CN1222058C - 用于电化学反应装置的固体电解质复合物 - Google Patents

用于电化学反应装置的固体电解质复合物 Download PDF

Info

Publication number
CN1222058C
CN1222058C CNB97197781XA CN97197781A CN1222058C CN 1222058 C CN1222058 C CN 1222058C CN B97197781X A CNB97197781X A CN B97197781XA CN 97197781 A CN97197781 A CN 97197781A CN 1222058 C CN1222058 C CN 1222058C
Authority
CN
China
Prior art keywords
polymer
barrier film
electrolyte
film
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB97197781XA
Other languages
English (en)
Other versions
CN1230293A (zh
Inventor
B·巴哈尔
G·鲁施
J·科尔德
加藤博
虫明直文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Gore Enterprise Holdings Inc
Original Assignee
Gore Enterprise Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17418454&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1222058(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gore Enterprise Holdings Inc filed Critical Gore Enterprise Holdings Inc
Publication of CN1230293A publication Critical patent/CN1230293A/zh
Application granted granted Critical
Publication of CN1222058C publication Critical patent/CN1222058C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

提供了一种用于电化学反应装置的固体聚合物电解质复合物,它具有令人满意的离子电导性能和优良的机械强度和耐热性;该固体聚合物电解质复合物的特征在于在具有连续孔隙的发泡多孔聚四氟乙烯片材的连续孔隙中含有所述固体聚合物电解质,并且用功能材料(如金属氧化物)覆盖限定所述孔隙的内表面。还提供了一种含电解质的电化学反应装置,所述装置的特征在于将上述固态聚合物电解质复合物用作其电解质。

