CN1280390A - 半导体存储器元件的电容器及其制造方法 - Google Patents

半导体存储器元件的电容器及其制造方法 Download PDF

Info

Publication number
CN1280390A
CN1280390A CN00124026A CN00124026A CN1280390A CN 1280390 A CN1280390 A CN 1280390A CN 00124026 A CN00124026 A CN 00124026A CN 00124026 A CN00124026 A CN 00124026A CN 1280390 A CN1280390 A CN 1280390A
Authority
CN
China
Prior art keywords
film
capacitor
manufacture method
memery device
semiconductor memery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00124026A
Other languages
English (en)
Other versions
CN1181550C (zh
Inventor
李起正
金东俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of CN1280390A publication Critical patent/CN1280390A/zh
Application granted granted Critical
Publication of CN1181550C publication Critical patent/CN1181550C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3145Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/84Electrodes with an enlarged surface, e.g. formed by texturisation being a rough surface, e.g. using hemispherical grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions

Abstract

一种半导体存储器元件的电容器,配有漏泄电流发生少并具有高介电常数的电介质膜,可确保大容量。在配置MOS晶体管的半导体衬底上,形成使MOS晶体管接合区域的一部分露出的带有接触孔的层间绝缘膜。在层间绝缘膜上形成下部电极,以接触露出的接合区域。在下部电极上蒸镀非晶质TaxOyNz膜,用预定退火工艺使非晶质TaxOyNz膜结晶。在晶质TaxOyNz膜上形成上部电极。TaxOyNz膜的x、y和z的和为1,y为0.3至0.5,z为0.1至0.3。

