CN1284743A - 制造半导体器件中的晶体管的方法 - Google Patents

制造半导体器件中的晶体管的方法 Download PDF

Info

Publication number
CN1284743A
CN1284743A CN00109713A CN00109713A CN1284743A CN 1284743 A CN1284743 A CN 1284743A CN 00109713 A CN00109713 A CN 00109713A CN 00109713 A CN00109713 A CN 00109713A CN 1284743 A CN1284743 A CN 1284743A
Authority
CN
China
Prior art keywords
doped region
concentration level
dopant concentration
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00109713A
Other languages
English (en)
Other versions
CN1146972C (zh
Inventor
李政昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of CN1284743A publication Critical patent/CN1284743A/zh
Application granted granted Critical
Publication of CN1146972C publication Critical patent/CN1146972C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means

Abstract

一种在衬底中制造具有抬高的漏的晶体管的方法以下步骤:在衬底上形成栅结构;邻近所说栅结构一端提供第一掺杂区,第一掺杂区具有第一掺杂剂浓度水平;在第一掺杂区上形成第二掺杂区,第二掺杂区具有第二掺杂剂浓度水平:在第二掺杂区上形成第三掺杂区,第三掺杂区具有不同于第二掺杂剂浓度水平的第三掺杂剂浓度水平,其中抬高的漏区包括第三掺杂区,第二掺杂剂浓度水平低于第三浓度水平。