Description

用于电化学反应装置的 固体电解质复合物
发明的领域
本发明涉及用于电化学装置和方法的复合隔膜(composite membranes)。更具体地说,本发明涉及孔隙中含有电解质的微孔隔膜。
发明的背景
由于固体聚合物电解质具有下列优点,其作为锂电池等的电解质而近来倍受关注:(1)由于该材料可叠合成隔片,从而能提高电池的能量密度;(2)可构成全固体结构而获得无泄漏、高可靠性的电池;(3)更容易降低电池的厚度或重量,或可制成不规则的形状等。
常用的固体聚合物电解质具有两种类型:(1)含金属盐的聚合物和(2)含电解质溶液的聚合物凝胶。对于第一种类型,形成金属盐和极性聚合物(如PEO(聚氧化烯))的配合物,并在聚合物链的分子运动的同时传送锂和其它类似的离子。这种固体聚合物电解质具有高的机械强度,但其室温的离子电导率限于10-4S/cm数量级。因此需要降低分子量或软化聚合物,以便加强聚合物链的分子运动,但是这种方法最终会导致机械强度下降。对于第二种类型,所含的电解质起离子导体的作用并保持聚合物为固体。这种固体聚合物电解质的离子电导率为10-3数量级,也就是说,落在实用的范围内,但其缺点是电解质会使聚合物增塑,使其机械强度下降。
有时要求固体聚合物电解质的离子电导率为10-3S/cm数量级,厚度与常规隔片的厚度相当,并要求其强度不存在加工问题。由于电化学反应装置性能的改进,耐热性是近年来需要考虑的另一个因素。换句话说,即使当电化学反应装置加热时,用于该装置的固体聚合物电解质复合物也应能保持其隔膜片功能。
有人提出将固体聚合物电解质填充在聚合物多孔薄膜的孔隙中制成复合的固体聚合物电解质,作为能同时满足离子电导率和机械强度要求的产物,用作固体聚合物电解质(日本公开专利申请1-158051,2-230662,2-291607),但是仍未能获得满意的电解质。
因此,本发明的一个目的是提供一种采用固体聚合物电解质的复合物用于电化学反应装置,它具有令人满意的离子电导率能并具有优良的机械强度和耐热性;本发明的目的还在于提供一种使用该电解质的电化学反应装置。
离子交换隔膜是众所周知的。使用微孔介质的离子交换隔膜已公开在美国专利5,547,551和5,599,614中。至今为止,微孔介质的用途基本上仅仅是作为向离子交换介质提供“机械增强功能”的一种手段。这种机械增强功能提供了改进的尺寸稳定性和形成整体上较薄的隔膜的能力,从而改进了薄膜的总的传送性能(通过离子电导率或透湿性测得)。
过去,还试图通过加入附加组分来增强离子交换隔膜的性能。Grot的美国专利5,547,911涉及将一层催化活性颗粒施加在隔膜表面上的方法。美国专利4,568,441涉及将非导电性的无机颗粒施加在隔膜表面上,以改进其发气性能。这两个专利均未提到将添加剂分散在隔膜中会使其具有较高的性能。
Razaq的美国专利5,322,602涉及通过用酸处理离子交换聚合物隔膜,使酸扩散在该隔膜中来改进其性能。
Grot的WO 96/29752涉及将各种无机填料混入隔膜中以减少燃料穿过。未提到能制造薄的很高导电性的隔膜。
Stonehart等的美国专利5,523,181(和日本专利6-111827及6-111834)涉及一种离子交换隔膜,在整个隔膜中分散有二氧化硅。未提到微孔基材。
Watanabe的美国专利5,472,799涉及含有催化剂层的离子交换隔膜。尽管提到了所需的薄隔膜,但是未提到微孔载体。
美国专利5,547,551和5,599,614涉及使用微孔载体,该载体的作用是改进强度和机械性能,从而能使用薄的高导电性隔膜。未提到将填料加入该微孔载体中。但是,公开了用添加剂与离子交换介质一起增强特定的功能。然而它难以适当地分布添加剂颗粒,因为微孔增强体还起过滤介质的作用,阻止细颗粒流动。
仍然需要开发薄的高导电性隔膜,通过使用均匀地兼有多种功能的功能载体使得该隔膜具有增强的性能。
发明的概述
本发明克服了现有技术的缺点,本发明是:
一种复合隔膜,它包括:
a)一种微孔聚合物片材,它的孔隙从其一侧延伸至另一侧;
b)限定所述孔隙的结构,所述结构至少部分被功能材料所覆盖,所述功能材料选自:
i)无机颗粒;
ii)金属;和
iii)有机聚合物;
c)所述片材的孔隙,它至少部分填有聚合物电解质,所述电解质选自:
i)含金属盐的聚合物组合物;
ii)含电解质的聚合物凝胶;和
iii)离子交换树脂。
附图简述
由下面的描述并结合附图可清楚地理解本发明的效果,附图中:
图1是适用于本发明的锂二次电池的结构剖面图;
图2是铝制的兼作正电极集电极的正极端薄膜的平面图;
图3是铜制的兼作负电极集电极的负极端薄膜的平面图;
图4是具有添加剂和聚合物电解质的多孔微结构。
发明的详细描述
本发明的一个重要特征是功能材料b)。术语“功能”指材料具有某些能影响复合物性能和功能的特征。
微孔片材
合适的微孔聚合物薄膜包括由聚烯烃、聚酰胺、聚碳酸酯、纤维素、聚氨酯、聚酯、聚醚、聚丙烯酸酯、共聚醚酯、共聚醚酰胺、聚氨基葡糖和氟聚合物制得的薄膜。合适的氟聚合物包括多孔聚四氟乙烯隔膜,较好是发泡多孔PTFE(有时称之为ePTFE)隔膜,它是用Gore的美国专利3,953,566所述的方法制得的。
适用于本发明的多孔聚四氟乙烯片或薄膜可用本领域已知的方法制得,如用拉伸和牵引法、造纸法,用填料与PTFE树脂混合后再除去填料,留下多孔结构的方法,或用粉末烧结法。较好的多孔聚四氟乙烯薄膜如美国专利3,953,566和4,187,390(描述该较好的材料及其制造方法)所述是多孔的发泡聚四氟乙烯薄膜,它具有节点和原纤维相互连接的结构。所述节点和原纤维限定了具有相互连接的通道和通路的三维网络的内部结构,所述通道和通路在整个隔膜中由表面至表面垂直地延伸,并由边缘至边缘横向地延伸。多孔聚四氟乙烯隔膜的厚度应为3-1,000微米,较好为5-100微米;孔体积为20-98%,较好为50-90%;标称孔径为0.05-15微米,较好为0.1-2微米。
其它聚合物(如热塑性聚合物)的微孔薄膜描述在Sherman的美国专利4,539,256(在此引为参考)中。微孔聚氨酯的制备描述在美国专利4,429,000中。微孔聚合物薄膜,尤其是微孔聚烯烃(聚乙烯、聚丙烯、聚丁烯、聚戊烯等)薄膜的制备描述在英国专利1339207中。通过拉伸制备微孔薄膜的方法描述在美国专利4,726,989中,该专利使用聚酰胺、聚烯烃、聚苯乙烯、聚偏氟乙烯、和聚己内酯(polycaprolactone)。通过液体萃取制造微孔薄膜的方法描述在英国公开专利No.2,026,381中。拉伸法描述在美国专利4,100,238中。通过薄膜断裂、热拉伸进行制造的方法描述在美国专利3,679,540中。这些专利对聚合物的描述在此引为参考。
英国专利2,026,381公开了具有多孔表面的隔膜的制造方法,该方法将聚合物与液体组分共混成二元的二相体系,在液相团聚状态该体系具有一个相容区和一个相容性有差异的区域;形成共混料的片材;在该液体组分浴中流延该薄膜;除去该液体组分形成孔隙。形成的未取向的多孔片材具有较低的拉伸强度。
美国专利3,953,566、3,962,153、4,096,227、4,110,392、4,187,390和4,194,041(在此均引为参考)描述了由聚四氟乙烯(PTFE)(一种非热塑性聚合物)制造多孔制品(包括微孔片材)的方法,其特征在于具有原纤维连接节点的微结构。这种制品是通过挤出含PTFE颗粒和润滑剂的糊料、除去润滑剂、拉伸并对形成的产物退火制得的。形成的产物是烧结的取向的PTFE多孔薄膜。
美国专利4,100,238和4,197,148(在此引为参考)描述了微孔薄膜的制造方法,它将两种组分的共混料挤出,溶剂浸提一种分散的组分,拉伸形成的经浸提的薄膜,得到所需的孔隙率。所述共混料是由聚合物和一种可浸提不可混溶的物质组成的。一旦除去可浸提的分散的聚合物相并对薄膜进行取向,就形成了多孔薄膜。
美国专利3,679,540(在此引为参考)公开了一种制造微孔聚合物薄膜的方法,它将弹性聚合物薄膜冷拉伸至薄膜断裂形成多孔表面区域、将经冷拉伸的薄膜热拉伸至形成原纤维及孔隙或开孔(open cell),随后热定形形成的薄膜。由于这些薄膜不总是能均匀纤化形成特定的孔隙尺寸,因此一般不能控制孔隙率。
一些美国专利公开了多孔聚合物薄膜的制造方法,所述方法将不可混溶但可浸提的颗粒物质(如淀粉、盐等)共混在聚合物中;形成片材并从该聚合物片材中浸提所述颗粒物质。这些美国专利(在此引为参考)包括:美国专利3,214,501和3,640,829,美国专利3,870,593公开了微孔聚合物片材的制造方法,它将不可混溶不可浸提的填料共混在聚合物中;形成共混料的片材并拉伸该片材形成孔隙,这些孔隙位于原先填料颗粒处。
美国专利4,539,256(在此引为参考)报导了微孔片材的制造方法,其步骤包括将可结晶的热塑性聚合物与一种化合物熔融共混,所述化合物在该聚合物的熔融温度能与其混溶,但冷却至低于该聚合物的熔融温度则不混溶;形成熔融共混料的片材;将该片材冷却至该化合物与该聚合物不混溶的温度,使该热塑性聚合物和该化合物相分离,形成片材。
这种多孔聚合物薄膜或片材的孔隙率最好大于35%。孔隙率更好为40-95%,优选为70%。薄膜的厚度较好小于2mil(0.05mm,50微米)。厚度最好为0.06mil(1.5m)-1.6mil,厚度优选为0.50mil(0.013mm)-1.5mil(0.038mm)。
较好的薄膜是购自W.L.Gore&Associates,Inc商标为GORE-TEX隔膜的各种形状的发泡多孔PTFE。这种发泡多孔PTFE薄膜的多孔微结构含有被原纤维相互连接的节点或者主要含有原纤维,基本不存在节点。较好的发泡多孔PTFE薄膜的特性为在10-60psi具有发泡点;空气流量为20弗雷泽(Frazier)-10(格利)Gurley秒。它的孔隙尺寸分布值还可为1.05-1.20,小球崩裂强度为0.9-17磅/力。
功能材料
覆盖限定孔隙的结构的材料可以是金属氧化物。金属氧化物使复合物在长时期内具有改进的机械强度。ePTFE具有良好的固有机械强度,但是这种机械强度必须用金属氧化物进一步增强。
金属氧化物还起基质的作用,以便将固体聚合物电解质高容量地稳定地滞留在孔隙中。由于ePTFE具有高的孔隙率,因此它能接受并滞留大量的固体聚合物电解质。另外,填入孔隙中的这种固体聚合物电解质不容易被解吸,因为它被ePTFE中细小的原纤维和微小的节点所滞留。此外,所述氧化物改进了微孔片材的湿润性,使固体聚合物电解质更容易填入孔隙。
另外,在高温下金属氧化物是稳定的。锂电池及其它电化学反应装置的性能正在逐渐改进,相信由于在高电流密度下的重复充放电、短路和其它不良现象会产生热量。如果固体聚合物电解质缺乏耐热性或者在高温下不能保持其形状,则会失去作用并发生广泛(extensive)短路,有发生故障的危险。该复合物起防止在电极之间形成短路的作用。
在本发明中,使用具有连续的孔隙并且该孔隙的内表面涂覆有金属氧化物的发泡多孔聚四氟乙烯,以便滞留前面提到的固体聚合物电解质。在这种情况下使用的金属氧化物的例子包括下列元素的氧化物:锂、铍、硼、钠、镁、铝、Ai[sic]、磷、钾、钙、铈、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、锗、硒、铷、锶、钇、锆、铌、钼、钌、铑、钯、镉、铟、锡、锑、碲、铯、钡、镧、铈、镨、钕、钐、铕、镉、铽、镝、钬、铒、铥、镱、镥、钍、镤、铪、钽、钨、铂、钛、铅、铋等。
功能添加剂可以是,例如无机填料、催化剂或这些物质的混合物。其例子包括,但不限于二氧化硅、铂、二氧化钛、负载在二氧化硅上的铂、负载在二氧化钛上的铂、碳、氮化硼、钛酸钡或其共混料,或者是与原来微孔基材不同的聚合物(如氟烃或聚烯烃等),以及适用的离子交换材料如全氟磺酸树脂。
一种用途是用于PEM燃料电池的改进的自湿润隔膜,其中的填料是二氧化硅或二氧化钛,它用于帮助产生的水分由阴极反向迁移至阳极。
第二种用途是自湿润的低气体渗透性的PEM燃料电池隔膜,其中的填料是铂,或负载在二氧化硅或二氧化钛上的铂,填料的作用是在隔膜中与任何反应物反应并产生水,否则这些反应物将扩散透过隔膜并破坏开路性能。