Description

半导体存储器元件的电容器及其制造方法
本发明涉及半导体存储器元件的电容器及其制造方法,特别涉及不产生漏泄电流,可以增大电荷存储容量的半导体存储器元件的电容器及其制造方法。
近来,伴随着半导体制造技术的发展,存储器元件的需要不断急剧增加。因此,需要相对于窄面积有大电容量的存储器元件。这种电容器的静电容量(capacitance)通过扩大下部电极的表面积和采用具有高介电常数的绝缘体来增大。以往的电容器使用与NO(nitride-oxide)膜相比有高介电常数的钽氧化膜(Ta2O5)作为电介质,下部电极的结构分三次来形成。
图1是表示以往的半导体存储器元件的电容器的剖面图。如图所示,在预定部分形成场氧化膜11的半导体衬底10上利用众所周知的方式形成在下部包括栅绝缘膜12的栅电极13。接合区域14被形成在栅电极13两侧的半导体衬底10上,并形成MOS晶体管。第一层间绝缘膜16和第二层间绝缘膜18被形成在形成MOS晶体管的半导体衬底10上。在第一层间绝缘膜16和第二层间绝缘膜18内形成存储节点接触孔h,以便露出接合区域14。圆柱体形的下部电极20利用公知的方式形成于存储节点接触孔h内,以便与露出的接合区域14接触。为了进一步增大下部电极20的表面积,在下部电极20的表面上形成HSG(Hemi Spherical Grain)膜21。钽氧化膜23形成于HSG膜21表面上。此时,钽氧化膜23用下面的工艺来形成。首先,在钽氧化膜23形成前,在清洗HSG膜21表面后,按非原位(ex-situ)方式实施RTN(rapid thermal Nitridation)工序。利用RTN工序在HSG膜21表面上形成氮化硅膜22。接着,在约400至450℃的温度下按53至57埃的厚度形成第一钽氧化膜。然后,在低温下实施退火后,按与第一钽氧化膜相同的工艺和相同的厚度形成第二钽氧化膜。接着,在低温和高温下连续地实施退火工艺,形成单一的钽氧化膜23。在钽氧化膜23和第二层间绝缘膜18上蒸镀上部电极24,完成电容器。
但是,以钽氧化膜作为电介质的以往的电容器有以下问题。
首先,由于一般的钽氧化膜具有不稳定的化学当量比(stoichiometry),所以在Ta和O的构成比上产生差异。因此,在薄膜内产生置换型Ta原子即空位原子(vacancy atom)。由于该空位原子是氧空位(oxygen vacancy),所以成为漏泄电流的原因。空位原子的量可以根据构成钽氧化膜的结构要素的含量和结合程度来调节,但难以完全除去。
目前,为了稳定钽氧化膜的不稳定的化学当量比,为了除去钽氧化膜内的置换型Ta原子,将钽氧化膜进行氧化。但是,如果氧化用于防止漏泄电流的钽氧化膜,那么存在以下各种问题。就是说,钽氧化膜与多晶硅或TiN形成的上部电极及下部电极的氧化反应性大。因此,在氧化置换型Ta原子的氧化工艺时,由于钽氧化膜与上部电极或下部电极的反应,所以在界面上产生具有低介电常数的氧化膜,使氧移动到钽氧化膜和下部电极的界面上,降低界面的均匀性。
此外,由于作为前体(precusor)使用的Ta(OC2H5)5的有机物和O2(或N2O)气的反应,所以在钽氧化膜内产生碳原子(C)、碳化合物(CH4、C2H4)和H2O等杂质。由于该杂质使电容器的漏泄电流增大,使钽氧化膜的电介质特性下降,所以难以获得大容量的电容器。
而且,采用钽氧化膜作为电介质膜的方法,在钽氧化膜形成前实施清洗工艺后,必须实施其它的非原位(ex-situ)工艺,必须两阶段地蒸镀钽氧化膜,在形成钽氧化膜后,必须在低温和高温下实施两次热处理工艺。因此,工艺复杂。
因此,本发明的目的在于,通过配有漏泄电流发生少并具有高介电常数的电介质膜,提供可以确保大容量的半导体存储器元件的电容器。
此外,本发明的另一目的在于,提供可以简化制造工艺的半导体存储器元件的电容器的制造方法。
为了实现上述目的,本发明提供一种半导体存储器元件的电容器,包括:下部电极;在所述下部电极上形成的电介质膜;和在所述电介质膜上形成的上部电极;其特征在于,所述电介质膜是结晶TaxOyNz膜,所述TaxOyNz膜的x、y和z的总和为1,y为0.3至0.5,z为0.1至0.3。
此外,本发明提供一种半导体存储器元件的电容器的制造方法,包括以下步骤:在半导体衬底上形成下部电极的步骤;在所述下部电极上蒸镀作为电介质膜的非晶质TaxOyNz膜的步骤;使所述非晶质TaxOyNz膜结晶的步骤;和在所述晶质TaxOyNz膜上形成上部电极的步骤;其特征在于,所述TaxOyNz膜的x、y和z的总和为1,y为0.3至0.5,z为0.1至0.3。
而且,本发明提供一种半导体存储器元件的电容器的制造方法,包括以下步骤:在半导体衬底上形成下部电极的步骤;进行用于阻止所述下部电极表面产生自然氧化膜的表面处理的步骤;在所述下部电极上蒸镀作为电介质膜的非晶质TaxOyNz膜的步骤;结晶所述非晶质TaxOyNz膜的步骤;和在所述结晶TaxOyNz膜上形成上部电极的步骤;其特征在于,所述TaxOyNz膜的x、y和z的总和为1,y为0.3至0.5,z为0.1至0.3,通过维持0.1至100Torr的压力和300至600℃的温度,在LPCVD腔室内供给O2气、NH3气和由前体获得的Ta化学蒸汽,利用它们的表面化学反应来形成所述非晶质TaxOyNz膜。
其中,其特征在于,注入50至150sccm左右的所述O2气,注入30至70sccm左右的NH3气。
