CN1279515B - 制作电光器件的方法 - Google Patents

制作电光器件的方法 Download PDF

Info

Publication number
CN1279515B
CN1279515B CN001184784A CN00118478A CN1279515B CN 1279515 B CN1279515 B CN 1279515B CN 001184784 A CN001184784 A CN 001184784A CN 00118478 A CN00118478 A CN 00118478A CN 1279515 B CN1279515 B CN 1279515B
Authority
CN
China
Prior art keywords
film
display device
layer
tft
electroluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN001184784A
Other languages
English (en)
Other versions
CN1279515A (zh
Inventor
山崎舜平
水上真由美
小沼利光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16121095&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1279515(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1279515A publication Critical patent/CN1279515A/zh
Application granted granted Critical
Publication of CN1279515B publication Critical patent/CN1279515B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Abstract

本发明的目的是降低EL显示器件和包含EL显示器件的电子设备的制作成本。EL材料是通过在有源矩阵型EL显示器件中进行印刷而制作的。可用的印刷法包括凸版印刷或丝网印刷。因此,简化了EL层的制作步骤,降低了制作成本。

Description

制作电光器件的方法
技术领域
本发明涉及以EL(电致发光)显示器件为代表的、通过在衬底表面上制备半导体元件(是利用半导体薄膜制备的元件,通常是薄膜晶体管)而制作的电光器件,和包括作为显示器的电光器件的电子器件(电子设备)。特别地,本发明涉及制备上述器件的方法。
背景技术
近年来,在衬底上制作薄膜晶体管(此后称为“TFT”)的技术已取得长足的进步,其应用和开发已转向有源矩阵型显示器件。因为利用多晶硅薄膜的TFT比利用非晶硅薄膜的传统TFT具有更高的场效应迁移率。因此,可以通过与像素制作在同一衬底上的驱动电路控制各像素,以前这些像素是由衬底外的驱动电路控制的。
这种有源矩阵型显示器件受到关注的原因是通过在同一衬底上制作各种电路和单元可以获得各种优点,例如降低生产成本、缩小显示器件的尺寸、提高产量、降低生产量。
在有源矩阵型显示器件中,每个像素都具有由TFT制作的开关单元,控制电流的驱动电压由开关单元控制,这样EL层(光发射层)发射光线。例如,美国专利5,684,365(见已公开的日本专利申请Hei 8-234683)、或已公开的日本专利申请Hei 10-189252公开了一种EL显示器件。
已经提出了多种制作EL层的方法。例如,真空淀积、溅射、旋涂、滚涂、铸造法、LB法、离子镀、滴涂法、喷墨(inkjet)法等等。
发明内容
本发明的目的是降低EL层的制作成本,提供廉价的EL显示器件。本发明的另一个目的是降低包括作为显示器的EL显示器件的电子器件(电子设备)的制作成本。
按照本发明的一个方面,提供了一种制作电致发光显示器件的方法,包括以下步骤:在衬底上形成多个半导体元件;形成与多个半导体元件相连接的多个像素电极;在对应于多个像素电极的位置制备具有多个凸起的一个凸版;在所述凸版的凸起的表面施加电致发光形成物质;在像素电极上印制电致发光形成物质;其中多个凸起和多个像素电极在印制处相互接触。
优选的是,其中电致发光形成物质是电致发光材料和溶剂的混合物。其中电致发光材料是有机化合物。
优选的是,其中电致发光形成物质是在充满不活泼气体的清洁室内印制的。
优选的是,其中电致发光形成物质是利用凸版印刷的印刷法印制的。
优选的是,其中电致发光显示器件可整合在从包括摄像机、数字相机、目式显示、汽车导航系统、便携式信息终端和图像回放设备的组中选择的电子设备中。
优选的是,其中电致发光形成物质是有选择地印制在每个像素上的。
优选的是,其中电致发光形成物质的粘度是20-30cp。
为了实现前述目的,本发明的特点是利用印刷法制作EL层。凸版印刷和丝网印刷均可以用作印刷法,优选的是凸版印刷。在本发明中,利用图1描述了使用凸版印刷的情况。
图1A-C示出了本发明使用的凸版印刷装置的局部。在图1A-C中,参考号110表示阿尼络(anilox)辊;刮浆杆(也称为刮浆刀)111;EL材料及其溶剂(此后称之为EL形成衬底)的混合物由刮浆杆111汇聚在阿尼络辊110的表面上。注意,此处的EL材料是荧光有机复合物,表示有机复合物,通常是指空穴注入层、空穴输运层、光发射层、电子输运层或电子注入层。
如图1B所示,在阿尼络辊110的表面上具有网槽(此后称为栅网)110a,通过沿箭头A所示的方向转动,栅网110a将EL形成衬底保持在其表面上。注意图中所示的虚线表示EL形成衬底处于阿尼络辊110的表面上。
参考号113是印刷辊,114是凸版,凸版上的凸凹是通过刻蚀形成的。图1C示出了这种状态。在图1C的情况下,为了在一块衬底上制作多个EL显示器件,像素部分114a的图案制作在凸版114上的多个部分上。此外,将像素部分114a的图案放大可以看到,凸起114b制作在与多个像素相对应的位置上。
上述阿尼络辊110通过滚动将EL形成衬底112固定在栅网110a上。另一方面,印刷辊113沿箭头B所示的方向转动,只有凸版114上的凸起114b才能接触栅网110a。在此,EL形成衬底112涂敷在凸起114b的表面上。
EL形成衬底112印刷在凸起114b与沿水平方向(箭头C所示的方向)与印刷辊113同速移动的衬底115相接触的部分上。这样,EL形成衬底112就按照矩阵形式印刷到衬底115上。
然后,通过真空热处理,蒸发掉EL形成衬底112中的溶剂,将EL材料固定。因此,需要其使用气化温度低于EL材料的玻璃转变温度(Tg)的溶剂。最终制作的EL层的厚度由EL形成衬底的粘性决定。在这种情况下,粘度可以通过选择不同的溶剂进行控制,优选粘度是10-50cp(最优的是20-30cp)。
此外,当EL形成衬底112中存在大量可以作为晶核的杂质时,EL材料通过蒸发溶剂而结晶的可能性将很大。晶化降低了光发射效率,因此,是不期望的。期望的是EL形成衬底112中包含尽可能少的杂质。
重要的是使环境尽可能地干净,提纯溶剂、提纯EL材料或混合溶剂和EL材料以便减少杂质,还要注意利用图1的印刷装置印刷EL形成衬底的环境。具体地讲,期望利用放置在充以不活泼气体例如氮气的洁净室中的印刷装置完成上述EL形成衬底的印刷工艺。
注意,本发明可以应用于有源矩阵型EL显示器件和无源矩阵型(单矩阵)EL显示器件。
附图说明
在附图中,
图1A-1C是解释凸版印刷方法原理的简图;
图2是EL显示器件的像素部分的剖面图;
图3A和3B是EL显示器件的像素部分的顶视图以及电路结构简图;
图4A-4E是有源矩阵型EL显示器件的制备步骤图;
图5A-5D是有源矩阵型EL显示器件的制备步骤图;
图6A-6C是有源矩阵型EL显示器件的制备步骤图;
图7是EL模块的外观视图;
图8是EL显示器件的电路框图结构;
图9是EL显示器件的像素部分的放大图;
图10是EL显示器件的采样电路的单元结构图;
图11A和11B是EL模块的外观和剖面图;
图12A-12C是制备接触结构的步骤图;
图13是EL显示器件的像素部分的结构图;
图14是EL显示器件的像素部分的剖面结构图;
图15是EL显示器件的像素部分的结构图;
图16A-16F是电子设备的具体实例图。
具体实施方式
[实施方案模式]
下面参考图2、图3A和3B描述实现本发明的模式。图2是本发明EL显示器件的像素部分剖面图,图3A是其顶视图,图3B是其电路结构图。实际上,多个像素排列成矩阵形式,这样就形成了像素部分(图像显示部分)。注意,图2对应于沿图3A中的线A-A’获得的剖面图。由此,因为图2和图3A使用了共用符号,所以可以参考这两幅图。另外,尽管图3的顶视图示出了两个像素,但是它们均具有相同的结构。
在图2中,参考号11表示衬底;12表示作为底涂层的绝缘膜(此后称为基膜)。衬底11可以由玻璃衬底、玻璃陶瓷衬底、石英衬底、硅衬底、陶瓷衬底、金属衬底或塑料衬底(包括塑料膜)制作。
尽管基膜12在使用包含可移动离子的衬底或具有导电性的衬底的情况下特别有效,但在石英衬底上就不需要了。包含硅的绝缘膜可以用作基膜12。注意,在整个说明书中,“包含硅的绝缘膜”是指包含预定比例的硅、氧和氮的绝缘膜,例如氧化硅膜、氮化硅膜、或氮氧化硅膜(由SiOxNy表示)。
为了防止TFT或EL单元的退化,通过使基膜12具有热辐射效应可以有效地将薄膜晶体管(此后称为TFT)产生的热量耗散掉。为了是薄膜具有热辐射效应,可以使用任何众知的材料。
这里,在一个像素中制作两个TFT。参考号201表示用作开关单元的TFT(此后称为开关TFT);202表示用作电流控制单元的TFT(此后称为电流控制TFT),该单元控制流向EL单元的电流大小。上述两种TFT均是n-沟道TFT。
因为n-沟道TFT的场效应迁移率高于p-沟道TFT,所以其工作速度高,易于控制大电流的流动。在控制同样大小的电流流动时,n-沟道TFT的尺寸更小。因此,优选地使用n-沟道TFT作为电流控制TFT,因为这可以增大显示部分的有效面积。
p-沟道TFT具有以下优点,没有热载流子注入的问题,关断电流很小,曾经报道过将其用作开关TFT的例子,将其用作电流控制TFT的例子。然而,本发明的特征还在于,通过制作LDD区的位置不同的结构,即使在n-沟道TFT中也能解决热载流子注入和关断电流的问题,像素中的所有TFT均由n-沟道TFT制作。
然而,在本发明中不必将开关TFT和电流控制TFT局限于n-沟道TFT,也可以使用p-沟道TFT。
开关TFT201包括源区13、漏区14、LDD区15a-d、具有高浓度杂质区16和沟道形成区17a和b的有源层、栅绝缘膜18、栅电极19a和b、第一中间绝缘膜20、源布线21和漏布线22。
此外,如图3A所示,栅电极19a和b是双栅结构,它们通过由另一种材料(该材料的电阻低于栅电极19a和19b)制成的栅布线211电连接在一起。当然,除了双栅结构之外,还可以采用所谓的多栅结构(该结构包括具有两个或多个相互串联的沟道形成区的有源层),例如三栅结构等。多栅结构对于降低关断电流值非常有效,在本发明中,像素的开关TFT201就是多栅结构,这样可以获得低关断电流值的开关单元。
有源层由具有晶体结构的半导体膜制作。即,可以使用单晶半导体膜或多晶半导体膜或微晶半导体膜。栅绝缘膜18由具有硅的绝缘膜制作。除此之外,任何导电膜都可以制作栅电极、源布线或漏布线。
此外,在开关TFT201、LDD区15a-15d中具有不相互重叠的栅电极19a和19b,栅绝缘膜18放置在LDD区和栅电极之间。这种结构对于降低关断电流值非常有效。
顺便说一句,为了降低关断电流,更加期望在沟道形成区和LDD区之间提供偏置区(偏置区由组份与沟道形成区相同的半导体层制作,且没有施加栅电压)。在具有两个或多个栅电极的多栅结构中,在沟道形成区之间的高浓度杂质区可以有效地降低关断电流值。