Description

制造半导体器件中的晶体管的方法
本发明涉及一种制造半导体衬底的方法,特别涉及制造具有抬高的源和漏区的晶体管。
集成电路制造技术一直力求增大电路密度,并因此减小场效应晶体管的尺寸和沟道长度。技术上的改进引起了场效应晶体管尺寸的减小,器件从长沟道器件(即,一般大于2微米的沟道长度)变为短沟道器件(即,一般小于2微米的沟道长度)。
由于场效应晶体管沟道长度(即,栅宽)变得小于约3微米,所谓的短沟道效应开始变得越来越严重。结果,考虑到这些效应,不得不改进器件设计和相应的工艺技术,以便不断得到优化的器件性能。例如,随着器件尺寸减小,且电源电压保持不变,衬底内产生的横向电场增大。如果该电场变得足够大,则会导致所谓的热载流子效应。如果它们的沟道长度小于2微米,则热载流子效应会引起具有常规源结构的n型晶体管器件不能接受的性能退化。
克服该问题的优选方法是,在源和漏区之前,相对沟道区,在衬底内提供轻掺杂漏(“LDD”)区。所提供的LDD区的掺杂比源和漏区轻。与没有LDD的n型晶体管中发生的沟道上的绝对压降相反,这有助于由沟道区中的该漏分担压降。该LDD区将一些压降电位吸收到该漏中,所以减轻了热载流子效应。于是可以增大器件的稳定性。
然而,由于栅宽进一步减小(即更短的沟道长度),致使常规晶体管的LDD区的作用较小。例如,较短的沟道长度要求LDD的长度减小,以确保两扩散区之间的足够半导体材料,用以防止栅电压载止时的传导。解决这些问题的一个途径是通过抬高源和漏区,将源和漏区的主要部分设置为从衬底起向外。例如,可以在外延反应器内,由暴露的单晶源和漏衬底区选择性生长薄单晶硅外延层(例如200nm),并使该层具有足够高的导电性,掺杂成有效地提供源和漏区。轻掺杂LDD区可以设于衬底内直接位于抬高的源和漏下面。于是,不管栅宽是否较小,都可以有效地提供足够的沟道长度。所得晶体管具有充分减轻的短沟道效应。
图1A至1D是介绍制造具有抬高的漏和源区的晶体管的常规方法的剖面图。参见图1A,在硅衬底10上形成场氧化隔离结构11,以限定有源和无源区。在有源区内,在硅衬底10的一部分上形成具有栅氧化膜12、栅极13和掩蔽绝缘膜14的栅结构。通过离子注入步骤,在硅衬底10内形成轻掺杂区15。形成具有氧化膜16a和氮氧化膜16b的双栅间隔层16(图1B)。利用不掺杂的化学汽相淀积工艺,在硅衬底10的暴露部分上选择性生长外延硅层17(图1C)。该外延硅层17以比别处的生长速率低的速率在邻近双栅间隔层16的位置上生长,而不在别处。结果,在外延硅层17与双栅间隔层16相遇的结合部形成很大的刻面18。在刻面18形成时,在双栅间隔层16的下面形成了自对准外延硅毛刺(SESS)19。进行离子注入步骤,重掺杂硅层17(图1D)。然后,进行退火步骤,以激活注入到硅层17的离子,从而完全形成源和漏区。
参见图2,这样制造的常规晶体管会在栅间隔层16下具有与沟道相邻的一部分轻掺杂区15,而且该区延伸到衬底中比希望的深度更深。这是由于进行离子注入步骤以掺杂外延硅层17时,与其它区中的离子相比,通过刻面18注入到硅层17中的离子一般会被更深地推进到硅层17中。因此,大的刻面18会造成晶体管的短沟道特性和热载流子抑制能力的退化。此外,退火工艺期间,大量杂质离子会扩散到自对准外延硅毛刺19中,导致丧失在重掺杂硅层17和沟道间界面处具有轻掺杂区15的某些有益作用。
解决上述问题的一种方法是平面化硅层17,以去掉刻面18,重新构造结结构,从而减轻热载流子效应。然而,在器件缩小到0.13微米以下时,这种方法难以实施。
在一个实施例中,一种在衬底中制造具有抬高的漏的晶体管的方法包括在衬底上形成栅结构。提供邻近所说栅结构一端的第一掺杂区,第一掺杂区具有第一掺杂剂浓度水平。在第一掺杂区上形成第二掺杂区,第二掺杂区具有第二掺杂剂浓度水平。在第二掺杂区上形成第三掺杂区,第三掺杂区具有不同于第二掺杂剂浓度水平的第三掺杂剂浓度水平。
图1A至1D是说明制造晶体管的常规方法的剖面图;
图2是图1D所示部分“A”的放大示图;
图3A至3D是说明根据本发明一个实施例的制造晶体管的方法的剖面图;
图4示出了比较常规晶体管与根据本发明一个实施例制造的晶体管的电聚集现象的曲线图。
图3A至3D示出了制造根据本发明一个实施例的具有抬高的源和漏区的晶体管的方法。参见图3A,在硅衬底20上形成场氧化隔离结构21,以限定有源区和无源区。形成于有源区上的栅结构包括设置于硅衬底上栅氧化膜22、叠置栅氧化膜上的栅极23、及叠置于栅极上的掩蔽绝缘膜24。