附图的简要说明如下:
图1是表示以往的半导体元件的电容器的剖面图;
图2A至图2C是说明本发明实施例的半导体元件的电容器的剖面图。
以下,根据附图详细说明本发明的优选实施例。
参照图2A,按众所周知的方式在具有预定导电性的半导体衬底30的预定部分上形成场氧化膜31。在半导体衬底30上的预定部分中形成底部包括栅绝缘膜32的栅电极33,在栅电极33的两侧壁上按公知的方式形成间隔34。在栅电极33两侧的半导体衬底30上形成接合区域35,并形成MOS晶体管。在形成MOS晶体管的半导体衬底30上形成第一层间绝缘膜36和第二层间绝缘膜38。然后,构图第二层间绝缘膜38和第一层间绝缘膜36,形成存储节点接触孔H,以露出接合区域35的一部分。为了与露出的接合区域35接触,形成圆柱形态或存储栈形态的下部电极40。为了增大下部电极40的表面积,按公知的方法在下部电极40的表面上形成HSG膜41。然后,在HSG膜41的表面上,即在包括HSG膜41的下部电极40与后来形成的电介质膜(未图示)之间的界面上,为了阻止低介电自然氧化膜的产生,使用HF蒸汽、HF溶液或包含HF的化合物进行下部电极40和第二层间绝缘膜38的清洗处理。这种清洗处理按在原位或非原位方式来进行。而且,在自然产生的低介电氧化膜的清洗之前或之后,为了进一步改善界面的均匀性,利用NH4OH溶液或H2SO4溶液等来界面处理HSG膜41的表面。
参照图2B,在表面处理过的下部电极40上,按50至150埃的厚度按原位或非原位方式形成作为电介质的非晶质TaxOyNz膜43。其中,非晶质TaxOyNz膜43中的x、y、z的总和为1,y为0.3至0.5,最好为0.4,而z为0.1至0.3,最好为0.2。在LPCVD腔室内通过由前体获得的Ta化学蒸汽、O2气体和NH3气体的反应来形成非晶质TaxOyNz膜43。其中,在蒸镀非晶质TaxOyNz膜43时,为了使膜内粒子的产生最小,一边抑制腔室内的气相反应(gas phase reacting),一边仅在晶片表面上进行化学反应。此时,最好使LPCVD腔室内的温度维持300至600℃,压力维持1至10Torr。此外,前体采用包含钽的有机金属物质,例如Ta(OC2H5)5(tantalum ethylate)、Ta(N(CH3)2)5(penta-dimethyl-amino-tantalum)物质。其中,由于Ta(OC2H5)5、Ta(N(CH3)2)5这样的前体众所周知为液体状态,所以应该在变换成蒸汽状态后供给LPCVD腔室内。就是说,溶液状态的前体在用MFC(Mass FlowController)那样的流量调节器定量后,用包括孔口(orifice)或喷嘴(nozzle)的蒸发器或蒸发管蒸发,变为Ta化学蒸汽。此时,注入蒸发器或蒸发管中的前体量在100至200mg/min左右是合适的。此外,为了防止Ta化学蒸汽的冷凝,蒸发器和作为Ta蒸汽流路的供给管的温度最好维持150至200℃。同时,注入50至150sccm左右的O2气体,以便满足y为0.3至0.5,注入30至70sccm左右的NH3气体,以便满足z为0.1至0.3。
然后,如图2C所示,通过热处理使非晶质TaxOyNz膜43结晶,以便具有更稳定的状态。此时,结晶工序按原位(inositu)或非原位(ex-situ)方式在维持N2O或O2气氛和600至950℃温度的腔室内进行30秒至10分钟的RTP。利用该结晶工序,非晶质TaxOyNz膜43变为晶质TaxOyNz膜43a,该膜43a内的杂质被放出,TaxOyNz膜43a的介电常数提高。此外,结晶工序也可以在N2O、O2或N2气体气氛下用电炉(furnace)维持600至950℃的温度来进行。而且,结晶工序在包括氮的气体例如NH3、N2、N2/H2气体气氛和600至950℃温度下进行RTP或电炉退火。此时,如果在氮气体气氛下进行退火,那么非晶质状态的TaxOyNz膜被结晶,在该膜内的杂质被全部放出,利用表面氮化处理,可抑制上部电极与TaxOyNz膜之间的反应。然后,在结晶的TaxOyNz膜43a上形成导电阻挡层44,用TiN膜形成导电阻挡层44。用掺杂多晶硅膜形成上部电极45,形成在导电阻挡层44上。
此外,在蒸镀非晶质TaxOyNz膜之前,下部电极的表面处理可以用等离子体NH3气退火或RTN工艺来代替。
如以上说明的那样,作为电介质,如果使用TaxOyNz膜(x+y+z=1,0.3≤y≤0.5,0.1≤x≤0.3),那么产生以下效果。
TaxOyNz膜具有25至30左右的高介电常数,同时具有Ta-O-N的稳定结合结构。因此,与NO膜相比,介电特性优秀,与钽氧化膜相比,具有稳定的化学当量比。因此,可以抵抗外部施加的电冲击,绝缘击穿电压(breakdown voltage)高,漏泄电流非常低。
而且,在TaxOyNz膜内,由于不象钽氧化膜那样存在置换型Ta原子,所以可省略其它氧化工序。并且,由于TaxOyNz膜的氧化反应性非常低,所以基本不发生与电容器的下部电极及上部电极的氧化反应。因此,有可能把等价电介质膜的厚度控制得薄于30埃。
而且,在TaxOyNz膜形成后,接着实施热处理工艺而除去TaxOyNz膜内的杂质,进行结晶。因此,增加TaxOyNz膜的介电常数,漏泄电流也被极大地减小。
在制造方法方面,本实施例的TaxOyNz膜按单层来形成,在膜蒸镀后,仅实施用于放出杂质的一次退火工艺。因此,比以往的钽氧化膜的制造方法更简单。