第三种用途的填料是氮化硅,它用于帮助透过隔膜的热传导。
第四种用途是超级电容器,其中的填料是钛酸硼,用于增加隔膜的介电性能。
第五种用途的填料是导电性的,用于透过隔膜传送电子和质子,以便在短的燃料电池结构中产生H2O2。这使得电池设计简单得多,因为它无需使用使电子流动的外电路。
第六种用途的填料是离子交换材料,它用于改进载体和聚合物电解质中离子交换材料之间的粘合。
第七种用途的填料是一种能降低基材表面能的材料,从而能使改进或湿润基材并使离子交换材料进入微孔结构的操作更容易进行。
聚合物电解质
(1)含金属盐的聚合物组合物
聚合物组合物的例子包括聚醚、聚酯、聚酰亚胺、交联的聚醚、含聚醚链段的聚合物、带烷氧基的乙烯基硅烷的聚合物、具有乙烯氧(EO)基团的聚甲基硅氧烷、带有EO基团的聚磷腈、带有EO基团的聚甲基丙烯酸酯、聚丙烯酸、聚氮丙啶、聚乙烯硫化物及其它极性聚合物材料。在聚合物中的电解质的例子包括各种金属盐,如:LiClO4、LiCF3SO3、LiF、NaI、LiI、NaSCN、LiBF4、LiPF6、LiBPh4(Ph:苯基)和其它碱金属盐以及硫酸盐、磷酸盐、三氟甲磺酸盐、四氟乙磺酸盐及其它质子酸。
(2)含电解质的聚合物凝胶
这些聚合物吸收并胶凝电解质。这种电解质溶液的例子包括将电解质和其它必需的可溶性聚合物溶解在有机溶剂中形成的溶液,所述有机溶剂包括例如碳酸丙二酯、δ-丁内酯、二甲氧基乙烷、二噁烷、四氢呋喃、乙腈、二甲亚砜、甲基四氢呋喃和环丁砜。所述聚合物无特别的限制,只要它们是具有交联结构并且能吸收和胶凝上述电解质溶液的聚合物即可,可使用各种已知的常规产品。
(3)离子交换树脂
适用的离子交换聚合物材料可以是能得到所需结果的任何离子交换材料。该材料最好是含氟的,因为含氟材料在化学活性上基本呈惰性并具有耐热性。
离子交换聚合物材料当然含有离子官能度,较好含有磺酸部分、羧酸部分或膦酸部分。所存在的官能团的量应足能赋予聚合物以离子交换性能。如果当量数太高,会导致电阻太大。但是如果当量数太低,则机械强度会变差。离子官能度通常由以循环的方式存在在聚合物主链上或存在在从聚合物主链上延伸出来的侧基上的羧酸、磺酸或膦酸基团提供。聚合物主链最好是含氟烃主链。官能团最好具有-COOM、-SO3M或PO3M2结构,其中M是氢、金属阳离子或NH+ 4。如果是金属阳离子,则其较好为碱金属或碱土金属离子,如Na+、K+等。
对于羧酸官能度,如杜邦的美国专利4,437,951所述带有上述官能团的侧接的侧链可在其端部具有下面通式的基团:
Figure C9719778100092
其中,V是-COOM,Z是-F或-CF3,τ是1-12,较好是1或2的整数。所述专利由于公开了羧酸和磺酸官能度而在此全文引为参考。
本发明涉及的磺酰基聚合物通常是具有含氟烃主链并在该主链上连接有含磺酸基的官能团作为侧链的聚合物。对于磺酸型聚合物,侧链的端部可以是:
-CFRSO3M,
-CF2CFRSO3M,或者
-OCF2CF2-SO3M等
其中,R是F、Cl或全氟烷基,M如上所述。
对于含磷聚合物,存在同类的侧基。
除了上述含氟羧酸树脂及含氟的磺酸和含磷树脂以外,本发明适用的其它离子交换树脂包括,但不限于聚乙烯醇(PVA)、二乙烯基苯/苯乙烯共聚物,只要它们具有必需的官能团侧链即可。可将所述聚合物与金属盐混合以获得所需的官能度。可使用磺化的三氟苯乙烯聚合物,如均聚物或与四氟乙烯的共聚物。
应理解前面关于离子交换树脂的描述不是限制性的,而是代表性的。可以理解本发明能使用任何聚合物类型的离子交换材料。因此,由上可见,该树脂不仅包括官能团是聚合物的一部分这种类型,而且还包括官能团是由添加剂提供给聚合物的这种类型。
用于本发明的离子交换树脂可采用用于含氟乙烯的均聚和共聚的通用聚合技术,尤其是文献中所述的用于四氟乙烯的聚合技术制得。用于制造共聚物的非水技术包括美国专利3,041,317所述的技术,即将主要单体(如四氟乙烯)和带磺酰氟基团的含氟乙烯的混合物在自由基引发剂(较好是过氧化全氟烃或偶氮化合物)的存在下在0-200℃的温度范围内,在105-2×107帕(1-200大气压)或更高的压力下进行聚合。如有必要,可在含氟溶剂的存在下进行非水聚合。合适的含氟溶剂是惰性的、液态的全氟烃(如全氟甲基环己烷、全氟二甲基环丁烷、全氟辛烷、全氟苯等)以及惰性的、液态的氯氟烃(如1,1,2-三氯-1,2,2-三氟乙烷等)。用于制造这种共聚物的水相技术包括如美国专利2,393,967所述使单体与含自由基引发剂的水性介质接触,形成非水-湿润或粒状形式的聚合物颗粒淤浆,或者例如如美国专利2,559,752和美国专利2,593,583所述将单体与含自由基引发剂及非调聚(telogenically)活性的分散剂的水性介质接触形成聚合物颗粒的水性胶体分散液,并凝结该分散液。
另外,可使用根据杜邦的美国专利4,267,364、杜邦的美国专利4,544,458、Asahi的美国专利4,178,218、Asahi的4,255,523、Mallouk等的5,082,472和Wei等的5,422,411(均在此引为参考)的描述并制得的离子交换聚合物树脂。
离子交换材料的其它例子包括,例如聚乙烯醇、二乙烯基苯、苯乙烯基聚合物、α,β-三氟苯乙烯或者酮基离聚物,如磺化的聚醚酮醚酮(PEKEK)和带有或不带有聚合物的金属盐。离子交换材料还可以至少部分由粉末组成,所述粉末的例子包括,但不限于炭黑、石墨、镍、二氧化硅、二氧化钛、铂、硝酸硼、钛酸钡或非离子聚合物,如聚偏氟乙烯或者TFE共聚物等。
金属氧化物是官能材料的制备
可使用包括下列步骤的方法制造孔隙内表面覆盖有金属氧化物的ePTFE:用水与可水解的金属有机化合物反应制得的溶液状的凝胶产物浸渍ePTFE的步骤;使被孔隙吸收的溶液状凝胶产物与水反应,转化成固态的凝胶产物的步骤;以及加热并干燥如此制得的固态凝胶产物的步骤。
金属烷氧化物或金属配合物构成了前面所述的可水解的金属有机化合物(也称之为“金属氧化物前体”)。
金属烷氧化物的具体例子包括四甲氧基钛、四乙氧基钛、四异丙氧基钛、四丁氧基钛、异丙酸锆、丁酸锆、四甲氧基硅烷、四乙氧基硅烷、四异丙氧基硅烷和四叔丁氧基硅烷。金属配合物的具体例子包括四乙酰基丙酮酸钛、乙酰基丙酮酸锆和其它乙酰基丙酮酸金属盐。在本发明中,特别合适的是硅氧烷基烷氧化物,如四乙氧基硅氧烷。
在与ePTFE配合前,使上述金属氧化物前体与水接触,使之部分胶凝并制成溶液状的凝胶产物。凝胶化反应可以是以前已知的反应,包括水解/缩聚反应。
可将水加入金属氧化物前体中,进行搅拌并混合,以使金属氧化物前体部分胶凝。在这种情况下可向水中加入可与水混溶的有机溶剂,如甲醇、乙醇、丙醇、丁醇或者其它醇。也可根据需要加入酸(盐酸、硫酸、硝酸、乙酸、氢氟酸等)或碱(氢氧化钠、氢氧化钾、氨等)。也可将水加入在有机溶剂中的金属氧化物前体的溶液中,搅拌并混合该体系来进行金属氧化物前体的部分胶凝反应。在这种情况下,可使用任何溶剂作为所述的有机溶剂,只要它能溶解金属氧化物即可。除了醇以外,可使用脂族烃和芳香烃。进行胶凝反应的温度一般为0-100℃,较好为60-80℃。
每摩尔金属氧化物前体中,水的用量应为0.1-100摩尔,较好为1-10摩尔。尽管胶凝反应最好在密闭体系中或在惰性气流中进行,但是外部空气中所含的水分可促进胶凝反应。
由此可获得金属氧化物前体的溶液状的部分胶凝的产物。在本文中,术语“金属氧化物前体的部分胶凝的产物”指在相应于固态金属氧化物水合凝胶的使用条件下使用的产物,所述水合凝胶是完全胶凝的产物,无流动性。
为了使金属氧化物前体的部分凝胶产物与微孔片材形成配合物,可采用将片材浸渍在溶液状的部分胶凝的产物中的方法,或采用喷涂或辊涂的方法将溶液状的部分胶凝的产物施涂在片材上,可使用任何方法,只要它能使部分胶凝的产物填入片材的表面部分和内部的孔隙中即可。
将用这种方法与金属氧化物前体的部分胶凝的产物配合的片材与过量的所含有的水(contained water)接触,以进一步促进金属氧化物前体的胶凝反应,形成固态的金属氧化物水合凝胶(完全凝胶的产物)。对于这种方法,较好地将与金属氧化物前体的部分凝胶产物配合的片材浸渍在用于这种完全凝胶化的水中,但也可以使用吹入喷雾水、吹入水汽等的方法。在这种情况下,所使用的水可以含有酸或碱,因为酸或碱可用于促进胶凝反应。凝胶反应完成后,在模制品孔的内表面上形成薄膜状的金属氧化物水合凝胶,在300℃或更低的温度,较好在200℃或更低的温度干燥凝胶,可在孔隙的内表面上形成薄的均匀的整体沉积的金属氧化物层。该金属氧化物层的厚度为0.01-0.2微米,较好为0.02-0.1微米。由于该层是由以这种方法制得的金属氧化物水合凝胶形成的,因此金属氧化物形成单一的连续的膜,它具有优良的粘附性,降低了它从多孔体上脱落的可能性。金属氧化物复合物的模制品具有高的孔隙体积,它至少占原始模制品孔隙体积的50%,较好至少占70%。
或者,通过将功能材料渗入孔隙中并加热除去渗入的溶剂来将功能材料加入聚合物片材的微孔中。当微孔聚合物片材是聚四氟乙烯(PTFE)时,通过将颗粒填料与PTFE水性分散液混合,共凝结填料和PTFE,用润滑剂润滑填充的PTFE,糊料挤出并任选地压延成膜,通过拉伸使该薄膜发泡形成其中分布有填料的多孔PTFE膜,来加入功能材料。
或者如美国专利4,720,400(Manniso)所述可用金属电镀微孔ePTFE。
或者,可将部分如美国专利5,602,669所述的微孔制品(如催化剂填充的ePTFE)用作基材。
通过用含固态聚合物电解质的溶液或分散液进行辊涂、喷涂、浸涂或其它技术,随后除去溶剂,可将固态聚合物电解质置于孔隙中。可在孔隙中填入含有电解质和单体的聚合溶液,并在孔隙内聚合这些组分。可在孔隙中填入含电解质、单体和溶剂的聚合溶液,并在孔隙内聚合这些组分,随后除去这些溶剂。可在孔隙中填入含电解质的部分胶凝的聚合物溶液,并在孔隙内胶凝这些组分。将固态聚合物电解质加入模制品孔隙中的具体方法可根据固态聚合物电解质的类型适当地进行挑选。
孔隙可部分或完全地吸入离子交换介质(例如在醇溶液中的离聚物,如购自旭硝子公司的例如Flemion的乙醇溶液)。随后根据需要干燥或再溶解该离子交换介质。
本发明产物示于图4。复合隔膜10是由包括节点11和原纤维12的微孔聚合物片材组成的。在一些实例中,该片材可仅包括原纤维。所述节点和原纤维至少部分被功能材料13所覆盖。随后用聚合物电解质覆盖(最好完全覆盖,即空气不能透过)节点和原纤维之间的间隙。片材的内部体积较好被电解质基本填满。
本发明复合隔膜可用于各种用途,包括但不限于基于极性的化学分离、电解、燃料电池、电池、全蒸发、气体分离、透析、工业电化学、超酸催化剂、用于酶固定的介质等。
某些电化学用途的例子包括锂原电池、镁电池及其它原电池、锂二次电池、聚合物电池和其它二次电池,以及燃料电池。
实施例1
在80℃回流条件下,使100份四乙氧基硅烷(购自Sinetsu Silicone)、52份水和133份乙醇反应24小时,反应时用氯化钙管隔绝外部空气所含的水分,形成金属氧化物前体的部分凝胶溶液。将发泡的多孔聚四氟乙烯薄膜(购自日本Gore-Tex Inc,厚度25微米;孔隙直径为0.5微米;厚度40微米;孔隙率92%)用该溶液浸渍并将其在温水(60℃)中浸泡5小时以完成胶凝化。在150℃将胶凝的产物干燥30分钟,形成硅胶配合物填充的多孔聚四氟乙烯薄膜,其中多孔薄膜的露出表面(包括内表面)覆盖有硅胶。该复合薄膜保留至少80%原来多孔薄膜的孔隙,并具有高的孔隙率。
随后以1.5g/10ml的速率将购自Japan Exlan Co.Ltd(摩尔比:90/10)的丙烯腈/甲基丙烯酸酯共聚物粉末加入有机电解质溶液中,同时以1.5g/10分钟的速率加入乙腈,形成乙腈稀释的聚合物凝胶分子/电解质混合物。所述有机电解质溶液是将LiPF6(一种与购自富山药品工业公司的碳酸丙二酯和碳酸乙酯混合的电解液)溶解在碳酸丙二酯和碳酸乙二酯(体积比:1∶1)的混合溶剂(有机溶剂)中,使浓度达到1M而制得的。
