CN1314091C - 具有内嵌的沟槽肖特基整流器的沟槽dmos晶体管 - Google Patents

具有内嵌的沟槽肖特基整流器的沟槽dmos晶体管 Download PDF

Info

Publication number
CN1314091C
CN1314091C CNB028165330A CN02816533A CN1314091C CN 1314091 C CN1314091 C CN 1314091C CN B028165330 A CNB028165330 A CN B028165330A CN 02816533 A CN02816533 A CN 02816533A CN 1314091 C CN1314091 C CN 1314091C
Authority
CN
China
Prior art keywords
unit
region
schottky
conduction type
tagma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028165330A
Other languages
English (en)
Other versions
CN1547765A (zh
Inventor
理查得·A·布兰查德
石甫渊
苏根政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Semiconductor Inc
Original Assignee
General Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Semiconductor Inc filed Critical General Semiconductor Inc
Publication of CN1547765A publication Critical patent/CN1547765A/zh
Application granted granted Critical
Publication of CN1314091C publication Critical patent/CN1314091C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Abstract

一种合并器件包括多个MOSFET单元(219)和多个肖特基整流单元(S),以及合并器件的设计和制造方法。根据本发明的一个实施例,MOSFET单元,包括:(a)在半导体区(201)的上部内形成的第一导电类型的源区(212),(b)在半导体区(201)的中间部分内形成的第二导电类型的本体区(204),(c)在半导体区(201)的下部内形成的第一导电类型的漏区(202),以及(d)与源区(212)、本体区(204)以及漏区(202)相邻提供的栅极区(211)。在本实施例中的肖特基二极管单元(S)设置在沟槽网络(219a,219b,219c)中并且包括肖特基整流接触半导体区(201)的下部的导体部分(218)。在本实施例中,沿沟槽网络(219a,219b,219c)的一个侧壁并与至少一个肖特基二极管单元(S)相邻地设置至少一个MOSFET单元栅极区(211)。