Claims (24)

1.一种半导体存储器元件的电容器,包括:
下部电极;
在所述下部电极上形成的电介质膜;和
在所述电介质膜上形成的上部电极,
其特征在于,所述电介质膜是晶质TaxOyNz膜,所述晶质TaxOyNz膜的x、y和z的总和为1,y为0.3至0.5,z为0.1至0.3。
2.如权利要求1所述的半导体存储器元件的电容器,其特征在于,所述TaxOyNz膜的厚度为50至150埃。
3.一种半导体存储器元件的电容器的制造方法,包括以下步骤:
在半导体衬底上形成下部电极的步骤;
在所述下部电极上蒸镀作为电介质膜的非晶质TaxOyNz膜的步骤;
使所述非晶质TaxOyNz膜结晶的步骤;和
在所述晶质TaxOyNz膜上形成上部电极的步骤;
其特征在于,所述TaxOyNz膜的x、y和z的总和为1,y为0.3至0.5,z为0.1至0.3。
4.如权利要求3所述的半导体存储器元件的电容器的制造方法,其特征在于,所述非晶质TaxOyNz膜的蒸镀步骤,是通过维持0.1至100Torr的压力和300至600℃的温度,在LPCVD腔室内供给由O2气、NH3气和前体获得的Ta化学蒸汽,利用它们的表面化学反应来形成所述非晶质TaxOyNz膜。
5.如权利要求4所述的半导体存储器元件的电容器的制造方法,其特征在于,注入50至150sccm左右的所述O2气,注入30至70sccm左右的NH3气。
6.如权利要求4所述的半导体存储器元件的电容器的制造方法,其特征在于,在使用流量调节器定量99.999%以上的前体之后,用蒸发器或蒸发管蒸发获得所述Ta化学蒸汽。
7.如权利要求6所述的半导体存储器元件的电容器的制造方法,其特征在于,在所述蒸发管中供给约50至500mg/min左右的所述前体。
8.如权利要求6所述的半导体存储器元件的电容器的制造方法,其特征在于,所述蒸发器或蒸发管维持150至200℃的温度。
9.如权利要求7所述的半导体存储器元件的电容器的制造方法,其特征在于,所述前体为Ta(OC2H5)5或Ta(N(CH3)2)5
10.如权利要求3所述的半导体存储器元件的电容器的制造方法,其特征在于,在所述下部电极的形成步骤和所述TaxOyNz的蒸镀步骤之间,在所述下部电极表面上还进行阻止产生自然氧化膜的表面处理。
11.如权利要求10所述的半导体存储器元件的电容器的制造方法,其特征在于,所述下部电极的表面处理是使用HF蒸汽(HF vapor)、HF溶液(solution)或包含HF的化合物来清洗。
12.如权利要求11所述的半导体存储器元件的电容器的制造方法,其特征在于,在所述清洗工艺之前或之后,还利用NH4OH溶液或H2SO4溶液等进行界面处理。
13.如权利要求3所述的半导体存储器元件的电容器的制造方法,其特征在于,所述TaxOyNz膜的结晶步骤是把蒸镀TaxOyNz膜后的结果物在600至950℃的温度和包含氮的气氛下进行退火。
14.如权利要求3所述的半导体存储器元件的电容器的制造方法,其特征在于,所述TaxOyNz膜的结晶步骤是把蒸镀TaxOyNz膜后的结果物在600至950℃的温度和包含氧的气氛下进行退火。
15.一种半导体存储器元件的电容器的制造方法,包括以下步骤:
在半导体衬底上形成下部电极的步骤;
进行用于阻止所述下部电极表面产生自然氧化膜的表面处理的步骤;
在所述下部电极上蒸镀作为电介质膜的非晶质TaxOyNz膜的步骤;
使所述非晶质TaxOyNz膜结晶的步骤;和
在所述晶质TaxOyNz膜上形成上部电极的步骤;
其特征在于,所述TaxOyNz膜的x、y和z的总和为1,y为0.3至0.5,z为0.1至0.3,通过维持0.1至100Torr的压力和300至600℃的温度,在LPCVD腔室内供给由O2气、NH3气和前体获得的Ta化学蒸汽,利用它们的表面化学反应来形成所述非晶质TaxOyNz膜。
16.如权利要求15所述的半导体存储器元件的电容器的制造方法,其特征在于,注入50至150sccm左右的所述O2气,注入30至70sccm左右的NH3气。
17.如权利要求16所述的半导体存储器元件的电容器的制造方法,其特征在于,在使用流量调节器定量99.999%以上的前体之后,用蒸发器或蒸发管蒸发获得所述Ta化学蒸汽。
18.如权利要求17所述的半导体存储器元件的电容器的制造方法,其特征在于,在所述蒸发管中供给约50至500mg/min左右的所述前体。
19.如权利要求18所述的半导体存储器元件的电容器的制造方法,其特征在于,所述蒸发器或蒸发管维持150至200℃的温度。
20.如权利要求18所述的半导体存储器元件的电容器的制造方法,其特征在于,所述前体为Ta(OC2H5)5或Ta(N(CH3)2)5
21.如权利要求15所述的半导体存储器元件的电容器的制造方法,其特征在于,所述下部电极的表面处理是使用HF蒸汽(HF vapor)、HF溶液(solution)或包含HF的化合物来清洗。
22.如权利要求21所述的半导体存储器元件的电容器的制造方法,其特征在于,在所述清洗工艺之前或之后,还利用NH4OH溶液或H2SO4溶液等进行界面处理。
23.如权利要求15所述的半导体存储器元件的电容器的制造方法,其特征在于,所述TaxOyNz膜的结晶步骤是把蒸镀TaxOyNz膜后的结果物在600至950℃的温度和包含氮的气氛下进行退火。
24.如权利要求15所述的半导体存储器元件的电容器的制造方法,其特征在于,所述TaxOyNz膜的结晶步骤是把蒸镀TaxOyNz膜后的结果物在600至950℃的温度和包含氧的气氛下进行退火。
CNB001240269A 1999-06-29 2000-06-29 半导体存储器元件的电容器的制造方法 Expired - Fee Related CN1181550C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019990025465A KR100328454B1 (ko) 1999-06-29 1999-06-29 반도체 소자의 캐패시터 제조 방법
KR25465/1999 1999-06-29

