CN1226776C - 具有双栅极氧化物层的半导体器件的制造方法 - Google Patents

具有双栅极氧化物层的半导体器件的制造方法 Download PDF

Info

Publication number
CN1226776C
CN1226776C CNB021524254A CN02152425A CN1226776C CN 1226776 C CN1226776 C CN 1226776C CN B021524254 A CNB021524254 A CN B021524254A CN 02152425 A CN02152425 A CN 02152425A CN 1226776 C CN1226776 C CN 1226776C
Authority
CN
China
Prior art keywords
gate oxide
plasma treatment
gas
oxide layer
scope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021524254A
Other languages
English (en)
Other versions
CN1423306A (zh
Inventor
林宽容
赵兴在
朴大奎
车泰昊
吕寅硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of CN1423306A publication Critical patent/CN1423306A/zh
Application granted granted Critical
Publication of CN1226776C publication Critical patent/CN1226776C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Abstract

本发明公开了一种具有双栅极氧化物层的半导体器件的制造方法,其包括步骤:a)在一半导体衬底上形成一栅极氧化物层;以及b)通过进行退耦等离子体处理,增加部分栅极氧化物层的厚度。因为双栅极氧化物层是用退耦等离子体形成的,所以不需要额外的热处理。此外,因为硅衬底没有损伤,所以可以确保半导体器件的沟道特性。此外,因为在没有额外的沟道离子注入的情况下单元区内的阈值电压增加,所以半导体器件的电特性可提高。