然后,邻近栅结构的端部,在衬底20中形成中度掺杂区25。为此,在一个实施例中,在低能量下进行离子注入步骤。例如,为制造NMOS晶体管,以约5Kev至约10keV的低能量,向衬底的要求区中注入砷离子。离子注入一直进行到目标区达到约1014/cm3至约7×1012/cm3的杂质浓度,以形成中度掺杂的区25。区25的结深约为600埃。在不同的实施方式中,可以用不同的方法。例如,如果在用除砷离子外的离子进行离子注入时,需要用不同的能量水平、不同的杂质浓度、不同的结深或它们的组合。
参见图3B,形成了中度掺杂区25后,在衬底上依次淀积氧化膜26a和氮化膜26b,每个膜的厚度为约100到约300埃。一般说,希望氧化膜26a形成为100到200埃厚,而氮化膜26b形成为200到300埃厚。此后,选择地去掉氧化和氮化膜,形成双栅间隔层26。一般用毯式干法腐蚀选择性去除这些膜,并形成栅间隔层26。
参见图3C,形成轻掺杂硅层27首先包括去掉衬底上的自然氧化膜(未示出)。根据一个实施例,利用非现场清洗法去掉自然氧化,该方法包括从处理室中取出衬底,并将衬底浸入例如HF等清洗液,并进行RCA或UV臭氧清洗。然后,再将衬底放入处理室。在氢气氛中烘烤衬底,即,在约800到900℃的温度下,进行1-5分钟的氢烘焙,从而防止在衬底上生长氧化物。控制非现场清洗方法和氢烘焙,用以去掉氮化膜26b下的氧化膜26a的选定部分,从而在氮化膜下形成底切。该底切从栅氧化膜22的一端起停止在约100埃处。
氢烘焙后,在中度掺杂区25上形成轻掺杂硅层或轻掺杂外延硅层27。在一个实施例中,通过利用低压汽相淀积法(“LPCVD”),在硅衬底20的暴露部分上选择性生长外延层,形成轻掺杂硅层27。LPCVD工艺的工艺方法包括使约30sccm到约300sccm的二氯硅烷(DCS:SiH2Cl2)、约30sccm到约200sccm的HCl和约100sccm到约300sccm磷化氢流入处理室用于掺杂。处理室保持在约10乇到约50乇的压力下,约750到950℃的温度下。淀积工艺进行约10分钟,从而提供厚约500到约2000埃的轻掺杂外延硅层27。
如图3C所示,邻接双栅间隔层26生长的外延硅层27低于其它区。结果,邻接双栅间隔层26,在外延硅层27的表面处形成刻面28。然而,由于本实施例下,在LPCVD方法期间,轻掺杂外延硅层即自对准外延硅毛刺29(“SESS”)生长于底切内,所以,刻面28比常规方法下形成的刻面18小许多。首先,由于与常规SESS的约1/4的氧化物/氮化物厚度比相比,氧化物/氮化物厚度之比增大到高达约2/3,第二,由于轻掺杂选择性外延生长可以使所说刻面的生长速率较低,所以,该轻掺杂SESS29有助于减小刻面28的尺寸。一般说,根据本发明一个实施例的刻面28的尺寸小于100埃。
参见图3D,进行离子注入步骤,在外延硅层27上形成重掺杂区27a。在一个实施例中,为制造NMOS晶体管,离子注入步骤包括以约5keV到约10keV的低能量,向外延硅层注入砷离子,深度约300埃。能量水平选择为使离子不会在外延硅层中推进得太远,以便该外延硅层的下部保持轻掺杂。该离子注入一直进行到目标区达到约1015/cm3到约5×1015/cm3的杂质浓度水平。达到希望的杂质浓度水平后,进行预定时间的退火工艺,激活注入到外延硅层中的离子,形成厚度约为外延硅层1/2的重掺杂区27a。1/2以下的厚度保持轻掺杂。
在一个实施例中,可以不用离子注入步骤形成重掺杂区27a和轻掺杂区27b。例如,可以通过进行第一CVD法生长轻掺杂区27b,然后,变为第二CVD法生长重掺杂区27a,形成这些区。
再参见上述实施例,控制退火工艺,使外延硅层27的上部变为重掺杂,而下部保持轻掺杂。在一个实施例中,在反应炉中进行退火工艺时,在约800到约950℃的温度下,在氮气氛中,进行约10到30分钟退火。在另一实施例中,在快速热退火炉中进行该退火工艺,在约900到约1050℃的温度下,在含N2的气氛中进行退火约1到30秒,其中温度以约每秒30到200℃的增幅升高。
由上述工艺,可以形成具有带结257的抬高源和漏区的晶体管。结257包括依次叠置的中度掺杂区25、轻掺杂区27b和重掺杂区27a。
图4比较了常规晶体管和根据本发明上述方法形成的晶体管(“新晶体管”)的电聚集现象。x轴示出了从栅的中心起的距离,y轴示出了电场强度。如图所示,在常规晶体管和新晶体管中,在栅和漏结附近都观察到了电场中的尖峰。然而,新晶体管一般具有幅度低于常规晶体管的尖峰。结果,新晶体管更有效地抑制了热载流子,减小了短沟道阈值电压滑离。相信这些效果是由于形成轻掺杂的自对准外延硅毛刺29,并使形成的刻面最小的缘故。
尽管充分介绍了特定实施例,但可以使用各种改进、替代结构和等效结构等。因此,上述介绍和附图不应限制由所附权利要求书限定的本发明的范围。