Publications (2)

Publication Number Publication Date
CN1280390A true CN1280390A (zh) 2001-01-17
CN1181550C CN1181550C (zh) 2004-12-22

Family

ID=19597221

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001240269A Expired - Fee Related CN1181550C (zh) 1999-06-29 2000-06-29 半导体存储器元件的电容器的制造方法

Country Status (7)

Country Link
US (2) US6576528B1 (zh)
JP (1) JP2001036046A (zh)
KR (1) KR100328454B1 (zh)
CN (1) CN1181550C (zh)
DE (1) DE10031577A1 (zh)
GB (1) GB2358282B (zh)
TW (1) TW473901B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376640A (zh) * 2010-08-19 2012-03-14 株式会社日立国际电气 半导体装置的制造方法、衬底处理方法及衬底处理装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331271B1 (ko) * 1999-07-01 2002-04-06 박종섭 TaON박막을 갖는 커패시터 제조방법
KR100328454B1 (ko) * 1999-06-29 2002-03-16 박종섭 반도체 소자의 캐패시터 제조 방법
KR100373159B1 (ko) * 1999-11-09 2003-02-25 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조방법
KR100363081B1 (ko) * 1999-09-16 2002-11-30 삼성전자 주식회사 박막 형성장치
KR100587047B1 (ko) * 2000-06-01 2006-06-07 주식회사 하이닉스반도체 반도체 메모리 소자의 캐패시터 제조방법
KR100422565B1 (ko) * 2001-06-12 2004-03-12 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조방법
KR100411302B1 (ko) * 2001-06-30 2003-12-18 주식회사 하이닉스반도체 반도체소자의 캐패시터 제조방법
KR100536807B1 (ko) * 2004-06-24 2005-12-14 동부아남반도체 주식회사 반도체 장치의 캐패시터 및 그의 제조 방법
KR100956161B1 (ko) * 2007-11-27 2010-05-06 주식회사 그린환경 황산을 공정수로 사용한 저속습식마쇄장치를 사용한 고품질순환골재 제조방법