如前所述,利用多栅结构TFT制作像素的开关单元201,有可能实现关断电流值足够低的开关单元。由此,即使没有提供在已公开日本专利申请Hei 10-189252的图2中示出的电容,电流控制TFT的栅电压也能保持足够长的时间(在本次选择和下次选择之间的间隔)。
即,可以去除通常会使有效光发射区减小的电容,进而可以加宽有效光发射区。这意味着EL显示器件的图像质量会更加明亮。
其次,电流控制TFT202包括源区31、漏区32、具有LDD区33和沟道形成区34的有源层、栅绝缘膜18、栅电极35、第一中间绝缘膜20、源布线36和漏布线37。尽管栅电极35是单栅极结构,多栅结构也是可以采用的。
如图2所示,开关TFT的漏连接到电流控制TFT的栅。具体地讲,电流控制TFT202的栅电极35通过漏布线(可称为连接布线)22电连接到开关TFT201的漏区14。源布线36连接到电流供应线212。
尽管电流控制TFT202是控制注入到EL单元203的电流量的单元,但是从EL单元损伤的角度看,并不期望提供大电流。即,为了防止过大的电流流向电流控制TFT202,期望将沟道长度(L)设计得很长。期望的是,使电流为0.5至2μA(优选的是1至1.5μA)每像素。
由上述讨论可知,如图9所示,当开关TFT的沟道长度为L1(L1=L1a+L1b)、沟道宽度为W1、电流控制TFT的沟道长度为L2、沟道宽度为W2时,期望W1在0.1至5μm(典型值为0.5至2μm)之间,W2在0.5至10μm(典型值为2至5μm)之间。除此之外,期望L1为0.2至18μm(典型值为2至15μm)之间,L2为1至50μm(典型值为10至30μm)之间。然而,本发明并不局限于上述数值。
通过选择这些数值的范围,可以囊括所有的标准,由具有VGA类型像素数目(640×480)的EL显示器件到具有更高类型(1920×1080或1280×1024)的显示器件。
除此之外,恰当的是制作在开关TFT201中的LDD区的长度(宽度)为0.5至3.5μm,典型值为2至2.5μm。
除此之外,图2所示的EL显示器件的特征还在于,在电流控制TFT202中,LDD区33位于漏区32和沟道形成区34之间,LDD区33包括分别与栅电极35重叠和不重叠的两块区域,栅绝缘膜18位于这两块区域之间。
电流控制TFT202提供电流使EL单元204发光,并控制电流量,以便进行灰度级显示。由此,需要采取措施防止热载流子注入引起的损伤,这样即使施加电流也不会引起损伤。当显示黑色时,尽管电流控制TFT202此时已关断,如果关断电流很大,清晰的黑色显示将是不可能的,将导致对比度下降或类似的现象。由此,还需要降低关断电流。
关于热载流子注入引起的损伤,已知的是LDD区与栅电极重叠的的结构非常有效。然而,如果整个LDD区都由栅电极叠盖,那么关断电流将增加。由此,本申请人设想了一种新结构,其中串联提供一种不与栅电极叠盖的LDD区,这样同时解决了防止热载流子和关断电流额问题。
此时,与栅电极重叠的LDD区的恰当长度是0.1至3μm(优选的是0.3至1.5μm)。如果过长,寄生电容将增大,如果过短,防止热载流子的效果太弱。除此之外,不与栅电极重叠的LDD区的恰当长度是1.0至3.5μm(优选的是1.5至2.0μm)。如果过长,将无法提供足够的电流,如果过短,降低关断电流的效果太弱。
在上述结构中,寄生电容制作在栅电极与LDD区相互叠盖的区域。因此,优选的是在源区31和沟道形成区34之间不制作这种区域。在电流控制TFT中,因为载流子的流动方向总是相同的,所以只在漏区的一边提供LDD区就足够了。
然而,当电流控制TFT202的驱动电压(施加在源区和漏区之间的电压)为10V或更小时,热载流子注入将成为严重的问题,这样还可以删除LDD区33。在这种情况下,有源层由源区31、漏区32和沟道形成区34构成。
从增加流动电流量的角度看,增加电流控制TFT202的有源层(特别是沟道形成区)的膜厚(优选的是50至100nm,更优选的是60至80nm)也是有效的。与此相反,在开关TFT201的情况下,从降低关断电流值的角度看,减小有源层(特别是沟道形成区)的膜厚(优选的是20至50nm,更优选的是25至40nm)也是有效的。
其次,参考号41表示第一钝化膜,其恰当厚度是10nm至1μm(优选的是200至500nm)。就材料而言,可以使用包含硅(特别优选的是氮氧化硅或氮化硅膜)的绝缘膜。钝化膜41的功能是保护制作的TFT,防止碱金属或潮湿。在最终制作在TFT上面的EL层中,包含碱金属,例如钠。即第一钝化膜41还用作防止碱金属(可移动离子)进入TFT侧的的保护膜。
使第一钝化膜41具有热辐射功能还可以有效地防止EL层的热退化。然而,在图2结构的EL显示器件中,由于光是从衬底11的侧面射出的,第一钝化膜41必需是透明的。在利用有机材料制作EL层的情况下,由于退化是与氧结合引起的,所以不期望使用易于放出氧的绝缘膜。
作为能够防止碱金属渗透并具有热辐射功能的透明材料,可以是包含B(硼)、C(碳)和N(氮)中的至少一种元素和Al(铝)、Si(硅)和P(磷)中的至少一种元素的绝缘膜。例如以氮化铝(AlxNy)为代表的铝氮化物、以碳化硅(SixCy)为代表的硅碳化物、以氮化硅(SixNy)为代表的硅氮化物、以氮化硼(BxNy)为代表的硼氮化物、或以磷化硼(BxPy)为代表的硼磷化物。以氧化铝(AlxOy)为代表的铝氧化物的透光性最佳,其导热率为20Wm-1K,所以这种材料可以作为一种优选材料。这些材料不仅具有上述性能,还具有防止潮气渗透的能力。顺便说一句,在上述透光材料中,x和y是任意整数。
注意,还可以将上述化合物与其它元素进行组合。例如,还可以通过向氧化铝中添加氮来使用由AlNxOy表示的氮氧化铝。这种材料还具有防止潮气或碱金属渗透的能力以及热辐射功能。顺便说一句,在上述氮氧化铝中,x和y是任意整数。
除此之外,可以利用在已公开日本专利申请Sho 62-90260中公开的材料。即,还可以使用包含Si、Al、N、O、或M(M是至少一种稀有元素,优选的是Ce(铈)、Yb(镱)、Sm(钐)、Er(铒)、Y(钇)、La(镧)、Gd(钆)、Dy(镝)和Nd(钕)中的至少一种元素)的绝缘膜。这些材料也具有防止潮气或碱金属渗透的能力以及热辐射功能。
除此之外,还可以利用至少包含金刚石薄膜或非晶碳膜(特别是其特性类似于金刚石、称为类金刚石碳或类似物的膜)。这些膜具有十分高的导热率,作为热辐射层十分有效。然而,由于膜是褐色的,当厚度较大时,其透射率会下降,优选的是使用厚度尽可能小(优选的是5至100nm)的膜。
顺便说一句,因为第一钝化膜41的首要作用是保护TFT,防止碱金属或潮气,因此,膜的这种作用不能消弱。因此,尽管可以单独使用由具有上述热辐射功能的材料制成的薄膜,将薄膜与可以防止碱金属或潮气渗透的绝缘膜(通常是氮化硅膜(SixNy)或氮氧化硅膜(SiOxNy))叠盖在一起。顺便说一句,在氮化硅膜或氮氧化硅膜中,x和y是任意整数。
第二中间绝缘膜(可称为平面化膜)44制作在第一钝化膜41上,以便覆盖各个TFT,这样将平滑由TFT产生的台阶。作为第二中间绝缘膜44,有机树脂膜是优选的,可以使用聚酰亚胺、聚酰胺、丙烯酸、BCB(苯甲酸环丁烯)或类似材料。当然,只要能够实现足够的平面化,也可以使用无机膜。
利用第二中间绝缘膜44平面化TFT产生的台阶是十分重要的。因为后面制作的EL层很薄,所以在存在台阶的情况下光发射效应很弱。因此,优选的是在制作像素电极之前进行平面化,使EL层制作在最大限度平整的表面上。
参考号45表示第二钝化膜,它对于防止碱金属由EL单元的扩散起着十分重要的作用。恰当的膜厚是5nm至1μm(典型值是20至300nm)。能够防止碱金属渗透的绝缘膜用作第二钝化膜45。就其材料而言,可以使用第一钝化膜41使用的材料。
第二钝化膜45还可以用作散发由EL单元产生的热量的热辐射层,并防止热量存储在EL单元中。在第二中间绝缘膜44是有机树脂膜的情况下,由于该膜不耐热,第二钝化膜可以防止EL单元产生的热量对第二中间绝缘膜产生不利影响。
如上所述,尽管在制作EL显示器件时利用有机树脂膜平滑TFT是十分有效的,但是传统结构并没有考虑由EL单元产生的热量引起的有机树脂膜退化的问题。在本发明中,通过提供第二钝化膜45解决了该问题,这是一个特点。
第二钝化膜45可防止热损伤,并用作防止EL层中的碱金属扩散到TFT侧的保护膜,还用作防止潮气或氧由TFT侧渗透到EL层的保护层。
如上所述,利用热辐射功能强、且能够防止潮气和碱金属渗透的绝缘膜在TFT侧和EL单元侧形成的隔离是本发明的最重要特征之一,可以说这种结构在普通EL显示器件中是没有的。
参考号46表示透明导电膜制作的像素电极(EL单元的阳极)。在透过第二钝化膜45、第二中间绝缘膜44和第一钝化膜41制作完接触孔(开口)之后,在制作的开口部分上制作与电流控制TFT202的漏布线37相连的像素电极。
然后,通过印刷制作EL层(严格地讲,EL层与像素电极相接触)47。尽管EL层47可以是单层结构或叠层结构,但是在多数情况下是叠层结构。然而,在叠层情况下,优选的是将印刷和汽相生长结合在一起(具体地讲蒸发法是优选的)。在印刷法中,因为溶剂和EL材料混合在一起进行印刷,如果下面存在有机材料,将担心有机材料再次溶解。
因此,优选的是在EL层47中与像素电极直接接触的层通过印刷制作,此后的各层由汽相生长制作。毫无疑问,如果印刷是利用不会使下层EL材料溶解的溶剂完成的,那么所有的层都可以用印刷制作。空穴注入层、空穴输运层、或光发射层可以是与像素电极直接接触的层,本发明可以用于制作任意层。
在本发明中,因为印刷是制作EL层的方法,优选的是利用聚合物材料作为EL材料。就典型的聚合物材料而言,可以列举出如下聚合物材料,例如聚对苯亚乙烯(PPV)、聚乙烯基咔唑(PVK)或聚芴。
为了利用印刷法,用聚合物材料制作空穴注入层、空穴输运层或光发射层,在聚合物前体状态下进行印刷,并在真空中进行加热,将其转化为聚合物材料制成的EL材料。通过蒸发或类似方法将必需的EL材料叠盖在其上,这样就制成了叠层型EL层。
具体地讲,作为空穴输运层,优选的是使用聚十四水硫羧苯-亚苯(polytetrahydrothiophenylphenylene)作为聚合物母体,并通过加热将其转化成聚亚苯-亚乙烯(polyphenylene vinylene)。恰当的膜厚是30至100nm(优选的是40至80nm)。作为光发射层,优选的是使用氰-聚亚苯-亚乙烯制作红光发射层,利用聚亚苯-亚乙烯制作绿光发射层,利用聚亚苯-亚乙烯或聚烷基亚苯制作蓝光发射层。恰当的膜厚是30至150nm(优选的是40至100nm)。
在像素电极和EL材料之间提供用作缓冲层的铜酞箐染料也是优选的。
然而,上例仅仅是可以用作本发明EL材料的有机EL材料的例子,不必将本发明限制于此。在本发明中,对EL材料和溶剂的混合物进行印刷,蒸发并除去溶剂,这样就制成了EL层。因此,只要是这种组合使溶剂能够在不高于EL层的玻璃转变温度的温度下进行蒸发,就可以使用任何EL材料。
典型地,就溶剂而言,可以使用有机溶剂,例如氯丁(choloroform)、二氯甲烷、a-丁基内酯、丁基-2-乙氧基乙醇或NMP(N-methly-2-pyrolidone)或水。为了增加EL形成材料的粘性而使用添加剂也是优选的。
除此之外,当制作EL层47时,优选的是处理环境是潮气尽可能少的干燥环境,成型是在不活泼气体中进行的。因为EL层容易受到潮气或氧的退化,所以在层成型时,需要最大限度地去除这些因素。例如,干燥的氮气环境或干燥的氩气环境是优选的。为此,期望印刷装置安置在填充了不活泼气体的干净腔室中,印刷处理在这种环境中进行。
当利用上述的印刷法制作完EL层47之后,可以制作阴极48和保护电极49。阴极48和保护电极49可以用真空蒸发法制作。如果阴极48和保护电极49在不暴露于空气的条件下连续地进行制作,将可以进一步抑制EL层的退化。在本说明书中,由像素电极(阳极)、EL层和阴极制作的光发射单元称为EL单元。