Description

具有内嵌的沟槽肖特基整流器的沟槽DMOS晶体管
相关申请说明
本申请涉及申请日为2000年10月6日序列号为No.09/684,931的申请,题目为“Trench DMOS Transistor with Embedded Trench SchottkyRectifier”。
技术领域
本发明涉及包括功率MOSFET与肖特基势垒整流器并联的合并器件。更具体地,本发明涉及沟槽MOSFET与沟槽肖特基整流器合并到单个器件内,或者在一个半导体衬底上或者作为一个较大集成电路中的部件。
背景技术
功率MOSFET(金属氧化物半导体场效应晶体管)为公知的结构,并以多种结构提供,包括图1中所示的“垂直”DMOS晶体管结构以及图2中所示的“沟槽”的DMOS晶体管结构。示出的每种结构包括高掺杂的衬底100(显示为N+区),在其上生长有轻掺杂的外延层102(显示为N-区),该层执行器件的漏功能。P型本体区104(分别显示为图1和2中的P+/P和P-区)提供在外延层102内,作为源区112(显示为N+区)。器件栅极由导电区111和氧化区110组成。漏接触D连接到半导体衬底100的背面,源和本体接触SB连接到源区112和本体区104,栅电极G连接到导电区111。当电位差施加在本体和栅极上时,电荷被电容性地引入到与栅极氧化层110相邻的本体区104内,导致在与DMOS单元的栅极相邻的本体区104的表面上形成N型沟道。当另一电位差施加在源112和漏102,110上时,载流子从源区穿过沟道到达漏区,如图1和2中的箭头所示,此时DMOS单元被称为处于导通状态。
与图1和2中所示类似的功率MOSFET经常用在需要肖特基二极管与MOSFET并联的电路中。例如参见U.S.专利No.4,823,172和6,049,108。这种电路结构示意性地显示在图3中。从该图中可以看出,肖特基二极管1的低正向电压降防止了当源漏电压变正时,DMOS结构中固有的本体与漏极的pn结二极管2变得正向偏置。由此,在这些情况下在图3的电路中流动的任何电流将流过肖特基二极管。
通过防止本体与漏极的pn结二极管“导通”,防止了在本体与漏极的结上的少数载流子注入。如果存在少数载流子,那么这种少数载流子将使结二极管延迟“截止”,直到结上所有的载流子都被清除掉或者施加在结上的电压反向之后它们被重新复合。相关的截止延迟时间限制了MOSFET可以工作的最大频率。
另一方面,图3中所示的布局允许基本上所有的电流流过肖特基二极管。与固有的本体与漏极的pn结二极管2相反,不存在与肖特基二极管1有关的截止延迟,是由于它不是少数载流子器件。
发明内容
根据本发明的一个实施例,提供一种合并器件,包括:
多个MOSFET单元,包括:(a)在半导体区的上部内形成的第一导电类型的源区,(b)在所述半导体区的中间部分内形成的第二导电类型的本体区,(c)在所述半导体区的下部内形成的第一导电类型的漏区,以及(d)与所述源区、所述本体区以及所述漏区相邻提供的栅极区;以及
设置在沟槽网络的底部的多个肖特基二极管单元,其中所述多个肖特基二极管单元包括与所述半导体区的所述下部肖特基整流接触的导体部分;
其中沿与至少一个肖特基二极管单元相邻的所述沟槽网络的一侧壁设置所述多个MOSFET单元的至少一个栅极区。
根据本发明的另一实施例,提供一种合并器件,包括:
第一导电类型的半导体衬底;
设置在所述衬底上的半导体外延层;
沟槽网络,从所述外延层的上表面延伸到所述外延层内并在所述器件内形成多个台面;
多个MOSFET单元,包括:(a)设置在其中一个所述台面内的所述第一导电类型的源区;(b)设置在所述其中一个所述台面内的第二导电类型的本体区,其中所述本体区形成与所述源区的结,(c)至少部分设置在所述其中一个所述台面内的第一导电类型的漏区,其中所述漏区形成与所述本体区的结;以及(d)栅极区,位于所述沟槽网络内与所述源区、所述本体区以及所述漏区相邻,其中所述栅极区包括:(i)内衬于所述沟槽网络的至少一部分的绝缘区,以及(ii)导电区,位于与所述绝缘区相邻的所述沟槽网络内,所述导电区通过所述绝缘区与所述源区、本体区以及漏区隔开;以及
多个肖特基二极管单元,形成在所述沟槽网络的下部,其中所述多个肖特基二极管单元包括与所述外延层肖特基势垒整流接触的导体部分,
其中沿与至少一些所述肖特基二极管的所述导体部分相邻的所述沟槽网络的侧壁放置所述MOSFET单元的至少一些所述栅极区。
某些优选实施例包括以下一个或多个特性:(a)半导体为硅,(b)第一导电类型为n型导电类型,第二导电类型为p型导电类型,(c)栅极区包括与二氧化硅区相邻的掺杂的多晶硅区,(d)导体包括钛钨、硅化铂、铝和铝合金中的一种或多种,(e)器件的本体区包括重掺杂的接触区,以及(f)器件包括位于肖特基二极管下面并接触肖特基二极管周边的p型区。
在一些实施例中,至少一些所述MOSFET单元和至少一些肖特基二极管单元排列成选自直列方形几何结构、偏置方形几何结构以及六边形几何结构的几何结构。
在其它实施例中,至少一些MOSFET单元为八边形单元。例如,至少一些MOSFET单元和至少一些肖特基二极管单元可以排列成包括交替的第一和第二单元行的几何结构,其中第一单元行的各单元比第二单元行的各单元的面积大,其中第一单元行的各单元为八边形单元。八边形单元例如可以为规则的八边形。MOSFET单元例如可以设置在第一单元行内,肖特基二极管例如可以设置在第二单元行内。第二单元行的各单元例如可以包括八边形单元或方形单元。
根据本发明的另一实施例,提供包括肖特基二极管单元和MOSFET单元的合并器件。在本实施例中,肖特基二极管单元设置在沟槽网络的底部,同时MOSFET单元的一些栅极区提供在沟槽网络的侧壁上。
根据本发明的另一实施例,提供一种合并器件的形成方法。方法包括形成多个肖特基二极管单元和形成多个MOSFET单元,由此:(a)肖特基二极管单元位于沟槽网络的底部,(b)MOSFET单元的栅极区包括导电区和绝缘区,(c)一些栅极区提供在沟槽网络的侧壁上,以及(d)不需要借助掩模层,优选使用各向异性蚀刻工艺通过淀积掺杂的多晶硅层形成栅极区的导电区。
根据本发明的另一实施例,提供一种合并器件的设计方法,包括多个肖特基二极管单元以及多个MOSFET单元。方法包括(1)除去沟槽MOSFET器件设计内的一个或多个源/本体台面,以及(2)在以前设置除去的台面的位置处设置一个或多个肖特基二极管单元。
本发明的一个优点是提供一种合并器件,包含在相同衬底上的DMOS晶体管以及肖特基二极管。
本发明的另一优点是DMOS晶体管以及肖特基二极管部分可以在一个集成制造工艺中生成而不是依次产生。
本发明的另一优点是提供一种合并器件通过将DMOS晶体管功能结合到用于提供器件的肖特基二极管功能的沟槽侧壁内优化了表面区域。
本发明的另一优点是可以选择器件的几何结构以改变DMOS源区周长与肖特基二极管导电区的比例,优化了器件性能。
本发明的再一优点是可以在器件上改变DMOS源区周长与肖特基二极管导电区的比例,优化了边缘的器件性能并且为温度的函数。
在详细说明书的评述、例子以及下面陈述的权利要求书中,本发明的其它实施例及优点将变得更显然。
附图说明
图1示出了现有技术的垂直功率MOSFET的示意性剖面图。
图2示出了现有技术的沟槽功率MOSFET的示意性剖面图。
图3示出了现有技术中已知的功率MOSFET与肖特基二极管并联的示意性电路图。
图4A-4E示出了与本发明的合并的MOSFET和肖特基二极管结构结合使用的五个单元几何结构的示意性俯视图。
图5为根据本发明的一个实施例合并的MOSFET和肖特基二极管结构的示意性剖面图。图5中的图类似于沿图4A中的线5--5或沿图4C中的线5-5截取的。
图6A-6F示出了根据本发明的一个实施例类似于图4中所示的器件的形成工艺。
图7为合并的MOSFET和肖特基二极管结构的示意剖面图,包括用于与体区的低阻接触的深p+区并环绕肖特基二极管的周边。
图8示出了可以与本发明的合并的MOSFET和肖特基二极管结构结合使用的一个单元几何结构的示意性俯视图。
图9A-9D示出了可以与本发明的合并的MOSFET和肖特基二极管结构结合使用的多种单元几何结构的示意性俯视图。
图10示出了可以与本发明的合并的MOSFET和肖特基二极管结构结合使用的另一个单元几何结构的示意性俯视图。
具体实施方式
现在参考附图更详细地介绍本发明,在附图中示出了本发明的优选实施例。然而本发明可以不同的方式实施不限于这里陈述的各实施例。
可以结合基本上有无数变化的布局实施本发明的器件设计,在这些布局中许多DMOS晶体管和肖特基二极管集成在相同的硅衬底上。五个可能的布局的示意性俯视图显示在图4A-4E中。用“S”标记的那部分器件对应于器件的肖特基单元部分。没有标记的器件的剩余部分对应于器件的沟槽MOSFET单元部分的台面。图4A中示出的几何结构这里称为“直列方形几何结构”,图4B中示出的几何结构这里称为“偏置方形几何结构”,图4C中示出的几何结构这里称为“六边形几何结构”或“蜂窝形几何结构”。图4D中的几何结构将图4A的几何结构中的两个DMOS台面转变成肖特基二极管区,同时图4E中的几何结构将四个DMOS台面转变成肖特基二极管。这些设计的每一个都利用了MOSFET领域中通常采用的方形和六边形结构。
从图5中可以看出,放大的沟槽区提供在肖特基单元区中,而不是台面结构中。此外,在单个DMOS台面的区域转变成肖特基二极管的区域中,存在可以用肖特基单元代替的DMOS单元的最大理论数字,同时基本上没有妨碍栅极导体访问。(也可以将两个或多个邻接的DMOS台面转变成图4D和4E所示的肖特基二极管)。当然,肖特基单元的数量可以低于理论的最大值,只要与器件相关的肖特基二极管电流的数量可以接受。
图5为根据本发明的一个实施例的合并的MOSFET和肖特基二极管结构的示意性剖面图。图5中的图类似于沿图4A中的线5--5或沿图4C中的线5--5截取的图。
示出的器件包括外延层201,外延层提供在N+衬底200上。虽然衬底200和外延层201可以由任何半导体材料形成,但目前优选硅。
本具体例中的N+衬底200具有例如8密耳到40密耳的厚度范围,以及例如从1×1019到5×1020cm-3的净掺杂浓度范围。
N区202位于外延层201的下部中。在本例中,N区202具有例如从1到20微米的厚度范围和例如从1013到1016cm-3的净掺杂浓度范围。