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130694A (en) 1977-08-15 1978-12-19 Bell Telephone Laboratories, Incorporated Amorphous metal oxide material between electrodes of a cell
JPS62136035A (ja) 1985-12-10 1987-06-19 Fujitsu Ltd 半導体装置の製造方法
JPS6338248A (ja) 1986-08-04 1988-02-18 Hitachi Ltd 半導体装置およびその製造方法
JPH01173622A (ja) 1987-12-26 1989-07-10 Fujitsu Ltd 窒化膜の形成方法
JP2829023B2 (ja) 1989-02-28 1998-11-25 株式会社東芝 半導体集積回路用キャパシタ
JP2518406B2 (ja) * 1989-06-23 1996-07-24 日本電気株式会社 容量絶縁膜の形成方法
JPH0521744A (ja) * 1991-07-10 1993-01-29 Sony Corp 半導体記憶装置のキヤパシタおよびその製造方法
JPH05167008A (ja) 1991-12-12 1993-07-02 Oki Electric Ind Co Ltd 半導体素子の製造方法
JPH05335483A (ja) 1992-05-29 1993-12-17 Oki Electric Ind Co Ltd 半導体装置の製造方法
JPH06163819A (ja) 1992-11-18 1994-06-10 Oki Electric Ind Co Ltd 半導体装置のキャパシタ構造
JP2786071B2 (ja) * 1993-02-17 1998-08-13 日本電気株式会社 半導体装置の製造方法
JPH0714993A (ja) 1993-06-18 1995-01-17 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP3230901B2 (ja) * 1993-06-22 2001-11-19 株式会社東芝 半導体装置の製造方法及びその製造装置
JPH0745467A (ja) 1993-07-26 1995-02-14 Alps Electric Co Ltd 誘電体およびこの誘電体を有するキャパシタ
US5330931A (en) 1993-09-22 1994-07-19 Northern Telecom Limited Method of making a capacitor for an integrated circuit
US5508881A (en) 1994-02-01 1996-04-16 Quality Microcircuits Corporation Capacitors and interconnect lines for use with integrated circuits
KR950034588A (ko) * 1994-03-17 1995-12-28 오가 노리오 탄탈계 고유전체재료 및 고유전체막의 형성방법 및 반도체장치
JP3334323B2 (ja) * 1994-03-17 2002-10-15 ソニー株式会社 高誘電体膜の形成方法
JP3319138B2 (ja) * 1994-03-17 2002-08-26 ソニー株式会社 タンタルを含む高誘電体膜の形成方法
WO1996029725A1 (en) * 1995-03-21 1996-09-26 Northern Telecom Limited Ferroelectric dielectric for integrated circuit applications at microwave frequencies
US5753945A (en) 1995-06-29 1998-05-19 Northern Telecom Limited Integrated circuit structure comprising a zirconium titanium oxide barrier layer and method of forming a zirconium titanium oxide barrier layer
KR0155879B1 (ko) 1995-09-13 1998-12-01 김광호 오산화 이탄탈륨 유전막 커패시터 제조방법
US5631188A (en) 1995-12-27 1997-05-20 Taiwan Semiconductor Manufacturing Company Ltd. Low voltage coefficient polysilicon capacitor
KR100235938B1 (ko) * 1996-06-24 1999-12-15 김영환 반구형 실리콘 제조방법
US5872415A (en) 1996-08-16 1999-02-16 Kobe Steel Usa Inc. Microelectronic structures including semiconductor islands
US5776660A (en) 1996-09-16 1998-07-07 International Business Machines Corporation Fabrication method for high-capacitance storage node structures
US5980977A (en) 1996-12-09 1999-11-09 Pinnacle Research Institute, Inc. Method of producing high surface area metal oxynitrides as substrates in electrical energy storage
JPH10247723A (ja) * 1997-03-04 1998-09-14 Oki Electric Ind Co Ltd 半導体装置のキャパシタの製造方法
US5936831A (en) 1997-03-06 1999-08-10 Lucent Technologies Inc. Thin film tantalum oxide capacitors and resulting product
US5977582A (en) 1997-05-23 1999-11-02 Lucent Technologies Inc. Capacitor comprising improved TaOx -based dielectric
GB2326279B (en) * 1997-06-11 2002-07-31 Hyundai Electronics Ind Method of forming a capacitor of a semiconductor device
US5910880A (en) 1997-08-20 1999-06-08 Micron Technology, Inc. Semiconductor circuit components and capacitors
US5837576A (en) 1997-10-31 1998-11-17 Vanguard International Semiconductor Corporation Method for forming a capacitor using a silicon oxynitride etching stop layer
TW357430B (en) 1997-12-22 1999-05-01 United Microelectronics Corp Manufacturing method of capacitors
JPH11233723A (ja) 1998-02-13 1999-08-27 Sony Corp 電子素子およびその製造方法ならびに誘電体キャパシタおよびその製造方法ならびに光学素子およびその製造方法
KR100286011B1 (ko) * 1998-08-04 2001-04-16 황철주 반도체소자의캐퍼시터및그제조방법
KR100297628B1 (ko) * 1998-10-09 2001-08-07 황 철 주 반도체소자제조방법
KR100328454B1 (ko) * 1999-06-29 2002-03-16 박종섭 반도체 소자의 캐패시터 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376640A (zh) * 2010-08-19 2012-03-14 株式会社日立国际电气 半导体装置的制造方法、衬底处理方法及衬底处理装置
CN102376640B (zh) * 2010-08-19 2014-11-05 株式会社日立国际电气 半导体装置的制造方法、衬底处理方法及衬底处理装置