就阴极48而言,可以使用包含具有低功函数的镁(Mg)、锂(Li)或钙(Ca)的材料。优选的是,使用MgAg(材料Mg和Ag的混合比为Mg∶Ag=10∶1)制作的电极。另外,还可以列举出MgAgAl电极、LiAl电极和LiFAl电极。保护电极49是一种防止阴极48受潮或产生类似作用的电极,使用的是包含铝(Al)或银(Ag)的材料。该保护电极49还具有热辐射功能。
顺便说一句,优选的是EL层47和阴极48在不暴露在空气中的条件下连续地在干燥不活泼气体中制作。在利用有机材料制作EL层的情况下,因为这种材料特别易于受潮,可以利用这种方法防止在暴露于空气中时受潮。此外,更期望的是不仅连续地制作EL层47和阴极48,还期望连续地在其上制作保护电极49。
图2的结构是利用单色光发射系统的实例,其中制作了与RGB中的任一种颜色相对应的EL单元。尽管图2只示出了一个像素,但是具有相同结构的多个像素将以矩阵形式排列在像素部分中。顺便说一句,可以利用各种众知的材料制作与任一种RGB颜色相对应的EL层。
除了上述系统之外,彩色显示可利用下述系统实现,即将发射白光的EL单元与彩色滤波器组合在一起的系统、将发射蓝光或蓝-绿光的EL单元和荧光材料(荧光彩色转换层:CCM)组合在一起的系统、将透明电极用作阴极(反电极)并轰击与RGB对应的EL单元的系统,或类似的系统。当然,还可以在单层中制作发射白光的EL层来实现黑-白显示。
参考号50表示第三钝化膜,其恰当膜厚是10nm至1μm(优选的是200至500nm)。尽管提供第三钝化膜50的主要目的是防止EL层47受潮,它还具有类似于第二钝化膜45的热辐射功能。因此,可以将与第一钝化膜41类似的材料用作形成材料。然而,在利用有机材料制作EL层的情况下,因为层有可能因为与氧的结合而产生退化,所以期望不使用易于放出氧的绝缘膜。
除此之外,如上所述,因为EL层不耐热,期望在尽可能低的温度下制作膜(优选的温度范围在室温和120℃之间)。由此,可以说等离子CVD、溅射、真空蒸发、离子镀或溶液施用法(旋涂法)是优选的膜制作方法。
类似地,尽管只通过提供第二钝化膜45就可以有效地抑制EL单元的退化,但是优选的是利用制作在EL单元两侧的双层绝缘膜将EL单元包围起来,例如第二钝化膜45和第三钝化膜50,以便防止潮气和氧侵入EL层,防止碱金属从EL层扩散出来,防止热量存储在EL层中。结果,进一步抑制了EL层的退化,可以获得高可靠性的EL显示器件。
本发明的EL显示器件包括由具有图2所示结构的像素构成的像素部分,根据功能的不同而具有不同结构的TFT配置在像素中。因此,可以在同一像素中制作关断电流值足够低的开关TFT和强力防止热载流子注入的电流控制TFT,从而获得可靠性高、图像显示优异(具有高的操作性能)EL显示器件。
注意在图2的像素结构中,尽管将具有多栅结构的TFT用作开关TFT,但是不必将图2的结构限制为LDD区的配置结构或类似结构。
此外,尽管在此示出了实现本发明的一个实例,其中在衬底表面上制作电气连接到用作半导体器件的TFT的EL单元,还可以利用作为半导体器件制作在硅衬底表面上的晶体管(称为MOSFET)实现本发明。
下面将参照附图详细地描述通过前述方法实现的本发明。
[实施方案1]
本发明的实施方案通过图4A-6C进行说明。并在此解释在像素部分的外围区同时制作像素部分和驱动电路部分的TFT的方法。注意为了简化说明,将CMOS电路作为驱动电路的基本电路。
首先,如图4A所示,基膜301制作在玻璃衬底300上,其厚度为300nm。在实施方案1中,氮氧化硅膜形成基膜301。将与玻璃衬底300接触的膜中的氮浓度设定在10和25wt%之间是较好的。
除此之外,作为基膜301的一部分,提供其材料与图2所示的第一钝化膜41类似的绝缘膜是有效的。电流控制TFT易于产生热量,因为有大电流流过,因此在尽可能近的位置制作具有热辐射功能的绝缘膜是有效的。
然后,利用众知的淀积法,在基膜301上制作厚度为50nm的非晶硅膜(图中未示出)。注意,不必将该膜限制为非晶硅膜,可以使用其它膜,只要它是具有非晶结构的半导体膜(包括微晶半导体膜)。另外,也可以使用包含非晶结构的复合半导体膜,例如非晶锗硅膜。此外,膜厚为20至100nm。
然后通过众知的方法使非晶硅膜结晶,形成晶态硅膜(也称为多晶硅膜)302。众知的结晶方法有使用电炉的热结晶、使用激光器的激光退火结晶、使用红外灯的灯退火结晶。在实施方案1中,结晶是利用使用XeCl气体的受激准分子激光器发出的光进行的。
注意,在实施方案1中使用的是制成线性形状的脉冲型受激准分子激光,但也可以使用矩形的,也可以使用连续型氩激光和连续型受激准分子激光。
在该实施方案中,尽管将晶态硅膜用作TFT的有源层,也可使用非晶硅膜。然而,为了通过尽量缩小电流控制TFT的尺寸来提高像素的孔径比,利用更易于电流流动的晶态硅膜更加有利。
注意,制作开关TFT的有源层是有效的,其中需要利用非晶硅膜降低关断电流,利用晶态硅膜制作电流控制TFT的有源层也是有效的。由于非晶硅膜中的载流子迁移率低,电流在其中的流动较困难,关断电流也不容易流动。换句话说,可以充分利用电流不易在其中流动的非晶硅膜和电流易于在其中流动的晶态硅膜的优点。
然后,如图4B所示,保护膜303制作在晶态硅膜302上,氧化硅膜的厚度为130nm。该厚度可以在100至200nm之间(优选的是在130至170nm之间)。此外,也可以使用其它膜,只要其是包含硅的绝缘膜。制作保护膜303,使晶态硅膜在添加杂质的过程中不直接暴露给等离子体,这样就可以进行复杂的杂质浓度控制。
然后在保护膜303上制作光刻胶掩膜304a和b,产生n-型导电的掺杂元素(此后称为n-型掺杂元素)透过保护膜303添加。注意元素周期表的15族元素通常用作n-型掺杂元素,通常使用的是磷和砷。注意,使用等离子体掺杂法,其中在实施方案1中,磷化氢(PH3)在没有质量分离(separation of mass)的条件下被激发为等离子体,磷的掺杂浓度为1×1018原子/cm3。当然,也可使用离子植入法,其中进行了质量分离。
调节掺杂剂量,使n-型杂质元素包含在n-型杂质区305和306中,并由该工艺形成浓度2×1016至5×1019原子/cm3(通常为5×1017至5×1018原子/cm3)。
然后,如图4C所示,除去保护膜303,激活已添加的元素周期表15族中的元素。众知的激活技术可以用作激活方法,在实施方案1中激活是通过受激准分子激光的辐照进行的。当然脉冲型准分子激光器和连续型准分子激光器都可以使用,不必对准分子激光器的使用施加任何限制。目的是激活已添加的掺杂元素,优选的是在不会使晶态硅膜熔化的能量下进行辐照。注意,激光辐照也可以用保护膜303进行。
热处理激活可以与激光激活掺杂元素一起进行。当执行热处理激活时,考虑到衬底的热阻,在450至550℃之间进行热处理是较好的。
该工艺还界定了边缘部分(连接部分),该部分具有沿着n-型杂质区305和306的区域,即沿着没有添加n-型杂质元素的外围的区域,而n-型杂质区305和306中具有这种掺杂元素。这意味着当完成TFT时,可以在LDD区和沟道形成区之间形成极佳的连接。
然后,除去晶态硅膜的不必要部分,如图4D所示,制作出岛形半导体膜(此后称为有源层)307至310。
然后,如图4E所示,制作覆盖有源层307至310的栅绝缘膜311。包含硅、厚度为10至200nm优选的是50至150nm的绝缘膜可以用作栅绝缘膜311。可以使用单层结构或叠层结构。实施方案1使用的是110nm厚的氮氧化硅膜。
然后,制作厚度为200至400nm的导电膜,并进行构图,形成栅电极312至316。注意在实施方案1中,栅电极和电连接到栅电极的引线(此后称为栅布线)是由不同材料制作的。具体地讲,制作栅布线的材料具有比栅电极低的电阻率。这是因为将能够进行微加工的材料用作栅电极,即使栅布线不能进行微加工,用于布线的材料也具有低电阻率。当然,栅电极和栅布线也可由同种材料制作。
此外,在需要时,栅布线可以由单层导电膜制作,优选的是使用两层或三层的叠层膜。所有众知的导电膜都可以用作栅电极材料。然而,如上所述,优选的是利用能够进行微加工的材料,具体地讲,是能够构图为2mm或更窄线条的材料。
通常,可以利用包含元素钽(Ta)、钛(Ti)、钼(Mo)、钨(W)、铬(Cr)和硅(Si)中的一种元素的膜、上述元素的氮化物构成的膜(通常为氮化钽膜、氮化钨膜或氮化钛膜)、上述元素组合成的合金膜、或上述元素的硅化物膜(通常是硅化钨膜、硅化钛膜)。当然,这些膜可以是单层或叠层的。
在该实施方案中,使用的是厚度为50nm的氮化钨(WN)膜,和厚度为350nm的钨(W)膜。这些膜可通过溅射制作。当将惰性气体Xe、Ne或类似气体作为溅射气体加入时,可以防止应力引起的膜剥落。
此时制作栅电极313和316,以便分别部分覆盖n-型杂质区305和306,将栅绝缘膜311夹在中间。叠盖部分在后来成为叠盖栅电极的LDD区。
然后,利用栅电极312至316作为掩膜,按照自对准的方式添加n-型杂质元素(在实施方案1中使用的是磷),如图5A所示。调整添加过程,使磷添加到杂质区317至323,使其浓度为n-型杂质区305和306的1/10至1/2(典型值为1/4至1/3)。具体地讲,优选的浓度是1×1016至5×1018原子/cm3(典型值为3×1017至3×1018原子/cm3)。
然后,制作光刻胶掩膜324a至324d,其形状覆盖栅电极等,如图5B所示,并添加n-型杂质元素(在实施方案1中是磷),形成包含高浓度磷的杂质区325至331。在此还利用磷(PH3)进行离子掺杂,并将这些区域中的磷浓度调节为1×1020至1×1021原子/cm3(典型值为2×1020至5×1020原子/cm3)。
n-沟道TFT的源区或漏区由该工艺制作,在开关TFT中,部分保留由图5A工艺制作的n-型杂质区320至322。这些剩余区域对应于图2中的开关TFT的LDD区15a至15d。
然后,如图5C所示,去除光刻胶掩膜324a至324d,制作新光刻胶掩膜332。然后添加p-型杂质元素(在实施方案1中使用硼),形成含有高浓度硼的杂质区333和334。通过利用乙硼烷(B2H6)进行的离子掺杂,添加硼,形成浓度为3×1020至3×1021原子/cm3(典型值为5×1020至1×1021原子/cm3)的杂质区333和334。
注意,磷已经添加到杂质区333和334中,其浓度为1×1016至5×1018原子/cm3,但此处添加的硼的浓度至少3倍于磷的浓度。因此,已经形成的n-型杂质区将完全转变为p-型,起p-型杂质区的作用。
然后,在除去光刻胶掩膜332之后,激活按照不同浓度添加的n-型和p-型杂质元素。作为激活方法,可以执行炉退火、激光退火或灯退火。在实施方案1中,在电炉中的氮气氛下,550℃,进行4小时的热处理。
此时,重要的是尽可能去除气氛中的氧。这是因为,如果存在氧,那么栅电极的暴露表面将被氧化,导致电阻率增加,同时使以后制作欧姆接触更加困难。因此,优选的是在上述激活工艺中的处理环境中氧浓度应当为1ppm或更低,优选的是0.1ppm或更低。
完成激活工艺之后,制作300nm厚的栅布线335。以铝(Al)或铜(Cu)作为主要成份(包含50至100%的组份)的金属膜可以用作栅布线335的材料。与图3的栅布线211一样,栅布线335的位置使开关TFT的栅电极314和315(对应于图3的栅电极19a和b)电连接(见图5D)。
利用这种结构可以使栅布线的布线电阻极小,因此可以制作具有大表面的像素显示区(像素部分)。即,实施方案1的像素结构极其有效,因为正是由于这种结构,才实现了屏幕尺寸为对角线10英寸或更大(另外,对角线30英寸或更大)的EL显示器件。
然后,制作第一中间绝缘膜336,如图6A所示。包含硅的单层绝缘膜用作第一中间绝缘膜336,叠层膜可以夹在其间。此外,膜厚为400nm至1.5um。在实施方案1中使用的是在200nm厚的氮氧化硅膜上制作800nm厚的氧化硅膜的叠层结构。
另外,在包含3至100%氢的环境中,在300至450℃,进行1至12小时的热处理,进行氢化。该工艺利用被热激活的氢端接半导体膜中的悬垂键。作为另一种氢化方式,也可以执行等离子体氢化(利用等离子体激活的氢)。
注意,氢化步骤也可以在制作第一中间绝缘膜336的过程中进行。即,氢化工艺可以在制作200nm厚的氮氧化硅膜之后进行,然后制作剩余的800nm厚的氧化硅膜。