使前面制得的硅胶复合物填充的多孔聚四氟乙烯薄膜的孔隙(孔穴)吸收该乙腈稀释的聚合物凝胶/电解质混合物,接着在60℃真空干燥至少5小时以除去乙腈,最后冷却至-20℃,形成厚度约25微米的固态聚合物电解质复合物。
测量该聚合物固体电解质复合物的拉伸强度(根据JIS K 7113测试)及离子电导率(20℃,复阻抗技术)。结果列于表1。
比较例1
流延用实施例1相同的方法制得的乙腈稀释的聚合物凝胶/电解质混合物,形成厚度为25微米的固态聚合物电解质(单一物质)。在这种情况下,单一的固态聚合物电解质不具有足够的机械强度,难以加工,实践中不能作为薄膜。
为进行比较,制得厚度为100微米由聚合物/电解质组成的固态聚合物电解质薄膜(单一物质),并测量其离子电导率(20℃,复阻抗技术)和拉伸强度。结果列于表1。由表1可见,本发明固态聚合物电解质复合物是一种固态聚合物电解质,其机械强度明显得到改进,而离子电导率保持在常规固态聚合物电解质的水平。本发明复合物可容易地制成薄膜,并稳定地制成约25微米的固态聚合物电解质薄膜,从而能降低固态聚合物电解质部分的电阻。
                          表1
        项目      实施例1        比较例
   离子电导率(S/cm2)     1.5×10-5     1.5×10-3
   拉伸强度(kg/cm2)     150     8
实施例2
下面将描述锂二次电池作为用上述固态聚合物电解质复合物制得的电化学反应装置的实例。
图1是本发明锂二次电池的结构剖面图。在图1中,1是本发明固态聚合物电解质复合物薄膜;2是铝制的正极端薄膜,兼作(doubling)正极集电极;3是由LiCoO2(购自Nippon Chemical Ind.)、乙炔黑(购自电气化学的Denka Black)和聚合物凝胶/电解质混合物(相当于从上面的乙腈溶液中除去乙腈后获得的产物)组成的正极薄膜;4是铜制的负极端薄膜,兼作负极集电极;5是由石墨和聚合物凝胶/电解质混合物(相当于从上面的乙腈溶液中除去乙腈后获得的产物)组成的负极薄膜;6是封口;7是外壳。图2是铝制的兼作正极集电极的正极端薄膜的平面图。在图2中,A是正极端,B是正极集电极。
图3是铜制的兼作负极集电极的负极端薄膜的平面图。在图3中,C是负极端,D是负极集电极。
下面将描述上述电池的制造方法。
(1) 制备正极薄膜和铝制的兼作正极集电极的正极端薄膜的叠合物L
将15g摩尔比为90/10的丙烯腈/甲基丙烯酸酯共聚物粉末和12g乙腈同时加入100ml有机电解质溶液中,所述有机电解质溶液是将LiPF6溶解在碳酸丙二酯和碳酸乙二酯(体积比:1∶1)的混合溶剂(有机溶剂)中,使浓度达到1M而制得的。形成乙腈稀释的聚合物凝胶/电解质混合物。
随后将4g平均粒径约为20微米的LiCoO2粉末和0.2g乙炔黑加入至7.3g上述乙腈稀释的聚合物凝胶/电解质混合物中,并对这些组分进行均匀搅拌,形成用于正极的原料液。将原料液涂在如图2所示平的铝正极集电极2(厚度:20微米)的整个表面(端部A除外)上,在60℃将集电极真空干燥超过5小时以除去乙腈,将经干燥的集电极冷却至-20℃。
由此获得了正极薄膜3和铝制的兼作正极集电极的正极端薄膜2的叠合物L。在该叠合物L中,端部(图2中的A)尺寸为1×2cm,厚度为20微米,正极集电极(图2中的B)的尺寸为5.8×5.8cm,厚度为220微米。
(2) 制备负极薄膜和铜制的兼作负极集电极的负极端薄膜的叠合物M
将4g平均粒径约为10微米的部分石墨化的碳材料(购自吴羽化学公司)加入至7.3g上述乙腈稀释的聚合物凝胶/电解质混合物中,并对这些组分进行均匀搅拌,形成用于负极的原料液。将原料液涂在如图3所示平的铜负极集电极4(厚度:20微米)的整个表面(端部C除外)上,在60℃将集电极真空干燥超过5小时以除去乙腈,将经干燥的集电极冷却至-20℃。
由此获得了负极薄膜5和铜制的兼作负极集电极的负极端薄膜4的叠合物M。在该叠合物M中,端部(图3中的C)尺寸为1×2cm,厚度为20微米,负极集电极(图3中的D)的尺寸为5.8×5.8cm,厚度为520微米。
(3) 制造固态聚合物电解质复合物薄膜
从实施例1的固态聚合物电解质复合物薄膜(厚度:25微米)上制得尺寸为5.8×5.8cm的薄膜1。
(4) 电池的制造
将上述叠合物L叠放在固态聚合物电解质复合物薄膜1的一侧,将上述叠合物M叠放在另一侧,将形成的组件在lkg/cm2的压力下保持1分钟,制得叠合物。
随后将该叠合物装入由聚丙烯制成的一端开口且厚度为1mm的外壳(图1中的7)中。用聚丙烯树脂薄膜密封所述开口,形成封口(图1中的6)。
在20℃以4.3V的上限和3.0V的下限对如此获得的锂二次电池进行充-放电循环试验,其放电是在8mA的恒定电流下进行的。结果列于表2。
比较例2
制造锂二次电池,用比较例1的固态聚合物电解质(单一物质,厚度为25微米)代替实施例2的固态聚合物电解质复合物薄膜作为电解质薄膜,但是该组分难以加工,不能制成电池。
鉴于此原因,用与实施例2相同的方法制得锂二次电池,但是使用比较例1的固态聚合物电解质薄膜(单一物质,厚度为100微米)代替固态聚合物电解质复合物薄膜。
在20℃以4.3V的上限和3.0V的下限对如此获得的锂二次电池进行充-放电循环试验,其放电是在8mA的恒定电流下进行的。结果列于表2。
由表2可见,本发明锂二次电池在许多次循环后仍保持稳定,即使在超过200次的循环后,电池容量也仅稍有下降。
相反,比较例2的锂二次电池是用这种方法制得的,即电池的固态聚合物电解质部分(单一物质)的厚度是实施例2电池的相应部分的4倍,使固态聚合物电解质部分(单一物质)的电阻为上述电池的相应部分的4倍。结果,尽管超过200次循环后电池容量仅稍有下降,但是放电容量是低的。这些结果表明本发明能获得紧凑的高性能电池。
                    表2
  充放电循环次数            放电容量(mAh)
    本发明产物     比较例产物
    150100150200250     46.556.356.256.256.156.0     40.043.243.142.942.842.7
实施例3
用下列步骤制得多功能隔膜:
a)将颗粒填料与PTFE水性分散液混合;
b)将填料与PTFE共凝结;
c)用润滑剂润滑填充的PTFE;
d)糊料挤出并任选地压延成薄膜;
e)通过拉伸使所述薄膜发泡,形成其中分布所述填料的多孔PTFE。
制得PTFE树脂的水性分散液(20-36%固体)。向该水性分散液中加入购自Cabot Corp.Cabosil热解法氧化硅颗粒填料,使得最终干燥的混合物中氧化硅占20重量%。通过快速剪切该水性分散液使混合物共凝结。接着形成细粉状PTFE树脂和氧化硅填料的凝结物并将其干燥成饼。干燥后,小心地粉碎该饼并用无臭的溶剂油(mineral spirit)润滑之。溶剂油的用量为每克PTFE/SiO2干粉0.52克。
在室温老化该混合物,使得溶剂油均匀地分布在PTFE/SiO2粉末树脂中。将该混合物压制成锭料,在1200psi下通过装在活塞型挤出机上的0.045×6英寸缝隙模头将其挤出成粘性的挤出物。使用44∶1的压缩比。
将两层挤出物粘附在一起形成100mil的组件,随后在两根加热至50℃的金属辊之间辊压。辊压后的厚度为0.014英寸。以3∶1的比例将该材料横向发泡,随后将该物质加热至250℃(即矿物油高度挥发的温度)以从挤出物中除去矿物油。在150℃以3.5∶1的比例和每秒2300%的速率横向发泡该经干燥的挤出物。膨胀后,在大于340℃的温度下加热该片材,使之在无定形状态下固定(locked),并冷却至室温。
随后如实施例5那样使该隔膜吸收离子交换树脂溶液,形成离子交换复合隔膜。
将带有0.3mg/cm2铂的电极置于该隔膜的两侧,将该隔膜电极组件置于单电池燃料电池试验装置中。
在25℃向该电池中加入压力均为40psig的空气和氢气。在0.5V产生1.178A/cm2稳态电流,引入的反应物中无水分。电池温度为50℃。在相同的试验条件下无填料的微增强隔膜仅产生0.975A的电流。
实施例4
制得PTFE树脂的水性分散液。向该水性分散液中加入颗粒状炭黑填料(Ketjen Black),使之在最终干混合物中占20重量%。快速剪切该水性分散液使混合物共凝结。接着形成细粉状PTFE树脂和碳填料的凝结物并将其干燥成饼。干燥后,小心地粉碎该饼并用无臭的溶剂油润滑之。溶剂油的用量为每克PTFE/炭黑干粉0.20克。
将该混合物压制成锭料,在1500psi下通过装在活塞型挤出机上的0.045×6英寸缝隙模头将其挤出成粘性的挤出物。使用84∶1的压缩比。
随后将该挤出物在两根加热至50℃的金属辊之间辊压。辊压后的厚度为0.010英寸。将该物质加热至250℃(即矿物油高度挥发的温度)以从挤出物中除去矿物油。在150℃以3.5∶1的比例横向发泡该经干燥的挤出物。膨胀后,在大于340℃的温度下加热该片材,使之在无定形状态下固定(locked),并冷却至室温。
随后使该隔膜吸收Flemion(旭硝子)离子交换树脂溶液(9重量%树脂的乙醇溶液)并干燥3次。
最后的复合物的厚度为27微米。
实施例5
制得PTFE树脂的水性分散液。向该水性分散液中加入颗粒状二氧化钛填料,使之在最终干混合物中占20重量%。快速剪切该水性分散液使混合物共凝结。接着形成细粉状PTFE树脂和二氧化钛填料的凝结物并将其干燥成饼。干燥后,小心地粉碎该饼并用无臭的溶剂油润滑之。溶剂油的用量为每克PTFE/二氧化钛干粉0.20克。
将该混合物压制成锭料,在1500psi下通过装在活塞型挤出机上的0.045×6英寸缝隙模头将其挤出成粘性的挤出物。使用84∶1的压缩比。
随后将该挤出物在两根加热至50℃的金属辊之间辊压。辊压后的厚度为0.008英寸。将该物质加热至250℃(即矿物油高度挥发的温度)以从挤出物中除去矿物油。在150℃以3.5∶1的比例和每秒440%的速率横向发泡该经干燥的挤出物。膨胀后,在大于340℃的温度下加热该片材,使之在无定形状态下固定,并冷却至室温。
随后将PFSA的乙醇溶液(Flemion,9重量%)涂刷在该片材的两侧使其吸收离子交换介质。
实施例6
制得PTFE树脂的水性分散液。向该水性分散液中加入涂覆铂的二氧化钛催化剂,使之在最终干混合物中占10重量%。快速剪切该水性分散液使混合物共凝结。接着形成细粉状PTFE树脂和催化剂填料的凝结物并将其干燥成饼。干燥后,小心地粉碎该饼并用无臭的溶剂油润滑之。溶剂油的用量为每克PTFE/催化剂干粉0.26克。
将该混合物压制成锭料,在3000psi下通过装在活塞型挤出机上的0.045×6英寸缝隙模头将其挤出成粘性的挤出物。使用44∶1的压缩比。
随后将该挤出物在两根加热至50℃的金属辊之间辊压。辊压后的厚度为0.016英寸。随后将该物质加热至250℃(即矿物油高度挥发的温度)以从挤出物中除去矿物油。
接着将一部分这种辊压物置于间歇薄膜发泡机中,以每秒500%的发泡速率在纵向和横向将其发泡至12∶1的比例。
随后如实施例5那样使该微孔隔膜吸收含氟磺酸树脂组合物。复合膜的最终厚度为15微米。接上总量0.6mg Pt/cm2的电极并在单电池燃料电池试验装置上试验该隔膜。在25℃向电池中加入均为40psig的空气和氢气。在0.8V下稳态电流为0.47A/cm2,通入的气体中无水分。电池温度为50℃。使用相同的条件,无填料的15微米微增强的隔膜在0.8V下仅产生0.36A的电流。
电流密度      实施例5隔膜的电压     实施例7隔膜的电压
300mA/cm2         0.835                 0.810
600mA/cm2         0.775                 0.750
900mA/cm2         0.705                 0.670
尽管本文图示并描述了本发明的具体实例,但是本发明不限于这些图示和描述。显然在所附的权利要求范围内变化和改进可作为本发明的一部分。

