en) 2005-07-19 2014-02-04 Biosensors International Group, Ltd. Imaging protocols
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
DE102005035430A1 (de) * 2005-07-28 2007-02-01 Siemens Ag Verfahren zur verbesserten Darstellung co-registrierter 2D-3D-Bilder in der medizinischen Bildgebung
EP1952180B1 (en) 2005-11-09 2017-01-04 Biosensors International Group, Ltd. Dynamic spect camera
EP1966984A2 (en) 2005-12-28 2008-09-10 Starhome GmbH Optimal voicemail deposit for roaming cellular telephony
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US10387612B2 (en) * 2006-06-14 2019-08-20 Koninklijke Philips N.V. Multi-modality medical image layout editor
US8280483B2 (en) * 2006-06-14 2012-10-02 Koninklijke Philips Electronics N.V. Multi-modality medical image viewing
US7601966B2 (en) 2006-06-28 2009-10-13 Spectrum Dynamics Llc Imaging techniques for reducing blind spots
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
EP2076790B1 (en) * 2006-10-04 2014-02-12 CERN - European Organization For Nuclear Research Readout circuit for use in a combined pet-ct apparatus
US20080086059A1 (en) * 2006-10-04 2008-04-10 Cynthia Keppel Method and apparatus for lesion localization using a dual modality x-ray/gamma biopsy system
US8610075B2 (en) 2006-11-13 2013-12-17 Biosensors International Group Ltd. Radioimaging applications of and novel formulations of teboroxime
WO2008075362A2 (en) 2006-12-20 2008-06-26 Spectrum Dynamics Llc A method, a system, and an apparatus for using and processing multidimensional data
WO2008075304A1 (en) * 2006-12-21 2008-06-26 Koninklijke Philips Electronics N.V. Integrated spect imaging and ultrasound therapy system
DE102007009182B4 (de) * 2007-02-26 2016-09-22 Siemens Healthcare Gmbh Verfahren und Vorrichtung zur Bilddarstellung von sich zyklisch bewegenden Objekten
US7729467B2 (en) * 2007-03-22 2010-06-01 General Electric Company Methods and systems for attentuation correction in medical imaging
WO2008139344A1 (en) * 2007-05-10 2008-11-20 Koninklijke Philips Electronics N.V. Model-based spect heart orientation estimation
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US8290303B2 (en) * 2007-10-11 2012-10-16 General Electric Company Enhanced system and method for volume based registration
US8521253B2 (en) 2007-10-29 2013-08-27 Spectrum Dynamics Llc Prostate imaging
JP5259213B2 (ja) * 2008-02-26 2013-08-07 株式会社東芝 核医学診断装置、及び医用画像処理装置
US8787648B2 (en) * 2008-03-07 2014-07-22 Koninklijke Philips N.V. CT surrogate by auto-segmentation of magnetic resonance images
US9453922B2 (en) 2008-09-09 2016-09-27 Multi-Magnetics Incorporated System and method for correcting attenuation in hybrid medical imaging
CN102265307B (zh) * 2008-09-17 2014-10-22 皇家飞利浦电子股份有限公司 混合式核/mr成像中使用透射数据的mr分割
EP2340524B1 (en) * 2008-09-19 2019-06-05 Koninklijke Philips N.V. Method for generation of attenuation map in pet-mr
US8369928B2 (en) * 2008-09-22 2013-02-05 Siemens Medical Solutions Usa, Inc. Data processing system for multi-modality imaging
FI20086189A0 (fi) 2008-12-12 2008-12-12 Joensuun Yliopisto Menetelmä ja laitteisto kohteen kuvaamiseksi
WO2010121133A2 (en) 2009-04-17 2010-10-21 The General Hospital Corporation Multimodal imaging of fibrin
CN102356087A (zh) 2009-03-19 2012-02-15 惠氏有限责任公司 [2-(8,9-二氧代-2,6-二氮杂双环[5.2.0]壬-1(7)-烯-2-基)乙基]膦酸及其前体的制备方法
CN102361596B (zh) 2009-03-24 2014-07-16 皇家飞利浦电子股份有限公司 混合双模态图像处理系统和方法
US8338788B2 (en) 2009-07-29 2012-12-25 Spectrum Dynamics Llc Method and system of optimized volumetric imaging
US8909323B2 (en) * 2009-08-06 2014-12-09 Siemens Medical Solutions Usa, Inc. System for processing angiography and ultrasound image data
JP5661453B2 (ja) * 2010-02-04 2015-01-28 株式会社東芝 画像処理装置、超音波診断装置、及び画像処理方法
US8716664B2 (en) 2010-07-21 2014-05-06 Siemens Medical Solutions Usa, Inc. Data processing unit integration for MR-PET imaging
WO2012019162A1 (en) 2010-08-06 2012-02-09 Accuray, Inc. Systems and methods for real-time tumor tracking during radiation treatment using ultrasound imaging
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
DE102011005715A1 (de) * 2011-03-17 2012-09-20 Siemens Aktiengesellschaft Verfahren zum Gewinnen eines von Spuren eines Metallobjektes befreiten 3D-Bilddatensatzes
US20120265050A1 (en) * 2011-04-04 2012-10-18 Ge Wang Omni-Tomographic Imaging for Interior Reconstruction using Simultaneous Data Acquisition from Multiple Imaging Modalities
WO2012157338A1 (ja) * 2011-05-17 2012-11-22 オリンパスメディカルシステムズ株式会社 医療機器、医療画像におけるマーカ表示制御方法及び医療用プロセッサ
WO2013033592A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
US11534122B2 (en) 2012-09-20 2022-12-27 Virginia Tech Intellectual Properties, Inc. Stationary source computed tomography and CT-MRI systems
EP2711738A1 (en) * 2012-09-21 2014-03-26 Technische Universität München A method and a device to generate virtual X-ray computed tomographic image data
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
EP2904671B1 (en) 2012-10-05 2022-05-04 David Welford Systems and methods for amplifying light
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
EP2931132B1 (en) 2012-12-13 2023-07-05 Philips Image Guided Therapy Corporation System for targeted cannulation
CA2895989A1 (en) 2012-12-20 2014-07-10 Nathaniel J. Kemp Optical coherence tomography system that is reconfigurable between different imaging modes
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
CA2895502A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
EP2934653B1 (en) 2012-12-21 2018-09-19 Douglas Meyer Rotational ultrasound imaging catheter with extended catheter body telescope
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
JP2016508233A (ja) 2012-12-21 2016-03-17 ナサニエル ジェイ. ケンプ, 光学スイッチを用いた電力効率のよい光学バッファリング
CA2895993A1 (en) 2012-12-21 2014-06-26 Jason Spencer System and method for graphical processing of medical data
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
WO2014100530A1 (en) 2012-12-21 2014-06-26 Whiseant Chester System and method for catheter steering and operation
CA2896006A1 (en) 2012-12-21 2014-06-26 David Welford Systems and methods for narrowing a wavelength emission of light
JP2016501623A (ja) 2012-12-21 2016-01-21 アンドリュー ハンコック, 画像信号のマルチ経路処理のためのシステムおよび方法
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
EP2965263B1 (en) 2013-03-07 2022-07-20 Bernhard Sturm Multimodal segmentation in intravascular images
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
EP2967391A4 (en) 2013-03-12 2016-11-02 Donna Collins SYSTEMS AND METHODS FOR DIAGNOSING CORONARY MICROVASCULAR DISEASE
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
JP6339170B2 (ja) 2013-03-13 2018-06-06 ジンヒョン パーク 回転式血管内超音波装置から画像を生成するためのシステム及び方法
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
EP2967606B1 (en) 2013-03-14 2018-05-16 Volcano Corporation Filters with echogenic characteristics
WO2015080716A1 (en) 2013-11-27 2015-06-04 Analogic Corporation Multi-imaging modality navigation system
EP3243476B1 (en) 2014-03-24 2019-11-06 Auris Health, Inc. Systems and devices for catheter driving instinctiveness
EP3200718A4 (en) 2014-09-30 2018-04-25 Auris Surgical Robotics, Inc Configurable robotic surgical system with virtual rail and flexible endoscope
US10991069B2 (en) * 2014-10-08 2021-04-27 Samsung Electronics Co., Ltd. Method and apparatus for registration of medical images
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
CN107847216B (zh) * 2015-07-17 2024-01-23 皇家飞利浦有限公司 对肺癌辐射的指导
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
JP2020520691A (ja) 2017-05-12 2020-07-16 オーリス ヘルス インコーポレイテッド 生検装置およびシステム
KR102341451B1 (ko) 2017-06-28 2021-12-23 아우리스 헬스, 인코포레이티드 기기의 삽입 보상을 위한 로봇 시스템, 방법 및 비일시적 컴퓨터 가독 저장 매체
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
KR102645922B1 (ko) 2017-12-06 2024-03-13 아우리스 헬스, 인코포레이티드 지시되지 않은 기구 롤을 수정하기 위한 시스템 및 방법
AU2018384820A1 (en) 2017-12-14 2020-05-21 Auris Health, Inc. System and method for estimating instrument location
EP3752085A4 (en) 2018-02-13 2021-11-24 Auris Health, Inc. SYSTEM AND METHOD FOR TRAINING A MEDICAL INSTRUMENT
US10796430B2 (en) 2018-04-24 2020-10-06 General Electric Company Multimodality 2D to 3D imaging navigation
WO2020069430A1 (en) 2018-09-28 2020-04-02 Auris Health, Inc. Systems and methods for docking medical instruments
US11031118B2 (en) * 2019-08-12 2021-06-08 Biosense Webster (Israel) Ltd. Mixed electroanatomical map coloring tool having draggable geodesic overlay
EP4084721A4 (en) 2019-12-31 2024-01-03 Auris Health Inc IDENTIFICATION OF AN ANATOMIC FEATURE AND AIMING
EP4084722A4 (en) 2019-12-31 2024-01-10 Auris Health Inc ALIGNMENT INTERFACES FOR PERCUTANE ACCESS
CN114901192A (zh) 2019-12-31 2022-08-12 奥瑞斯健康公司 用于经皮进入的对准技术