Description

具有双栅极氧化物层的半导体器件的制造方法
技术领域
本发明涉及一种制造双栅极氧化物层的方法,尤其涉及一种制造具有双栅极氧化物层的半导体器件的方法。
背景技术
通常,由热处理生长的二氧化硅SiO2层用于栅极氧化物层。半导体器件设计中一般倾向于栅极氧化物层的厚度低于25埃至30埃的范围,这是SiO2层的最大隧穿极限。
然而,由于刷新,单元中的阈值电压Vt高于周围电路中的阈值电压Vt。因此,需要向单元晶体管施加高的栅极电压,使得电性能不会劣化。
为了提高单元晶体管的性能,需要将双栅极氧化物形成方法应用于单元晶体管,以增加栅极氧化物层的厚度。
在形成双栅极氧化物层的若干技术中,广泛采用两种方法。一种是:通过在某部分上去除栅极氧化物层来形成双栅极氧化物层,然后再次氧化和形成双栅极氧化物层。另一种方法包括通过在某部分上离子注入氮以延缓栅极氧化物层的生长来形成双栅极氧化物层。
然而,第一种方法具有缺点,即,因为对半导体施行两次高温热处理以形成双栅极氧化物层,所以半导体衬底受损。第二种方法具有类似的问题,即半导体衬底因离子注入氮而受损。
尤其是当半导体衬底受损后,导致沟道迁移率的下降。
发明内容
本发明的目的是提供一种形成双栅极氧化物层的新方法。
根据一实施例,形成双栅极氧化物层的方法包括:a)在半导体衬底上形成栅极氧化物层;以及b)通过进行退耦等离子体处理来增加部分栅极氧化物层的厚度,其中,在退耦等离子体处理过程中,将100W至1000W范围内的一RF电源功率施加一在5秒到300秒的范围内的时间段,以及退耦等离子体处理以包括氮元素的气体、包括氧元素的气体和包括卤素元素的气体来进行。
根据本发明的另一实施例,制造半导体器件的方法包括步骤:a)在半导体衬底上形成栅极氧化物层,其中在该半导体衬底上定义有一单元区和一周边电路区;b)对单元区中的部分栅极氧化物层进行退耦等离子体处理,从而增加其厚度;c)在单元区和周边电路区的每个栅极氧化物层上形成栅电极;以及d)在栅电极的半导体衬底上形成源极/漏极区,其中,在RF电源功率在100W到1000W的范围内且处理持续时间在5秒到300秒的范围内的条件下,以包括氮元素的气体、包括氧元素的气体和包括卤素元素的气体来施行该退耦等离子体处理。
附图说明
通过以下结合附图对优选实施例进行的说明,所公开的方法的以上和其它特征将变得清晰,其中:
图1A和1B是说明形成双栅极氧化物层的方法的横截面视图;
图2A至2D是说明形成半导体器件的方法的横截面视图;
图3是一MOS电容器的C-V特性曲线的曲线图,该电容器经历了氧化硅层上进行的DPN处理;
图4是一MOS电容器的统计数据分布表,该电容器经历了氧化硅层上进行的DPN处理;以及
图5是一MOS电容器的栅极漏电流特性曲线的曲线图,该电容器经历了氧化硅层上进行的氮气退耦等离子体处理。
具体实施方式
以下,将参照附图详细说明制造具有双栅极氧化物层的半导体器件的新方法。
图1A和1B是说明形成双栅极氧化物层的方法的横截面视图。退耦等离子体装置用于形成双栅极氧化物层。常规等离子体蚀刻工具利用一种被称作电源功率(source power)的单一功率,晶片电接地;或者,晶片可以连接电源功率,而反应室电接地。等离子体蚀刻工具控制电源功率并影响产生多少等离子体,还控制反应物的浓度,因此控制反应物有多少落在晶片上。
在退耦等离子体源蚀刻机中,功率被分成电源功率,该电源功率是供给至反应室壁的高功率。另一功率被连接到晶片,这被称作偏置功率(biaspower)或基本功率(bottom power)。该电源功率将供给到反应室中的气体电离,并在反应室中产生反应物。晶片上的偏置功率驱动反应物以加速该反应。因此,对蚀刻工艺有更多的控制:电源功率控制化学物质的产生,并因此控制化学蚀刻部分;以及偏置功率控制蚀刻的物理部分,例如物质轰击晶片。
参照图1A,氧化硅层12形成在硅衬底11上,且氧化硅层12的一部分经受氮气退耦等离子体处理(decoupled plasma treatment with nitrogen),以下称作DPN。此时,掩模可利用光致抗蚀剂形成在氧化硅层12上,以暴露部分氧化硅层12。