然后,在第一中间绝缘膜336中制作接触孔,形成源布线337至340和漏布线341至343。在该实施方案中,该电极由具有三层结构的叠层膜制作,其中连续地利用溅射法制作厚度为100nm的钛膜、含有钛且厚度为300nm的铝膜和厚度为150nm的钛膜。当然,可以使用其它导电膜。
然后,制作第一钝化膜344,厚度为50至500nm(典型值为200至300nm)。在实施方案1中,300nm厚的氮氧化硅膜用作第一钝化膜344。该膜可以用氮化硅膜替换。当然,可以利用与图2的第一钝化膜41相同的材料。
注意,在制作氮氧化硅膜之前,利用含有氢,例如H2或NH3的气体进行等离子体处理是有效的。该预处理激活的氢施加给第一中间绝缘膜336,通过热处理可以改善第一钝化膜344的膜质量。同时,添加到第一中间绝缘膜336的氢扩散到下面,有源层也可以有效地氢化。
然后,如图6B所示,制作由有机树脂构成的第二中间绝缘膜347。就有机树脂而言,可以使用聚酰亚胺、聚酰胺、丙烯酸、BCB(苯并丁烯)或类似有机树脂。具体地讲,因为第二中间绝缘膜347主要用于平面化,因此,具有优异平面化特性的丙烯酸是优选的。在该实施方案中,丙烯酸膜的厚度足以平滑掉TFT形成的台阶部分。优选厚度为1至5μm(更优选的是2至4μm)。
然后,在第二中间绝缘膜347上制作厚度为100nm的第二钝化膜348。在该实施方案中,因为使用了包含Si、Al、N、O、和La的绝缘膜,可以防止碱金属由其上的EL层扩散出来。同时,防止了潮气侵入EL层,并散发EL层中产生的热量,这样就有可能抑制由热引起的EL层退化和平面化薄膜的退化(第二中间绝缘膜)。
透过第二钝化膜348、第二中间绝缘膜347和第一钝化膜344制作到达漏布线343的接触孔,并制作像素电极349。在该实施方案中,制作了厚度为110nm的氧化铟-锡(ITO)膜,并进行构图,形成像素电极。像素电极349是EL单元的阳极。顺便说一句,就其它材料而言,也可以使用氧化铟-钛膜或与氧化锌混合的ITO膜。
顺便说一句,该实施方案具有如下结构,像素电极349通过漏布线343电连接到电流控制TFT的漏区331。该结构的优点如下。
因为像素电极349直接接触EL层(光发射层)或电荷输运层的有机材料,所以EL层或类似层中的可移动离子有可能扩散到像素电极中。即,在本实施方案的结构中,像素电极349不直接接触作为有源层一部分的漏区331,而是将漏布线343插入其间,这样防止了可移动离子侵入有源层。
然后,如图6C所示,利用图1解释的印刷法制作EL层,并在不暴露于空气的条件下制作阴极(MgAg电极)351和保护电极351。此时,优选的是在制作EL层350和阴极351之前,通过对像素电极349的热处理来完全去除潮气。在该实施方案中,尽管将MgAg电极用作EL单元的阴极,但是也可以使用其它众知的材料。
就EL层350而言,可以使用在实施方案模式部分中说明的材料。在该实施方案中,尽管由空穴输运层和光发射层组成的双层结构构成了EL层,但是也可以提供空穴注入层、电子注入层或电子输运层。类似地,已经报道了进行组合的各种实例,可以使用其中的任何结构。
在该实施方案中,就空穴输运层而言,利用印刷法作为聚合物前体的聚十四水硫羧苯-亚苯,并通过加热将其转变为聚亚苯-亚乙烯。就光发射层而言,通过蒸发制作通过将30-40%的1,3,4-恶二唑衍生物的PBD分子扩散到聚乙烯咔唑中而获得的材料,并添加作为绿光发射中心的大约1%的香豆素6。
尽管保护电极352可以保护EL层350,防止潮气或氧,但是优选的是提供第三钝化膜353。在该实施方案中,作为第三钝化膜353,提供了厚度为300nm的氮化硅膜。该第三钝化膜也可以在不暴露于空气的条件下在保护电极352之后连续地制作。当然,作为第三钝化膜353,可以使用与图2中的第三钝化膜50相同的材料。
除此之外,保护电极352还防止MgAg电极351受到损伤,典型金属膜的主要成份是铝。当然,可以使用其它材料。因为EL层350和MgAg电极351十分易于受潮,所以优选的是在不暴露于空气的条件下连续地制作保护电极352,这样可防止EL层接触外部空气。
顺便说一句,EL层350的恰当膜厚是10至400nm(典型值为60至150nm,优选值为100至120nm),MgAg电极351的厚度为80至200nm(典型值为100至150nm)。
这样就完成了具有图6C所示结构的有源矩阵EL显示器件。在该实施方案的有源矩阵EL显示器件中,不仅公开了具有优化结构的TFT的像素部分,而且公开了驱动电路部分,这样可获得非常高的可靠性,还可以改善操作特性。
首先,具有能够通过减少热载流子注入而尽可能地不使工作速度下降的结构的TFT用作构成驱动电路的CMOS电路中的n-沟道TFT205。顺便说一句,驱动电路包括移位寄存器、缓冲器、电平转换器、采样电路(采样保持电路)和类似电路。在进行数字驱动的情况下,还包括信号转换电路,例如D/A转换器。
在该实施方案情况下,如图6C所示,n-沟道TFT205的有源层包括源区355、漏区356、LDD区357和沟道形成区358,LDD区357叠盖在栅电极313上,其间具有栅绝缘膜311。
保证操作速度不下降是只在漏区侧制作LDD区的原因。在n-沟道TFT205中,不必过分关注关断电流值,尽管它对工作速度有些影响。因此,期望LDD区357完全叠盖栅电极,以便将电阻降到最小。即,优选的是避免所谓的偏置。
在CMOS电路的p-沟道TFT206中,因为几乎可以忽略热载流子注入造成的损伤,所以不必专门制作LDD区。当然,类似于n-沟道TFT205,也可以制作LDD区,以防止热载流子。
顺便说一句,与其它电路相比,驱动电路中的采样电路是非常特别的,大电流沿两个方向流过沟道形成区。即源区和漏区的极性是相反的。此外,需要将关断电流值抑制到最低可能值,即期望在开关TFT和电流控制TFT中间安置具有近中间函数(approximately intermediatefunction)的TFT。
即,作为构成采样电路的n-沟道TFT,优选的是配置具有图10所示结构的TFT。如图10所示,LDD区901a和b的一部分通过栅绝缘膜902叠盖栅电极903。这种效果在解释电流控制TFT202的过程中已经给出了,其不同点是在采样电路中,LDD区901a和b安置在沟道形成区904的两侧。
当完成图6C所示的状态时,在实际当中,优选的是利用外壳部件进行封装,例如气密性好、不易去磁的保护膜(叠层膜,紫外线固化树脂膜等)或陶瓷封装,以防止暴露于外部空气。此时,当外壳部件的内部充以不活泼气体,或在其内部放置干燥剂(例如氧化硼)时,可以增加EL层的可靠性(寿命)。
在通过处理,例如封装来提高气密性之后,连接将从制作在衬底上的单元或电路中延伸出来的端子连接到外部信号端子的连接器(柔性印刷电路:FPC)。在本说明书中,处于这种可运输状态的EL显示器件称为EL模块。
该实施方案中的有源矩阵EL显示器件的结构将参照图7的透视图进行描述。该实施方案的有源矩阵EL显示器件由制作在玻璃衬底601上的像素部分602、栅侧驱动电路603和源侧驱动电路604构成。像素部分的开关TFT605是n-沟道TFT,配置在连接到栅侧驱动电路603的栅布线606与连接到源侧驱动电路604的源布线607的交叉点上。开关TFT605的漏连接到电流控制TFT608的栅。
此外,电流控制TFT608的源连接到电流供应线609,EL单元610连接到电流控制TFT608的漏。
向驱动电路传送信号的输入-输出布线(连接布线)612和613以及连接到电流供应线609的输入-输出布线614作为外部输入-输出端子配备在FPC611中。
图7所示的EL显示器件的电路结构实例示于图8。该实施方案的EL显示器件包括源侧驱动电路701、栅侧驱动电路(A)707、栅侧驱动电路(B)711和像素部分706。注意,在说明书中,术语“驱动电路”是包括源侧驱动电路和栅侧驱动电路的通用术语。
源侧驱动电路701包括移位寄存器702、电平转换器703、缓冲器704和采样电路(采样保持电路)705。栅侧驱动电路(A)707包括移位寄存器708、电平转换器709和缓冲器710。栅侧驱动电路(B)711具有相同的结构。
移位寄存器702和708的驱动电压分别为5至16V(典型值为10V),在图6C中由205指示的结构适于用作在制作电路的CMOS电路中的n-沟道TFT。
除此之外,对于每个电平转换器703和709、缓冲器704和710,均类似于移位寄存器,包括图6C的n-沟道TFT205的CMOS电路是适用的。注意,在改善每个电路的可靠性方面,将栅布线改为多栅结构,例如双栅结构或三栅结构是有效的。
此外,因为插入了源区和漏区,所以需要降低关断电流值,包括图10的n-沟道TFT208的CMOS电路适用于采样电路705。
像素部分706按照图2所示的结构配置像素。
通过根据图4A至6C所示的制作步骤制作TFT,可以很容易地实现上述结构。在该实施方案中,尽管只示出了像素部分和驱动电路的结构,如果使用本实施方案的制作步骤,还可以在同一衬底上制作除驱动电路之外的其它逻辑电路,例如信号分离电路、D/A转换电路、运算放大器电路、-校正电路或类似电路,此外还假定可以制作存储器部分、微处理器或类似部分。
此外,还将参考图11A和11B描述该实施方案的、包括外壳部件的EL模块。顺便说一句,根据需要,引用了在图7和8中使用的参考号。
像素部分1701、源侧驱动电路1702和栅侧驱动电路1703制作在衬底(包括TFT下面的基膜)1700上。源自各个驱动电路的每条布线都通过输入布线612至614连接到FPC611,进而连接到外部设备。
此时,外壳部件1704至少包围像素部分,优选的是包围驱动电路和像素部分。外壳部件1704的外形具有一个凹陷部分,其内部尺寸(深度)大于像素部分1701的外部尺寸(高度),或呈片状,由粘合剂1705固定到衬底1700上,与衬底1700构成一个气密空间。此时,放置的EL单元被完全密封在气密空间内,与外部空气完全隔离。顺便说一句,可以提供多个外壳部件1704。
作为外壳部件1704的材料,优选的是绝缘材料,例如玻璃或聚合物。例如,非晶玻璃(硅酸盐硼化玻璃,石英等)、晶态玻璃、陶瓷玻璃、有机树脂(丙烯酸树脂、苯乙烯树脂、聚碳酸树脂、环氧树脂等)和硅树脂。除此之外,还可使用陶瓷。如果粘合剂1705是绝缘材料,还可以使用金属材料,例如不锈钢合金。
作为粘合剂材料1705,还可以使用环氧树脂粘合剂、丙烯酸树脂粘合剂等。此外,也可将热固化树脂或光固化树脂用作粘合剂。然而,使用的材料必需能最大限度地防止氧和潮气的渗透。
此外,优选的是在外壳部件和衬底1700之间的空间1706中填充不活泼气体(氩,氦,氮等)。除气体之外,也可使用惰性液体(以全氟烷为代表的氟化碳液体等)。对于惰性液体,可以使用已公开日本专利申请Hei 9-148066中公开的材料。通常使用氧化钡。
除此之外,如图11B所示,在像素部分中还提供多个均包括隔离EL单元的像素,所有的像素都具有一个公用的保护电极1707。在该实施方案中,尽管已经说明了优选的是在不暴露于空气的条件下连续地制作EL层、阴极(MgAg电极)和保护电极,但是如果EL层和阴极是用同一掩膜部件制作的,只需要用不同的掩膜部件制作保护电极,那么就可以实现图11B所示的结构。
此时,EL层和阴极只制作在像素部分,不必在驱动电路上制作。当然,尽管将其制作在驱动电路上也不会出问题,但是当考虑到EL层中含有碱金属时,优选的是不在其上制作。
顺便说一句,保护电极1707连接到由1708指示的区域中的输入布线1709。输入布线1709是为保护电极1707提供预定电压(在该实施方案中,是地电位,具体地讲是0V)的布线,并通过导电粘合材料1710连接到FPC611。
在此,参照图12描述在区域1708中制作接触结构的步骤。
首先,根据该实施方案的步骤,获得图6A所示的状态。此时,在衬底的端部分(在图11B中由1708指示),除去第一中间绝缘膜336和栅绝缘膜311,在其上制作输入布线1709。当然,也可与图6A的源布线和漏布线同时制作(图12A)。