Claims (17)

1.一种在衬底中制造具有抬高的漏的晶体管的方法,该方法包括:
在衬底上形成栅结构;
邻近所说栅结构一端提供第一掺杂区,第一掺杂区具有第一掺杂剂浓度水平;
在第一掺杂区上形成第二掺杂区,第二掺杂区具有第二掺杂剂浓度水平;及
在第二掺杂区上形成第三掺杂区,第三掺杂区具有不同于第二掺杂剂浓度水平的第三掺杂剂浓度水平,其中抬高的漏包括第三掺杂区,第二掺杂剂浓度水平低于第三浓度水平。
2.根据权利要求1的方法,其中第一掺杂剂浓度水平高于第二掺杂剂浓度水平,但低于第三掺杂剂浓度水平。
3.根据权利要求1的方法,其中第一掺杂区形成于衬底内,是利用低能量,通过向第一掺杂区注入离子形成的,第一掺杂剂浓度水平为1E14-5E14,第一掺杂区具有约500埃的结深。
4.根据权利要求1的方法,形成第二和第三掺杂区包括:
在第一掺杂区上生长外延硅层,该外延硅层具有上部和下部,上部和下部都具有第二掺杂剂浓度水平;
在外延硅层上部内,向外延硅层注入离子到特定深度;及
将衬底退火,以激活注入的离子,将外延硅层的上部变为具有第三浓度水平的第三掺杂区。
5.根据权利要求4的方法,还包括:形成具有第一绝缘层和不同于第一绝缘层的第二绝缘层的栅间隔层;
去掉部分第一层,形成底切;及
在底切内形成具有第二掺杂剂浓度水平的自对准外延硅毛刺。
6.根据权利要求5的方法,其中控制退火,使自对准外延硅毛刺没有第三掺杂剂浓度水平。
7.根据权利要求5的方法,其中生长外延硅层期间邻接栅间隔层形成的刻面的尺寸小于100埃。
8.根据权利要求7的方法,其中第一绝缘膜是氧化膜,第二绝缘膜是氮化膜,第一绝缘膜厚约100埃至约200埃,第二绝缘膜厚约200埃至约300埃。
9.根据权利要求5的方法,其中底切从栅结构算起横向约为100埃。
10.根据权利要求4的方法,其中外延硅层厚约500埃至约2000埃。
11.根据权利要求4的方法,生长外延硅层的步骤包括:
使约30sccm至约300sccm的DCS、约30sccm至约200sccm的HC1和约100sccm至约300sccm的磷化氢流入处理室;
淀积压力保持在约10乇至约50乇;
淀积温度保持在约750至950℃。
12.根据权利要求4的方法,其中退火工艺包括:
将衬底装入反应炉;
在炉内提供氮气氛;
炉内温度保持在约800至约959℃;及
在炉内处理衬底约10分钟至约30分钟。
13.根据权利要求4的方法,其中退火工艺包括:
将衬底装入快速热退火炉;
在炉内提供氮气氛;
炉内温度保持在约900℃至约1050℃;及
在炉内处理衬底约1秒至约30秒,其中温度以每秒约30℃至约200℃的增幅升高。
14.根据权利要求1的方法,其中第三掺杂剂浓度水平的离子浓度为1E15/CM至5E15/CM,第三掺杂区厚约为外延层的1/2。
15.一种在衬底中制造具有抬高的源和漏的晶体管的方法,该方法包括:
在衬底上形成栅结构,以限定栅结构下的沟道;
在所说衬底内,邻近所说沟道形成第一掺杂区,第一掺杂区具有第一掺杂剂浓度水平;
在第一掺杂区上生长具有上部和下部的外延硅层,所说外延硅层具有第二掺杂剂浓度水平;
向外延硅层的上部注入掺杂剂,将该上部的掺杂剂浓度水平提高到高于下部的掺杂剂浓度水平的水平。
16.根据权利要求15的方法,还包括:
将衬底退火,以激活注入到所说上部的离子,同时不会将注入的离子明显扩散到下部中,以便所说上部具有高于所说下部的第二掺杂剂浓度水平的第三掺杂剂浓度水平。
17.根据权利要求16的方法,还包括:
邻接栅结构提供栅间隔层;及
在栅间隔层下形成具有第二掺杂剂浓度水平的自对准外延硅毛刺。
CNB00109713XA 1999-06-29 2000-06-29 在衬底中制造具有抬高的漏的晶体管的方法 Expired - Fee Related CN1146972C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR25429/1999 1999-06-29
KR1019990025429A KR100332106B1 (ko) 1999-06-29 1999-06-29 반도체 소자의 트랜지스터 제조 방법