P本体区204位于外延层的上部中。在示出的例子中,这些P本体区204从外延层201的上表面例如延伸到0.3到5.0微米的深度,并具有如果没有均匀地掺杂例如从1016到1020cm-3的峰值掺杂浓度范围,如果均匀地掺杂为1×1015到5×1016cm-3。这些P本体区204提供了用于器件的沟槽MOSFET的沟道区。
N+区212也位于外延层的上部中。这些区域例如从外延层201的表面延伸到例如0.2到3.5微米的深度,并具有例如从1019到5×1020cm-3的峰值掺杂浓度范围。这些N+区212提供了器件的沟槽MOSFET单元的源电极功能。
这些沟槽219a,219b,219c显示在图5中,每个沟槽从外延层201的上表面延伸到例如0.3到4.0微米的深度。左沟槽219a和右沟槽219c完全用于器件的MOSFET功能,这里称做“MOSFET沟槽”。这些沟槽例如宽度为0.4到2.0微米。沟槽219a-c之间的区域根据它们的形状经常称做“台面”或“沟槽台面”。这些区域的宽度范围例如从2.0到10.0微米,并且可以为多种几何结构,例如如图4A-4E所示。
专门用于器件的MOSFET功能左和右沟槽219a,219c沿着绝缘体210排列,绝缘体210通常为如硅氧化物的氧化物绝缘体。硅氧化物(通常为二氧化硅)用做绝缘体210,它的厚度从100到2000埃。与绝缘体210相邻的为导体区211,通常为掺杂的多晶硅。多晶硅用做导体211,它可以具有例如从5到100欧姆/平方的表面电阻。绝缘体210和导体区211一起提供了器件的沟槽MOSFET单元的栅电极功能。
中心的沟槽219b基本上宽于沟槽219a和219c,例如宽度为2.8到14.0微米。(简要说明应该注意本申请中的附图没有按比例画出,附图通常为示意性的。这特别符合于沟槽219b,根据器件的几何结构,沟槽219b具有等于两个MOSFET的沟槽宽度219a,219c加上台面宽度的宽度。图5中示出的沟槽219b显著窄于该量。)MOSFET功能于沟槽219b的左和右侧有关,而肖特基二极管的功能与沟槽219b的中心有关。因此,沟槽219b可以称做“混合沟槽”。由于存在源212,可以确定具有MOSFET功能的沟槽219b的区域,源212通过本体区204与漏区(N外延区202)分开。通过适当地偏置栅极,在本体区202内产生沟道(包括导电区211和绝缘体210)。
由于存在导体218和N外延区202之间的接触,可以确定具有肖特基二极管功能的沟槽219b的区域。该接触为肖特基整流接触。与该接触相关的肖特基阻挡层的高度取决于例如使用的导体类型和半导体材料以及半导体内的掺杂浓度。
导体218也用做器件的沟槽MOSFET部分的源区和本体导体,将所有的源区212和本体区204缩短。导体218与源区和本体区212,204之间的接触为欧姆接触。
钛钨、硅化铂、铝或含有这些材料的两种或多种的膜为用于导体218的一些优选材料,是由于它们能够提供(a)与N外延区202的肖特基整流接触,以及(b)与源区212和本体区204的欧姆接触。
通常为二氧化硅和/或BPSG(掺硼磷硅玻璃)区的绝缘区216防止了与器件的MOSFET栅极功能有关的掺杂的多晶硅区211通过导体218与N+源区212和本体区204短路。
导体(未示出)也通常与N+衬底200相邻提供。该导体作为用于器件的MOSFET部分的漏导体以及用于肖特基二极管部分的阴极导体。另一导体(未示出)也通常连接到设置在器件的有源区外部的多晶硅211的栅极引出(runner)部分。
因此,在本发明的合并器件中,沟槽MOSFET和肖特基二极管集成到相同的硅衬底内。这种设计有效地利用了器件的可利用的表面区域。例如,如前所述,含有图5所示器件的肖特基二极管部分的沟槽219b同样具有沟槽MOSFET结合到它的侧壁内的特征。此外,通过在肖特基二极管和沟槽MOSFET单元之间提供共享的架空部分(overhead)(焊盘,周边等)。此外,器件中的电流较均匀地分布(例如得到散热优点),电流在需要的位置处流动(例如减少了高频率时的电感损耗)。该工艺进一步允许使用集成的工艺设计中常见的工艺步骤形成肖特基二极管和沟槽MOSFET。
图6A到6F示出了形成图5中示出的器件进行的一系列步骤。现在参考图6A,掺杂N的外延层202首先生长在常规的N+掺杂的衬底200上。外延层的厚度范围例如为1.3到25微米。接下来进行本体注入步骤。例如,以1013到5×1015/cm2的剂量5到200keV的能量将硼注入到外延层的上表面。随后,例如通过800到1200℃进行湿或干氧化1到200分钟在表面上形成氧化层203。氧化层203可以例如从500到10,000埃厚。除了形成氧化层203,该步骤用于将注入的掺杂剂扩散到外延层202内以形成区域204。此时,区域204为具有1016到1020cm-3的峰值掺杂浓度和0.3到5.0微米深度的P型区。所得结构显示在图6A中。
然后通过首先在层203上提供构图的光致抗蚀剂层(未示出),之后例如通过使用湿或等离子体蚀刻步骤除去没有被光致抗蚀剂覆盖的区域中的氧化物,由氧化物层203形成源掩模。然后进行源注入。例如,可以5到200keV的能量和5×1014到1×1016/cm2的剂量注入砷或磷。然后例如在800到1200℃进行1到200分钟的湿或干氧化步骤,在已预先除去氧化物的区域中形成厚度500到5000埃的氧化层。该步骤也扩散了源掺杂剂,产生了具有1019到5×1020cm-3的峰值掺杂浓度和0.2到3.5微米的深度的源区212。所得结构显示在图6B中。
然后沟槽掩模(未示出)提供在氧化层203上,之后例如通过等离子体或反应离子蚀刻蚀刻沟槽到通常为0.3到4.0微米范围的深度。这产生了分别的P本体区204和源区212。然后除去沟槽掩模,和本领域中公知的一样生长牺牲氧化层并除去。随后,例如在900到1200℃通过湿或干氧化1到60分钟在沟槽内生长厚度为100到2000埃的栅极氧化层210。
接着覆盖结构的表面,并优选使用CVD用多晶硅层211填充沟槽。多晶硅通常掺杂为N型以减小它的电阻率。在具有磷化氢气体的CVD期间,通过利用氯氧化磷的热预淀积或者通过用砷或磷的注入进行N型掺杂。所得结构显示在图6C中。
适当掩蔽有源区的外部以保存用于栅极接触的多晶硅,然后对多晶硅层进行各向异性蚀刻步骤,例如等离子体或反应离子蚀刻步骤,形成分别的多晶硅区211,在示出的具体剖面的平面之外的沟槽内连接。然后除去掩模,淀积氧化层216,产生图6D中示出的结构。
然后提供接触掩模(即,光致抗蚀剂层--未示出),之后通过例如湿或等离子体蚀刻组成的氧化物蚀刻步骤在氧化物中开出接触区域。该步骤提供了对应于源/本体接触、肖特基整流接触以及有源区之外的栅极接触的接触区。采用多晶硅蚀刻步骤,使用各向异性蚀刻以避免在中心沟槽的倾斜的多晶硅侧壁上需要光致抗蚀剂。然后除去接触掩模以产生图6E的结构。如果需要,可以使用附加的掩模在本体区204的上部中形成P+区(未示出)以建立与随后提供的导体218的良好的欧姆接触。如果足够深,那么这些P+区也可以形成在肖特基二极管的周边。所得结构显示在图7中。也可以形成P+区仅提供与本体区的低阻接触,或者仅提供环绕肖特基二极管的P掺杂区。在图7中,P+区220提供了低阻接触和环绕肖特基二极管的P掺杂区,提高了击穿电压。
优选通过溅射淀积导体层218。然后提供导体掩模,之后为例如湿或等离子体蚀刻,以将多种导体区相互隔开。例如,在该步骤中,用于栅极接触(未示出)的导体与用于源区/本体/肖特基整流接触的导体218隔开。在该具体例子中的导体218为铝合金,或者是位于如钛钨的材料或者是如已形成在接触中的硅化铂的材料之上的铝合金,是由于它提供了在沟槽219b底部的肖特基整流接触,同时在源区/本体区212,204处的欧姆接触。所得结构显示在图6F中。
当然,在以上方案的基础上可以有多种变化。作为一个例子,虽然在形成沟槽之前在以上例子中提供了源区212,但是在沟槽MOSFET领域中常见的是在形成沟槽栅极结构之后形成源区。作为另一个例子,虽然以上使用氧化区216将多晶硅区211与导体218隔开,但是BPSG也通常用于该目的。
如上所述,本发明的器件设计可以结合DMOS晶体管和肖特基二极管集成在相同硅衬底上本质上有多种变化的布局。一个具体的优选布局显示在图8中,这里称做“打开的(unpacked)八边形几何结构”。这种设计包括较大和较小八边形单元的交替行。
可以有多种打开的八边形几何结构。例如,在图8中,示出的肖特基单元结合较小单元的行,但是肖特基单元也可以结合较大单元的行。此外,虽然图8中示出了八边形单元结合了较小的单元行,但是应该指出小单元例如也可以为方形单元,如图10所示。
本发明的合并器件可以表征的一个参数为源区周长与肖特基二极管导电区的比例。从图9A-9D中可以看出,这种比例可以多种方式修改。例如,从图9D中示出的设计中可以看出,每个大MOSFET台面(示出四个)的源区周长等于(2×s1)+(2×s3)+(4×s2)。用于图10的小MOSFET台面的源区周长约8×s2。图10中肖特基二极管占据的面积(示出一个并用“S”表示)约(s2×s2)。示出的打开的八边形几何结构允许s2与s1的比例以及s3与s1的比例在限制内修改,进而允许源区周长与肖特基二极管面积的比例有更大的灵活性。
例如,图8结构的五个单元的放大图显示在图9A中。这些单元的每一个为规则的八边形。然而,在图9B中,顶部、底部、左边和右边(对应于长度s1和s3)制得显著小于对角线边(对应于长度s2)。通过比较图9A与图9B可以看出,这有助于减小图9B的器件相对于图9A的器件的源区周长与肖特基二极管面积的比例。
一方面,顶边、底边、左边和右边(对应于长度s1和s3)同样可以显著大于对角线边(对应于长度s2),如图9C所示。这有助于增加图9C的器件相对于图9A的器件的源区周长与肖特基二极管面积的比例。
在其它实施例中,仅需要增加顶边和底边的尺寸,如图9D所示。当然,左边和右边的尺寸也以类似的方式增加。
虽然这里具体示出和介绍了多种实施例,但是应该理解本发明的修改和变化可以由以上的教导覆盖,并在附带的权利要求书的范围内,同时不脱离本发明的精神和计划的范围。例如,本发明的方法可用于形成多个半导体区的导电性与这里介绍的相反的结构。