在DPN中,硅衬底11保持在以下条件下:温度在约0℃至约500℃范围内,压力在约10mtorr至约30mtorr之间,且所注入的N2气的流速在约10sccm至约500sccm范围内。在注入N2气之后,约100W至约1000W的RF电源功率得以施加一约5秒至约300秒之间的时间周期。
然而,以下气体可用于替换N2气,该气体包括:诸如NH3、N2O和NO的包含N元素的气体;诸如Cl2、BCl3、CF4、CHF3、C2F6、BF2、F2、NF3、SF6、HBr、Br2和I2的包含卤素元素的气体;诸如O2、O3和H2O的包含O元素的气体;或这些元素的组合。
如果这些元素中的氟元素系列用在DPN中,则还可以希望得到对栅极氧化物层的完整性和热载流子性能的改进。
在DPN之后,在约100℃至约900℃范围的一个温度下,在N2、Ar气氛中或在真空中,持续一段时间地加热氧化硅层12,该时期在约1分钟到约30分钟范围内。
参见图1B,经历了DPN处理的氧化硅层12的一部分的厚度比起始氧化硅层12的厚度增加了d。
厚度增加的原因在于,氮N在DPN过程中扩散到氧化硅层12中,使得氮N与具有O-Si-O键的氧化硅层12中的弱键和悬空键(dangling bond)结合。
即,弱的Si-O键被氮N打开以取代氧,因此,自由氧扩散到硅衬底11和氧化硅层12的表面中。之后,发生额外的氧化,使得氧化硅层的厚度增加。
根据图1A和1B,虽然施加了高电压,但是可以确保栅极氧化物层的足够厚度。此外,半导体衬底的损失可以减小,因为栅极氧化物层既不是通过对半导体进行热处理而形成的,也不是由离子注入氮获得的。
图2A至2D是横截面视图,示出根据另一实施例形成半导体器件的方法。
参照图2A,分隔器件的有源区和场区的场氧化层22形成在半导体衬底21上,该衬底上定义了一单元区I和一周边电路区II。为了形成场氧化层22,蚀刻半导体衬底21以形成槽。之后,在该槽中形成氧化层,以形成场氧化层22。这被称为形成场氧化层22的浅槽隔离STI方法。然而,硅LOCOS方法中的局部氧化可用于形成场氧化层22。
在半导体衬底21的有源区上生长第一薄氧化硅层SiO2 23,以形成栅极氧化物层。除了第一氧化硅层23外,还可以使用其它的层,例如氮氧化硅层SiON,高氧化物金属氧化物层(high oxide metal oxide layer)Al2O3、Ta2O5、HfO2或ZrO2,高氧化物金属氧化物层和高氧化物金属氧化物层的铪(Hf)硅酸盐或锆(Zr)硅酸盐的混合层,以及具有高氧化物金属氧化物层纳米叠层结构的高氧化物层。这样的栅极氧化物层的厚度在约5埃到约100埃的范围内变化。
在图2B中,在具有第一氧化硅层23的半导体衬底21上涂敷光致抗蚀剂。之后,形成第一光致抗蚀剂构图14以暴露单元区I。
将第一光致抗蚀剂构图14用作掩模,对单元区I中的第一氧化硅层23施行DPN。
此时,硅衬底14保持在约0℃至约500℃的范围内的一温度,在约10mtorr至约30mtorr范围内的一压力下,并且N2气以约10sccm至约500sccm范围内的一流速注入。在注入N2气后,在约100W至约1000W范围内的一RF电源功率得以施加在约5秒至约300秒的范围内的一时间段。
然而,以下气体可用于替换N2气,该气体包括:诸如NH3、N2O和NO的包括N元素的气体;诸如Cl2、BCl3、CF4、CHF3、C2F6、BF2、F2、NF3、SF6、HBr、Br2和I2的包含卤素元素的气体;诸如O2、O3和H2O的包含O元素的气体;或这些元素的组合。
如果这些元素中的氟元素系列与DPN一起使用,则还可以额外得到对栅极氧化物层的完整性和热载流子性能的改进。
在进行DPN之后,在约100℃至约900℃之间的一个温度下,在N2、Ar气氛中或在真空中,持续一时期地加热第一氧化硅层23,该时期在约1分钟到约30分钟之间。