然后,在图6B中,当刻蚀完第二钝化膜348、第二中间绝缘膜347和第一钝化膜344时,除去由1801指示的区域,形成开口部分1802(图12B)。
在该状态下,在像素部分中,执行EL单元的制作步骤(像素电极、EL层和阴极的制作步骤)。此时,在图12所示的区域中,使用了掩膜部件,因而没有形成EL单元。在制作完阴极351之后,利用另一个掩膜部件制作保护电极352。这样,保护电极352和输入布线1709电连接在一起。此外,提供第三钝化膜353,形成图12C所示的状态。
通过上述步骤,获得了图11B中的由1708指示的区域的接触结构。输入-输出布线1709通过外壳部件1704和衬底1700之间的间隙连接到FPC611(然而,间隙中填充了粘合剂1705。即粘合剂1705的厚度需要能够填平由输入-输出布线引起的不平坦)。顺便说一句,尽管描述是针对输入-输出布线1709进行的,其它输出布线612至614也可通过外壳部件1704下面的部分、以相同的方式连接到FPC611。
[实施方案2]
在该实施方案中,将参考图13描述一种像素结构不同于图3B所示结构的实例。
在该实施方案中,图3B所示的两个像素是关于提供地电压的电流供应线212对称的。即,如图13所示,两个相邻像素公用电流供应线212,这样可以减少所需的布线数目。顺便说一句,配置在像素中的TFT结构或类似结构保持不变。
如果采样这种结构,将可以制作更小的像素部分,提高图像质量。
注意,根据实施方案1的制作步骤可很容易地实现该实施方案的结构,关于TFT结构或类似结构,可以参考实施方案1的描述或图2。
[实施方案3]
在该实施方案中,将参考图14描述一种像素部分的结构不同于图2的情况。注意,根据实施方案1,可以一直执行到制作第二中间绝缘膜44的步骤。因为第二中间绝缘膜44覆盖的开关TFT201和电流控制TFT202具有与图1相同的结构,所以在此省略了具体描述。
在该实施方案的情况下,在穿过第二钝化膜45、第二中间绝缘膜44和第一钝化膜41制作完接触孔之后,制作像素电极51,然后,制作阴极52和EL层53。在该实施方案中,在利用真空蒸发制作完阴极52之后,利用凸版印刷或丝网印刷制作EL层53,同时保持干燥的惰性气体氛围。
在该实施方案中,厚度为150nm的铝合金膜(含有1wt%的钛的铝膜)用作像素电极51。就像素电极的材料而言,尽管可以使用任何材料,只要是金属材料,但是优选的是材料具有高反射率。厚度为120nm的MgAg电极用作阴极52,EL层53的厚度为120nm。
在该实施方案中,通过将溶剂混入EL材料来制备EL形成衬底,这是通过将30-40%的1,3,4-恶二唑衍生物的PBD分子扩散到聚乙烯咔唑中而获得的,并添加作为光发射中心的大约1%的香豆素6。利用凸版印刷或丝网印刷施加EL形成衬底,并进行烘焙处理,这样就获得了厚度为50nm的绿光发射层。利用蒸发在其上制作厚度为70nm的TPD,就获得了EL层53。
然后,制作厚度为110nm、由透明导电膜(在该实施方案中,是ITO膜)构成的阳极54。这样,制成EL单元209,当利用实施方案1所示的材料制成第三钝化膜55时,就完成了具有图14所示结构的像素。
在采用该实施方案结构的情况下,每个像素产生的绿光向与在其上制作TFT的衬底相对的侧面辐射。由此,像素中的几乎全部区域,即,甚至是制作TFT的区域,都可以用作有效的光发射区。结果,极大地改善了像素的有效光发射区,提高了图像的亮度和对比度(光与阴影的对比)。
顺便说一句,该实施方案的结构可自由地与实施方案1和2中的任何一个组合。
[实施方案4]
尽管在实施方案1至4中的描述是针对顶栅型TFT情况进行的,但是本发明并不局限于TFT结构,也可应用于底栅型TFT(典型的是反偏型TFT)。除此之外,还可以用任何方法制作反偏型TFT。
因为反偏型TFT结构的工艺步骤易于进行,且步骤数小于顶栅型TFT,所以对于降低制作成本是十分有利的,这也是本发明的一个目的。顺便说一句,该实施方案的结构可以自由地与实施方案2和3的任一结构组合。
[实施方案5]
在实施方案1的图6C或图2中的结构中,利用类似于第二钝化膜45、具有强热辐射功能的材料制作位于有源层和衬底之间的基膜是有效的。具体地讲,电流将长时间地在电流控制TFT中流动,因此,很容易发热,由自发热量引起的退化将成为问题。利用实施方案5的基膜可以防止TFT的热损伤,对于这种情况,该基膜具有热辐射功能。
防止可移动离子由衬底扩散出来的功能也十分重要,当然,因此优选的是利用包含Si、Al、N、O和M的复合物构成的叠层结构和类似于第一钝化膜41、包含硅的绝缘膜。
注意,可以自由地组合实施方案5的结构和实施方案1至4中的任何一个的结构。
[实施方案6]
当使用实施方案3所示的像素结构时,EL层射出的光沿着与衬底相对的方向辐射,因此不必理会材料的透光性,例如位于衬底和像素电极之间的绝缘膜的透光性。换句话说,也可使用透光率较低的材料。
因此,利用碳膜,例如被称为金刚石薄膜或非晶碳膜的碳膜,制作基膜12、第一钝化膜41或第二钝化膜45是有利的。换句话说,因为不必担心透光率降低,所以膜厚可以厚达100至500nm,这可以具有非常强的热辐射功能。
关于在第三钝化膜50中使用上述碳膜,注意必需避免透光率的下降,因此优选的是将膜厚设定在5至100nm。
注意,在实施方案6中,当用碳膜制作基膜12、第一钝化膜41、第二钝化膜45和第三钝化膜50中的任何一个时,与其它绝缘膜重叠在一起是有利的。
另外,当使用实施方案3所示的像素结构时,实施方案6是特别有利的,但是还可以自由地组合实施方案6的结构和实施方案1、2、4和5中的任何一个的结构。
[实施方案7]
利用多栅结构制作开关TFT可以降低EL显示器件像素中的开关TFT中的关断电流值,本发明的特征在于不必使用存储电容。这是一种充分利用为存储电容保留的表面积,并将其用作发射区的器件。
然而,即使不能完全消除存储电容,仍可通过减小独占的表面积来增加有效发射表面积。换句话说,本发明的目的可以通过利用多栅结构制作开关TFT降低关断电流值,通过减小存储电容的独占表面积来有效地实现。
在图15所示的情况下,可接受的是相对于开关TFT201的漏、与电流控制TFT202的栅平行地制作储能电容1401。
注意,实施方案7的结构可以自由地与实施方案1至6中的任何一个的结构组合。即,存储电容仅仅制作在像素内部,并没有对TFT结构、EL层的材料等产生限制。
[实施方案8]
在实施方案1中,激光结晶方法用来制作晶态硅膜302,实施方案8将解释利用不同结晶方法的情况。
在实施方案8中制作完非晶硅膜之后,利用已公开日本专利申请Hei7-130652中讲述的技术进行结晶。上述专利申请中讲述的技术是利用元素,例如镍,作为促进结晶的催化剂以获得结晶良好的晶态硅膜的一种方法。
在完成结晶工艺之后,除去在结晶过程中使用的催化剂。在这种情况下,可以利用已公开日本专利申请Hei 10-270363或已公开日本专利申请Hei 8-330602中讲述的技术收集催化剂。
另外,TFT可以利用本发明申请人的日本专利申请Hei 11-076967的说明书中讲述的技术制作。
实施方案1所示的制作工艺是本发明的一种实施方案,只要能够实现实施方案1中的图2或图6C的结构,就可以使用其它制作工艺,而不会有任何问题。
注意,可以自由地组合实施方案8的结构和实施方案1至7中的任何一个的结构。
[实施方案9]
在驱动本发明的EL显示器件时,可利用模拟信号作为图像信号进行模拟驱动,利用数字信号进行数字驱动。
当进行模拟驱动时,将模拟信号发送到开关TFT的源布线,包含灰度级信息的模拟信号成为电流控制TFT的栅电压。然后,电流控制TFT控制EL单元中的电流,控制EL单元的光发射强度,进行灰度级显示。注意,在进行模拟驱动的情况下,电流控制TFT可以工作在饱和区。
另一方面,当进行数字驱动时,它不同于模拟型灰度级显示,灰度级显示是利用时间比灰度级方法进行的。即,通过调节光发射时间的长短,在视觉上可以感受到彩色灰度级的变化。在进行数字驱动的情况下,优选的是在线性区操作电流控制TFT。
与液晶单元相比,EL单元具有极快的响应速度,因此,可以进行高速驱动。因此,EL单元适用于时间比灰度级方法,其中每一帧先分割成多个子帧,然后进行灰度级显示。
本发明是与单元结构有关的技术,因此可以使用任何驱动方法。
[实施方案10]
在实施方案1中,优选的是利用有机EL材料制作EL层,但是本发明还可用无机EL材料实现。然而,现在的无机EL材料具有极高的驱动电压,因此,在进行模拟驱动时,必需使用具有能够经受驱动电压的电压阻抗特性的TFT。
另外,如果开发出驱动电压比传统无机EL材料低的无机EL材料,那么可以将其用于本发明。
此外,可以自由地组合实施方案10的结构和实施方案1至9中的任何一个的结构。
[实施方案11]
利用本发明制作的有源矩阵EL显示器件(EL模块),与液晶显示器件相比,在强光位置具有优异的可见度,因为它是一种自发射型器件。因此,它作为直视型EL显示(显示包含了EL模块)具有广泛的应用领域。
注意,EL显示较液晶显示器的一个优点是大视角。因此,为了用大屏幕欣赏TV广播,本发明的EL显示可以用作对角线等于30英寸或更大(典型值是40英寸或更大)的显示(显示监视器)。
此外,它不仅可以用作EL显示(例如个人计算机监视器、TV广播接收监视器或广告显示监视器),而且可以用作各种电子设备的显示。
下面给出这种电子设备的实例:摄像机;数字相机;目式显示(头戴式显示);汽车导航系统;个人计算机;便携式信息终端(例如移动计算机,移动电话或电子书);利用记录媒质的图像回放设备(具体地讲,是能够回放记录媒质、并具有可显示这些图像的显示的设备,例如音乐唱盘(CD)、激光视盘(LD)或数字视盘(DVD))。这些电子设备的实例示于图16A至F。
图16A是个人计算机,包括主机2001、外套2002、显示部分2003和键盘2004。本发明可用作显示部分2003。
图16B是录像机,包括主机2101、显示部分2102、音频输入部分2103、操作开关2104、电池2105和图像接收部分2106。本发明可用作显示部分2102。
图16C是头戴型EL显示的一部分(右侧),包括主机2201、信号线2202、固定带2203、显示监视器2204、光学系统2205和显示设备2206。本发明可用于显示设备2206。
图16D是具有记录媒质的图像回放设备(具体地讲,是DVD回放设备),包括主机2301、记录媒质(例如CD、LD或DVD)2302、操作开关2303、显示部分(a)2304和显示部分(b)2305。显示部分(a)主要用于显示图像信息,显示部分(b)主要用于显示字符信息,本发明可用于显示部分(a)和显示部分(b)。注意本发明可以用作在设备中具有记录媒质的图像回放设备,例如CD回放设备和游戏装置。
图16E是移动计算机,包括主机2401、摄像机部分2402、图像接收部分2403、操作开关2404和显示部分2405。本发明可用于显示部分2405。
图16F是EL显示,包括外壳2501、支撑架2502和显示部分2503。本发明可用于显示部分2503。因为EL显示具有大视角,所以在屏幕很大时特别有利,适用于对角线大于或等于10英寸(特别是大于或等于30英寸的显示)的显示。
此外,如果EL材料的发射荧光能够在将来得到增强,那么就可以将本发明用于利用透镜对包含输出图像信息的光进行放大和投射的前视型或背投型投影仪。
因此,本发明的的应用范围极为广泛,可以将本发明应用于各领域的电子设备。此外,可以利用实施方案1至10的任何组合制作实施方案11的电子设备。
利用本发明,可以以极低的成本制作EL层。因此,可以降低EL显示设备的制作成本。
除此之外,通过提供能够防止EL层和TFT之间的碱金属渗透的绝缘膜,可防止碱金属扩散出EL层,避免对TFT特性产生不利影响。结果,大大提高了EL显示设备的工作特性和可靠性。
除此之外,利用能够以低成本制作的EL显示设备作为显示,可降低电子设备的制作成本。除此之外,利用操作特性和可靠性得到改善的EL显示设备,可制作具有优异图像质量和持续时间(高可靠性)的实用产品。