Claims (23)

1.一种合并器件,包括:
多个MOSFET单元,包括:(a)在半导体区的上部内形成的第一导电类型的源区,(b)在所述半导体区的中间部分内形成的第二导电类型的本体区,(c)在所述半导体区的下部内形成的第一导电类型的漏区,以及(d)与所述源区、所述本体区以及所述漏区相邻提供的栅极区;以及
设置在沟槽网络的底部的多个肖特基二极管单元,其中所述多个肖特基二极管单元包括与所述半导体区的所述下部肖特基整流接触的导体部分;
其中沿与至少一个肖特基二极管单元相邻的所述沟槽网络的一侧壁设置所述多个MOSFET单元的至少一个栅极区。
2.根据权利要求1的器件,其中所述栅极区包括与二氧化硅区相邻的掺杂的多晶硅区。
3.根据权利要求1的器件,其中所述第一导电类型为n型导电类型,所述第二导电类型为p型导电类型。
4.根据权利要求1的器件,其中所述半导体区为硅区。
5.根据权利要求4的器件,其中所述半导体区为外延硅区。
6.根据权利要求4的器件,其中与所述半导体区的所述下部肖特基整流接触的所述导体部分包括钛钨、硅化铂、铝或铝合金中的一种材料。
7.根据权利要求3的器件,还包括接触本体区的重掺杂的接触区。
8.根据权利要求3的器件,还包括位于肖特基二极管下面并接触肖特基二极管周边的p型区。
9.根据权利要求1的器件,其中至少一个所述MOSFET单元的形状为八边形。
10.一种合并器件,包括:
第一导电类型的半导体衬底;
设置在所述衬底上的半导体外延层;
沟槽网络,从所述外延层的上表面延伸到所述外延层内并在所述器件内形成多个台面;
多个MOSFET单元,包括:(a)设置在其中一个所述台面内的所述第一导电类型的源区;(b)设置在所述其中一个所述台面内的第二导电类型的本体区,其中所述本体区形成与所述源区的结,(c)至少部分设置在所述其中一个所述台面内的第一导电类型的漏区,其中所述漏区形成与所述本体区的结;以及(d)栅极区,位于所述沟槽网络内与所述源区、所述本体区以及所述漏区相邻,其中所述栅极区包括:(i)内衬于所述沟槽网络的至少一部分的绝缘区,以及(ii)导电区,位于与所述绝缘区相邻的所述沟槽网络内,所述导电区通过所述绝缘区与所述源区、本体区以及漏区隔开;以及
多个肖特基二极管单元,形成在所述沟槽网络的下部,其中所述多个肖特基二极管单元包括与所述外延层肖特基势垒整流接触的导体部分,
其中沿与至少一些所述肖特基二极管的所述导体部分相邻的所述沟槽网络的侧壁放置所述MOSFET单元的至少一些所述栅极区。
11.根据权利要求10的器件,其中所述导体与所述源区和所述本体区制成欧姆接触。
12.根据权利要求11的器件,其中所述导体部分与所述外延层的下部肖特基整流接触,并且所述导体部分包括钛钨、硅化铂、铝或铝合金中的一种材料。
13.根据权利要求10的器件,其中所述栅极区包括与二氧化硅区邻近的掺杂的多晶硅区。
14.根据权利要求10的器件,其中所述第一导电类型为n型导电类型,所述第二导电类型为p型导电类型。
15.根据权利要求10的器件,其中所述半导体为硅。
16.根据权利要求10的器件,其中至少一些所述MOSFET单元和至少一些所述肖特基二极管单元排列成选自包括直列方形几何结构、偏置方形几何结构以及六边形几何结构的组的几何结构。
17.根据权利要求10的器件,其中至少一些所述MOSFET单元为八边形单元。
18.根据权利要求10的器件,其中至少一些所述MOSFET单元和至少一些所述肖特基二极管单元排列成包括交替的第一和第二单元行的几何结构,其中所述第一单元行的各单元比所述第二单元行的各单元的面积大,其中所述第一单元行的所述单元为八边形单元。
19.根据权利要求18的器件,其中所述第一单元行的所述单元为规则的八边形。
20.根据权利要求18的器件,其中所述MOSFET单元设置在所述第一单元行内,所述肖特基二极管单元设置在所述第二单元行内。
21.根据权利要求18的器件,其中所述第二单元行的所述单元为八边形单元或方形单元。
22.根据权利要求14的器件,还包括与本体区接触的重掺杂的接触区。
23.根据权利要求14的器件,还包括位于肖特基二极管下面并接触肖特基二极管周边的p型区。
CNB028165330A 2001-08-23 2002-08-23 具有内嵌的沟槽肖特基整流器的沟槽dmos晶体管 Expired - Fee Related CN1314091C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/938,253 2001-08-23
US09/938,253 US6621107B2 (en) 2001-08-23 2001-08-23 Trench DMOS transistor with embedded trench schottky rectifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100862751A Division CN101064308A (zh) 2001-08-23 2002-08-23 合并器件的形成方法和设计方法