参照图2C,第一氧化硅层23的厚度在DCP后增加,且其被称作第二氧化硅层25。
厚度增加的原因在于,氮N在DPN过程中扩散到第一氧化硅层23中,使得氮N与具有O-Si-O键的氧化硅层中的弱键和悬空键结合。即,弱键Si-O被氮N切断以取代氧,因此,自由氧扩散到硅衬底21和第一氧化硅层23的表面。之后,发生额外的氧化,使得氧化硅层厚度增加。
在形成第二氧化硅层25后,去除半导体衬底21上的第一光致抗蚀剂构图14。顺序叠放掺杂多晶硅26和低电阻金属层27以具有约50埃至约2000埃范围内的一总厚度,从而形成栅电极。
此时,其上分别顺序叠放了金属氮化物和金属氮化物/硅化物的一金属层用于低电阻金属层27。
此外,n+多晶硅用于掺杂多晶硅26,该n+多晶硅具有约4.1eV到约4.2eV范围内的功函数。对于低电阻金属层27的氮金属,使用TiN、TaN、WN、TiSiN、TiAlN、TiBN、ZrSiN、ZrAlN、MoSiN、MoAlN、RuTiN、RuTaN、IrTiN、TaSiN或TaAlN。对于硅化物元素,使用WSi、CoSi、CoSi、TiSi、MoSi、TaSi或NbSi。
然而,多晶硅和金属氮化物的厚度在约10埃至约2000埃范围内变化。其中堆叠了硅化物的叠层用于减小栅电极的电阻,且硅化物的厚度在约50埃至约2000埃的范围内变化。
接着,在低电阻金属层27上涂敷光致抗蚀剂,并形成第二光致抗蚀剂构图28。
参见图2D,通过将第二光致抗蚀剂构图28用作蚀刻掩模来蚀刻低电阻金属层27和掺杂多晶硅26,使得在单元区I和周边电路区II中形成每个晶体管的栅电极。
在去除第二光致抗蚀剂构图28后,通过间隔壁形成和杂质注入工艺形成具有LDD结构的源极/漏极。形成氧化物层以将每个晶体管绝缘,且施行金属化工艺以连接源极、漏极和栅电极到外部器件。
如果仅在单元区I中施行DPN以形成双栅极氧化物,则单元区I中的栅极氧化物层可以形成得其厚度比周边电路区II中的栅极氧化物层厚约2埃至约10埃。
因此,尽管施加了高电压,但是可获得栅极氧化物层的足够厚度。此外,单元区I中在经历了DPN处理的栅极氧化物层上形成的晶体管具有比周边电路区II中的晶体管高的阈值电压Vt,该阈值电压在约+0.4V到约+0.5V之间。该阈值电压Vt可以通过对单元施加注入工艺而调节。
图3是根据本发明该另一实施例的、经历了在氧化硅层上进行的DPN处理的MOS电容器的C-V特性曲线的曲线图。图3中,如果施加了DPN,则与形成在无DPN处理的氧化硅层上的MOS晶体管相比,该阈值电压Vt增加到约+0.4V到约+0.5V的范围。
相应地,可以通过本发明避免过度的沟道离子注入。
图4是根据本发明该另一实施例的、经历了氧化硅层上进行的DPN处理的MOS电容器的统计数据分布图。图4中,如果施行了DPN,则电厚度(electrical thickness)根据处理时间和电源等离子体功率而增加。
参见图4,与未施行DPN的情形相比,电厚度(以下称为CET)在500W-18秒的工艺情形下增加达2埃。在500W-35秒的工艺情形下,CET增加达5埃,而在700W-35秒的情形下,CET增加达10埃。
图5是根据本发明该另一实施例的、经历了在氧化硅层上进行的氮退耦等离子体处理的MOS电容器的栅极漏电流特性曲线的曲线图。图5中,虽然电厚度增加了,但是无论是否施行了DPN处理,漏电流的下降也没有发现。
以上方法不仅可用于具有层叠结构的双栅极氧化物层的CMOS器件,还可用于具有双镶嵌结构的CMOS器件。此外,以上方法可用于具有三栅极氧化物层的半导体器件。
因为双栅极氧化物层是用退耦等离子体形成的,所以不需要额外的热处理。此外,因为硅衬底没有损伤,所以可以确保半导体器件的沟道特性。此外,因为在没有额外的沟道离子注入的情况下单元区内的阈值电压增加,所以半导体器件的电特性可提高。
虽然本发明已参照具体实施例进行了说明,但是对本领域技术人员清楚的是,在不脱离本发明的如所附权利要求所确定的精髓和范围的情况下,可作各种变化和更改。