Claims (10)

1.一种复合隔膜,它包括:
a)一种微孔聚合物片材,它的孔隙从其一侧延伸至另一侧;
b)涂覆在所述孔隙内表面上的钛金属氧化物或硅氧化物;
c)填充至少部分所述孔隙的聚合物电解质,所述电解质选自:
i)含金属盐的聚合物组合物;
ii)含电解质的聚合物凝胶;和
iii)离子交换树脂。
2.如权利要求1所述的隔膜,其特征在于所述微孔聚合物片材是发泡的多孔聚四氟乙烯。
3.如权利要求1所述的隔膜,其特征在于所述微孔聚合物片材是超高分子量的聚乙烯。
4.如权利要求1所述的隔膜,其特征在于所述聚合物电解质是含金属盐的聚合物组合物。
5.如权利要求1所述的隔膜,其特征在于所述聚合物电解质是离子交换树脂。
6.如权利要求1所述的隔膜,其特征在于所述微孔聚合物片材是发泡多孔聚四氟乙烯,它包括在节点互联的原纤维或者基本不含节点的原纤维,所述聚合物电解质是离子交换树脂,并且离子交换树脂填充发泡多孔聚四氟乙烯的孔隙。
7.如权利要求6所述的隔膜,其特征在于所述金属氧化物在发泡多孔聚四氟乙烯内表面的节点上。
8.如权利要求6所述的隔膜,其特征在于所述金属氧化物在发泡多孔聚四氟乙烯内表面的原纤维上。
9.如权利要求6所述的隔膜,其特征在于所述金属氧化物在发泡多孔聚四氟乙烯内表面的节点和原纤维上。
10.一种含电解质的电化学反应装置,其中所述电化学反应装置的特征在于将权利要求1-9中任何一项所述的复合隔膜作为电解质。
CNB97197781XA 1996-09-13 1997-09-12 用于电化学反应装置的固体电解质复合物 Expired - Fee Related CN1222058C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP265533/1996 1996-09-13
JP8265533A JPH1092444A (ja) 1996-09-13 1996-09-13 電気化学反応装置用固体高分子電解質複合体及びそれを用いた電気化学反応装置
JP265533/96 1996-09-13