Publications (2)

Publication Number Publication Date
CN1547765A CN1547765A (zh) 2004-11-17
CN1314091C true CN1314091C (zh) 2007-05-02

Family

ID=25471173

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB028165330A Expired - Fee Related CN1314091C (zh) 2001-08-23 2002-08-23 具有内嵌的沟槽肖特基整流器的沟槽dmos晶体管
CNA2007100862751A Pending CN101064308A (zh) 2001-08-23 2002-08-23 合并器件的形成方法和设计方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2007100862751A Pending CN101064308A (zh) 2001-08-23 2002-08-23 合并器件的形成方法和设计方法

Country Status (8)

Country Link
US (1) US6621107B2 (zh)
EP (1) EP1425791A4 (zh)
JP (1) JP4874516B2 (zh)
KR (1) KR20040036914A (zh)
CN (2) CN1314091C (zh)
AU (1) AU2002329862A1 (zh)
TW (1) TW583773B (zh)
WO (1) WO2003019623A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380471A (zh) * 2012-06-13 2015-02-25 株式会社电装 碳化硅半导体装置及其制造方法

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120310B (fi) * 2001-02-13 2009-09-15 Valtion Teknillinen Parannettu menetelmä erittyvien proteiinien tuottamiseksi sienissä
WO2002084745A2 (en) * 2001-04-11 2002-10-24 Silicon Wireless Corporation Power semiconductor devices and methods of forming same
US7786533B2 (en) * 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US6838722B2 (en) * 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
KR100473476B1 (ko) * 2002-07-04 2005-03-10 삼성전자주식회사 반도체 장치 및 그 제조방법
US7297634B2 (en) * 2003-06-06 2007-11-20 Marvell World Trade Ltd. Method and apparatus for semiconductor device and semiconductor memory device
US7613041B2 (en) * 2003-06-06 2009-11-03 Chih-Hsin Wang Methods for operating semiconductor device and semiconductor memory device
US7550800B2 (en) 2003-06-06 2009-06-23 Chih-Hsin Wang Method and apparatus transporting charges in semiconductor device and semiconductor memory device
US7759719B2 (en) * 2004-07-01 2010-07-20 Chih-Hsin Wang Electrically alterable memory cell
US6958513B2 (en) * 2003-06-06 2005-10-25 Chih-Hsin Wang Floating-gate memory cell having trench structure with ballistic-charge injector, and the array of memory cells
US7754550B2 (en) * 2003-07-10 2010-07-13 International Rectifier Corporation Process for forming thick oxides on Si or SiC for semiconductor devices
US6987305B2 (en) * 2003-08-04 2006-01-17 International Rectifier Corporation Integrated FET and schottky device
US6998694B2 (en) * 2003-08-05 2006-02-14 Shye-Lin Wu High switching speed two mask Schottky diode with high field breakdown
US7973381B2 (en) * 2003-09-08 2011-07-05 International Rectifier Corporation Thick field oxide termination for trench schottky device
JP2005101334A (ja) * 2003-09-25 2005-04-14 Sanyo Electric Co Ltd 半導体装置およびその製造方法
FR2863773B1 (fr) * 2003-12-12 2006-05-19 Atmel Grenoble Sa Procede de fabrication de puces electroniques en silicium aminci
WO2005065385A2 (en) * 2003-12-30 2005-07-21 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4829476B2 (ja) * 2004-03-09 2011-12-07 オンセミコンダクター・トレーディング・リミテッド ショットキーバリアダイオードおよびその製造方法
JP2005285913A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 半導体装置およびその製造方法
US20080203464A1 (en) * 2004-07-01 2008-08-28 Chih-Hsin Wang Electrically alterable non-volatile memory and array
JP2006049341A (ja) 2004-07-30 2006-02-16 Renesas Technology Corp 半導体装置およびその製造方法
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US7667264B2 (en) * 2004-09-27 2010-02-23 Alpha And Omega Semiconductor Limited Shallow source MOSFET
DE102004057235B4 (de) * 2004-11-26 2007-12-27 Infineon Technologies Ag Vertikaler Trenchtransistor und Verfahren zu dessen Herstellung
US8283723B2 (en) 2005-02-11 2012-10-09 Alpha & Omega Semiconductor Limited MOS device with low injection diode
US7436022B2 (en) * 2005-02-11 2008-10-14 Alpha & Omega Semiconductors, Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US7285822B2 (en) * 2005-02-11 2007-10-23 Alpha & Omega Semiconductor, Inc. Power MOS device
US7948029B2 (en) 2005-02-11 2011-05-24 Alpha And Omega Semiconductor Incorporated MOS device with varying trench depth
US8362547B2 (en) * 2005-02-11 2013-01-29 Alpha & Omega Semiconductor Limited MOS device with Schottky barrier controlling layer
US8093651B2 (en) * 2005-02-11 2012-01-10 Alpha & Omega Semiconductor Limited MOS device with integrated schottky diode in active region contact trench
KR100712989B1 (ko) * 2005-03-14 2007-05-02 주식회사 하이닉스반도체 리세스 채널 및 비대칭접합 구조를 갖는 반도체 소자의제조방법
US7671441B2 (en) * 2005-04-05 2010-03-02 International Rectifier Corporation Trench MOSFET with sidewall spacer gates
JP2008536316A (ja) * 2005-04-06 2008-09-04 フェアチャイルド・セミコンダクター・コーポレーション トレンチゲート電界効果トランジスタおよびその形成方法
US7411244B2 (en) 2005-06-28 2008-08-12 Chih-Hsin Wang Low power electrically alterable nonvolatile memory cells and arrays
TWI400757B (zh) * 2005-06-29 2013-07-01 Fairchild Semiconductor 形成遮蔽閘極場效應電晶體之方法
US7751215B2 (en) 2005-07-08 2010-07-06 Panasonic Corporation Semiconductor device and electric apparatus having a semiconductor layer divided into a plurality of square subregions
WO2007013367A1 (ja) 2005-07-25 2007-02-01 Matsushita Electric Industrial Co., Ltd. 半導体素子及び電気機器
US7964911B2 (en) 2005-07-26 2011-06-21 Panasonic Corporation Semiconductor element and electrical apparatus
DE102005059034B4 (de) * 2005-12-10 2007-10-11 X-Fab Semiconductor Foundries Ag SOI-Isolationsgrabenstrukturen
DE102005059035B4 (de) * 2005-12-10 2007-11-08 X-Fab Semiconductor Foundries Ag Isolationsgrabenstrukturen für hohe Spannungen
US7544545B2 (en) * 2005-12-28 2009-06-09 Vishay-Siliconix Trench polysilicon diode
US8022482B2 (en) * 2006-02-14 2011-09-20 Alpha & Omega Semiconductor, Ltd Device configuration of asymmetrical DMOSFET with schottky barrier source
JP4935160B2 (ja) * 2006-04-11 2012-05-23 株式会社デンソー 炭化珪素半導体装置およびその製造方法
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
US8154073B2 (en) 2006-07-14 2012-04-10 Denso Corporation Semiconductor device