Publications (2)

Publication Number Publication Date
CN1284743A true CN1284743A (zh) 2001-02-21
CN1146972C CN1146972C (zh) 2004-04-21

Family

ID=19597158

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00109713XA Expired - Fee Related CN1146972C (zh) 1999-06-29 2000-06-29 在衬底中制造具有抬高的漏的晶体管的方法

Country Status (7)

Country Link
US (1) US6368927B1 (zh)
JP (1) JP2001068671A (zh)
KR (1) KR100332106B1 (zh)
CN (1) CN1146972C (zh)
DE (1) DE10031624B4 (zh)
GB (1) GB2355583B (zh)
TW (1) TW457595B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314092C (zh) * 2003-01-02 2007-05-02 联华电子股份有限公司 制作半导体元件的方法
CN102956502A (zh) * 2011-08-18 2013-03-06 南亚科技股份有限公司 制造一种凹入式沟道存取晶体管器件的方法
CN110867412A (zh) * 2019-11-19 2020-03-06 上海华力微电子有限公司 Mos器件的制造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703688B1 (en) * 2001-03-02 2004-03-09 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6830976B2 (en) 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US7176109B2 (en) 2001-03-23 2007-02-13 Micron Technology, Inc. Method for forming raised structures by controlled selective epitaxial growth of facet using spacer
US6566198B2 (en) * 2001-03-29 2003-05-20 International Business Machines Corporation CMOS structure with non-epitaxial raised source/drain and self-aligned gate and method of manufacture
US6660635B1 (en) * 2002-03-20 2003-12-09 Taiwan Semiconductor Manufacturing Company Pre-LDD wet clean recipe to gain channel length scaling margin beyond sub-0.1 μm
KR100479971B1 (ko) * 2002-05-02 2005-03-30 동부아남반도체 주식회사 게이트를 통한 임플란트 프로세스
US6946371B2 (en) * 2002-06-10 2005-09-20 Amberwave Systems Corporation Methods of fabricating semiconductor structures having epitaxially grown source and drain elements
US6982474B2 (en) * 2002-06-25 2006-01-03 Amberwave Systems Corporation Reacted conductive gate electrodes
KR100575617B1 (ko) * 2002-07-11 2006-05-03 매그나칩 반도체 유한회사 반도체소자의 드레인 형성방법
US7473947B2 (en) * 2002-07-12 2009-01-06 Intel Corporation Process for ultra-thin body SOI devices that incorporate EPI silicon tips and article made thereby
US6911367B2 (en) * 2003-04-18 2005-06-28 Micron Technology, Inc. Methods of forming semiconductive materials having flattened surfaces; methods of forming isolation regions; and methods of forming elevated source/drain regions
KR101035643B1 (ko) * 2003-11-10 2011-05-19 매그나칩 반도체 유한회사 반도체 소자의 제조 방법
US7335959B2 (en) * 2005-01-06 2008-02-26 Intel Corporation Device with stepped source/drain region profile
US7579617B2 (en) * 2005-06-22 2009-08-25 Fujitsu Microelectronics Limited Semiconductor device and production method thereof
JP4984665B2 (ja) * 2005-06-22 2012-07-25 富士通セミコンダクター株式会社 半導体装置およびその製造方法
US7541239B2 (en) * 2006-06-30 2009-06-02 Intel Corporation Selective spacer formation on transistors of different classes on the same device
KR100781549B1 (ko) 2006-11-03 2007-12-03 삼성전자주식회사 반도체 집적 회로 장치의 제조 방법 및 그에 의해 제조된반도체 집적 회로 장치
KR100898225B1 (ko) 2007-09-07 2009-05-18 주식회사 동부하이텍 반도체 소자 및 이의 제조방법
KR100915165B1 (ko) * 2007-12-27 2009-09-03 주식회사 하이닉스반도체 반도체 소자의 제조방법
US8778767B2 (en) 2010-11-18 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and fabrication methods thereof
US8900958B2 (en) 2012-12-19 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation mechanisms of source and drain regions
US8853039B2 (en) 2013-01-17 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction for formation of epitaxial layer in source and drain regions
US9293534B2 (en) 2014-03-21 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of FinFET devices
US20160056261A1 (en) * 2014-08-22 2016-02-25 Globalfoundries Inc. Embedded sigma-shaped semiconductor alloys formed in transistors
CN105448916B (zh) * 2014-08-29 2018-10-16 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
CN105826201A (zh) * 2015-01-09 2016-08-03 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法
US10079261B1 (en) * 2017-08-17 2018-09-18 Omnivision Technologies, Inc. Raised electrode to reduce dark current