Publications (2)

Publication Number Publication Date
CN1230293A CN1230293A (zh) 1999-09-29
CN1222058C true CN1222058C (zh) 2005-10-05

Family

ID=17418454

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB97197781XA Expired - Fee Related CN1222058C (zh) 1996-09-13 1997-09-12 用于电化学反应装置的固体电解质复合物

Country Status (9)

Country Link
US (1) US6242135B1 (zh)
EP (1) EP0958624B2 (zh)
JP (1) JPH1092444A (zh)
KR (1) KR100448083B1 (zh)
CN (1) CN1222058C (zh)
AU (1) AU4268797A (zh)
CA (1) CA2264830C (zh)
DE (1) DE69717674T3 (zh)
WO (1) WO1998011614A1 (zh)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254978B1 (en) * 1994-11-14 2001-07-03 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6635384B2 (en) * 1998-03-06 2003-10-21 Gore Enterprise Holdings, Inc. Solid electrolyte composite for electrochemical reaction apparatus
JP2001517876A (ja) * 1997-09-22 2001-10-09 ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気化学的エネルギー貯蔵手段
EP1116292A4 (en) * 1998-08-28 2005-11-23 Foster Miller Inc SOLID COMPOSITELECTROLYTMEMBRANE OF SOLID POLYMER
KR100308690B1 (ko) * 1998-12-22 2001-11-30 이 병 길 흡수제를포함한미세다공성고분자전해질및그의제조방법
EP1153449A4 (en) * 1999-01-22 2007-08-22 Univ Southern California MEMBRANE ELECTRODE ARRANGEMENTS FOR DIRECT METHANOL FUEL CELLS
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
AU2831000A (en) * 1999-03-08 2000-09-28 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
WO2000063998A1 (en) * 1999-04-20 2000-10-26 Lynntech, Inc. Perfluorinated solid polymer electrolyte for lithium ion batteries
US6365294B1 (en) * 1999-04-30 2002-04-02 The Administrators Of The Tulane Educational Fund Sulfonated polyphosphazenes for proton-exchange membrane fuel cells
DE19943244A1 (de) * 1999-09-10 2001-03-15 Daimler Chrysler Ag Membran für eine Brennstoffzelle und Verfahren zur Herstellung
JP4539896B2 (ja) * 1999-09-17 2010-09-08 独立行政法人産業技術総合研究所 プロトン伝導性膜、その製造方法及びそれを用いた燃料電池
US6171687B1 (en) * 1999-10-18 2001-01-09 Honeywell International Inc. Infiltrated nanoporous materials and methods of producing same
JP3656244B2 (ja) * 1999-11-29 2005-06-08 株式会社豊田中央研究所 高耐久性固体高分子電解質及びその高耐久性固体高分子電解質を用いた電極−電解質接合体並びにその電極−電解質接合体を用いた電気化学デバイス
EP2418713A1 (en) * 2000-03-31 2012-02-15 Sony Corporation Separator, gelated electrolyte, non-aqueous electrolyte, electrode and non-aqueous electrolyte cell empolying the same
US6432586B1 (en) * 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
JP2001332304A (ja) * 2000-05-24 2001-11-30 Sony Corp 電解質およびそれを用いた電池
GB0021466D0 (en) * 2000-09-01 2000-10-18 Univ Leeds Innovations Ltd Extruded battery components
KR100362288B1 (ko) * 2000-09-07 2002-11-23 삼성에스디아이 주식회사 리튬 2차 전지용 고분자 매트릭스 및 이를 채용한 리튬이온 폴리머 전지
DE10047551B4 (de) * 2000-09-22 2004-04-08 Gkss-Forschungszentrum Geesthacht Gmbh Direct Methanol Fuel Cell-Membran
US6444495B1 (en) * 2001-01-11 2002-09-03 Honeywell International, Inc. Dielectric films for narrow gap-fill applications
WO2003017407A1 (en) * 2001-08-10 2003-02-27 Eda, Inc. Improved load leveling battery and methods therefor
US6986966B2 (en) * 2001-08-10 2006-01-17 Plurion Systems, Inc. Battery with bifunctional electrolyte
US6613203B1 (en) * 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
DE10208277A1 (de) * 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung
JP3894002B2 (ja) * 2002-03-07 2007-03-14 株式会社豊田中央研究所 膜電極接合体並びにこれを備える燃料電池及び電気分解セル
CA2481889A1 (en) * 2002-03-22 2003-10-09 Clean Diesel Technologies, Inc. Catalytic metal additive concentrate and method of making and using
US20050053818A1 (en) * 2002-03-28 2005-03-10 Marc St-Arnaud Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
WO2003107461A1 (en) * 2002-06-14 2003-12-24 Sunyen Co., Ltd. Secondary cell
WO2004005377A1 (ja) 2002-07-08 2004-01-15 Asahi Glass Company, Limited イオン交換体ポリマー分散液、その製造方法、及びその使用
US6630265B1 (en) * 2002-08-13 2003-10-07 Hoku Scientific, Inc. Composite electrolyte for fuel cells
US20040036394A1 (en) * 2002-08-21 2004-02-26 3M Innovative Properties Company Process for preparing multi-layer proton exchange membranes and membrane electrode assemblies
US20040043224A1 (en) * 2002-08-30 2004-03-04 Shmuel Sternberg Enhanced hydrophobic membranes and methods for making such membranes
US7473485B2 (en) * 2002-09-04 2009-01-06 Utc Power Corporation Extended electrodes for PEM fuel cell applications
US9118081B2 (en) 2002-09-04 2015-08-25 Audi Ag Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
US7507494B2 (en) * 2004-03-04 2009-03-24 Utc Power Corporation Extended catalyzed layer for minimizing cross-over oxygen and consuming peroxide
US7112386B2 (en) * 2002-09-04 2006-09-26 Utc Fuel Cells, Llc Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US20040081886A1 (en) * 2002-10-25 2004-04-29 David Zuckerbrod Separator for electrochemical devices
US6737158B1 (en) * 2002-10-30 2004-05-18 Gore Enterprise Holdings, Inc. Porous polymeric membrane toughened composites
US7862921B2 (en) * 2003-03-28 2011-01-04 Sumitomo Chemical Company, Limited Process for continuously producing polymer electrolyte membrane and producing apparatus therefor
CA2520827A1 (en) * 2003-04-25 2004-11-11 Sekisui Chemical Co., Ltd. Proton conducting membrane, method for producing the same and fuel cell using the same
EP1635413B1 (en) 2003-06-13 2012-02-01 Sekisui Chemical Co., Ltd. Proton conductive film, method for producing same, and fuel cell using same
JP4198009B2 (ja) * 2003-08-07 2008-12-17 ジャパンゴアテックス株式会社 固体高分子電解質膜及び燃料電池
JP2005064435A (ja) * 2003-08-20 2005-03-10 Sanyo Electric Co Ltd 電気二重層キャパシタ
DE112005000196T5 (de) * 2004-01-20 2006-11-30 E.I. Dupont De Nemours And Co., Wilmington Verfahren zum Herstellen stabiler Protonaustauschmembranen und eines Katalysators zur Verwendung darin
KR100721640B1 (ko) 2004-01-26 2007-05-23 마쯔시다덴기산교 가부시키가이샤 막촉매층 접합체, 막전극 접합체 및 고분자 전해질형연료전지
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
DE602005024002D1 (de) 2004-06-22 2010-11-18 Asahi Glass Co Ltd Elektrolytmembran für eine festpolymer-brennstoffzelle, herstellungsverfahren dafür und membranelektrodenbaugruppe für eine festpolymer-brennstoffzelle
WO2005124912A1 (ja) 2004-06-22 2005-12-29 Asahi Glass Company, Limited 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
US7704622B1 (en) 2004-08-26 2010-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ion conducting organic/inorganic hybrid polymers
US8101317B2 (en) * 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
US7572534B2 (en) * 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
KR100642053B1 (ko) * 2005-03-25 2006-11-10 한국타이어 주식회사 다공성 봉투가 배치된 전지
US7622217B2 (en) * 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
US8367267B2 (en) * 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
CN101326658B (zh) * 2005-12-06 2010-09-29 Lg化学株式会社 具有形态梯度的有机/无机复合隔膜、其制造方法和含该隔膜的电化学装置
JP5007784B2 (ja) * 2006-01-30 2012-08-22 ソニー株式会社 光電変換装置
US8642218B2 (en) * 2006-08-22 2014-02-04 GM Global Technology Operations LLC Coating including silica based material with pendent functional groups
US9083049B2 (en) 2006-10-16 2015-07-14 GM Global Technology Operations LLC Additives for fuel cell layers
KR100897104B1 (ko) * 2006-11-02 2009-05-14 현대자동차주식회사 다층구조를 가진 전해질 강화막의 제조 방법
US8323820B2 (en) 2008-06-16 2012-12-04 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells
KR100976862B1 (ko) * 2007-11-21 2010-08-23 주식회사 엘지화학 향상된 저장성능을 가지는 이차전지 및 이의 제조방법.
KR100969011B1 (ko) 2008-02-20 2010-07-09 현대자동차주식회사 고온용 고분자 블렌드 전해질 막과 이의 제조 방법
KR100969405B1 (ko) 2008-02-26 2010-07-14 엘에스엠트론 주식회사 에너지 저장장치
US8685580B2 (en) 2008-06-20 2014-04-01 GM Global Technology Operations LLC Fuel cell with an electrolyte stabilizing agent and process of making the same
US8769972B2 (en) * 2008-12-02 2014-07-08 Xergy Inc Electrochemical compressor and refrigeration system
JP2010165626A (ja) * 2009-01-19 2010-07-29 Toyota Motor Corp 電解質膜およびその製造方法
US20100261058A1 (en) * 2009-04-13 2010-10-14 Applied Materials, Inc. Composite materials containing metallized carbon nanotubes and nanofibers
US8640492B2 (en) * 2009-05-01 2014-02-04 Xergy Inc Tubular system for electrochemical compressor
GB2482629B (en) * 2009-05-01 2015-04-08 Xergy Inc Self-contained electrochemical heat transfer system
US9464822B2 (en) * 2010-02-17 2016-10-11 Xergy Ltd Electrochemical heat transfer system
WO2010132983A1 (en) 2009-05-18 2010-11-25 Dpoint Technologies Inc. Coated membranes for enthalpy exchange and other applications
WO2013028574A2 (en) 2011-08-19 2013-02-28 Polyplus Battery Company Aqueous lithium air batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
KR101405588B1 (ko) * 2011-11-15 2014-06-20 현대자동차주식회사 다공성 박막 필름 고체 전해질 제조방법 및 이를 이용하여 제조한 염료감응 태양전지
KR102117558B1 (ko) 2012-07-11 2020-06-02 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. 플루오르화 이온 교환 중합체에 대한 포착제로서의 혼합 금속 산화물
US9680143B2 (en) 2013-10-18 2017-06-13 Miltec Uv International Llc Polymer-bound ceramic particle battery separator coating
US11084895B2 (en) 2013-11-29 2021-08-10 Daikin Industries, Ltd. Modified polytetrafluoroethylene fine powder and uniaxially stretched porous body
EP3083794A1 (en) * 2013-12-19 2016-10-26 W. L. Gore & Associates, Inc. Thermally insulative expanded polytetrafluoroethylene articles
US10818900B2 (en) 2014-07-18 2020-10-27 Miltec UV International, LLC UV or EB cured polymer-bonded ceramic particle lithium secondary battery separators, method for the production thereof
WO2016056430A1 (ja) * 2014-10-10 2016-04-14 日本ゴア株式会社 燃料電池用電解質膜
JP6772855B2 (ja) * 2017-01-20 2020-10-21 トヨタ自動車株式会社 全固体電池
AU2018247879B2 (en) 2017-04-04 2021-03-25 W. L. Gore & Associates Gmbh Dielectric composite with reinforced elastomer and integrated electrode
US20210242480A1 (en) * 2018-05-01 2021-08-05 3M Innovative Properties Company Platinum-coated polyimide particles and articles thereof
JP6992710B2 (ja) * 2018-09-03 2022-01-13 トヨタ自動車株式会社 複合固体電解質層、及びそれの製造方法、並びに、全固体電池の製造方法
HUP1900214A1 (hu) * 2019-06-14 2020-12-28 Eoetvoes Lorand Tudomanyegyetem Polipropilén- vagy polietilén-alapú szeparátor alkálifém-ferrátok elõállítására szolgáló elektrokémiai cellához
EP3987601A4 (en) * 2019-07-01 2024-03-06 A123 Systems Llc SYSTEMS AND METHODS FOR A SEMICONDUCTOR COMPOSITE BATTERY CELL WITH AN ION-CONDUCTING POLYMER ELECTROLYTE
DE102019213585A1 (de) * 2019-09-06 2021-03-11 Vitesco Technologies Germany Gmbh Anodenmaterial und Verfahren zu dessen Herstellung