JP5222466B2 (ja) * 2006-08-09 2013-06-26 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN101506988B (zh) * 2006-08-18 2010-11-10 和舰科技(苏州)有限公司 一种应用于亚微米集成电路的肖特基二极管及其制造方法
US7750398B2 (en) * 2006-09-26 2010-07-06 Force-Mos Technology Corporation Trench MOSFET with trench termination and manufacture thereof
US7812409B2 (en) * 2006-12-04 2010-10-12 Force-Mos Technology Corp. Trench MOSFET with cell layout, ruggedness, truncated corners
JP5091487B2 (ja) * 2007-01-09 2012-12-05 株式会社東芝 半導体装置の製造方法
US7564099B2 (en) * 2007-03-12 2009-07-21 International Rectifier Corporation Monolithic MOSFET and Schottky diode device
KR100861213B1 (ko) * 2007-04-17 2008-09-30 동부일렉트로닉스 주식회사 반도체 소자 및 그 제조방법
JP4492735B2 (ja) * 2007-06-20 2010-06-30 株式会社デンソー 半導体装置及び半導体装置の製造方法
JP4599379B2 (ja) * 2007-08-31 2010-12-15 株式会社東芝 トレンチゲート型半導体装置
US8686493B2 (en) * 2007-10-04 2014-04-01 Fairchild Semiconductor Corporation High density FET with integrated Schottky
US8072023B1 (en) 2007-11-12 2011-12-06 Marvell International Ltd. Isolation for non-volatile memory cell array
US8120088B1 (en) 2007-12-07 2012-02-21 Marvell International Ltd. Non-volatile memory cell and array
TWI401799B (zh) * 2007-12-21 2013-07-11 Alpha & Omega Semiconductor 具有不同溝渠深度之mos裝置
JP5617175B2 (ja) 2008-04-17 2014-11-05 富士電機株式会社 ワイドバンドギャップ半導体装置とその製造方法
EP2274770A4 (en) * 2008-04-28 2012-12-26 St Microelectronics Nv INTEGRATED FIELD EFFECT RECTIFIER MOSFET
US7816732B2 (en) * 2008-06-23 2010-10-19 Force Mos Technology Co., Ltd. Integrated trench MOSFET and Schottky rectifier with trench contact structure
US8426913B2 (en) 2008-06-23 2013-04-23 Force Mos Technology Co., Ltd. Integrated trench MOSFET with trench Schottky rectifier
US7781830B2 (en) * 2008-07-16 2010-08-24 Promos Technologies Inc. Recessed channel transistor and method for preparing the same
US7750412B2 (en) * 2008-08-06 2010-07-06 Fairchild Semiconductor Corporation Rectifier with PN clamp regions under trenches
US8027215B2 (en) 2008-12-19 2011-09-27 Unity Semiconductor Corporation Array operation using a schottky diode as a non-ohmic isolation device
US7943989B2 (en) * 2008-12-31 2011-05-17 Alpha And Omega Semiconductor Incorporated Nano-tube MOSFET technology and devices
TWI394263B (zh) * 2009-07-23 2013-04-21 Excelliance Mos Corp 半導體結構及其製造方法
US7952141B2 (en) * 2009-07-24 2011-05-31 Fairchild Semiconductor Corporation Shield contacts in a shielded gate MOSFET
CN101989600B (zh) * 2009-08-06 2012-09-26 杰力科技股份有限公司 半导体结构及其制造方法
US8222678B2 (en) * 2009-08-17 2012-07-17 Excelliance Mos Corporation Semiconductor structure
US20110084332A1 (en) * 2009-10-08 2011-04-14 Vishay General Semiconductor, Llc. Trench termination structure
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
JP5511308B2 (ja) * 2009-10-26 2014-06-04 三菱電機株式会社 半導体装置およびその製造方法
US8362555B2 (en) * 2009-11-24 2013-01-29 Intersil Americas Inc. Voltage converter and systems including same
CN102074508A (zh) * 2009-11-24 2011-05-25 上海华虹Nec电子有限公司 功率mos晶体管内集成肖特基二极管的工艺方法
US8368140B2 (en) * 2009-12-03 2013-02-05 Diodes Incorporated Trench MOS device with Schottky diode and method for manufacturing same
CN102088020B (zh) * 2009-12-08 2012-10-03 上海华虹Nec电子有限公司 功率mos晶体管内集成肖特基二极管的器件及制造方法
CN102110687B (zh) * 2009-12-24 2013-06-12 上海华虹Nec电子有限公司 沟槽mos器件
US20110156810A1 (en) * 2009-12-30 2011-06-30 Intersil Americas Inc. Integrated dmos and schottky
US8492225B2 (en) * 2009-12-30 2013-07-23 Intersil Americas Inc. Integrated trench guarded schottky diode compatible with powerdie, structure and method
US9577089B2 (en) 2010-03-02 2017-02-21 Vishay-Siliconix Structures and methods of fabricating dual gate devices
US8928065B2 (en) * 2010-03-16 2015-01-06 Vishay General Semiconductor Llc Trench DMOS device with improved termination structure for high voltage applications
US8853770B2 (en) * 2010-03-16 2014-10-07 Vishay General Semiconductor Llc Trench MOS device with improved termination structure for high voltage applications
CN101853850B (zh) * 2010-03-17 2011-10-26 无锡新洁能功率半导体有限公司 一种超势垒半导体整流器件及其制造方法
US7994001B1 (en) * 2010-05-11 2011-08-09 Great Power Semiconductor Corp. Trenched power semiconductor structure with schottky diode and fabrication method thereof
TWI458022B (zh) * 2010-07-23 2014-10-21 Great Power Semiconductor Corp 低閘極電荷的溝槽式功率半導體製造方法
CN102376568B (zh) * 2010-08-19 2015-08-05 北大方正集团有限公司 在深沟槽肖特基二极管晶圆的深沟槽内淀积多晶硅的方法
CN102005478A (zh) * 2010-09-16 2011-04-06 哈尔滨工程大学 集成肖特基整流器的栅增强功率mosfet器件
JP5671966B2 (ja) * 2010-11-17 2015-02-18 富士電機株式会社 半導体装置の製造方法および半導体装置
DE112011104322T5 (de) * 2010-12-10 2013-10-02 Mitsubishi Electric Corporation Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitervorrichtung
JP5872766B2 (ja) * 2010-12-10 2016-03-01 ローム株式会社 半導体装置および半導体パッケージ
DE102010063041A1 (de) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Generatorvorrichtung mit verbesserter Verpolfestigkeit
CN102737997A (zh) * 2011-04-07 2012-10-17 中芯国际集成电路制造(上海)有限公司 半导体器件的制作方法
EP2701201B1 (en) 2011-04-19 2020-04-08 Nissan Motor Co., Ltd Semiconductor device
WO2012158977A2 (en) 2011-05-18 2012-11-22 Vishay-Siliconix Semiconductor device
US20130168765A1 (en) * 2012-01-04 2013-07-04 Vishay General Semiconductor Llc Trench dmos device with improved termination structure for high voltage applications
US9293558B2 (en) 2012-11-26 2016-03-22 Infineon Technologies Austria Ag Semiconductor device
TWI521718B (zh) * 2012-12-20 2016-02-11 財團法人工業技術研究院 接面位障蕭特基二極體嵌於金氧半場效電晶體單元陣列之整合元件
KR101920717B1 (ko) * 2013-01-14 2018-11-21 삼성전자주식회사 이중 병렬 채널 구조를 갖는 반도체 소자 및 상기 반도체 소자의 제조 방법
JP5939448B2 (ja) * 2013-04-30 2016-06-22 日産自動車株式会社 半導体装置及びその製造方法
CN103400840B (zh) * 2013-07-01 2016-01-27 中航(重庆)微电子有限公司 一种超势垒整流器及其制备方法
JP6135364B2 (ja) * 2013-07-26 2017-05-31 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP6127820B2 (ja) * 2013-08-02 2017-05-17 トヨタ自動車株式会社 半導体装置