Claims (10)

1.一种制作电致发光显示器件的方法,包括以下步骤:
在衬底上形成多个半导体元件;
形成与多个半导体元件相连接的多个像素电极;
在对应于多个像素电极的位置制备具有多个凸起的一个凸版;
在所述凸版的凸起的表面施加电致发光形成物质;
在像素电极上印制电致发光形成物质;
其中多个凸起和多个像素电极在印制处相互接触。
2.根据权利要求1所述的制作电致发光显示器件的方法,其中所述电致发光形成物质是电致发光材料和溶剂的混合物。
3.根据权利要求2所述的制作电致发光显示器件的方法,其中所述电致发光材料是有机化合物。
4.根据权利要求1所述的制作电致发光显示器件的方法,其中所述电致发光形成物质是在充满不活泼气体的清洁室内印制的。
5.根据权利要求1所述的制作电致发光显示器件的方法,其中所述电致发光形成物质是利用凸版印刷的印刷法印制的。
6.根据权利要求1所述的制作电致发光显示器件的方法,其中所述电致发光显示器件可整合在从包括摄像机、数字相机、目式显示、汽车导航系统、便携式信息终端和图像回放设备的组中选择的电子设备中。
7.根据权利要求1所述的制作电致发光显示器件的方法,
其中所述电致发光形成物质是有选择地印制在每个像素上的。
8.根据权利要求1所述的制作电致发光显示器件的方法,
其中所述印制是通过使用在其表面上具有网槽的阿尼络辊(aniloxroll)、与阿尼络辊的网槽接触的刮浆刀(doctor bar)和在其表面上具有凸起的印刷辊完成的。
9.根据权利要求8所述的制作电致发光显示器件的方法,其中完成印制的方法包括以下步骤:
将刮浆刀(doctor bar)沿阿尼络辊表面铺设电致发光形成物质;
通过滚动阿尼络辊将电致发光形成物质保持在阿尼络辊的网槽上;
在印刷辊滚动时对所述印刷辊的凸起提供所述电致发光形成物质;
在像素电极上印制电致发光形成物质。
10.根据权利要求1所述的制作电致发光显示器件的方法,其中所述电致发光形成物质的粘度是20-30cp。
CN001184784A 1999-06-28 2000-06-28 制作电光器件的方法 Expired - Fee Related CN1279515B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP182598/1999 1999-06-28
JP18259899 1999-06-28
JP182598/99 1999-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201210078548.9A Division CN102610565B (zh) 1999-06-28 2000-06-28 制作电光器件的方法