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2393967A (en) 1942-12-24 1946-02-05 Du Pont Process for polymerizing tetrafluoroethylene
US2559752A (en) 1951-03-06 1951-07-10 Du Pont Aqueous colloidal dispersions of polymers
US2593583A (en) 1951-03-14 1952-04-22 Du Pont Method for coagulating aqueous dispersions of polytetrafluoroethylene
US3041317A (en) 1960-05-02 1962-06-26 Du Pont Fluorocarbon sulfonyl fluorides
US3214501A (en) 1961-09-12 1965-10-26 Esb Reeves Corp Method of making non-adhesive, highly cohesive microporous plastic bandage material or the like
BE757690A (fr) 1969-10-20 1971-04-19 Minnesota Mining & Mfg Pellicules microporeuses et procedes pour leur fabrication
US3962153A (en) 1970-05-21 1976-06-08 W. L. Gore & Associates, Inc. Very highly stretched polytetrafluoroethylene and process therefor
SE392582B (sv) 1970-05-21 1977-04-04 Gore & Ass Forfarande vid framstellning av ett porost material, genom expandering och streckning av en tetrafluoretenpolymer framstelld i ett pastabildande strengsprutningsforfarande
US3679540A (en) 1970-11-27 1972-07-25 Celanese Corp Reinforced microporous film
US3870593A (en) 1972-06-06 1975-03-11 Minnesota Mining & Mfg Stretch-oriented porous films and preparation and use thereof
US3953556A (en) 1973-01-12 1976-04-27 The United States Of America As Represented By The United States Energy Research And Development Administration Method of preparing uranium nitride or uranium carbonitride bodies
US4096227A (en) 1973-07-03 1978-06-20 W. L. Gore & Associates, Inc. Process for producing filled porous PTFE products
US4178218A (en) 1974-03-07 1979-12-11 Asahi Kasei Kogyo Kabushiki Kaisha Cation exchange membrane and use thereof in the electrolysis of sodium chloride
JPS51119069A (en) 1975-03-20 1976-10-19 Nippon Oil Co Ltd Method of producing permeable film
US4110390A (en) 1976-10-18 1978-08-29 W. R. Grace & Co. Process for forming a molded plastic article having an insert therein
JPS5939460B2 (ja) 1976-12-10 1984-09-22 日石三菱株式会社 多孔膜の製法
US4267364A (en) 1977-04-20 1981-05-12 E. I. Dupont De Nemours And Company Fluorinated ion exchange polymer containing carboxylic groups, process for making same, and film and membrane thereof
JPS53149881A (en) 1977-06-03 1978-12-27 Asahi Glass Co Ltd Strengthened cation exchange resin membrane and production thereof
NO153879C (no) 1978-07-31 1986-06-11 Akzo Nv Fremstilling av en membran med poroes overflate.
US4544458A (en) 1978-11-13 1985-10-01 E. I. Du Pont De Nemours And Company Fluorinated ion exchange polymer containing carboxylic groups, process for making same, and film and membrane thereof
US4429000A (en) 1979-12-11 1984-01-31 Toray Industries, Inc. Moisture-permeable waterproof coated fabric and method of making the same
US4311567A (en) 1980-11-17 1982-01-19 Ppg Industries, Inc. Treatment of permionic membrane
US4433082A (en) 1981-05-01 1984-02-21 E. I. Du Pont De Nemours And Company Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof
US4568441A (en) 1981-06-26 1986-02-04 Eltech Systems Corporation Solid polymer electrolyte membranes carrying gas-release particulates
US4437951A (en) 1981-12-15 1984-03-20 E. I. Du Pont De Nemours & Co. Membrane, electrochemical cell, and electrolysis process
US4539256A (en) 1982-09-09 1985-09-03 Minnesota Mining And Manufacturing Co. Microporous sheet material, method of making and articles made therewith
US4720400A (en) 1983-03-18 1988-01-19 W. L. Gore & Associates, Inc. Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US4528083A (en) 1983-04-15 1985-07-09 United Technologies Corporation Device for evolution of oxygen with ternary electrocatalysts containing valve metals
JPS6330542A (ja) 1986-07-23 1988-02-09 Seiko Epson Corp 多孔質体の製造方法
US4849311A (en) 1986-09-24 1989-07-18 Toa Nenryo Kogyo Kabushiki Kaisha Immobilized electrolyte membrane
US4726989A (en) 1986-12-11 1988-02-23 Minnesota Mining And Manufacturing Microporous materials incorporating a nucleating agent and methods for making same
JPH0768377B2 (ja) 1987-07-20 1995-07-26 東燃株式会社 電解質薄膜
JP2569680B2 (ja) 1988-01-18 1997-01-08 東レ株式会社 親水化されたポリオレフィン微孔性膜及び電池用セパレータ
US5133842A (en) 1988-11-17 1992-07-28 Physical Sciences, Inc. Electrochemical cell having electrode comprising gold containing electrocatalyst
US5041195A (en) 1988-11-17 1991-08-20 Physical Sciences Inc. Gold electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods of using them
JPH02230662A (ja) 1989-03-03 1990-09-13 Tonen Corp リチウム電池
US5094895A (en) 1989-04-28 1992-03-10 Branca Phillip A Composite, porous diaphragm
JPH02291607A (ja) 1989-04-29 1990-12-03 Tonen Corp 薄膜電解質
US5082472A (en) 1990-11-05 1992-01-21 Mallouk Robert S Composite membrane for facilitated transport processes
US5183713A (en) 1991-01-17 1993-02-02 International Fuel Cells Corporation Carbon monoxide tolerant platinum-tantalum alloyed catalyst
JP3077113B2 (ja) * 1991-03-15 2000-08-14 ジャパンゴアテックス株式会社 白金族または白金族合金をめっきした微細多孔質フッ素樹脂材およびその製造法
US5188890A (en) 1991-03-15 1993-02-23 Japan Gore-Tex, Inc. Metallized porous flourinated resin and process therefor
CA2085380C (en) 1991-12-27 2005-11-29 Celgard Inc. Porous membrane having single layer structure, battery separator made thereof, preparations thereof and battery equipped with same battery separator
US5350643A (en) 1992-06-02 1994-09-27 Hitachi, Ltd. Solid polymer electrolyte type fuel cell
JPH0629032A (ja) 1992-07-08 1994-02-04 Sumitomo Electric Ind Ltd 高分子電解質膜及びその製造法
JP3470153B2 (ja) 1992-07-20 2003-11-25 ジャパンゴアテックス株式会社 金属酸化物複合化高分子多孔質体及びその製造方法
JP3271801B2 (ja) 1992-09-22 2002-04-08 田中貴金属工業株式会社 高分子固体電解質型燃料電池、該燃料電池の加湿方法、及び製造方法
US5523181A (en) 1992-09-25 1996-06-04 Masahiro Watanabe Polymer solid-electrolyte composition and electrochemical cell using the composition
US5322602A (en) 1993-01-28 1994-06-21 Teledyne Industries, Inc. Gas sensors
US5834523A (en) 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
US5422411A (en) 1993-09-21 1995-06-06 Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom
DE69404602T2 (de) 1993-10-07 1998-01-29 Matsushita Electric Ind Co Ltd Herstellungsverfahren eines Separators für eine Lithium-Sekundärbatterie und eine Lithium-Sekundärbatterie mit organischem Elektrolyt, die einen solchen Separator verwendet
US5602669A (en) 1994-06-30 1997-02-11 Sony Corporation Digital signal transmission apparatus, digital signal transmission method, and digital signal transmitter-receiver
US5547911A (en) 1994-10-11 1996-08-20 E. I. Du Pont De Nemours And Company Process of imprinting catalytically active particles on membrane
US5547551A (en) 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
JPH08265533A (ja) 1995-03-20 1996-10-11 Fujitsu Ltd ファクシミリ通信条件設定方式
DE69608793T2 (de) 1995-03-20 2001-02-01 Du Pont Anorganische füllstoffe enthaltende membranen für brennstoffzellen
US5531899A (en) 1995-06-06 1996-07-02 Millipore Investment Holdings Limited Ion exchange polyethylene membrane and process