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158880A (en) 1978-06-06 1979-12-15 Matsushita Electric Ind Co Ltd Compound semiconductor device and its manufacture
US5032538A (en) 1979-08-10 1991-07-16 Massachusetts Institute Of Technology Semiconductor embedded layer technology utilizing selective epitaxial growth methods
US4404732A (en) * 1981-12-07 1983-09-20 Ibm Corporation Self-aligned extended epitaxy mesfet fabrication process
DE3688516T2 (de) * 1985-03-25 1993-10-07 Nec Corp Herstellungsverfahren für einem bipolaren Transistor mit Heteroübergang.
US4738937A (en) 1985-10-22 1988-04-19 Hughes Aircraft Company Method of making ohmic contact structure
JPS62291176A (ja) * 1986-06-11 1987-12-17 Hitachi Ltd 半導体装置の製造方法
KR880010481A (ko) 1987-02-21 1988-10-10 강진구 액상 박막 결정 성장방법 및 장치
US5322814A (en) 1987-08-05 1994-06-21 Hughes Aircraft Company Multiple-quantum-well semiconductor structures with selective electrical contacts and method of fabrication
US5594280A (en) 1987-10-08 1997-01-14 Anelva Corporation Method of forming a thin film and apparatus of forming a metal thin film utilizing temperature controlling means
JPH01105529A (ja) 1987-10-19 1989-04-24 Toshiba Corp 半導体装置の製造方法
JPH0237745A (ja) 1988-07-28 1990-02-07 Oki Electric Ind Co Ltd 半導体装置の製造方法
US5030583A (en) 1988-12-02 1991-07-09 Advanced Technolgy Materials, Inc. Method of making single crystal semiconductor substrate articles and semiconductor device
JPH02260667A (ja) 1989-03-31 1990-10-23 Mitsubishi Electric Corp シリコン基板上化合物半導体太陽電池およびその作製方法
US5378652A (en) 1989-04-19 1995-01-03 Kabushiki Kaisha Toshiba Method of making a through hole in multi-layer insulating films
KR920008886B1 (ko) 1989-05-10 1992-10-10 삼성전자 주식회사 디램셀 및 그 제조방법
JPH03280551A (ja) * 1990-03-29 1991-12-11 Sony Corp 薄膜トランジスタの製造方法
US5168072A (en) * 1990-10-12 1992-12-01 Texas Instruments Incorporated Method of fabricating an high-performance insulated-gate field-effect transistor
JP2656397B2 (ja) 1991-04-09 1997-09-24 三菱電機株式会社 可視光レーザダイオードの製造方法
US5212112A (en) * 1991-05-23 1993-05-18 At&T Bell Laboratories Selective epitaxy of silicon in silicon dioxide apertures with suppression of unwanted formation of facets
JP3229012B2 (ja) 1992-05-21 2001-11-12 株式会社東芝 半導体装置の製造方法
US5633201A (en) 1992-11-30 1997-05-27 Hyundai Electronics Industries, Co., Ltd. Method for forming tungsten plugs in contact holes of a semiconductor device
US5322802A (en) 1993-01-25 1994-06-21 North Carolina State University At Raleigh Method of fabricating silicon carbide field effect transistor
EP0671770B1 (en) 1993-02-09 2000-08-02 GENERAL SEMICONDUCTOR, Inc. Multilayer epitaxy for a silicon diode
KR100320364B1 (ko) 1993-03-23 2002-04-22 가와사키 마이크로 엘렉트로닉스 가부시키가이샤 금속배선및그의형성방법
JPH06296060A (ja) 1993-04-08 1994-10-21 Mitsubishi Electric Corp 半導体可視光レーザダイオードの製造方法
JPH07131007A (ja) * 1993-11-02 1995-05-19 Tadahiro Omi 半導体装置
US5494837A (en) 1994-09-27 1996-02-27 Purdue Research Foundation Method of forming semiconductor-on-insulator electronic devices by growing monocrystalline semiconducting regions from trench sidewalls
JP2964925B2 (ja) * 1994-10-12 1999-10-18 日本電気株式会社 相補型mis型fetの製造方法
JP2586345B2 (ja) 1994-10-14 1997-02-26 日本電気株式会社 コバルトシリサイド膜より成る半導体装置及び該装置の製造方法
DE69534688D1 (de) * 1994-10-31 2006-01-19 St Microelectronics Inc Verfahren zur Bildung von erhöhten Source- und Drainzonen in integrierten Schaltungen
US5683924A (en) * 1994-10-31 1997-11-04 Sgs-Thomson Microelectronics, Inc. Method of forming raised source/drain regions in a integrated circuit
EP0785573B1 (en) * 1994-10-31 2005-12-14 STMicroelectronics, Inc. Method of forming raised source/drain regions in an integrated circuit