Publications (2)

Publication Number Publication Date
CN1279515A CN1279515A (zh) 2001-01-10
CN1279515B true CN1279515B (zh) 2012-05-30

Family

ID=16121095

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201210078548.9A Expired - Fee Related CN102610565B (zh) 1999-06-28 2000-06-28 制作电光器件的方法
CN001184784A Expired - Fee Related CN1279515B (zh) 1999-06-28 2000-06-28 制作电光器件的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201210078548.9A Expired - Fee Related CN102610565B (zh) 1999-06-28 2000-06-28 制作电光器件的方法

Country Status (6)

Country Link
US (3) US6420200B1 (zh)
EP (3) EP1065725B1 (zh)
KR (2) KR20010066877A (zh)
CN (2) CN102610565B (zh)
DE (1) DE60036157T2 (zh)
TW (1) TW556357B (zh)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030074672A1 (en) * 1998-09-22 2003-04-17 John Daniels Multiuser internet gateway system
US6274887B1 (en) 1998-11-02 2001-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7141821B1 (en) * 1998-11-10 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity gradient in the impurity regions and method of manufacture
US6277679B1 (en) 1998-11-25 2001-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film transistor
EP1006589B1 (en) 1998-12-03 2012-04-11 Semiconductor Energy Laboratory Co., Ltd. MOS thin film transistor and method of fabricating same
TW556357B (en) * 1999-06-28 2003-10-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
JP2001092413A (ja) * 1999-09-24 2001-04-06 Semiconductor Energy Lab Co Ltd El表示装置および電子装置
US6646287B1 (en) 1999-11-19 2003-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with tapered gate and insulating film
US6767774B2 (en) * 1999-12-28 2004-07-27 Intel Corporation Producing multi-color stable light emitting organic displays
US20010053559A1 (en) * 2000-01-25 2001-12-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating display device
DE20006642U1 (de) 2000-04-11 2000-08-17 Agilent Technologies Inc Optische Vorrichtung
DE10018168A1 (de) * 2000-04-12 2001-10-25 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen von organischen, Licht emittierenden Dioden
US7525165B2 (en) * 2000-04-17 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
TW577813B (en) * 2000-07-10 2004-03-01 Semiconductor Energy Lab Film forming apparatus and method of manufacturing light emitting device
US7875975B2 (en) 2000-08-18 2011-01-25 Polyic Gmbh & Co. Kg Organic integrated circuit completely encapsulated by multi-layered barrier and included in RFID tag
DE10043204A1 (de) 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
US6562671B2 (en) 2000-09-22 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and manufacturing method thereof
JP4925528B2 (ja) * 2000-09-29 2012-04-25 三洋電機株式会社 表示装置
US6770562B2 (en) * 2000-10-26 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
JP2002215065A (ja) 2000-11-02 2002-07-31 Seiko Epson Corp 有機エレクトロルミネッセンス装置及びその製造方法、並びに電子機器
US6717181B2 (en) * 2001-02-22 2004-04-06 Semiconductor Energy Laboratory Co., Ltd. Luminescent device having thin film transistor
US20020130612A1 (en) 2001-03-13 2002-09-19 Morrissy Joseph Hourigan Display device formed of a multi-color light emitting material and method of making same
JP3608614B2 (ja) 2001-03-28 2005-01-12 株式会社日立製作所 表示装置
DE10126859A1 (de) * 2001-06-01 2002-12-12 Siemens Ag Verfahren zur Erzeugung von leitfähigen Strukturen mittels Drucktechnik sowie daraus hergestellte aktive Bauelemente für integrierte Schaltungen
JP2003017248A (ja) * 2001-06-27 2003-01-17 Sony Corp 電界発光素子
JP2003022892A (ja) * 2001-07-06 2003-01-24 Semiconductor Energy Lab Co Ltd 発光装置の製造方法
JP4290905B2 (ja) * 2001-07-10 2009-07-08 Nec液晶テクノロジー株式会社 有機膜の平坦化方法
DE10152920A1 (de) * 2001-10-26 2003-05-28 Osram Opto Semiconductors Gmbh Verfahren zum großflächigen Aufbringen von mechanisch empfindlichen Schichten auf ein Substrat
US6852997B2 (en) 2001-10-30 2005-02-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4149168B2 (ja) 2001-11-09 2008-09-10 株式会社半導体エネルギー研究所 発光装置
US20030089252A1 (en) * 2001-11-09 2003-05-15 Sarnecki Greg J. Production of Electroluminescent Devices
KR100841611B1 (ko) * 2001-11-27 2008-06-27 엘지디스플레이 주식회사 플라스틱 액정표시소자 제조장치
WO2003067678A1 (de) * 2002-02-08 2003-08-14 Siemens Aktiengesellschaft Erzeugung dünner homogener schichten in der produktion von polymerelektronik
US7378124B2 (en) * 2002-03-01 2008-05-27 John James Daniels Organic and inorganic light active devices and methods for making the same
US6876143B2 (en) * 2002-11-19 2005-04-05 John James Daniels Organic light active devices and methods for fabricating the same
TWI272556B (en) * 2002-05-13 2007-02-01 Semiconductor Energy Lab Display device
US7256421B2 (en) 2002-05-17 2007-08-14 Semiconductor Energy Laboratory, Co., Ltd. Display device having a structure for preventing the deterioration of a light emitting device
DE10226370B4 (de) 2002-06-13 2008-12-11 Polyic Gmbh & Co. Kg Substrat für ein elektronisches Bauteil, Verwendung des Substrates, Verfahren zur Erhöhung der Ladungsträgermobilität und Organischer Feld-Effekt Transistor (OFET)
WO2004017439A2 (de) 2002-07-29 2004-02-26 Siemens Aktiengesellschaft Elektronisches bauteil mit vorwiegend organischen funktionsmaterialien und herstellungsverfahren dazu
US7161590B2 (en) * 2002-09-04 2007-01-09 John James Daniels Thin, lightweight, flexible, bright, wireless display
US20040043139A1 (en) * 2002-09-04 2004-03-04 Daniels John James Printer and method for manufacturing electronic circuits and displays
JP4434563B2 (ja) * 2002-09-12 2010-03-17 パイオニア株式会社 有機el表示装置の製造方法
GB0223510D0 (en) * 2002-10-10 2002-11-13 Cambridge Display Tech Ltd Optical device
US7256427B2 (en) * 2002-11-19 2007-08-14 Articulated Technologies, Llc Organic light active devices with particulated light active material in a carrier matrix
JP3867659B2 (ja) * 2002-11-26 2007-01-10 ソニー株式会社 有機電界発光素子の製造方法
JP2004178930A (ja) * 2002-11-26 2004-06-24 Sony Corp 発光素子およびこれを用いた表示装置
EP1584114A1 (en) * 2003-01-17 2005-10-12 Diode Solutions, Inc. Display employing organic material
JP4820536B2 (ja) * 2003-06-25 2011-11-24 彬雄 谷口 有機エレクトロルミネッセンス素子の製造方法
JP4329445B2 (ja) * 2003-08-04 2009-09-09 セイコーエプソン株式会社 電気光学装置並びに電子機器
DE10340643B4 (de) 2003-09-03 2009-04-16 Polyic Gmbh & Co. Kg Druckverfahren zur Herstellung einer Doppelschicht für Polymerelektronik-Schaltungen, sowie dadurch hergestelltes elektronisches Bauelement mit Doppelschicht
US7893438B2 (en) 2003-10-16 2011-02-22 Samsung Mobile Display Co., Ltd. Organic light-emitting display device including a planarization pattern and method for manufacturing the same
US7217956B2 (en) * 2004-03-29 2007-05-15 Articulated Technologies, Llc. Light active sheet material
US7858994B2 (en) * 2006-06-16 2010-12-28 Articulated Technologies, Llc Solid state light sheet and bare die semiconductor circuits with series connected bare die circuit elements
US7259030B2 (en) * 2004-03-29 2007-08-21 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
US7294961B2 (en) * 2004-03-29 2007-11-13 Articulated Technologies, Llc Photo-radiation source provided with emissive particles dispersed in a charge-transport matrix
US7427782B2 (en) * 2004-03-29 2008-09-23 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
US20050282307A1 (en) * 2004-06-21 2005-12-22 Daniels John J Particulate for organic and inorganic light active devices and methods for fabricating the same
DE102004040831A1 (de) 2004-08-23 2006-03-09 Polyic Gmbh & Co. Kg Funketikettfähige Umverpackung
US10225906B2 (en) 2004-10-22 2019-03-05 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
KR101122228B1 (ko) * 2004-10-26 2012-03-19 삼성전자주식회사 박막 트랜지스터 표시판 및 그 제조 방법
DE102004059464A1 (de) 2004-12-10 2006-06-29 Polyic Gmbh & Co. Kg Elektronikbauteil mit Modulator
DE102004059465A1 (de) 2004-12-10 2006-06-14 Polyic Gmbh & Co. Kg Erkennungssystem
DE102004063435A1 (de) 2004-12-23 2006-07-27 Polyic Gmbh & Co. Kg Organischer Gleichrichter
CN101088181A (zh) * 2004-12-28 2007-12-12 出光兴产株式会社 有机电致发光元件
US7498229B1 (en) * 2005-02-09 2009-03-03 Translucent, Inc. Transistor and in-situ fabrication process
DE102005009819A1 (de) 2005-03-01 2006-09-07 Polyic Gmbh & Co. Kg Elektronikbaugruppe
JP2006252787A (ja) * 2005-03-08 2006-09-21 Toppan Printing Co Ltd 有機el素子製造方法および有機el素子
US7485023B2 (en) * 2005-03-31 2009-02-03 Toppan Printing Co., Ltd. Organic electroluminescent device having partition wall and a manufacturing method of the same by relief printing method
DE102005017655B4 (de) 2005-04-15 2008-12-11 Polyic Gmbh & Co. Kg Mehrschichtiger Verbundkörper mit elektronischer Funktion
JP4682691B2 (ja) * 2005-05-13 2011-05-11 凸版印刷株式会社 有機エレクトロルミネッセンス素子の製造方法
JP2006344545A (ja) * 2005-06-10 2006-12-21 Toppan Printing Co Ltd 有機el素子の製造方法および有機el素子
JP2007012504A (ja) * 2005-07-01 2007-01-18 Toppan Printing Co Ltd 有機el素子の製造方法及び有機el素子
DE102005031448A1 (de) 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Aktivierbare optische Schicht
DE102005033714A1 (de) * 2005-07-12 2007-01-18 Schefenacker Vision Systems Germany Gmbh Verfahren und Vorrichtung zur Herstellung eines elektrolumineszierenden Leuchtelements
US7772485B2 (en) 2005-07-14 2010-08-10 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US7781673B2 (en) 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US20070181179A1 (en) 2005-12-21 2007-08-09 Konarka Technologies, Inc. Tandem photovoltaic cells
US8158881B2 (en) 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
DE102005035589A1 (de) 2005-07-29 2007-02-01 Polyic Gmbh & Co. Kg Verfahren zur Herstellung eines elektronischen Bauelements
DE102005044306A1 (de) * 2005-09-16 2007-03-22 Polyic Gmbh & Co. Kg Elektronische Schaltung und Verfahren zur Herstellung einer solchen
JP4872288B2 (ja) * 2005-09-22 2012-02-08 凸版印刷株式会社 有機el素子及びその製造方法
US20090322210A1 (en) * 2005-09-27 2009-12-31 Masahiro Yokoo Organic electroluminescent element substrate, and organic electroluminescent element and the manufacturing method
US20070071884A1 (en) * 2005-09-27 2007-03-29 Koji Takeshita Electroluminescent element and a method of manufacturing the same
JP2007115464A (ja) * 2005-10-19 2007-05-10 Toppan Printing Co Ltd 表示素子の製造方法
DE602006016861D1 (de) * 2005-12-21 2010-10-21 Konarka Technologies Inc Photovoltaische tandemzellen
WO2007077715A1 (ja) 2006-01-05 2007-07-12 Konica Minolta Holdings, Inc. ボトムエミッション型有機エレクトロルミネッセンスパネル
US7696683B2 (en) * 2006-01-19 2010-04-13 Toppan Printing Co., Ltd. Organic electroluminescent element and the manufacturing method
US7546803B2 (en) * 2006-01-30 2009-06-16 Toppan Printing Co., Ltd. Letterpress printing machine
JP4706845B2 (ja) * 2006-02-15 2011-06-22 凸版印刷株式会社 有機el素子の製造方法
JP2007242816A (ja) * 2006-03-07 2007-09-20 Toppan Printing Co Ltd 有機エレクトロルミネッセンスデバイス及びその製造方法
US7880382B2 (en) * 2006-03-08 2011-02-01 Toppan Printing Co., Ltd. Organic electroluminescence panel and manufacturing method of the same
US20070210705A1 (en) * 2006-03-09 2007-09-13 Hajime Yokoi Organic electroluminescent element and manufacturing method of an organic electroluminescent element and a display
JP2007250718A (ja) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd エレクトロルミネッセント素子およびその製造方法
US7687390B2 (en) * 2006-03-28 2010-03-30 Toppan Printing Co., Ltd. Manufacturing method of a transparent conductive film, a manufacturing method of a transparent electrode of an organic electroluminescence device, an organic electroluminescence device and the manufacturing method
JP2007273094A (ja) * 2006-03-30 2007-10-18 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
EP2749533B1 (en) * 2006-04-04 2016-02-24 Silicor Materials Inc. Method for purifying silicon
WO2007117668A2 (en) 2006-04-07 2007-10-18 Qd Vision, Inc. Methods and articles including nanomaterial
JP4742977B2 (ja) * 2006-05-12 2011-08-10 凸版印刷株式会社 有機elディスプレイパネルの製造方法
MY149956A (en) 2006-05-22 2013-11-15 Audio Pixels Holdings Ltd Apparatus and methods for generating pressure waves
US8457338B2 (en) 2006-05-22 2013-06-04 Audio Pixels Ltd. Apparatus and methods for generating pressure waves
KR101359059B1 (ko) 2006-05-22 2014-02-05 오디오 픽셀즈 리미티드 다이렉트 디지털 스피커의 음량 및 음색 제어 장치 및 그 제어 방법
JP4775118B2 (ja) * 2006-06-01 2011-09-21 凸版印刷株式会社 有機エレクトロルミネッセンス素子の製造方法
WO2008111947A1 (en) 2006-06-24 2008-09-18 Qd Vision, Inc. Methods and articles including nanomaterial
US20080032039A1 (en) * 2006-08-07 2008-02-07 Toppan Printing Co., Ltd. Method of manufacturing organic electroluminescence device
US20080299295A1 (en) * 2006-09-21 2008-12-04 Toppan Printing Co., Ltd. Relief printing plate and print
US8008421B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US9741901B2 (en) 2006-11-07 2017-08-22 Cbrite Inc. Two-terminal electronic devices and their methods of fabrication
US7898042B2 (en) 2006-11-07 2011-03-01 Cbrite Inc. Two-terminal switching devices and their methods of fabrication
CN101622712B (zh) * 2006-11-07 2011-06-15 希百特股份有限公司 双端开关装置及其制造方法
JP2008135259A (ja) * 2006-11-28 2008-06-12 Toppan Printing Co Ltd 有機elディスプレイパネルおよびその製造方法
JP2008159812A (ja) * 2006-12-22 2008-07-10 Sharp Corp 半導体層形成装置および半導体層形成方法
JP5773646B2 (ja) 2007-06-25 2015-09-02 キユーデイー・ビジヨン・インコーポレーテツド ナノ材料を被着させることを含む組成物および方法
US20090084279A1 (en) * 2007-09-28 2009-04-02 Toppan Printing Co., Ltd. Relief printing plate and printed matter
WO2009066290A2 (en) 2007-11-21 2009-05-28 Audio Pixels Ltd. Digital speaker apparatus
US8455606B2 (en) 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers
US8013340B2 (en) * 2008-09-30 2011-09-06 Infineon Technologies Ag Semiconductor device with semiconductor body and method for the production of a semiconductor device
KR102149626B1 (ko) 2008-11-07 2020-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2010092931A1 (ja) * 2009-02-16 2010-08-19 凸版印刷株式会社 有機エレクトロルミネッセンスディスプレイ及びその製造方法
ES2495994T3 (es) 2010-03-11 2014-09-18 Audio Pixels Ltd. Accionadores de placas paralelas electrostáticas cuyos elementos móviles se accionan solamente mediante fuerza electrostática y procedimientos útiles en conjunción con los mismos
GB2480875B (en) * 2010-06-04 2014-09-03 Plastic Logic Ltd Production of electronic switching devices
DK2643982T3 (da) 2010-11-26 2022-07-04 Audio Pixels Ltd Anordning til generering af en fysisk måleffekt og fremgangsmåde til fremstilling af anordningen
CN103503054A (zh) * 2012-01-26 2014-01-08 松下电器产业株式会社 薄膜晶体管阵列装置以及使用其的el显示装置
US9880533B2 (en) 2012-05-25 2018-01-30 Audio Pixels Ltd. System, a method and a computer program product for controlling a group of actuator arrays for producing a physical effect
US10007244B2 (en) 2012-05-25 2018-06-26 Audio Pixels Ltd. System, a method and a computer program product for controlling a set of actuator elements
JP6142151B2 (ja) * 2012-07-31 2017-06-07 株式会社Joled 表示装置および電子機器
KR102132882B1 (ko) * 2012-12-20 2020-07-13 삼성디스플레이 주식회사 박막트랜지스터 기판, 이를 구비하는 유기 발광 장치, 박막트랜지스터 기판 제조방법 및 유기 발광 장치 제조방법
KR102079253B1 (ko) * 2013-06-26 2020-02-20 삼성디스플레이 주식회사 박막트랜지스터 기판, 이를 구비하는 유기 발광 장치, 박막트랜지스터 기판 제조방법 및 유기 발광 장치 제조방법
KR102059167B1 (ko) 2013-07-30 2020-02-07 엘지디스플레이 주식회사 플렉서블 유기전계 발광소자 및 그 제조 방법
KR102132697B1 (ko) 2013-12-05 2020-07-10 엘지디스플레이 주식회사 휘어진 디스플레이 장치
KR20170137810A (ko) 2015-04-15 2017-12-13 오디오 픽셀즈 리미티드 공간에서 객체의 적어도 위치를 검출하는 방법 및 시스템
CN106784395B (zh) * 2016-11-28 2018-06-22 昆山工研院新型平板显示技术中心有限公司 一种显示屏制造方法及显示屏
KR102316866B1 (ko) * 2018-01-17 2021-10-27 한국전자통신연구원 신축성 디스플레이