Also Published As

Publication number Publication date
AU4268797A (en) 1998-04-02
DE69717674D1 (de) 2003-01-16
US6242135B1 (en) 2001-06-05
EP0958624B1 (en) 2002-12-04
CA2264830A1 (en) 1998-03-19
WO1998011614A1 (en) 1998-03-19
CN1230293A (zh) 1999-09-29
CA2264830C (en) 2002-06-11
DE69717674T3 (de) 2012-10-11
KR100448083B1 (ko) 2004-09-10
KR20000036071A (ko) 2000-06-26
DE69717674T2 (de) 2003-12-04
EP0958624A1 (en) 1999-11-24
EP0958624B2 (en) 2011-01-19
JPH1092444A (ja) 1998-04-10

Similar Documents

Publication Publication Date Title
CN1222058C (zh) 用于电化学反应装置的固体电解质复合物
US6635384B2 (en) Solid electrolyte composite for electrochemical reaction apparatus
CN1258234C (zh) 多组分复合膜及其制备方法
JP5493301B2 (ja) ナトリウム二次電池
CN1286205C (zh) 电解质膜的制造方法以及固体高分子型燃料电池的制造方法
JP5158027B2 (ja) ナトリウム二次電池
CN108321355A (zh) 锂金属负极预制件及其制备方法、锂金属负极和锂金属二次电池
CN1918727A (zh) 用有机/无机复合多孔层涂覆的电极以及包括该电极的电化学装置
CN1840575A (zh) 多孔膜制备方法
CN1142602C (zh) 一种用于二次锂电池的微孔聚合物隔膜及其制备方法
CN101031421A (zh) 聚烯烃微孔膜
CN1661829A (zh) 电子部件用隔膜及其制造方法
WO1996032751A1 (en) Water-repellency agent for cells and cells
CN101048434A (zh) 电解质材料、电解质膜及固体高分子型燃料电池用膜电极接合体
CN1355940A (zh) 适合作化学电池隔膜的复合材料
CN1452794A (zh) 多微孔无机固体电解质及其制备方法
WO2020004205A1 (ja) 微細パタンを有するセパレータ、捲回体および非水電解質電池
CA2573466A1 (en) Multi-layer polyelectrolyte membrane
JP2006331759A (ja) 電子部品用セパレータ及びその製造方法
CN1229816C (zh) 聚合物凝胶电解质、采用该聚合物凝胶电解质的锂电池,和生产这种电解质和电池的方法
KR20180116079A (ko) 비수 전해액 이차 전지용 절연성 다공질층
CN1183621C (zh) 锂离子电池压模的生产方法
CN1218426C (zh) 锂聚合物电池
JPH09302134A (ja) 架橋高分子固体電解質および電池
JP2001002815A (ja) 微多孔性膜及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151021

Address after: Delaware

Patentee after: W. L. Gore & Associates, Inc.

Patentee after: Gore Enterprise Holdings, Inc.

Address before: Delaware

Patentee before: Gore Enterprise Holdings, Inc.

Patentee before: Gore Enterprise Holdings, Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051005

Termination date: 20160912