US5710450A (en) * 1994-12-23 1998-01-20 Intel Corporation Transistor with ultra shallow tip and method of fabrication
US5677219A (en) 1994-12-29 1997-10-14 Siemens Aktiengesellschaft Process for fabricating a DRAM trench capacitor
WO1996030946A1 (fr) * 1995-03-29 1996-10-03 Hitachi, Ltd. Dispositif semi-conducteur et son procede de fabrication
JPH08330582A (ja) * 1995-06-02 1996-12-13 Oki Electric Ind Co Ltd Mosfetおよびその製造方法
US5504031A (en) * 1995-07-03 1996-04-02 Taiwan Semiconductor Manufacturing Company Ltd. Elevated source/drain with solid phase diffused source/drain extension for deep sub-micron mosfets
JPH0945907A (ja) 1995-07-28 1997-02-14 Nec Corp 半導体装置の製造方法
US5637518A (en) * 1995-10-16 1997-06-10 Micron Technology, Inc. Method of making a field effect transistor having an elevated source and an elevated drain
US5753555A (en) * 1995-11-22 1998-05-19 Nec Corporation Method for forming semiconductor device
JP2848299B2 (ja) * 1995-12-21 1999-01-20 日本電気株式会社 半導体装置及びその製造方法
EP0813234A3 (en) * 1996-06-12 1999-05-26 Texas Instruments Incorporated Method of manufacturing a MOSFET
JP2894283B2 (ja) * 1996-06-27 1999-05-24 日本電気株式会社 半導体装置の製造方法
US5677214A (en) * 1996-09-05 1997-10-14 Sharp Microelectronics Technology, Inc. Raised source/drain MOS transistor with covered epitaxial notches and fabrication method
JP2964960B2 (ja) 1996-09-27 1999-10-18 日本電気株式会社 半導体装置およびその製造方法
US5804470A (en) 1996-10-23 1998-09-08 Advanced Micro Devices, Inc. Method of making a selective epitaxial growth circuit load element
US5773350A (en) 1997-01-28 1998-06-30 National Semiconductor Corporation Method for forming a self-aligned bipolar junction transistor with silicide extrinsic base contacts and selective epitaxial grown intrinsic base
DE19718167C1 (de) * 1997-04-29 1998-06-18 Siemens Ag MOS-Transistor und Verfahren zu dessen Herstellung
JPH10335660A (ja) * 1997-06-05 1998-12-18 Nec Corp 半導体装置およびその製造方法
US6723621B1 (en) * 1997-06-30 2004-04-20 International Business Machines Corporation Abrupt delta-like doping in Si and SiGe films by UHV-CVD
JPH1197519A (ja) 1997-09-17 1999-04-09 Sony Corp 半導体装置の製造方法
US6083836A (en) * 1997-12-23 2000-07-04 Texas Instruments Incorporated Transistors with substitutionally formed gate structures and method
US5902125A (en) * 1997-12-29 1999-05-11 Texas Instruments--Acer Incorporated Method to form stacked-Si gate pMOSFETs with elevated and extended S/D junction
US6156613A (en) * 1998-03-02 2000-12-05 Texas Instruments - Acer Incorporated Method to form MOSFET with an elevated source/drain
US5970352A (en) * 1998-04-23 1999-10-19 Kabushiki Kaisha Toshiba Field effect transistor having elevated source and drain regions and methods for manufacturing the same
US6200867B1 (en) * 1998-11-17 2001-03-13 Winbond Electronics Corporation Method for forming raised source and drain
US6218711B1 (en) * 1999-02-19 2001-04-17 Advanced Micro Devices, Inc. Raised source/drain process by selective sige epitaxy
US6190977B1 (en) * 1999-04-30 2001-02-20 Texas Instruments - Acer Incorporated Method for forming MOSFET with an elevated source/drain
US6167642B1 (en) * 1999-06-23 2001-01-02 Mark A. Nardini Tractor bucket extension device and method
US6171910B1 (en) * 1999-07-21 2001-01-09 Motorola Inc. Method for forming a semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314092C (zh) * 2003-01-02 2007-05-02 联华电子股份有限公司 制作半导体元件的方法
CN102956502A (zh) * 2011-08-18 2013-03-06 南亚科技股份有限公司 制造一种凹入式沟道存取晶体管器件的方法
CN102956502B (zh) * 2011-08-18 2015-04-29 南亚科技股份有限公司 制造一种凹入式沟道存取晶体管器件的方法
CN110867412A (zh) * 2019-11-19 2020-03-06 上海华力微电子有限公司 Mos器件的制造方法