US9331197B2 (en) 2013-08-08 2016-05-03 Cree, Inc. Vertical power transistor device
CN103441148B (zh) * 2013-08-13 2016-08-31 电子科技大学 一种集成肖特基二极管的槽栅vdmos器件
KR101448158B1 (ko) * 2013-08-19 2014-10-07 주식회사 시지트로닉스 저전압-고전류용 고성능 고속회복다이오드(hp-frd) 및 그 제조방법
US9318597B2 (en) 2013-09-20 2016-04-19 Cree, Inc. Layout configurations for integrating schottky contacts into a power transistor device
US9991376B2 (en) 2013-09-20 2018-06-05 Monolith Semiconductor Inc. High voltage MOSFET devices and methods of making the devices
US9214572B2 (en) * 2013-09-20 2015-12-15 Monolith Semiconductor Inc. High voltage MOSFET devices and methods of making the devices
US10868169B2 (en) * 2013-09-20 2020-12-15 Cree, Inc. Monolithically integrated vertical power transistor and bypass diode
US10600903B2 (en) 2013-09-20 2020-03-24 Cree, Inc. Semiconductor device including a power transistor device and bypass diode
US10192970B1 (en) * 2013-09-27 2019-01-29 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Simultaneous ohmic contact to silicon carbide
CN104517961B (zh) * 2013-09-29 2020-06-05 无锡华润上华科技有限公司 整流器及其制造方法
US9478426B2 (en) 2014-02-27 2016-10-25 Semiconductor Components Industries, Llc Semiconductor device and manufacturing method thereof
US10418476B2 (en) * 2014-07-02 2019-09-17 Hestia Power Inc. Silicon carbide semiconductor device
TWI528565B (zh) * 2014-07-02 2016-04-01 Hestia Power Inc Silicon carbide semiconductor components
US10483389B2 (en) 2014-07-02 2019-11-19 Hestia Power Inc. Silicon carbide semiconductor device
EP3183753A4 (en) 2014-08-19 2018-01-10 Vishay-Siliconix Electronic circuit
US10312233B2 (en) * 2014-09-30 2019-06-04 Mitsubishi Electric Corporation Semiconductor device
CN107004714B (zh) * 2014-11-18 2021-09-28 罗姆股份有限公司 半导体装置及半导体装置的制造方法
DE102014117780B4 (de) 2014-12-03 2018-06-21 Infineon Technologies Ag Halbleiterbauelement mit einer Grabenelektrode und Verfahren zur Herstellung
DE102014119465B3 (de) 2014-12-22 2016-05-25 Infineon Technologies Ag Halbleitervorrichtung mit streifenförmigen trenchgatestrukturen, transistormesas und diodenmesas
US9583482B2 (en) 2015-02-11 2017-02-28 Monolith Semiconductor Inc. High voltage semiconductor devices and methods of making the devices
DE102015204138A1 (de) * 2015-03-09 2016-09-15 Robert Bosch Gmbh Halbleitervorrichtung mit einer Trench-MOS-Barrier-Schottky-Diode
JP6400202B2 (ja) * 2015-07-15 2018-10-03 三菱電機株式会社 電力用半導体装置
JP6222706B2 (ja) * 2015-07-23 2017-11-01 ローム株式会社 半導体装置および半導体パッケージ
WO2017064887A1 (ja) * 2015-10-16 2017-04-20 三菱電機株式会社 半導体装置
JP6667893B2 (ja) 2015-10-20 2020-03-18 富士電機株式会社 半導体装置および半導体装置の製造方法
KR101786664B1 (ko) 2015-12-11 2017-10-18 현대자동차 주식회사 반도체 소자 및 그 제조 방법
WO2018055318A1 (en) 2016-09-23 2018-03-29 Dynex Semiconductor Limited A Power MOSFET with an Integrated Schottky Diode
CN106328718A (zh) * 2016-11-04 2017-01-11 四川洪芯微科技有限公司 一种台面二极管
KR101896332B1 (ko) 2016-12-13 2018-09-07 현대자동차 주식회사 반도체 소자 및 그 제조 방법
SE541402C2 (en) 2017-09-15 2019-09-17 Ascatron Ab Integration of a schottky diode with a mosfet
KR102206965B1 (ko) * 2017-11-01 2021-01-25 수 조우 오리엔탈 세미컨덕터 콤퍼니 리미티드 트렌치형 전력 트랜지스터
US10818788B2 (en) 2017-12-15 2020-10-27 Alpha And Omega Semiconductor (Cayman) Ltd. Schottky diode integrated into superjunction power MOSFETs
DE102018103973B4 (de) 2018-02-22 2020-12-03 Infineon Technologies Ag Siliziumcarbid-halbleiterbauelement
JP7119422B2 (ja) * 2018-02-28 2022-08-17 富士電機株式会社 縦型半導体装置及び縦型半導体装置の製造方法
DE102019111308A1 (de) 2018-05-07 2019-11-07 Infineon Technologies Ag Siliziumcarbid halbleiterbauelement
US10593760B2 (en) 2018-08-02 2020-03-17 Semiconductor Components Industries, Llc Method for forming trench semiconductor device having Schottky barrier structure
CN109244136B (zh) * 2018-09-19 2021-07-27 电子科技大学 槽底肖特基接触SiC MOSFET器件
CN109244138A (zh) * 2018-09-19 2019-01-18 电子科技大学 具有良好第三象限性能的SiC MOSFET器件
CN109256427A (zh) * 2018-09-19 2019-01-22 电子科技大学 一种集成肖特基二极管的SiC MOSFET器件
CN109244137A (zh) * 2018-09-19 2019-01-18 电子科技大学 一种高可靠性SiC MOSFET器件
DE102018124740A1 (de) 2018-10-08 2020-04-09 Infineon Technologies Ag Halbleiterbauelement mit einem sic halbleiterkörper und verfahren zur herstellung eines halbleiterbauelements
US10985248B2 (en) 2018-11-16 2021-04-20 Infineon Technologies Ag SiC power semiconductor device with integrated Schottky junction
US10586845B1 (en) 2018-11-16 2020-03-10 Infineon Technologies Ag SiC trench transistor device and methods of manufacturing thereof
US10903322B2 (en) 2018-11-16 2021-01-26 Infineon Technologies Ag SiC power semiconductor device with integrated body diode
US10692988B2 (en) 2018-11-26 2020-06-23 Infineon Technologies Austria Ag Semiconductor device having integrated MOS-gated or Schottky diodes
CN109742135B (zh) * 2018-12-03 2022-05-20 北京大学深圳研究生院 一种碳化硅mosfet器件及其制备方法
CN109742148B (zh) * 2019-01-16 2024-04-02 厦门芯光润泽科技有限公司 碳化硅umosfet器件及其制备方法
CN109755322A (zh) * 2019-02-14 2019-05-14 厦门芯光润泽科技有限公司 碳化硅mosfet器件及其制备方法
US10581426B1 (en) * 2019-03-11 2020-03-03 Texas Instruments Incorporated Source down power FET with integrated temperature sensor
CN110148629B (zh) * 2019-03-18 2020-11-27 电子科技大学 一种沟槽型碳化硅mosfet器件及其制备方法
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates
US11527627B2 (en) * 2020-01-14 2022-12-13 Diodes Incorporated Semiconductor Schottky rectifier device
KR102501554B1 (ko) * 2020-10-08 2023-02-17 에트론 테크놀로지, 아이엔씨. 누설 전류가 감소되고 온/오프 전류를 조정할 수 있는 트랜지스터 구조체
US20220130998A1 (en) * 2020-10-28 2022-04-28 Cree, Inc. Power semiconductor devices including angled gate trenches
US11610991B2 (en) 2020-10-28 2023-03-21 Wolfspeed, Inc. Gate trench power semiconductor devices having improved deep shield connection patterns
US11769828B2 (en) 2020-10-28 2023-09-26 Wolfspeed, Inc. Gate trench power semiconductor devices having improved deep shield connection patterns