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884566A (en) * 1988-04-15 1989-12-05 The University Of Michigan System and method for determining orientation of planes of imaging
US5210421A (en) * 1991-06-10 1993-05-11 Picker International, Inc. Simultaneous transmission and emission converging tomography
US5299253A (en) * 1992-04-10 1994-03-29 Akzo N.V. Alignment system to overlay abdominal computer aided tomography and magnetic resonance anatomy with single photon emission tomography
US5391877A (en) * 1994-01-26 1995-02-21 Marks; Michael A. Combined imaging scanner
US5598003A (en) * 1995-05-11 1997-01-28 Adac Laboratories Large field of view transmission and small field of view emission scan within gamma camera system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292712C (zh) * 2002-10-04 2007-01-03 Ge医药系统环球科技公司 多模态成像方法和装置
CN1969295B (zh) * 2004-05-10 2011-06-08 皇家飞利浦电子股份有限公司 数据处理系统以及使用该系统的检查设备
CN101234028B (zh) * 2007-01-30 2010-05-26 上海西门子医疗器械有限公司 Spect-ct系统中ct扫描定位像的自动生成方法
CN101953693A (zh) * 2009-07-16 2011-01-26 西门子公司 完整或部分正电子发射断层造影衰减图的基于模型的估计
CN101953693B (zh) * 2009-07-16 2015-02-18 西门子公司 完整或部分正电子发射断层造影衰减图的基于模型的估计