Also Published As

Publication number Publication date
JP2001068671A (ja) 2001-03-16
KR100332106B1 (ko) 2002-04-10
CN1146972C (zh) 2004-04-21
TW457595B (en) 2001-10-01
KR20010004715A (ko) 2001-01-15
GB2355583A (en) 2001-04-25
GB0015780D0 (en) 2000-08-16
GB2355583B (en) 2004-04-14
US6368927B1 (en) 2002-04-09
DE10031624B4 (de) 2009-01-29
DE10031624A1 (de) 2001-03-08

Similar Documents

Publication Publication Date Title
CN1146972C (zh) 在衬底中制造具有抬高的漏的晶体管的方法
EP0274278B1 (en) MOS field effect transistor and method of manufacturing the same
US5646073A (en) Process for selective deposition of polysilicon over single crystal silicon substrate and resulting product
CN100477264C (zh) 晶体管及其制造方法
US20210028289A1 (en) Trench split-gate device and method for manufacturing the same
US6376318B1 (en) Method of manufacturing a semiconductor device
US20060289902A1 (en) Method for forming raised structures by controlled selective epitaxial growth of facet using spacer
KR100347544B1 (ko) 반도체 소자의 접합 제조 방법
US6812073B2 (en) Source drain and extension dopant concentration
CN101017846A (zh) 半导体器件及其制造方法
WO1985002494A1 (en) Silicon gigabits per second metal-oxide-semiconductor device processing
KR20000066007A (ko) 반도체 소자의 제조방법
KR100332107B1 (ko) 반도체 소자의 트랜지스터 제조 방법
US6753232B2 (en) Method for fabricating semiconductor device
KR100280809B1 (ko) 반도체 소자의 접합부 형성 방법
US9553159B2 (en) Semiconductor devices having polysilicon gate patterns and methods of fabricating the same
KR100333727B1 (ko) 엘리베이티드소오스/드레인구조의모스트랜지스터제조방법
KR20000041382A (ko) 엘리베이티드 소오스/드레인 구조의 모스 트랜지스터 제조방법
KR20000043199A (ko) 반도체소자의 트랜지스터 형성방법
KR100440078B1 (ko) 반도체소자의 제조방법
KR100463956B1 (ko) 반도체 소자의 트랜지스터 형성 방법
KR100671663B1 (ko) 반도체 소자의 트랜지스터 제조 방법
KR100318460B1 (ko) 반도체소자제조방법
KR100743620B1 (ko) 반도체소자의 저접합 형성방법
KR920005127B1 (ko) 선택적 에피택시를 이용한 자기정합된 바이폴라 트랜지스터의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040421

Termination date: 20150629

EXPY Termination of patent right or utility model