Claims (14)

1.一种形成双栅极氧化物层的方法,包括:
a)在一半导体衬底上形成一栅极氧化物层;以及
b)通过进行退耦等离子体处理,增加部分栅极氧化物层的厚度,
其中,在退耦等离子体处理过程中,将100W至1000W范围内的一RF电源功率施加一在5秒到300秒的范围内的时间段,以及
退耦等离子体处理以包括氮元素的气体、包括氧元素的气体和包括卤素元素的气体来进行。
2.如权利要求1所述的方法,其中,在退耦等离子体处理过程中,该半导体衬底保持在0℃到500℃范围内的一温度下。
3.如权利要求1所述的方法,其中,退耦等离子体处理在10mtorr至30mtorr的范围内的一压力下进行。
4.如权利要求1所述的方法,其中,在退耦等离子体处理过程中,以10sccm到500sccm范围内的一流速注入N2气体。
5.如权利要求1所述的方法,其中,包含氮元素的气体为选自NH3、N2O和NO构成的组中的一种物质。
6.如权利要求1所述的方法,其中,包含氧元素的气体是选自O2、O3和H2O构成的组中的一种物质。
7.如权利要求1所述的方法,其中,包含卤素元素的气体是选自Cl2、BCl3、CF4、CHF3、C2F6、BF2、F2、NF3、SF6、HBr、Br2和I2构成的组中的一种物质。
8.如权利要求1所述的方法,还包括在退耦等离子体处理中,将该半导体衬底加热到一温度持续一时期,该温度在100℃至900℃之间,该时期在1分钟至30分钟之间。
9.如权利要求1所述的方法,在进一步利用氮气施行退耦等离子体处理之前,该栅极氧化物层堆叠至5埃到100埃范围内的一厚度。
10.如权利要求1所述的方法,其中,栅极氧化物层是选自氧化硅层、Al2O3、Ta2O5、HfO2、ZrO2、Hf-硅酸盐、Zr-硅酸盐和具有高氧化物金属氧化物层纳米叠层结构的高氧化物层构成的组中的一种物质。
11.一种制备半导体器件的方法,包括:
a)在包括单元区和周边电路的半导体衬底上形成栅极氧化物层;
b)对栅极氧化物层在单元区中的部分施行退耦等离子体处理,从而增加其厚度;
c)在单元区的栅极氧化物层上形成栅电极,并在周边电路区的栅极氧化物层上形成栅电极;以及
d)在半导体衬底上形成源极/漏极区,
其中,在RF电源功率在100W到1000W的范围内且处理持续时间在5秒到300秒的范围内的条件下,以包括氮元素的气体、包括氧元素的气体和包括卤素元素的气体来施行该退耦等离子体处理。
12.如权利要求11所述的方法,其中,施行退耦等离子体处理的步骤包括:
a)在栅极氧化物层上形成光致抗蚀剂;
b)通过构图光致抗蚀剂形成掩模图案,以暴露单元区中的栅极氧化物层;以及
c)将掩模图案用作氧化掩模来进行退耦等离子体处理。
13.如权利要求12所述的方法,其中,在以下条件下在半导体衬底上进行退耦等离子体处理,该条件为:温度在0℃到500℃的范围内,压力在10mtorr到30mtorr的范围内。
14.如权利要求11所述的方法,其中,包含卤素元素的气体是选自Cl2、BCl3、CF4、CHF3、C2F6、BF2、F2、NF3、SF6、HBr、Br2和I2构成的组中的一种物质。
CNB021524254A 2001-11-29 2002-11-27 具有双栅极氧化物层的半导体器件的制造方法 Expired - Fee Related CN1226776C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR75118/01 2001-11-29
KR1020010075118A KR20030044394A (ko) 2001-11-29 2001-11-29 듀얼 게이트절연막을 구비한 반도체소자의 제조 방법
KR75118/2001 2001-11-29

Publications (2)

Publication Number Publication Date
CN1423306A CN1423306A (zh) 2003-06-11
CN1226776C true CN1226776C (zh) 2005-11-09

Family

ID=19716465

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021524254A Expired - Fee Related CN1226776C (zh) 2001-11-29 2002-11-27 具有双栅极氧化物层的半导体器件的制造方法

Country Status (5)