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821003A (en) * 1994-03-16 1998-10-13 Sumitomo Electric Industries, Ltd. Organic electroluminescent device
EP0901174A2 (en) * 1997-09-04 1999-03-10 Sumitomo Chemical Company, Limited Polymer light emitting device
CN1212114A (zh) * 1996-11-25 1999-03-24 精工爱普生株式会社 有机电致发光元件及其制造方法和有机电致发光显示装置
JP3269995B2 (ja) * 1997-08-28 2002-04-02 本田技研工業株式会社 車両の運動制御装置

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592615B2 (ja) 1980-06-06 1984-01-19 株式会社 東京機械製作所 輪転印刷機のアニロックスロ−ルにおけるインキ掻取装置
FI62448C (fi) * 1981-04-22 1982-12-10 Lohja Ab Oy Elektroluminensstruktur
US4614668A (en) 1984-07-02 1986-09-30 Cordis Corporation Method of making an electroluminescent display device with islands of light emitting elements
JPS6290260A (ja) 1985-10-16 1987-04-24 Tdk Corp サ−マルヘツド用耐摩耗性保護膜
JPH0750632B2 (ja) 1988-06-10 1995-05-31 シャープ株式会社 薄膜el素子
US5137560A (en) * 1990-03-09 1992-08-11 Asahi Glass Company, Inc. Process for manufacturing glass with functional coating
JPH03269995A (ja) * 1990-03-16 1991-12-02 Ricoh Co Ltd 電界発光素子の作製方法
JPH07102694B2 (ja) * 1991-07-31 1995-11-08 日本写真印刷株式会社 薄膜形成装置
EP0598126B1 (en) 1991-07-31 1997-12-29 Nissha Printing Co., Ltd. Thin film forming device
JP3105311B2 (ja) * 1991-10-08 2000-10-30 株式会社半導体エネルギー研究所 液晶電気光学装置およびその作製方法
US5432015A (en) 1992-05-08 1995-07-11 Westaim Technologies, Inc. Electroluminescent laminate with thick film dielectric
GB9215929D0 (en) * 1992-07-27 1992-09-09 Cambridge Display Tech Ltd Electroluminescent devices
JP2770299B2 (ja) 1993-10-26 1998-06-25 富士ゼロックス株式会社 薄膜el素子及びその製造方法、並びにそのために使用するスパッタ用ターゲット
US5923962A (en) * 1993-10-29 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
TW264575B (zh) * 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
JP3431033B2 (ja) 1993-10-29 2003-07-28 株式会社半導体エネルギー研究所 半導体作製方法
US5644415A (en) * 1993-12-20 1997-07-01 Casio Computer Co., Ltd. Liquid crystal display device having wide field angle
JPH07302912A (ja) * 1994-04-29 1995-11-14 Semiconductor Energy Lab Co Ltd 半導体装置
US5962962A (en) 1994-09-08 1999-10-05 Idemitsu Kosan Co., Ltd. Method of encapsulating organic electroluminescence device and organic electroluminescence device
JP3254335B2 (ja) 1994-09-08 2002-02-04 出光興産株式会社 有機el素子の封止方法および有機el素子
US5789762A (en) * 1994-09-14 1998-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor active matrix circuit
US5657139A (en) * 1994-09-30 1997-08-12 Kabushiki Kaisha Toshiba Array substrate for a flat-display device including surge protection circuits and short circuit line or lines
US5684365A (en) 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
US5757456A (en) * 1995-03-10 1998-05-26 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating involving peeling circuits from one substrate and mounting on other
JP3539821B2 (ja) 1995-03-27 2004-07-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6118426A (en) * 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
JPH0945930A (ja) * 1995-07-28 1997-02-14 Sony Corp 薄膜トランジスタ及びその製造方法
JPH09148066A (ja) 1995-11-24 1997-06-06 Pioneer Electron Corp 有機el素子
JP3188167B2 (ja) * 1995-12-15 2001-07-16 三洋電機株式会社 薄膜トランジスタ
JP3036436B2 (ja) 1996-06-19 2000-04-24 セイコーエプソン株式会社 アクティブマトリックス型有機el表示体の製造方法
JPH1077467A (ja) * 1996-09-04 1998-03-24 Sumitomo Chem Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JPH10172762A (ja) * 1996-12-11 1998-06-26 Sanyo Electric Co Ltd エレクトロルミネッセンス素子を用いた表示装置の製造方法及び表示装置
KR100226548B1 (ko) 1996-12-24 1999-10-15 김영환 웨이퍼 습식 처리 장치
JP3463971B2 (ja) 1996-12-26 2003-11-05 出光興産株式会社 有機アクティブel発光装置
US5869929A (en) 1997-02-04 1999-02-09 Idemitsu Kosan Co., Ltd. Multicolor luminescent device
JP3544280B2 (ja) 1997-03-27 2004-07-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3784491B2 (ja) * 1997-03-28 2006-06-14 株式会社半導体エネルギー研究所 アクティブマトリクス型の表示装置
DE19715658A1 (de) 1997-04-16 1998-10-22 Philips Leiterplatten At Gmbh Multifunktions-Leiterplatte mit opto-elektronisch aktivem Bauelement
US5937272A (en) * 1997-06-06 1999-08-10 Eastman Kodak Company Patterned organic layers in a full-color organic electroluminescent display array on a thin film transistor array substrate
US5972419A (en) 1997-06-13 1999-10-26 Hewlett-Packard Company Electroluminescent display and method for making the same
US6215244B1 (en) 1997-06-16 2001-04-10 Canon Kabushiki Kaisha Stacked organic light emitting device with specific electrode arrangement
JP3541625B2 (ja) 1997-07-02 2004-07-14 セイコーエプソン株式会社 表示装置及びアクティブマトリクス基板
US6843937B1 (en) 1997-07-16 2005-01-18 Seiko Epson Corporation Composition for an organic EL element and method of manufacturing the organic EL element
GB9715907D0 (en) * 1997-07-29 1997-10-01 Cambridge Consultants Electroluminescent device production process
US6203391B1 (en) 1997-08-04 2001-03-20 Lumimove Company, Mo L.L.C. Electroluminescent sign
EP0940797B1 (en) 1997-08-21 2005-03-23 Seiko Epson Corporation Active matrix display
JP3885303B2 (ja) * 1997-08-29 2007-02-21 セイコーエプソン株式会社 発光基板の製造方法
JP3830238B2 (ja) * 1997-08-29 2006-10-04 セイコーエプソン株式会社 アクティブマトリクス型装置
JP3439636B2 (ja) 1997-09-01 2003-08-25 株式会社クボタ 早期安定型埋立処分方法
JP3633229B2 (ja) 1997-09-01 2005-03-30 セイコーエプソン株式会社 発光素子の製造方法および多色表示装置の製造方法
JP3723336B2 (ja) * 1997-11-18 2005-12-07 三洋電機株式会社 液晶表示装置
JP3543170B2 (ja) 1998-02-24 2004-07-14 カシオ計算機株式会社 電界発光素子及びその製造方法
JPH11273859A (ja) * 1998-03-24 1999-10-08 Sony Corp 有機電界発光素子及びその製造方法
DE69918308T2 (de) * 1998-04-10 2004-10-21 E Ink Corp Elektronische anzeige basierend auf organischen feldeffekt-transistoren
TW410478B (en) 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US6166489A (en) 1998-09-15 2000-12-26 The Trustees Of Princeton University Light emitting device using dual light emitting stacks to achieve full-color emission
US8853696B1 (en) * 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
TW527735B (en) * 1999-06-04 2003-04-11 Semiconductor Energy Lab Electro-optical device
TW512543B (en) * 1999-06-28 2002-12-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
TW556357B (en) * 1999-06-28 2003-10-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
US6174613B1 (en) * 1999-07-29 2001-01-16 Agilent Technologies, Inc. Method and apparatus for fabricating polymer-based electroluminescent displays
JP3942770B2 (ja) * 1999-09-22 2007-07-11 株式会社半導体エネルギー研究所 El表示装置及び電子装置
TW480722B (en) * 1999-10-12 2002-03-21 Semiconductor Energy Lab Manufacturing method of electro-optical device
US7222981B2 (en) * 2001-02-15 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US6835954B2 (en) * 2001-12-29 2004-12-28 Lg.Philips Lcd Co., Ltd. Active matrix organic electroluminescent display device
KR100484591B1 (ko) * 2001-12-29 2005-04-20 엘지.필립스 엘시디 주식회사 능동행렬 유기전기발광소자 및 그의 제조 방법
TW200305119A (en) * 2002-03-15 2003-10-16 Sanyo Electric Co Electroluminescence display device and method for making the same
JP2004152563A (ja) * 2002-10-30 2004-05-27 Canon Inc 表示装置
US7183146B2 (en) * 2003-01-17 2007-02-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP2007012504A (ja) * 2005-07-01 2007-01-18 Toppan Printing Co Ltd 有機el素子の製造方法及び有機el素子
JP2007242816A (ja) * 2006-03-07 2007-09-20 Toppan Printing Co Ltd 有機エレクトロルミネッセンスデバイス及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821003A (en) * 1994-03-16 1998-10-13 Sumitomo Electric Industries, Ltd. Organic electroluminescent device
CN1212114A (zh) * 1996-11-25 1999-03-24 精工爱普生株式会社 有机电致发光元件及其制造方法和有机电致发光显示装置
JP3269995B2 (ja) * 1997-08-28 2002-04-02 本田技研工業株式会社 車両の運動制御装置
EP0901174A2 (en) * 1997-09-04 1999-03-10 Sumitomo Chemical Company, Limited Polymer light emitting device

Also Published As

Publication number Publication date
EP1615275B1 (en) 2017-04-26
EP2262031A2 (en) 2010-12-15
CN1279515A (zh) 2001-01-10
US6958251B2 (en) 2005-10-25
US6420200B1 (en) 2002-07-16
CN102610565A (zh) 2012-07-25
EP2262031A3 (en) 2012-04-11
US20060046358A1 (en) 2006-03-02
EP1615275A3 (en) 2007-12-05
EP1065725B1 (en) 2007-08-29
KR20050076723A (ko) 2005-07-26
US7342251B2 (en) 2008-03-11
EP1065725A3 (en) 2004-05-19
TW556357B (en) 2003-10-01
DE60036157T2 (de) 2008-01-03
CN102610565B (zh) 2014-10-22
US20020182968A1 (en) 2002-12-05
EP1615275A2 (en) 2006-01-11
DE60036157D1 (de) 2007-10-11
EP1065725A2 (en) 2001-01-03
KR20010066877A (ko) 2001-07-11

Similar Documents

Publication Publication Date Title
CN1279515B (zh) 制作电光器件的方法
CN100539239C (zh) 电光器件的制造方法
CN1607872B (zh) 电发光显示器和电子设备
US8319224B2 (en) EL display device and a method of manufacturing the same
CN1333379C (zh) 制作电光器件的方法
US7012300B2 (en) EL display device and manufacturing method thereof
US9431470B2 (en) Display device
CN100420040C (zh) 电光装置和电子设备
US8941133B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
KR20010039643A (ko) 전기 광학 장치 및 전자 장치
CN100530754C (zh) 显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20180628

CF01 Termination of patent right due to non-payment of annual fee