Also Published As

Publication number Publication date
CN1181550C (zh) 2004-12-22
KR20010004751A (ko) 2001-01-15
TW473901B (en) 2002-01-21
KR100328454B1 (ko) 2002-03-16
JP2001036046A (ja) 2001-02-09
US6746931B2 (en) 2004-06-08
GB2358282A (en) 2001-07-18
GB0015878D0 (en) 2000-08-23
US20030190783A1 (en) 2003-10-09
GB2358282B (en) 2004-04-07
DE10031577A1 (de) 2002-01-10
US6576528B1 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
KR100272390B1 (ko) 고유전율 박막 구조 및 고유전율 박막 형성 방법
JP2012041633A (ja) Zr−Ge−Ti−OまたはHf−Ge−Ti−Oの誘電材料を備えた物質とその製造方法
CN100383971C (zh) 半导体存储元件的电容器及其制造方法
CN1181550C (zh) 半导体存储器元件的电容器的制造方法
US6787414B2 (en) Capacitor for semiconductor memory device and method of manufacturing the same
KR100417855B1 (ko) 반도체소자의 캐패시터 및 그 제조방법
US6740553B1 (en) Capacitor for semiconductor memory device and method of manufacturing the same
CN1172360C (zh) 采用Ta2O5薄膜作为电介质膜的Ta2O5电容器的制造方法
CN1199279C (zh) 半导体存储元件的电容器及其制造方法
JP2001203339A (ja) 半導体素子のキャパシタ製造方法
US6640403B2 (en) Method for forming a dielectric-constant-enchanced capacitor
CN1172362C (zh) 半导体器件的电容器制造方法
CN1168144C (zh) 半导体存储元件的电容器及其制造方法
CN1161836C (zh) 半导体存储元件的电容器的形成方法
KR100395507B1 (ko) 반도체 소자 및 그 제조방법
US6716717B2 (en) Method for fabricating capacitor of semiconductor device
KR20020002722A (ko) 반도체 소자의 커패시터 제조 방법
US6653197B2 (en) Method for fabricating capacitor of semiconductor device
Cho et al. Low temperature MOCVD of BST thin film for high density DRAMs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041222

Termination date: 20130629