Country Link
US (2) US7157339B2 (zh)
JP (1) JP3975297B2 (zh)
KR (1) KR20030044394A (zh)
CN (1) CN1226776C (zh)
TW (1) TWI283016B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10207122B4 (de) * 2002-02-20 2007-07-05 Advanced Micro Devices, Inc., Sunnyvale Ein Verfahren zur Herstellung von Schichten aus Oxid auf einer Oberfläche eines Substrats
US6723666B1 (en) * 2003-03-06 2004-04-20 Advanced Micro Devices, Inc. Method for reducing gate oxide surface irregularities
KR100976698B1 (ko) * 2003-06-18 2010-08-18 주식회사 하이닉스반도체 반도체소자의 게이트 산화막 형성방법
US6821833B1 (en) 2003-09-09 2004-11-23 International Business Machines Corporation Method for separately optimizing thin gate dielectric of PMOS and NMOS transistors within the same semiconductor chip and device manufactured thereby
US7297586B2 (en) * 2005-01-26 2007-11-20 Freescale Semiconductor, Inc. Gate dielectric and metal gate integration
US20070190711A1 (en) * 2006-02-10 2007-08-16 Luo Tien Y Semiconductor device and method for incorporating a halogen in a dielectric
KR100741467B1 (ko) * 2006-07-12 2007-07-20 삼성전자주식회사 반도체 장치 및 그 제조방법
US20080070367A1 (en) * 2006-09-14 2008-03-20 Sangwoo Pae Methods to create dual-gate dielectrics in transistors using high-K dielectric
US7816211B2 (en) * 2007-01-26 2010-10-19 Freescale Semiconductor, Inc. Method of making a semiconductor device having high voltage transistors, non-volatile memory transistors, and logic transistors
US8124513B2 (en) * 2009-03-18 2012-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Germanium field effect transistors and fabrication thereof
JP2011009313A (ja) * 2009-06-24 2011-01-13 Panasonic Corp 半導体装置及びその製造方法
CN102214575A (zh) * 2010-04-02 2011-10-12 中芯国际集成电路制造(上海)有限公司 Mos晶体管的制作方法
US9716139B2 (en) 2015-06-02 2017-07-25 United Microelectronics Corp. Method for forming high voltage transistor
CN106328507B (zh) * 2015-06-17 2020-09-15 联华电子股份有限公司 半导体元件及其制作方法
CN110299398B (zh) 2018-03-22 2022-04-19 联华电子股份有限公司 高电压晶体管及其制造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712208A (en) * 1994-06-09 1998-01-27 Motorola, Inc. Methods of formation of semiconductor composite gate dielectric having multiple incorporated atomic dopants
US5480828A (en) * 1994-09-30 1996-01-02 Taiwan Semiconductor Manufacturing Corp. Ltd. Differential gate oxide process by depressing or enhancing oxidation rate for mixed 3/5 V CMOS process
US5672521A (en) * 1995-11-21 1997-09-30 Advanced Micro Devices, Inc. Method of forming multiple gate oxide thicknesses on a wafer substrate
US6136654A (en) * 1996-06-07 2000-10-24 Texas Instruments Incorporated Method of forming thin silicon nitride or silicon oxynitride gate dielectrics
EP0847079A3 (en) * 1996-12-05 1999-11-03 Texas Instruments Incorporated Method of manufacturing an MIS electrode
JP3222404B2 (ja) * 1997-06-20 2001-10-29 科学技術振興事業団 半導体基板表面の絶縁膜の形成方法及びその形成装置
US6033998A (en) * 1998-03-09 2000-03-07 Lsi Logic Corporation Method of forming variable thickness gate dielectrics
US6184110B1 (en) * 1998-04-30 2001-02-06 Sharp Laboratories Of America, Inc. Method of forming nitrogen implanted ultrathin gate oxide for dual gate CMOS devices
US6165849A (en) * 1998-12-04 2000-12-26 Advanced Micro Devices, Inc. Method of manufacturing mosfet with differential gate oxide thickness on the same IC chip
JP2001044419A (ja) * 1999-07-14 2001-02-16 Texas Instr Inc <Ti> 高k誘電体を有するゲート積層の形成方法
TW426941B (en) 1999-08-13 2001-03-21 United Microelectronics Corp Manufacturing method of dual-gate dielectric layer
US6686298B1 (en) * 2000-06-22 2004-02-03 Micron Technology, Inc. Methods of forming structures over semiconductor substrates, and methods of forming transistors associated with semiconductor substrates
TW580730B (en) * 2001-03-09 2004-03-21 Macronix Int Co Ltd Method of forming a silicon oxide layer with different thickness using pulsed nitrogen plasma implantation
US6596570B2 (en) * 2001-06-06 2003-07-22 International Business Machines Corporation SOI device with reduced junction capacitance
US6503846B1 (en) * 2001-06-20 2003-01-07 Texas Instruments Incorporated Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
US6548366B2 (en) * 2001-06-20 2003-04-15 Texas Instruments Incorporated Method of two-step annealing of ultra-thin silicon dioxide layers for uniform nitrogen profile
KR20030000575A (ko) * 2001-06-26 2003-01-06 주식회사 하이닉스반도체 반도체소자의 제조방법
US6426305B1 (en) * 2001-07-03 2002-07-30 International Business Machines Corporation Patterned plasma nitridation for selective epi and silicide formation
KR100400323B1 (ko) * 2001-11-01 2003-10-01 주식회사 하이닉스반도체 반도체 소자의 시모스(cmos) 및 그의 제조 방법

Also Published As

Publication number Publication date
JP2003168741A (ja) 2003-06-13
CN1423306A (zh) 2003-06-11
US20030100155A1 (en) 2003-05-29
JP3975297B2 (ja) 2007-09-12
US20060246669A1 (en) 2006-11-02
TWI283016B (en) 2007-06-21
KR20030044394A (ko) 2003-06-09
US7528042B2 (en) 2009-05-05
US7157339B2 (en) 2007-01-02

Similar Documents

Publication Publication Date Title
US7528042B2 (en) Method for fabricating semiconductor devices having dual gate oxide layer
CN101427386B (zh) 阻挡层的选择性实施以实现在具有高k电介质的CMOS器件制造中的阈值电压控制
US9252058B2 (en) Semiconductor device and method of fabricating the same
TW557475B (en) Semiconductor device and a method therefor
KR100372641B1 (ko) 다마신 공정을 이용한 반도체 소자의 제조방법
US8390080B2 (en) Transistor with dopant-bearing metal in source and drain
EP1298712B1 (en) Gate structure and method of forming the same
KR100400323B1 (ko) 반도체 소자의 시모스(cmos) 및 그의 제조 방법
JP2004158487A (ja) 半導体装置の製造方法
CN1841772A (zh) 半导体器件及其制造方法
JP2005064317A (ja) 半導体装置
KR100539213B1 (ko) 복합 유전막 형성 방법 및 이를 이용하는 반도체 장치의제조 방법
US6664172B2 (en) Method of forming a MOS transistor with improved threshold voltage stability
CN1967790A (zh) 移除栅极上的金属硅化物层的方法及蚀刻方法
CN101996886B (zh) 半导体器件的制造方法
KR100499630B1 (ko) 반도체소자의 제조방법
KR100539159B1 (ko) 반도체 소자의 트랜지스터 및 그 제조 방법
KR100486825B1 (ko) 반도체 소자의 제조방법
US20050142798A1 (en) Methods of fabricating semiconductor devices
KR20030050595A (ko) 듀얼 게이트산화막을 구비한 반도체장치의 제조 방법
KR20030093713A (ko) 듀얼 게이트산화막의 형성 방법
JP2005285805A (ja) 半導体装置の製造方法
JPH08306802A (ja) 半導体装置の製造方法
KR20060010949A (ko) 반도체 소자 제조방법
JP2006120816A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051109

Termination date: 20131127