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823172A (en) * 1986-06-17 1989-04-18 Nissan Motor Company, Ltd. Vertical MOSFET having Schottky diode for latch-up prevention
US5072266A (en) * 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US5915179A (en) * 1995-06-09 1999-06-22 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
WO2000051167A2 (en) * 1999-02-26 2000-08-31 Fairchild Semiconductor Corporation Monolithically integrated trench mosfet and schottky diode

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116574A (ja) * 1984-07-03 1986-01-24 Matsushita Electronics Corp 電界効果トランジスタおよびその製造方法
GB2199694A (en) 1986-12-23 1988-07-13 Philips Electronic Associated A method of manufacturing a semiconductor device
US4811065A (en) 1987-06-11 1989-03-07 Siliconix Incorporated Power DMOS transistor with high speed body diode
US5111253A (en) * 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
US4982260A (en) 1989-10-02 1991-01-01 General Electric Company Power rectifier with trenches
JP2682272B2 (ja) * 1991-06-27 1997-11-26 三菱電機株式会社 絶縁ゲート型トランジスタ
US5686750A (en) * 1991-09-27 1997-11-11 Koshiba & Partners Power semiconductor device having improved reverse recovery voltage
JP2797941B2 (ja) 1993-12-27 1998-09-17 日本電気株式会社 光電変換素子とその駆動方法
US5396085A (en) * 1993-12-28 1995-03-07 North Carolina State University Silicon carbide switching device with rectifying-gate
JPH08204179A (ja) * 1995-01-26 1996-08-09 Fuji Electric Co Ltd 炭化ケイ素トレンチmosfet
JPH08255902A (ja) * 1995-03-17 1996-10-01 Toshiba Corp 絶縁ゲート型半導体装置とその製造方法
JPH09102602A (ja) * 1995-10-05 1997-04-15 Nippon Telegr & Teleph Corp <Ntt> Mosfet
JP3291441B2 (ja) * 1996-10-31 2002-06-10 三洋電機株式会社 Dc−dcコンバータ装置
JP2000196075A (ja) * 1998-12-25 2000-07-14 Hitachi Ltd 半導体装置及びその製造方法
EP1204145B1 (en) * 2000-10-23 2011-12-28 Panasonic Corporation Semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823172A (en) * 1986-06-17 1989-04-18 Nissan Motor Company, Ltd. Vertical MOSFET having Schottky diode for latch-up prevention
US5072266A (en) * 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US5915179A (en) * 1995-06-09 1999-06-22 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
WO2000051167A2 (en) * 1999-02-26 2000-08-31 Fairchild Semiconductor Corporation Monolithically integrated trench mosfet and schottky diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380471A (zh) * 2012-06-13 2015-02-25 株式会社电装 碳化硅半导体装置及其制造方法
CN104380471B (zh) * 2012-06-13 2017-10-27 株式会社电装 碳化硅半导体装置及其制造方法

Also Published As

Publication number Publication date
US20030040144A1 (en) 2003-02-27
EP1425791A4 (en) 2006-02-15
WO2003019623A3 (en) 2003-10-16
KR20040036914A (ko) 2004-05-03
CN101064308A (zh) 2007-10-31
JP2005501408A (ja) 2005-01-13
WO2003019623A2 (en) 2003-03-06
US6621107B2 (en) 2003-09-16
EP1425791A2 (en) 2004-06-09
JP4874516B2 (ja) 2012-02-15
AU2002329862A1 (en) 2003-03-10
CN1547765A (zh) 2004-11-17
TW583773B (en) 2004-04-11

Similar Documents

Publication Publication Date Title
CN1314091C (zh) 具有内嵌的沟槽肖特基整流器的沟槽dmos晶体管
CN100342505C (zh) 高压半导体器件及其制造方法
US10050105B2 (en) Semiconductor device
US7271067B2 (en) Voltage sustaining layer with opposite-doped islands for semiconductor power devices
US7582519B2 (en) Method of forming a trench structure having one or more diodes embedded therein adjacent a PN junction
CN100338778C (zh) 场效应晶体管及其制造方法
CN102804386B (zh) 半导体器件
JP4840738B2 (ja) 半導体装置とその製造方法
JP2008516451A (ja) 低ミラーキャパシタンスのmosゲート構造トランジスタ
CN1225796C (zh) 双载子晶体管及其制造方法
CN1124408A (zh) 一种用于半导体器件的表面耐压区
JP2005505921A (ja) フローティングアイランド電圧維持層を有する半導体パワーデバイス
JP2000040822A (ja) 超接合半導体素子およびその製造方法
JP2003101022A (ja) 電力用半導体素子
CN1738057A (zh) 具有增强的屏蔽结构的金属氧化物半导体器件
JP2022022449A (ja) 半導体装置
US20100044786A1 (en) Semiconductor device
CN1589499A (zh) 具有多晶硅源极接触结构的沟槽mosfet器件
JP7056031B2 (ja) 半導体装置
CN109888005A (zh) 逆导型超结igbt器件及其制造方法
CN107068759A (zh) 半导体器件及其制造方法
CN1539169A (zh) 对称沟槽mosfet器件及其制造方法
CN101471381B (zh) 沟槽栅mosfet及其制造方法
JP2011071161A (ja) 半導体素子及びその製造方法
CN210224042U (zh) 平面结构沟道金氧半场效晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070502