Also Published As

Publication number Publication date
AU1954197A (en) 1997-10-17
JP2001502047A (ja) 2001-02-13
DE19781676T1 (de) 1999-04-15
US5672877A (en) 1997-09-30
CN1106579C (zh) 2003-04-23
WO1997036190A1 (en) 1997-10-02

Similar Documents

Publication Publication Date Title
CN1106579C (zh) 医学成象系统中多形态数据的互补重合
US7991450B2 (en) Methods and systems for volume fusion in diagnostic imaging
US7507968B2 (en) Systems and methods for correcting a positron emission tomography emission image
CN101061504B (zh) 通过迭代约束去卷积进行核医学2d平面图像的恢复
US8472683B2 (en) Motion correction in tomographic images
US6455856B1 (en) Gamma camera gantry and imaging method
US7142633B2 (en) Enhanced X-ray imaging system and method
US5923038A (en) Partial angle tomography scanning and reconstruction
EP2640270B1 (en) Pet-ct system with single detector
JP4782680B2 (ja) Pet−ctシステムにおける較正画像アライメント装置及び方法
CN101528131B (zh) 对带有运动伪影的图像进行的伪影校正
US20030194050A1 (en) Multi modality X-ray and nuclear medicine mammography imaging system and method
JP6130840B2 (ja) 適応デュアルパス標的再構成及び取得
CN101495041B (zh) 具有用于慢ct采集的不规则采样的门控ct
CN103607954A (zh) 用于混合式扫描器上ac和定位的剂量优化方案
JP2002148340A (ja) 診断画像形成用核医学ガンマ線カメラ及びそれを用いた診断画像形成方法
US20040125917A1 (en) Volumetric CT system and method utilizing multiple detector panels
EP0844498B1 (en) Radiation imaging apparatus and method
CN102727237A (zh) 医用图像诊断装置以及控制方法
JP2001324570A (ja) 透過放射線補正型ガンマ線カメラ及びそれを用いた診断画像形成方法
JP6526428B2 (ja) 医用画像処理装置、医用画像処理方法および医用画像診断装置
JP2015100575A (ja) 放射線撮像装置、放射線撮像方法および核医学診断装置
JP6425885B2 (ja) 核医学診断装置、画像処理装置および画像処理プログラム
Moncayo et al. Attenuation correction in multipinhole-CZT gamma camera: Differences in attenuation pattern in myocardial SPECT between CZT and conventional gamma cameras. Oddstig J, Martinsson E, Jogi J, Engblom H, Hindorf C. J Nucl Cardiol. 2018.
US20220287670A1 (en) Partial Scan and Reconstruction for a Positron Emission Tomography System

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: ROYAL PHILIPS ELECTRONICS CO., LTD.

Free format text: FORMER OWNER: ROOM #, ADAKESHIYAN

Effective date: 20021108

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20021108

Address after: Holland Ian Deho Finn

Applicant after: Koninklike Philips Electronics N. V.

Address before: American California

Applicant before: Adac Laboratories, Inc.

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee