CN1315877A - 含刀片的电传送装置 - Google Patents

含刀片的电传送装置 Download PDF

Info

Publication number
CN1315877A
CN1315877A CN99810255A CN99810255A CN1315877A CN 1315877 A CN1315877 A CN 1315877A CN 99810255 A CN99810255 A CN 99810255A CN 99810255 A CN99810255 A CN 99810255A CN 1315877 A CN1315877 A CN 1315877A
Authority
CN
China
Prior art keywords
blade
reservoir
electrode
chemical compound
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99810255A
Other languages
English (en)
Inventor
孙鹰
R·W·奥克松
S·J·维希涅夫斯基
J·C·T·王
S·M·尼米克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Consumer Inc
Original Assignee
Johnson and Johnson Consumer Companies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Consumer Companies LLC filed Critical Johnson and Johnson Consumer Companies LLC
Publication of CN1315877A publication Critical patent/CN1315877A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • A61N1/303Constructional details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles

Abstract

本发明涉及用于将化合物透过哺乳动物屏障膜送递的装置(100),其包括:(a)带接触膜的表面的容器(102),所述的表面(104)带有多个外露刀片(106)和与所述的刀片相邻的槽(108);(b)与所述的槽相通的用于存储所述的化合物的储器;和(c)与所述的储器相通的电极,其中所述的刀片的宽度朝所述的表面外变细。

Description

含刀片的电传送装置
相关申请交叉参考
本申请享有于1998年8月31日登记的美国专利No.60/098,494和1999年4月16日登记的美国专利No.60/129,705的优先权,本文将它们全部引入作为参考。
发明领域
本发明涉及将分子(如活性物质或组织液)穿过屏障膜(如皮肤或粘膜)送递的方法及装置。
发明背景
多年来已广泛处方经皮和局部剂型用于治疗全身疾病和局部疾病(如那些涉及皮肤和其下组织(underlying tissue)的疾病)。这些药物通常是“易于送递的”,因为它们易于高效穿透皮肤或粘膜。药物穿透皮肤或粘膜的渗透是穿过皮肤或粘膜的化学势梯度的结果。“易于送递的”药物例子包括硝酸甘油、东莨菪碱、尼古丁、氢化可的松、倍他米松、苯佐卡因和利多卡因。
然而,大部分药物和生物活性成分不能满足上述要求,因此被称为“难以送递的”药物。“难以送递的”药物包括胰岛素、加压素、红细胞生成素、干扰素、生长激素和释放因子。通常“难以送递的”药物具高亲水性和/或高分子量,如多肽、蛋白质和DNA。
为了增加这些药物的皮肤渗透性,已用了各种化学和物理的增强渗透的方法。通常可用化学渗透增强剂来增加药物的经皮送递。Buyuktimkin等人的“提高经皮药物渗透的化学方法”,Transdermal and Topical Drug Delivery Systems,Interpharm Press,Inc.,1997,第357-475页报道了对化学渗透增强剂全面文献的综述。然而这种方法通常仅对相对较低分子量(约低于1000道尔顿)的药物有效。
也可用电来促进药物透过皮肤屏障送递,通过透过皮肤的电位梯度促进药物的送递。有三种用电促使药物透过皮肤屏障送递的类型,称为电离子透入治疗、电渗和电造孔法。在经皮电离子透入治疗中,通过给予的电位梯度将离子化的药物送递入皮肤。在电渗中,由流体携带非离子或低离子的药物,该流体由施加的电位梯度驱动穿过皮肤。电造孔法是通过高电压低电流的极短脉冲在皮肤屏障上进行微型穿孔。这些方法可见Ying Sun,“用物理方法:加热、超声波和电提高皮肤的吸收”,Transdermal and Topical Drug Delivery System,Interpharm Press,Inc.,1997第327-355页。
因此依旧需要一种非破坏性或破坏性最小化的经皮装置来送递活性物质,尤其是大分子量的药物,如多肽和蛋白质。由于大分子量药物的高成本,因此需要一种高度有效的、破坏性最小化的经皮药物送递装置,这种装置不会分解药物或使药物失活。另外,要求经皮送递装置可以在一段长时间内连续或周期地将活性物质透过皮肤或粘膜,而不刺激皮肤和粘膜。
发明概述
一方面,本发明涉及将化合物透过哺乳动物的屏障膜(如人的皮肤或粘膜)送递的装置。所述的化合物可以是用于治疗目的的活性物质(如药物)或用于诊断目的的生物样品(如哺乳动物组织液中的化合物)。该装置包括带有接触膜的表面的容器、装化合物的储器和电极。接触膜的表面含有多个外露的刀片,刀片旁有槽。每个刀片的宽度和/或厚度从接触膜的表面渐渐减小(如宽度沿接触膜的表面到刀片的顶端或尖端递减)。储器与槽和电极相连。
在一实例中,当接触膜的表面与屏障膜(如角质层)接触时,刀片破坏屏障膜,产生透过屏障膜的路径。然后储器中的活性物质受电传送(electrotrasport)(如电离子透入治疗)的推动而穿过该路径。在一实例中,用这种装置送递脂质体制剂,以使核酸有效地转染入表皮基底层的皮肤细胞。
本发明的另一实例是一经皮电传送系统,其包括上述的装置、对电极和电源(如电子控制单元),该电源与装置的电极和对电极是电连接的。为了通过电传送(如电离子透入治疗、电渗、反向电渗或电造孔法)送递活性物质,将装置的接触膜的表面和对电极与哺乳动物的屏障膜接触,并加电流(如从电极通过屏障膜到对电极)。例如,在电离子透入治疗中,电流使得装置储器中离子化的活性物质以及较小程度上的非离子化活性物质(包括被脂质体包囊化的活性物质)流过装置的槽进入哺乳动物。
另一方面,本发明涉及将活性物质透过哺乳动物屏障膜送递的方法,包括用间隔预定距离的多个刀片穿透屏障膜(但基本不破坏屏障膜下的真皮),以形成穿透屏障膜的路径,施加透过哺乳动物的电流,使活性物质通过这个路径流入或流出哺乳动物。每个刀片朝刀片的顶端渐渐变小。
本发明的其它特点和优点在以下的附图简述、发明详述和权利要求中是显而易见的。
附图简述
图1是本发明电传送装置一实例的模式图。
图2A、2B、2C、2D、2E和2F是可用于本发明经皮电离子透入治疗装置的刀片造型模式图。
图3是放大4、10和50倍显示用800μm高度刀片处理人尸体皮肤的组织学结果的显微照片。
图4是放大4、10和50倍显示用800μm高的针处理人尸体皮肤的组织学结果的显微照片。
图5A是本发明经皮电离子透入治疗装置另一实例的模式图。
图5B是本发明经皮电离子透入治疗装置另一实例的模式图。
图5C是本发明经皮电离子透入治疗装置另一实例的模式图。
图6是本发明经皮电离子透入治疗装置另一实例的模式图。
图7是放大100倍显示由三片刀片围绕的本发明的槽的显微照片。
图8A、8B、8C和8D是显示由四片刀片围绕的本发明的槽的显微照片。
图9是可用于本发明经皮电离子透入治疗装置的刀片的造型模式图。
发明详述
据信,按本文所述本领域技术人员能使本发明得到充分的运用。以下分析的实施例仅起说明作用,对公开的其余部分无任何限制作用。
除非特别指出,本文所用的所有技术和科学术语都是本发明所属领域技术人员通常理解的含义。同样,本文提到的所有出版物、专利申请、专利和其它参考文献全部纳入作为参考。
一方面,本发明涉及用于送递活性物质透过屏障膜(例如皮肤和粘膜,如皮肤的角质层)的装置。屏障膜包括至少一层细胞(即活或死细胞)。这种装置有效地送递离子化(如用电离子透入治疗、电渗、电造孔法、phonophoresis,或用浓度梯度或压力的力)和非离子化活性物质如脂质体包束的活性物质或组织液中的化合物(如用电离子透入治疗、电渗、电造孔法、phonophoresis,或用浓度梯度或压力的力)通过屏障膜而仅有极小刺激或无刺激。而且这种装置比已有的电离子透入治疗装置送递活性物质的速度更快,而且不使活性物质失活或变性。
可用本装置送递的活性物质包括(但不限制于)任何能对人体起生物效应的材料,如治疗性药物包括(但不限制于)有机化合物、药物物质、营养素和高分子化合物如多肽、蛋白质和核酸物质(包括DNA和反义物质)。多肽和蛋白类活性物质的例子包括(但不限制于)促甲状腺释放激素(TRH)、加压素、促性腺激素释放激素(GnRH或LHRH)、促黑素细胞激素刺激激素(MSH)、降钙素、生长激素释放因子(GRF)、胰岛素、促红细胞生成素(EPO)、α-干扰素、β-干扰素、催产素、卡托普利、缓激肽、心钠素、缩胆囊素、内啡肽、神经生长因子、黑素细胞抑制剂-I、胃泌素拮抗剂、生长抑素(somatotatin)、脑磷脂、环孢素和其衍生物。适合的营养素包括(但不限制于)维生素、氨基酸及它们的衍生物和矿物质。这些营养素的例子包括维生素B复合物、硫胺、烟酸、生物素、泛酸、胆碱核黄素、维生素B6、维生素B12、吡哆醛、肌醇(insositol)、肉毒碱、抗坏血酸、抗坏血酸棕榈酸酯、维生素A及其衍生物(维生素A醇、维生素A酯、维生素A醛)、维生素K、维生素E、维生素D、半胱氨酸和N-乙酰半胱氨酸、中药提取物和上述的衍生物。同样,其它可用本装置送递的阳离子和阴离子活性物质,如M.Roberts,等人,“作为电离子透入治疗送递决定因素的溶质结构”,Mechanisms of Transdermal DrugDelivery,R.O.Potts和R.H.Guy编辑,Marcel Dekker,第291-349页,1997所述的那些。
如图1所示,装置100包括带有接触膜的表面104的容器102。容器102可由硅酮橡胶、合成橡胶、天然橡胶、如聚(异戊二烯)、聚(丁二烯-共-苯乙烯)、聚(异丁烯-共-异戊二烯)和聚(氯丁二烯)构成;以及其它通常用于医用装置的聚合材料构成。容器102可以是任何形状,如圆盘状、卵形或矩形。接触膜的表面104带有多个外露的刀片106,这些刀片彼此间隔预定的间距形成槽108。通常槽108间彼此的间隔约为100mm-10mm。接触膜的表面104可以是任何形状,例如圆盘状、卵形或矩形。在一实例中,接触膜的表面104的面积约为2-50cm2(如约为10-20cm2,如12cm2)。
接触膜的表面104和刀片106可由硬质金属材料制成,如不锈钢包括(但不限制于)手术用不锈钢和高碳钢、其它合金和纯金属。硬质金属材料可以具有不导电的外层。在一实例中,这种不导电外层包住了接触膜的表面104上的所有金属,从而金属就不外露了。这种不导电外层可由Telfon、聚偏二氟乙烯、尼龙、聚砜、聚醚砜、聚酯、聚乙烯和聚丙烯构成。
另外,接触膜的表面104和刀片106也可由硬质非金属材料构成,如聚合物,包括(但不限制于)共聚物和聚合物混合体、陶瓷、晶态材料和玻璃材料。刀片106可由不导电高强度材料(如聚苯乙烯、聚碳酸酯)、丙烯酸聚合物(如聚甲基丙烯酸甲酯)、Teflon、聚酯、聚氨酯、聚氯乙烯、玻璃纤维材料、生物可降解聚合物(如聚乳酸和聚乙醇酸共聚物)、陶瓷材料、和无机玻璃材料。
通常,刀片106的几何形状类似于小刀的尖端,即很薄稍微呈三角状或弧状。在一实例中,刀片的边缘是尖锐的。在一实例中,每个刀片朝着刀片的顶端渐渐变细(如刀片的厚度和/或宽度)。刀片的形状可以是直的、弯曲的、锯齿形的和/或钩形的,例如图2A-2F所示。在图2A-2F中,仅显示了刀片的一半(即显示了刀片的一半表面或宽度(“w”)的一半(“w/2”))。刀片的高度记为“h”,厚度记为“t”。在一实例中,刀片的边缘呈弯曲状(如图2A和2E)和/或刀片的面为弯曲的或倾斜的,如朝相邻的槽内弯曲或朝其外弯曲(如图2E和2F)。槽周围的刀片106可以2-10个(如3-6个)一组。
在一实例中,槽与其相邻的刀片是由单片金属(如金属的薄片,如不锈钢)形成的。见图7、8A、8B、8C和8D。用钻头(如圆或平头钻子)刺穿薄片形成槽。用钻头刺穿薄片时,它拉伸材料直到穿透材料,产生一穿透薄片的槽以及锥形的刀片(如图9中所示,刀片面的宽度“w”在刀片的底部比刀片顶端大,刀片的厚度“t”在刀片的底部也比刀片的顶端大)。槽周围刀片的数量取决于钻头的造型(如四面钻头产生四个刀片)。也可取决于钻头的形状以及钻头刺穿薄片的程度将刀片向槽弯曲(如用锥形或棱锥状钻头)。例如,若基本上不推过槽,四面钻头可形成X-形槽(见图8C)或方槽(见图8D)。PCT专利No.WO98/11937中公开了这种槽和刀片的制造。
虽然人角质层的厚度仅约有15μm,本申请发明者公开的破坏屏障膜所需的刀片高度明显大于15μm。发明者认为由于角质层的柔韧性和弹性,故需要较高的刀片高度。因此,通常刀片的高度大于屏障膜的厚度(如比角质层的厚度大,但比在压向皮肤时穿透真皮的厚度小)。在一实例中,从刀片的底部测量,刀片106的高度范围约为100-1500μm(如300-1,000μm或400-800μm)。在一实例中,与槽相邻的一刀片比槽周围的其它刀片至少大25%。在一实例中,刀片(如图9所示)在离其底部一半高度(“1/2h”)处测定的宽度与厚度的比例,(即“w1/2h”/“t1/2h”)至少为2(如至少为5或至少为10)。
在一实例中,当压向屏障膜如角质层或粘膜时,刀片仅破坏屏障膜最外层的表面,而对屏障膜下的组织不造成任何基本不利的影响。例如,当刀片用于人皮肤时,仅有角质层和偶尔有表皮被刀片破坏,而真皮基本上未受破坏。
本发明的刀片比同样高度的针(如Lee等人,美国专利No.5,250,023),穿透屏障膜产生的口明显较大,而且不破坏屏障膜下的组织,如活表皮和/或真皮。图3显示了用高度为800nn(从底部起)刀片处理的人尸体皮肤表面的四张显微照片。当角质层10被破坏时,表皮20和真皮30未受破坏。
与其相反,用针产生的路径通常直径很小,而且还会被表面皮肤组织的弹性和膨胀特性进一步减小。图4显示了用高度为800mm针处理的人尸体皮肤表面的三张显微照片。如图4所示,人真皮30被针破坏,通常导致疼痛、出血和其它不希望的组织对受伤的反应。由于组织对受伤的反应是身体的天然防御系统,用针辅助送递的活性物质(尤其是多肽和蛋白质药物)会经历被激活的酶和会聚的小噬细胞的加速生物降解。同样,本发明的刀片比相同高度的针具有更优越的机械强度,因此在皮肤组织中断裂的可能性较低。而且刀片与相当尺寸的针相比价廉且易于制造。
在用装置100前,可先用渗透增强剂预处理皮肤,以降低角质层的柔韧性和弹性。这些渗透增强剂通过从角质层提取皮肤脂类和水分,降低角质层的柔韧性和弹性。这种渗透增强剂的例子包括(但不限制于):低级醇(C2-C5),如乙醇和异丙醇;酮如丙酮;酯,如乙酸乙酯和乙酸丁酯;烷烃,如己烷;醚类;全氟代烃;表面活性剂;及上述的混合物。角质层在用装置100之前也可用减弱角质层角蛋白结构的渗透增强剂处理。这种减弱角蛋白的渗透增强剂可局部或经电离子透入法给予。这些渗透增强剂的例子包括(但不限于):巯基化合物包括(但不限制于)巯基乙酸、硫代乳酸、硫代水杨酸以及它们的钙、铵、镁、钠、锂、钾、锶盐、硫代甘油、硫代乙二醇、半胱氨酸、乙酰半胱氨酸、高半胱氨酸、半胱氨酸甲酯、半胱氨酸乙酯、氨甲酰基半胱氨酸谷胱甘肽和半胱胺;硫化钠;硫化钾;硫化锶;硫化锂;脲;水杨酸;酶包括(但不限制于)胰蛋白酶、胰凝乳蛋白酶、噬热菌蛋白酶、木瓜酶和desquamin;和上述的混合的。
在皮肤表面平行移动刀片106以增加角质层上开口的大小。这种平行移动可采取振动或振荡移动形式。在一实例中,这种移动的幅度小于或等于两相邻刀片的间距。移动的角度可变,取决于特定的用途(如可从与皮肤平行到与皮肤垂直)。刀片的移动也可以是环形或随机的。可手工或用电动机驱动刀片的移动,可由压力传感器(探测何时压在皮肤上的刀片压力已达预定压力)来控制。刀片也可由一压电装置(频率为几周/秒到几千周/秒)控制在皮肤上平行振动或摆动。
在装置100的一实例中,刀片106和任选地接触膜的表面104可带有涂层107。这种涂层107可含有待送递的活性物质和/或渗透增强剂。皮肤中的水分或来自储器110的载体如水,会将涂层107中的活性物质送递到身体。因此,当涂层107中存在活性物质时,接触膜的表面104和涂层107可分别用于对哺乳动物送递活性物质(如该装置可无需储器和电极)。在一实例中,本发明涉及这种装置及其使用。
涂层107还可含有佐剂以增加涂层的机械强度、活性物质的溶出速率、活性物质的稳定性、和降低活性物质(尤其是蛋白质和肽)的不可逆性聚集或聚合。适合的佐剂例子包括(但不限制于)上述的渗透增强剂;水溶性聚合物;单-、双-和多糖;环糊精;和抗氧化剂,如抗坏血酸、抗坏血酸酯、丁基羟基-苯甲醚、丁基羟基-甲苯、半胱氨酸、N-乙酰半胱氨酸、亚硫酸氢钠、偏亚硫酸氢钠、甲醛次硫酸钠、丙酮合亚硫酸氢钠、生育酚和去甲二氢愈创木酸。
也可将其它生物活性物质包括到涂层107中,以得到生物效应,如减少局部组织的刺激和/或炎症、减少与经皮电离子透入治疗相关的皮肤感觉不适、维持药物送递路径的不闭合、并维持无菌。适用于减少局部组织刺激和/或炎症的活性物质的例子包括(但不限制于):氧化锌粉末、组胺二盐酸盐、樟脑、薄荷脑、烟酸甲酯、水杨酸甲酯、松节油和皮质类固醇。适用于减少与经皮电离子透入治疗相关的皮肤感觉不适的活性物质例子包括(但不限制于)局部镇痛药,如利多卡因和苯佐卡因。适用于维持药物送递路径的不闭合的活性物质的例子包括(但不限制于):肝素、低分子量肝素、非离子表面活性剂、阳离子表面活性剂和阴离子表面活性剂。适用于提供并维持无菌的活性物质包括(但不限制于):抗微生物剂,如碘、苯扎氯铵、苄索氯铵、三氯卡班、三氯生、杆菌肽锌、新霉素、硫酸多粘菌素B和四环素。
涂层107中也可含有酶抑制剂,如蛋白水解酶抑制剂和蛋白酶抑制剂。这些抑制剂与活性物质一起送递到活皮肤组织,以防止蛋白酶对活性物质的降解。蛋白酶抑制剂包括(但不限制于):抑肽酶、甲磺酸卡莫司他(camostat mesilate)、从大豆或其它来源衍生的胰蛋白酶抑制剂、邻二氮杂菲、乙二胺四乙酸(EDTA)、dilucine、脱氧胆酸钠和从鸭或火鸡蛋白和其它来源衍生的卵类粘蛋白。
替代或补充活性物质,涂层107可含有不导电聚合物涂层,如Teflon、聚偏二氟乙烯、尼龙、聚砜、聚醚砜、聚酯、聚乙烯和聚丙烯。
涂层107可含有将装置粘附于屏障膜的粘合剂。粘合剂可是聚合的、压敏的和不导电的,而且即使长期与水接触也保持粘性。适合的粘合剂材料包括(但不限制于):聚硅酮、聚异丁烯及其衍生物、丙烯酸酯类、天然橡胶和上述的组合。合适的粘合剂包括硅酮粘合剂和丙烯酸类粘合剂。合适的硅酮粘合剂的例子包括(但不限制于)Dow Corning355(可从Dow Corning of Midland,MI购得)、DowCorningX7-2920、Dow CorningX7-2960、GE 6574(可从General Electric Companyof Waterford,NY购得),和硅酮压敏粘合剂如那些在美国专利No.2,857,356、4,039,707、4,655,767、4,898,920、4,925,671、5,147,916、5,162,410和5,232,702中公开的。适合的丙烯酸酯粘合剂包括(但不限制于):乙酸乙烯-丙烯酸酯多元聚合物,如Gelva7371(可从Monsanto Company of St.Louis,MO购得)、Gelva7881、Gelva2943、I-780医用粘合剂(可从Avery Dennison of Gainesville,OH购得)和丙烯酸酯压敏粘合剂,如在美国专利No.4,994,267、5,186,938、5,573,778、5,252,334和5,780,050中公开的那些。
粘合剂将装置粘附在屏障膜(如皮肤)上,从而使其不容易从皮肤上脱离或在皮肤上移动。粘合剂也使电流的泄漏最小化,所述的电流流经槽108到屏障膜(如角质层)。电流的泄漏可能是由小离子流造成的,如氢离子、羟基离子、钠离子等,通过角质细胞间的细胞间隙,流到完整的角质层(即未被刀片106破坏的角质层区域)。与正常的角质层相比,充分水化的角质层具有较大的细胞间隙,因此能让较大的电解质移动,导致电流较多的流失。由于活性物质送递的效率随着电流的减少而降低,因此电流的泄漏降低了活性物质的送递效率。不导电或低导电粘合剂层将防止穿过槽108的离子流泄漏入角质层。取而代之的是,离子仅流过由刀片106在角质层形成的路径,而不进入角质层的其它区域。因此,不导电粘合剂层提高了活性物质的送递效率。
替代或补充涂层107中的粘合剂,可用橡皮带将装置100缚在屏障膜上,所述的橡皮带是带扣的(如与皮表带类似)、Velcro带等。
槽108的大小任意,只要能让活性物质穿过即可。通常槽108的直径约为100mm-4mm。
储器110与槽108相通,让化合物(如活性物质)流出或让化合物(如组织液中的化合物)进入储器110。储器110可由任何与活性物质不起反应的材料制成,包括可制备容器102的材料。
当用于化合物给药时(作为药物),储器110可含有药学上可接受的且与化合物相容的流体载体(如水)。替代或补充它,储器110可含有悬浮材料来固定活性物质。悬浮材料的例子包括亲水、高吸收性的多孔材料。多孔材料的例子包括(但不限制于):棉制纱布;由人造丝或人造丝混合物制成的非编织衬垫;聚酯或其它聚合纤维;由聚氨基甲酸酯、聚酯和/或其它聚合物制成的聚合泡沫或海绵状材料;和交联和非交联胶凝材料,如聚丙烯酰胺、聚乙烯醇、明胶、羟基甲基纤维素、羟基乙基纤维素、羟基丙基纤维素、甲基纤维素和羧基甲基纤维素。可将上述渗透增强剂加入悬浮材料中。
储器可带有一个或多个小孔114,来释放储器中的空气或其它气体,以辅助储器的装料。通常小孔的直径小于100μm。小孔可带有机械活门或压敏活门,以防止操作过程储器中流体的溢出。
在装置100的操作中或即将操作前,可将适当溶剂中的活性物质加到储器110中。另外,储器110中可用固态活性物质预装料。固态活性物质可以是固定在多孔材料(如非编织衬垫或聚氨基甲酸酯泡沫)上的粉末,或是从冷冻干燥得到的冻干形式(有或无多孔材料)。操作中,将溶剂引入储器110,溶解固态活性物质,使其与固定该装置100的身体接触。储器110中可存在冻干和贮藏过程中用于稳定活性物质和用于迅速溶解活性物质的药学上可接受的赋形剂。赋形剂的例子包括(但不限制于):磷酸钠和磷酸钾;柠檬酸;酒石酸;白蛋白;明胶;和碳水化合物,如葡萄糖、甘露醇、葡聚糖和环糊精。另外,储器110还可含有渗透增强剂和上述其它生物活性物质。
电极112可以是贵金属,如铂或金或导电的碳。可将电极112装在基底(如金属或导电聚合物)上。适合的导电聚合物包括(但不限制于):导电填充聚合物,如填碳硅酮橡胶;填碳粉的天然橡胶;填卤化银粉的聚合物;包卤化银的银,如包氯化银的银、包溴化银的银和包碘化银的银;和抗腐蚀合金,如不锈钢和含钛合金。电极112也可与上述材料组合。
在操作中,使装置100接触膜的表面104和对电极与动物如哺乳动物(尤指人)皮肤接触。在装置100的电极112和对电极间加电势。在一实例中,对电极与装置100相同。电流使储器110中的化合物(如活性物质)穿过槽108流入哺乳动物或使哺乳动物中的化合物流经槽108流入储器110。由刀片106产生的穿透角质层的路径减少了角质层的电阻,从而增加了穿透哺乳动物身体的电流。结果是活性物质能更好地送递。
所用的电流可以是常规的直流电(DC);叠加信号,如DC与常规交流电(AC)的组合;和美国专利No.5,135,478中公开的叠加信号;脉冲DC,如美国专利No.5,042,975中公开的脉冲DC;和Y.Sun和H.Xue,Proceed.Intern.Symp.Control.Rel.Bioact.Mater.,17:202-203(1990)和美国专利No.5,224,927和5,013,293中描述的带周期性反向极性的脉冲DC和DC。在一实例中,所用的电流是直流电或带周期性反向极性的脉冲直流电。电流密度(每单位面积皮肤上的电流密度)通常小于约0.5mA/cm2,这是人皮肤对电流的痛觉阈(如小于0.4mA/cm2)。
在变化点可减小电流和电压的波形,以避免可能造成哺乳动物不适感的突然和大的电流/电压变化。例如,电离子透入治疗开始时,可逐渐增加电流到所需的密度,从而将哺乳动物的不适减到最小。
图5A显示了本发明的一实施例。装置500含有带接触膜的表面504的容器502。接触膜的表面504带有多个外露刀片506,这些刀片彼此间隔预定的间距形成槽508。接触膜的表面504上涂有粘合剂层509。容器502的化合物储器510与槽508和电极储器514相通。
电极储器514在电极512和化合物储器510之间,并与它们相通。半透膜516将电极储器514与化合物储器510隔开。电极储器514可含有电极介质。为了使与携带电荷的化合物/流体离子竞争透过皮肤屏障的电极介质中的离子减到最小,电极介质可带低电荷或不带离子电荷。通常,组成电极介质的水溶液所含的电解质小于约1%,如小于约0.1%,如小于约0.01%(重量)。电极介质或电极储器514中也可含有上述的渗透增强剂,以减少角质层的柔韧性和弹性。电极介质也可含有约0.1-90%(重量)其它非离子溶剂,包括(但不限制于):甘油、丙二醇、己二醇、聚乙二醇、聚丙二醇和低级醇,如乙醇和异丙醇。
可在电极储器514的电极介质中加入缓冲剂,以维持电离子透入治疗中电极储器514中溶液的pH在一确定的pH范围。缓冲剂包括(但不限制于)聚合物缓冲剂、对周围液体有缓冲作用的固态材料等。在一实例中,缓冲剂是聚合物缓冲剂,其不能透过半透膜516到达化合物储器510。由于聚合物缓冲剂是大分子,离子化的聚合物缓冲剂的离子流动性很低,不与携带电荷的化合物/流体离子明显竞争。因此,聚合物缓冲剂不降低化合物的送递效率。
聚合物缓冲剂可以是任何聚合物,其在确定的pH通过吸收氢离子或氢氧根离子进行离子化,维持电极储器514中溶液的pH在所需的范围。在一实例中,聚合物缓冲剂的分子量大于可透过半透膜516的分子量(如至少是半透膜516分子量截留值的两倍)。
聚合物缓冲剂可以是水溶性的或不溶于水的。在一实例中,聚合物缓冲剂是不溶于水的,以细颗粒形式使表面面积最大化。聚合物缓冲剂的细颗粒可悬浮在凝胶介质中,在该介质中可溶解或悬浮待送递的活性物质。另外,可将不溶于水的聚合物缓冲剂造成多孔聚合膜,覆盖电极512和/或电极储器514的内壁。多孔聚合膜也可用于作透膜516。
带酸性官能团的聚合物(即带羧基官能团的阴离子聚合物,如用于肠溶衣的聚合物),可用于防止阴极电离子透入治疗中电极储器514中电极介质的溶液pH的增加(如由阴极送递的带负电荷的活性物质)。适合的阴离子聚合物包括(但不限制于)异丁烯酸与异丁烯酸酯的共聚物,如Eudrgit L(可从Rohm Tech,Inc.of Malden,MA购得)、Eudragit S、Eudragit RS、Eudragit RL、苯二甲酸醋酸纤维素(C-A-P)和苯三酸醋酸纤维素(C-A-T)和苯二甲酸羟丙甲纤维素(HPMCP),(可从Eastman Fine Chemicals of Kingsport,TN购得)。阴离子聚合物可以是药用级的。
阴离子聚合物的一个例子是Eudragit S100。pH低于7时,Eudragit S100是固体。pH高于7时,由于羧基电离Eudragit S100溶解。羧基官能团的电离导致阴极电离子透入治疗中由电化学反应产生的过量氢氧根离子被中和。例如,一个拟用电离子透入治疗给药的制剂(pH范围为6.5-7),可用Eudragit S100作为缓冲剂。在pH6.5~7之间,Eudragit S100是固体,因此不干扰活性物质送递过程。而在电离子透入治疗过程中,在电极储器514的电极介质溶液中开始积聚的氢氧根离子使pH升高。结果,Eudragit S100聚合物溶解,中和氢氧根离子,从而使电极介质的pH维持在一确定的范围。
带碱性官能团的聚合物(即阳离子聚合物,如带胺基基团的聚合物)可用于防止阳极电离子透入治疗中pH的降低(即由阳极送递的带阳电的活性物质)。适合的阳离子聚合物包括异丁烯酸二甲氨基乙酯与异丁烯酸酯的共聚物,如可从RohmTech,Inc购得的Eudragit E,其平均分子量为150,000道尔顿。在一实例中,阳离子聚合物是药用级的。Eudragit E在pH大于约5时为固体,pH低于约5时溶解。当因阳极化学反应氢离子的浓度增加时,Eudragit E通过吸收氢离子而电离,从而将电极介质的pH维持在一确定的范围。
固体缓冲剂可以是不溶于水的或水溶性有限。适合的固态缓冲剂包括(但不限制于):碳酸钙、氧化铝、氢氧化铝和氧化锌。
电极储器514中的电极介质可含有其它佐剂,包括(但不限制于)糖、多糖、环糊精、非离子表面活性剂和抗微生物剂。
在另一实例中,电极储器514被分成两个或多个储器(可任选地由半透膜分隔)。
通常,半透膜516可渗透溶剂和小分子量赋形剂,如小分子量的缓冲剂、抗氧剂、螯合剂、防腐剂和渗涨度(tonicity)调节剂,但不让待送递的活性物质或待分析的哺乳动物内的化合物渗透。在一实例中,只有小于该化合物分子量一半(如1/4)的颗粒可以透过半透膜516。例如,分子量小于1,000道尔顿的颗粒可以透过半透膜516。
已知许多离子化合物参与电极512的表面513上的电化学反应。化合物的电化学反应通常导致电极512的表面513上化合物的降解或沉淀(如降低活性物质的送递效率)。半透膜516防止了化合物接触表面513,从而防止了表面513上化合物的降解和沉淀。
半透膜516可由以下材料制成:纤维素、纤维素衍生物如Spectra/Por透析膜(可从Spectrum of Houston,TX购得)、再生纤维素、醋酸纤维素和硝酸纤维素;纤维素与其它聚合材料的混合物:如纤维素/聚酯和纤维素/聚丙烯;聚乙烯、聚丙烯、Teflon、聚四氟乙烯、偏二氟乙烯、尼龙、聚砜、聚醚砜、铜纺、聚甲基丙烯酸甲酯、乙烯乙烯醇、聚丙烯腈和上述聚合物的混合物。
大部分蛋白质和肽类药物是通过注射给予的。这些可注射的药物制剂可通过注射(如通过隔膜(未显示))、预加料或通过路径520引入化合物储器510。可注射的药物制剂通常含有的离子性赋形剂包括:防腐剂,如甲酚、氯甲酚、苯甲醇、对羟基苯甲酸甲酯、对羟基苯甲酸丙酯、苯酚、硫柳汞、苯扎氯铵、苄索氯铵和硝酸苯汞;稳定剂;抗氧剂,如抗坏血酸、抗坏血酸酯、丁基羟基-苯甲醚、丁基羟基-甲苯、半胱氨酸、N-乙酰半胱氨酸、亚硫酸氢钠、偏亚硫酸氢钠、甲醛次硫酸钠、生育酚、去甲二氢愈创木酸;缓冲剂;螯合剂,如乙二胺四乙酸及其盐;缓冲剂如乙酸、柠檬酸、磷酸、谷氨酸及它们的盐;和渗涨度调节剂,如氯化钠、硫酸钠、葡萄糖和甘油。这些离子赋形剂与化合物离子竞争传送电流。由于竞争离子(即离子赋形剂)通常比化合物离子小而且移动得快,它们传送明显数量的电流。结果,许多电流转为移动离子赋形剂而不是化合物离子,导致如较低的活性物质送递效率。
但由于竞争离子能穿过半透膜516进入电极储器514,而化合物不能,化合物储器510中竞争离子的浓度降低。因此,大部分进入哺乳动物体内的电流是由化合物离子传送的而不是竞争性离子,导致如活性物质的较大送递。
由于化合物储器510与电极储器514容积比例的降低,化合物储器510中有较多的竞争离子被驱逐到电极储器514中。结果,活性物质送递的效率随着容积比例的降低而升高。例如,在容积比例为1∶19时,当竞争离子渗透过半透膜516达到平衡后,化合物储器510中竞争离子与活性物质浓度的比例是无半透膜516的相同装置的1/20。因此,较佳地应使化合物储器510与电极储器514的容积比例最小化。在一实例中,容积比例约小于1∶1(如小于1∶10)。
这种装置可含有一个或多个与化合物储器510相通的储器。半透膜可将每个附加的储器与化合物储器510隔开。
入口518将含有活性物质的溶液通过路径520引入化合物储器510。在一实例中,将入口518制成适于接受含化合物的胶囊522(如通常用于针头注射的含蛋白质或肽类药物的胶囊)。胶囊522可以是任何形状,但通常是柱状的。胶囊522可由任何药学上可接受的材料制成,如玻璃、塑料或金属。对于玻璃或其它易碎胶囊而言,可将柱塞524压向入口518中的胶囊522,以压碎胶囊。随后胶囊522中的溶液流经路径520进入化合物储器510。
在本发明的另一实例中,储器510和电极储器514中的液体可通过入口518再充满。由于水的电解、流体的送递进入哺乳动物体内、泄漏和蒸发,随着时间的推移,这些储器中的流体量将减少。
路径520可任选地含有过滤器,以防止胶囊522的碎片(如玻璃碎片)进入化合物储器510而接触到哺乳动物皮肤。在一实例中,过滤器的孔径大小约为0.2μm-500μm。
在图5B所示的另一实例中,在入口518中插入两个胶囊522和526。第一个胶囊522含有活性物质溶液。第二个胶囊526含有低量离子或无离子的溶液,如蒸馏水。第一个胶囊522的位置比第二个胶囊接近路径520,因此当柱塞524压向入口518时,两个胶囊522和526受挤压,使得第一个胶囊522中含有的活性物质先进入化合物储器510,其后第二个胶囊526中的低量离子溶液再进入。低量离子溶液流经化合物储器510和半透膜516,进入电极储器514。当低量离子溶液流入电极储器514时,其携带非活性物质(包括化合物储器510中的竞争离子)进入电极储器514。结果增加了活性物质的送递效率。
在图5C显示的另一实例中,隔膜530将胶囊522和526隔开。隔膜530防止当胶囊522和526压碎时释放的溶液混合。任选地,隔膜可在入口518中滑动。第二个路径532让第二个胶囊526释放的流体进入电极储器514。当柱塞524压入入口518时,胶囊522和526被压碎,使得第一个胶囊522中含活性物质的溶液,通过路径520进入化合物储器510,而第二个胶囊526中的低量离子溶液通过第二路径532进入电极储器。
对于图5A而言,可用注射器通过自封式入口(没有显示),将低量离子或无离子溶液注射入化合物储器510或电极储器514,以减少竞争离子的数量(如图5B所示的两个胶囊的实例)。
电源和/或电子控制单元528与电极512呈电接触。可用上述的任何方法,让电子控制单元528施加电流穿过电极512和对电极(没有显示)。
在一实例中,将装置500和对电极(等同于装置500)安置在哺乳动物皮肤上。施加一穿过电极的电流。经过预定的一段时间后,由电子控制单元528将电极的电极性反向,将对电极中的活性物质送递给哺乳动物。经过一段预定的时间后,再次使电极性反向。将这一方法连续进行,直到完成电离子透入治疗。
Y.Sun和H.Xue,Proceed.Intern.Symp.Contro1.Rel.Bioact.Mater.,17:202-203(1990)中叙述了这种反转极性方法的优点。简单地说,周期性反转极性将逆转在每个电极的导电材料上进行的电化学反应的方向,中和由水电解产生的氢离子和氢氧根离子,从而防止pH的任何明显变化。由希望维持的pH范围确定每一时间间隔的长度。溶液pH的变化取决于许多因素,如缓冲剂和其它赋形剂的存在、所施加的电流密度以及电解质和活性物质的体积。在一实例中,在两次极性反转之间pH的变化为约3pH单位,约2pH单位或约1pH单位。在电子控制单元528中可预先编好程序确定两次反转之间的时间间隔。由于pH的变化,装置500中的内含物也可能变化,两次反转极性之间的时间间隔可逐渐或同步增加或减少,以将pH维持在一确定的范围。
图6说明了本发明经皮电离子透入治疗装置的另一实例。装置600含有带接触膜的表面604的容器602。接触膜的表面604带有多个外露刀片606,这些刀片彼此间隔预定的间距形成槽608。接触膜的表面604上涂有粘合剂层609。容器602中的多个化合物储器610与槽608和电极612相通。预先将上述的固态活性物质加料至化合物储器610中,且化合物储器610彼此互不相通。分开的化合物储器610防止了每个储器中活性物质的流动远离由刀片606产生的送递路径,从而增加了活性物质的送递效率。也可在一个或多个轴枕、泡囊、胶囊等中含有活性物质。在安置入装置600前破碎轴枕、泡囊、胶囊等,以释放活性物质(或用本领域技术人员已知的装置600中的结构进行)。可将化合物储器610包括在一个或多个可拆装的药盒中。另外在一实例中,可选择性释放一些化合物储器610中的活性物质,而不释放其它化合物储器610中的活性物质。
电极储器614和第三储器616在电极612和储器610之间。第一半透膜618将电极储器614与储器610分开。第一半透膜618可透过溶剂和小分子量的赋形剂,但不能渗透过活性物质。
第三储器616与电极612相通。第二半透膜620将第三储器616与电极储器614分开。在该实例中,第三储器616中不存在上述的缓冲剂。另外,第二半透膜620阻止电极储器614的缓冲剂进入第三储器616。从而防止了缓冲剂污染电极612并在其上沉淀。
与第三储器616相通的一个或多个传感器622通过一导线624与电子控制单元626相连。另外,传感器622可与储器610和/或电极储器614(替代或补充第三储器616)相通。传感器622将检测出的信号传递到电子控制单元626。电子控制单元626控制电流,包括电流的方向和/或通过电极612的电位,并按从传感器622收到的信息调节电流和/或电位。电子控制单元626的电位和电流可以变化以实现希望的送递速率。
适合的传感器包括探测:pH、溶液导电率、卤素离子浓度、化合物浓度、各种酸(如硫酸、硝酸、磷酸、乙酸和柠檬酸)和盐的浓度、金属离子(如钠、钾、锂、锶、钙、锌、镁和铝)的浓度、含胺基官能团或羧酸官能团的化合物的浓度、气体(如氧气、氢气、二氧化碳和氨气)的浓度、颜色、粘度、密度、温度、压力、和电极上氧化和还原反应的反应物和产物浓度的传感器。这些传感器的例子包括(但不限制于):电导传感器;阻抗传感器;离子选择性电极,如选择氯、氟、硫酸根、银、钠、钾、锂和铵离子;以电流分析法为基础的传感器,如测氧和胺的;比色传感器;以分光光度测定为基础的传感器;和以电位测定法为基础的传感器。
在一实例中,传感器622是pH传感器,其将探测到的pH传递给电子控制单元626。如上述,电子控制单元626可反转加到电极612上的电流极性。按探测到的pH的变化以及所需的pH范围,增加或减少反转极性的时间间隔。
入口628让溶液通过路径630引入到第三储器616中。入口628适于接受胶囊632,该胶囊含有上述的低量离子或无离子溶液。在一实例中,将柱塞634压向入口628中的胶囊632,以压碎胶囊632并释放出其所含的溶液。当胶囊632压碎时,溶液进入第三储器616,流经第二半透膜620,电极储器614和第一半透膜618,进入化合物储器610。然后溶液携带化合物储器610中的活性物质,流经路径618进入固定装置600的哺乳动物的体内。
在本发明的另一实例中,通过入口628可以充填化合物储器610、第二储器614和/或第三储器616中的流体。由于水的电解、流体的送递进入哺乳动物体内、泄漏和蒸发,随着时间的推移,这些储器中的流体量将减少。
本发明的另一实例是一经皮电离子透入治疗系统,其包括本发明的装置、对电极和与装置的电极和对电极电连接的电子控制单元。为了送递活性物质或从哺乳动物获得化合物,使装置的接触膜的表面和对电极与哺乳动物(如人)的屏障膜接触,通过电极由电子控制单元施加电流。电流使装置储器中离子化的活性物质或哺乳动物中的化合物流经装置的槽,分别进入或流出哺乳动物的身体。
电子控制单元可以是任何形状或尺寸,若要用于患者则通常为小尺寸。当需要从储器以电传送(如电离子透入治疗、电渗、和电造孔法送递)方式送递活性物质,经过孔口,透过哺乳动物身体表面进入哺乳动物身体时,供电单元对电极提供电压/电位(如可反转极性)以及电流。供电单元可从外部来源获得其能量(如将电子控制单元插入标准墙壁插座),或其带有电池(如,用于患者)。在一实例中,电子控制单元和电极都含在同一外壳中。
这些电路和系统的例子是本领域熟知的,如美国专利No.4,141,359、4,744,788、4,747,819、5,224,927、4,752,285、4,722,726、4,731,049、5,042,975、5,571,149和5,853,383;Park,J.Neuroscience Methods,29:85-89(1989);Zakzewski等人,Med.&Biol.Eng.&Comput.34:484-88(1996);和Jaw等人,Med.Eng.Phys.17:385(1995)。美国专利No.4,406,658和5,224,927中公开了反转极性电路的例子。
按本发明电传送电流的波形包括(但不限制于):常规的直流电(DC);叠加信号,如DC与常规交流电(AC)的组合;和美国专利No.5,135,478中公开的叠加信号;美国专利No.5,042,975中公开的脉冲DC;和Sun等人(Proceed.Intern.Symp.Control.Rel.Bioact.Mater.,17:202-203(1990))和美国专利No.5,224,927和5,013,293中描述的带周期性反转极性的脉冲DC和DC。在任何变化点可将电流或电位波形变小(即避免电流/电位的突然和急剧的变化)以减少相关的皮肤不适和不良感觉。在一实例中,本发明电流的波形是DC或脉冲的DC(带周期性的反转极性)。在一实例中,由传感器将电流密度(如皮肤每位面积的电流密度)维持在小于约0.5mA/cm2(如小于约0.4mA/cm2)。
另一实例是通过用多个刀片穿透屏障膜(如不穿透真皮或穿透量最小)以形成一个或多个路径,从而使活性物质透过哺乳动物的屏障膜的方法。在一实例中,如上所述,刀片朝着刀片的顶端变细。在一实例中,刀片是覆盖有待送递给哺乳动物的活性物质和/或渗透增强剂和/或膜粘合剂。在一实例中,然后将活性物质施加在屏障膜中形成的路径上。在一实例中,在屏障膜上施加电流,使屏障膜上的活性物质移动经过路径,进入哺乳动物的体内。
除上述用电传送方法(如电离子透入治疗、电渗、和电造孔法送递)来增强化合物送递进入或流出哺乳动物外,也可用本领域熟知的其它方法(如补充或替代电传送),如超声波、可听声、机械运动、压力(即正压力或负压力)、渗透压、冲击波、加热(如将温度加热到比屏障膜表面的温度至少高3℃,但不能超过45℃),浓度梯度(如在膜一面有较高的化合物浓度)、化学增强剂、由化学载体送递治疗剂、和用膜粘合剂(如氰基丙烯酸酯聚合物)以除去膜。
超声波是指频率超过人听觉范围的声能,即超过20kHz。用超声波来提高药物的皮肤渗透,称为phonophoresis或sonophoresis。本发明将所有频率的声能(即频率低于和高于20kHz)与刀片应用联合,来提高物质穿过屏障膜的传送。可联合刀片与声能,来提高经皮药物送递,从而改善基因治疗的效果和提取用于诊断的生物物质。产生和传播用于这种目的的声能的装置部件与那些现用于药物送递和生物物质提取的部件类似,如美国专利No.4,767,401、5,636,632和5,582,586中所述的。
一个将压力(如突然释放的压力)与刀片处理屏障膜联合的例子是将无针的压力注射器装置安置在刀片处理过的皮肤上,进行经皮药物送递,药物的形式可以是液态或固态粉末。产生和突然释放用于这种目的的压力的装置部件与那些在美国专利No.4,790,824和5,399,163中所述的类似。也可用真空装置(如Vaccutainer)通过刀片处理的皮肤从哺乳动物抽提化合物。
可用渗透压从皮肤或粘膜提取生物物质(用于诊断),如在皮肤上安置含溶质或聚合物浓溶液(或凝胶)的刚性小室。该室有一孔,将其压向刀片处理过的皮肤。系统中的渗透压通过被破坏的屏障膜(如角质层)从皮肤中提取生物流体。也可用渗透压产生的正压力来提高药物的送递,方法如前所述(即将压力作为驱动力)。
可将冲击波描述为与时间相关的瞬时脉冲,其特征为出现时间极短(几十毫微秒范围)和几百巴的数量级,使介质粘度突然、急剧变化,从而导致屏障膜瞬时渗透性的增加。可由激光束(美国专利No.5,658,892和5,614,502)、燃烧、压缩气体的突然释放、或其它方法产生冲击波,从而与刀片的使用结合提高药物经屏障膜的渗透。将刀片的使用与冲击波技术相联合,能用较弱的冲击波(即,减少所需的能量输入)来实现药物渗透的提高,从而减少了冲击波的潜在副作用并降低了装置制造的技术难度。
也可用加热形式的热能来增加活性物质透过刀片处理过的皮肤的渗透。本发明加热单元的工作原理是电加热、相变的放热(即从气体到液体,液体到固体等)、和化学贴片。化学贴片的工作原理通常是通过撕碎内部隔离物使成分混合。成分的混合导致放热化学或物理化学反应,从而产热。这种装置的设计也可与美国专利No.4,685,911(公开了一种自动加热的经皮贴片)中所述的类似。当除去贴片背后的封条后,加热腔中的离子粉末暴露于空气和水,产生的放热反应发出热能从而促进了经皮药物吸收。
也可用化学增强剂。本发明的化学增强剂的定义是广义的,它具备以下功能:(a)增加药物和其它活性物质穿透人皮肤和粘膜的渗透性;(b)延缓或防止由刀片产生的屏障膜开口的封闭(如可溶性聚合物和生物聚合物,如大分子量或小分子量的肝素;多糖,如环糊精;和表面活性剂,如非离子表面活性剂和磷酸脂类);(c)增加局部血循环,从而便利药物吸收入血循环(如舒血管剂);(d)使局部组织的透膜体(permeant)聚积(如包括血管收缩剂和能与活性物质形成低溶解性沉淀或复合物的化合物);(e)增加送递系统中和送递路径周围的药物的溶解性和/或化学稳定性(如环糊精、络合剂、抗氧剂、蛋白酶和其它降解酶的抑制剂),以增加药物送递;或(f)提高皮肤和粘膜组织对药物送递或生物取样的耐受性,如减少组织刺激、不适、或其它与活性物质透过局部组织相关的不良副作用(如抗刺激剂、抗炎药、抗组胺剂、皮质类固醇、色甘酸及其盐和衍生物、锌盐和氧化锌、维生素和矿物质、植物化学品和中药提取物)。可在刀片处理屏障膜之前、之间和之后,用化学增强剂。
通过胶囊化、包载、表面吸附或其它机理,化学载体与活性物质(如药)反应,形成微型药物送递系统。化学载体的例子如下:(a)脂质体;(b)环糊精;(c)胶束;(d)微胶囊;(e)微乳;(f)水凝胶;和(g)毫微粒。
可用膜粘合剂(如氰基丙烯酸酯聚合物)剥去膜(如角质层)以便利穿透皮肤和粘膜屏障的渗透。熟知用粘合材料(如透明胶带)剥去角质层能增加药物的经皮渗透性。已报道了用100-120次胶带能完全除去角质层。另一方面,用氰基丙烯酸酯粘合剂剥离四次能达到类似的效果。氰基丙烯酸酯粘合剂与透明胶带的工作原理完全不同,氰基丙烯酸酯液体一接触到皮肤,就通过与皮肤中的水分和胺基官能团反应而聚合。我们的测试表明用氰基丙烯酸酯胶液剥离皮肤一次以上就有疼痛,因此未必是实际皮肤渗透增强的理想方法。
但我们发现将氰基丙烯酸酯皮肤剥离与刀片处理组合(如将氰基丙烯酸酯涂在接触膜的表面),只需一次剥离将能显著提高电离子透入治疗的药物送递。这种方法成功的解释是:微型刀片便利了液态氰基丙烯酸酯胶液在聚合前流入更深的角质层的角蛋白层,从而能更有效地除去刀片处理过位置的角质层。其也将在角质层上产生更大的开口,从而大大增强经皮电离子透入治疗。这种方法的优点是与有关的整个皮肤剥离的方法相反,这种方法仅需要从角质层剥离极小部分皮肤,这就使我们的方法作为经皮药物送递和生物物质取样的增强方法实际应用性更强。因此,本方法特别适用于组织液的极小破坏性的取样。
本发明可用所有氰基丙烯酸酯粘合剂,如基氰丙烯酸乙酯、氰基丙烯酸丁酯、氰基丙烯酸辛酯等,优选的氰基丙烯酸酯是氰基丙烯酸辛酯(DermabondTM)和2-氰基丙烯酸正丁酯(HistoacrylTM),它们已在许多国家被广泛用作治疗撕裂时的皮肤闭合的缝线替代物。
所有上述的渗透增强方法可单用,或以任何组合使用。但优选的是能协同达达增加渗透和/或其它益处(如减少副作用)的组合。
以下是对本发明装置和方法使用的描述。以下实施例仅起说明作用,无任何限制作用。
实施例1
将带800μm刀片的装置压向一片人尸体皮肤的表皮表面,该皮置于一平的弹性橡胶表面,真皮表面朝下。用气压计监测施加到该装置上压力的一致性。当该装置压向皮肤时,用O.C.T.冻结固定方法(O.C.T.4583化合物,Tissue-Tek,可从Sakura Finetechnical Co.of Tokyo,Japan购得)固定皮肤以及由刀片产生的印痕。然后取下皮肤样品、切片、染色,用于组织学评价。图3显示了结果。图3中显见用刀片处理的位置角质层被明显破坏,且角质层大部分被除去。虽然所用的尖刀片的长度比角质层厚度约大30倍,比表皮厚度(约100μm)约大8倍,但对下面的表皮或真皮没有可见的伤害,
实施例2
用带800μm的针(而不是800μm刀片)的装置重复实施例1的步骤。将一束21号注射针固定在底台上形成装置,当压向尸体皮肤时仅露出每支针的800μm。图4显示了结果。这些针不但穿透了角质层,还穿透下面的表皮,穿到真皮。另外,与实施例1中的800μm刀片相比,角质层上被破坏的面积明显较小。
实施例3
用400μm刀片反复擦猪的皮肤20次(10次为同一方向,另10次与前一方向成垂直),物理破坏角质层。用中空的3.5cm×3.5cm×0.5cm的聚苯乙烯容器(每个容器的容积约为5cm3)制成两个电极。将3cm×3cm×0.5mm的不锈钢片粘到每一聚苯乙烯容器内部。用从Dow Corning of Midland,MT购得的Dow Corning 355医用粘合剂将电极固定在猪皮肤上。
用皮下注射针将胰岛素溶液(如从Eli Lilly and Co.of Indianapolis,IN购得的Humulin-R(500单位/ml))注射到容器中。在约12cm2的皮肤上用4mA电流密度的直流电进行电离子透入治疗。每5分钟人工反转电极性,为时2小时。电离子透入治疗之前、之间和之后,周期性测定猪的血液葡萄糖浓度和胰岛素血清浓度。结果表明猪血葡萄糖浓度明显减少(从140mg/dl减至30mg/dl,或减少约80%),血清胰岛素大大提高(从25升至590IU/ml)。
实施例4
重复实施例3的步骤,但不用400μm的刀片破坏猪的角质层,且仅进行30分钟反转极性的电离子透入治疗。结果表明血液葡萄糖没有降低。因此,在电离子透入治疗中胰岛素没有明显送递。
实施例5
重复实施例4的步骤,但在电离子透入治疗进行前,用800μm刀片压向患糖尿病猪的角质层。监测猪血葡萄糖9小时。
患糖尿病猪的血葡萄糖浓度约减少37%,从而使它们的高血糖症状纠正到正常值附近。虽然电离子透入治疗仅进行了30分钟,血葡萄糖水平维持在140mg/dl以下超过8小时。可以说在猪皮肤组织中形成了胰岛素储库,而其可在电离子透入治疗后维持较低的血葡萄糖水平。这种储库作用理论上是有益的,因为它减少了短生物半衰期药物(通常需要频繁给药)的给药频率。
实施例6
用标准强度200(proof)的乙醇充分地擦拭猪的皮肤,并使其干燥使皮肤渗透性增加。然后重复实施例5的步骤。监测猪的血液葡萄糖浓度和胰岛素血清浓度6小时。经皮电离子透入治疗导致血清胰岛素浓度约为60IU/ml(1小时后)和血葡萄糖降低约50%(2小时后)。
实施例7
重复实施例5的步骤,但在经皮电离子透入治疗装置安置到皮肤前,用从Carter Wallace,Inc.of New York,NY购得的Nair洗剂(含巯基乙酸钙)预处理猪的皮肤15分钟,用温水漂洗。用巯基乙酸钙可减少角质层弹性。用胰岛素作的反转极性的电离子透入治疗进行120分钟。监测猪血葡萄糖浓度和胰岛素血清浓度8小时。图11显示了结果。经皮电离子透入治疗使血清胰岛素浓度约为250IU/ml(1小时后),血葡萄糖浓度减少30%(3小时后)。
实施例8
重复实施例5的步骤,但在用刀片压向猪皮肤前,将氰基丙烯酸乙酯涂在800μm刀片表面上。在进行电离子透入治疗前,将刀片压在猪皮肤上2分钟,从而使氰基丙烯酸乙酯在移动前凝固。用胰岛素的反转极性电离子透入治疗进行120分钟。监测猪血葡萄糖浓度8小时。胰岛素的送递量非常大,使初始血葡萄糖浓度为180mg/dl的患糖尿病猪,血糖大大降至血葡萄糖浓度25mg/dl。
实施例9
局部施用最低程度破坏的刀片装置和脂质体/DNA送递系统后,皮肤的基因送递和转染。以下方法作为实施例。
(ⅰ)质粒DNA的制备和纯化
用于这些研究的表达质粒含有受巨细胞病毒(CMV)启动子(Clontech,Palo Alto,CA)控制的绿荧光蛋白(GFP)基因(Quantum Biotechnologies Inc.,Montreal,Quebec)。从用重组质粒转化的大肠杆菌DH5-α菌株制备质粒,在含有用重组质粒转化的大肠杆菌菌株的LB肉汤中生长,且在含有羧苄青霉素(50μg/ml)的LB肉汤中生长。用限制性内切酶作图和双脱氧核苷酸测序组合证明重组质粒中转基因的方向。在QUIAGEN-500柱(Qiagen,Inc.,Valencia,CA)上纯化质粒DNA。然后等分的质粒用纯水重悬浮,用0.22μm过滤器(Millipore,Bedford,MA)进行无菌过滤,在-20℃储存直至使用。用1%琼脂糖凝胶进行电泳,然后通过溴化乙锭染色检测DNA,证明所有质粒制品的纯度。用分光光度计(Pharmacia Biotech,Inc.,Piscataway,NJ)在260nm和280nm测定DNA的浓度。
(ⅱ)脂质体/质粒DNA制剂的制备
测试的制剂包括编码GFP的DNA的盐水和脂质体/DNA制剂(其编码质粒DNA中的GFP,且为1μg/μl)。如下制备脂质体/DNA制剂。将等体积的质粒DNA(浓度为6.28μg/μl)缓慢地与LipofectamineTM(Life Technologies,Inc.,Gaitherburg,MD)(浓度为2μg/μl)混合,从而制得含3.14μg/μl DNA和1μg/μl脂质体的制剂。然后室温培养该制剂40分钟,从而在试验使用前能形成脂质体/DNA复合物。加入等体积质粒DNA(浓度为6.28μg/μl)和盐水产生含3.14μg/μl DNA的制剂。
(ⅲ)体外试验
简单地说,从Sloan Kettering Memorial Hospital(手术2小时后)得到正常全厚高加索人胸部皮肤。除去皮下的脂肪,用无菌12mm冲孔器在皮肤上打孔。使用前,于37℃在细胞培养基上培养12mm的外植块20分钟。处理方案包括用30号针针刺30次表皮表面,用400μm或800μm微型刀片的装置,或于用制剂前不加处理。将未处理的组织作为对照。
将12mm活组织置于12孔细胞培养板上,补充750μl细胞培养基。将孔中的组织定向,使活组织的表皮面被暴露于大气。将真皮浸没于细胞培养基。将10μl供试制剂涂于皮肤活组织表面上的9mm直径区域5小时。将制剂涂于9mm滤器表面,非常小心地安放到皮肤表面的顶部,这样使制剂与皮肤的角质层接触。5小时后移去滤纸,用细胞培养基漂洗皮肤表面4次除去制剂。局部给予制剂后的24小时终止试验。在试验结束时,用培养基漂洗4次皮肤样品,将组织于4%低聚甲醛中固定包埋2小时,然后在OTC培养基中包埋(Miles,Inc.,Elkhart,Indiana)用于冷冻切片。
(ⅳ)用免疫组织化学检测GFP
将处理过的组织包埋OTC培养基(Miles,Inc.,Elkhart,Indiana)中,用液氮冷冻。切片前在-70℃保藏冷冻的样品。用低温恒温器(Micron,Carl Ziess Inc.,Thornwood,New York)得到连续切片(10μm),将它们置于聚-L-赖氨酸双涂层载玻片上。按制造商的说明用Histostain-SP DAB试剂盒(Zymed Laboratories,Inc.,Burlingame,California)处理组织切片。用初级鼠单克隆GFP抗体(Clontech,PaloAlto,CA)处理切片60分钟。此步完成后,载玻片用苏木精复染色,漂洗、封固定(检验前),用Nikon Optiphot显微镜(Nikon,Tokyo,Japan)拍照。
(ⅴ)体外介导基因转移中GFP的检测
本研究比较了质粒DNA水制剂、脂质体/DNA制剂和刀片装置及其组合,对介导DNA转染入培养的人皮肤中的细胞的效率。
用于这些转染的DNA是含GFP基因的真核细胞表达质粒(CMV)。用GFP单克隆抗体进行免疫组织化学染色检测成功的转染。
                                               表Ⅰ测试的各组
    实验组     制剂 质粒DNA的总量
    未处理的皮肤     无     0
     ″   ″     含水DNA     31.4μg
     ″   ″     脂质体/DNA     31.4μg
    针刺的     含水DNA     31.4μg
       ″     脂质体/DNA     31.4μg
    刀片装置
    400μm     无     0
    400μm     含水DNA     31.4μg
    400μm     脂质体/DNA     31.4μg
    800μm     无     0
    800μm     含水DNA     31.4μg
    800μm     脂质体/DNA     31.4μg
所有制剂都是在临使用前制备的,所有测试重复三次,测定介导质粒DNA转染入皮肤细胞的能力。
以免疫组织化学技术对染色(GFP)的皮肤切片进行肉眼检测,确定每个实验组产生的转染子的数量。将这些结果转化成线性比例,在表Ⅱ中列出。
表Ⅱ中显示的结果表明,如所预计的,没有给予DNA的实验组表现出未转染任何细胞(阴性对照)。但出乎意料的是,用针刺处理的实验组,虽然DNA已加到表面,但也没有表现出转染的细胞。即使给予含水DNA和脂质体/DNA,未处理的实验组也没有表现出转染的细胞。唯独表现出转染的实验组是那些用刀片装置处理并组合给予脂质体/DNA制剂的那些实验组(800μm刀片的实验组转染较多)。用本研究装置处理并联合给予含水DNA的实验组也没有表现出转染。表Ⅱ
    实验组     制剂     相对转染效率
    未处理的皮肤     无     0
       ″  ″     含水DNA     0
       ″  ″     脂质体/DNA     0
    针刺的     含水DNA     0
      ″   ″     脂质体/DNA     0
    刀片装置
    400μm     无     0
    400μm     含水DNA     0
    400μm     脂质体/DNA     ++
    800μm     无     0
    800μm     含水DNA     0
    800μm     脂质体/DNA     +++
这些结果表明脂质体制剂与刀片装置联合能有效地使角质层的屏障功能失效,并将质粒DNA送递入细胞,从而产生基因产物。
易于理解,已结合发明详述描述了本发明,上述描述仅起说明作用,对本发明的范围无任何限制作用,本发明受限于以下的权利要求书。其它方面、优点和改进都在本发明的权利要求范围中。

Claims (20)

1.一种用于将化合物透过哺乳动物屏障膜送递的装置,其特征在于,包括:
(a)带接触膜的表面的容器,所述的表面带有多个外露的刀片和与所述的刀片相邻的槽;
(b)与所述的槽相通的用于存储所述的化合物的储器;和
(c)与所述的储器相通的电极,
其中所述的刀片的宽度朝所述的表面外变细。
2.如权利要求1所述的装置,其特征在于,所述的槽至少相邻于三个刀片。
3.如权利要求2所述的装置,其特征在于,所述的表面包括多个槽,所述的槽至少相邻于三个刀片。
4.如权利要求3所述的装置,其特征在于,所述的刀片的厚度朝所述的表面外变细。
5.如权利要求4所述的装置,其特征在于,其中与所述的槽相邻的一个刀片比其它刀片大至少25%。
6.如权利要求4所述的装置,其特征在于,所述的刀片表面的至少一边是弯曲的。
7.如权利要求4所述的装置,其特征在于,所述的槽彼此之间相隔约100mm-10mm。
8.如权利要求4所述的装置,其特征在于,所述的刀片由一种或多种不导电的材料制成。
9.如权利要求4所述的装置,其特征在于,所述的刀片的边缘是弯曲的。
10.如权利要求4所述的装置,其特征在于,所述的刀片的高度约为100-1,500mm。
11.如权利要求4所述的装置,其特征在于,在所述的刀片的一半高度处测得的宽度与厚度的比例至少为2。
12.如权利要求1所述的装置,其特征在于,所述的储器包括:
与所述的电极相通的电极储器;
与所述的槽相通的化合物储器;和
与所述的电极储器和所述的化合物储器相通的半透膜。
13.如权利要求12所述的装置,其特征在于,所述的半透膜只能通过分子量小于所述的化合物分子量的分子。
14.如权利要求12所述的装置,其特征在于,所述的化合物储器与所述的电极储器的容积比约小于1。
15.如权利要求1所述的装置,其特征在于,所述的装置还包括与所述的电极电连接的电子控制单元,所述的电子控制单元控制通过电极的电流。
16.如权利要求15所述的装置,其特征在于,所述的装置还包括至少一个传感器,所述的传感器将所探测的信息传送给所述的电子控制单元,所述的电子控制单元按从所述的传感器接受的信息改变通过所述电极的电流。
17.如权利要求16所述的装置,其特征在于,所述的传感器选自:pH传感器、电导传感器、离子选择性电极、电流测定传感器和电位测定传感器。
18.一种经皮电离子透入治疗系统,其特征在于,包括:
(a)第一电极,其包括
(1)带接触膜的表面的容器,所述接触膜的表面带有多个外露的刀片
和与所述的刀片相邻的槽;其中所述的刀片的宽度朝所述的表面
外变细;
(2)与所述的槽相通的储器;和
(3)与所述的储器相通的电极;
(b)对电极;和
(c)电子控制单元,
其中所述的电子控制单元电连接于所述的电极和所述的对电极,且所述的电子控制单元控制通过所述电极的电流。
19.一种将化合物透过哺乳动物屏障膜送递的方法,其特征在于,包括:
(a)用多个相距预定间隔的刀片穿透所述的屏障膜,从而形成穿透所述的屏障膜的路径;和
(b)对哺乳动物施加电流,使化合物通过所述的路径穿透屏障膜;
其中每个刀片朝着刀片的顶端变细。
20.如权利要求19所述的方法,其特征在于,所述的方法还包括给予所述的屏障膜以渗透增强剂。
CN99810255A 1998-08-31 1999-08-30 含刀片的电传送装置 Pending CN1315877A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9849498P 1998-08-31 1998-08-31
US60/098,494 1998-08-31
US12970599P 1999-04-16 1999-04-16
US60/129,705 1999-04-16

Publications (1)

Publication Number Publication Date
CN1315877A true CN1315877A (zh) 2001-10-03

Family

ID=26794791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99810255A Pending CN1315877A (zh) 1998-08-31 1999-08-30 含刀片的电传送装置

Country Status (8)

Country Link
US (1) US6532386B2 (zh)
EP (1) EP1109594B1 (zh)
JP (1) JP2002523195A (zh)
CN (1) CN1315877A (zh)
AT (1) ATE280615T1 (zh)
CA (1) CA2341446C (zh)
DE (1) DE69921489T2 (zh)
WO (1) WO2000012173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536037A (zh) * 2014-06-19 2017-03-22 生命技术公司 掺入固体缓冲剂的系统和方法

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503231B1 (en) * 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US7412285B2 (en) 1999-04-09 2008-08-12 Oncostim, Inc. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US6611707B1 (en) 1999-06-04 2003-08-26 Georgia Tech Research Corporation Microneedle drug delivery device
US6743211B1 (en) * 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6256533B1 (en) * 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
WO2001026687A1 (fr) * 1999-10-14 2001-04-19 Pola Chemical Industries Inc. Compositions d'electroporation
US7742811B2 (en) * 2000-03-13 2010-06-22 Onco Stim Implantable device and method for the electrical treatment of cancer
US8024048B2 (en) * 2000-03-13 2011-09-20 Ionix Medical Inc. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
GB0017999D0 (en) * 2000-07-21 2000-09-13 Smithkline Beecham Biolog Novel device
US7828827B2 (en) 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US7131987B2 (en) 2000-10-16 2006-11-07 Corium International, Inc. Microstructures and method for treating and conditioning skin which cause less irritation during exfoliation
US6821281B2 (en) 2000-10-16 2004-11-23 The Procter & Gamble Company Microstructures for treating and conditioning skin
EP2085109A3 (en) 2000-10-26 2009-09-02 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
EP1345646A2 (en) * 2000-12-14 2003-09-24 Georgia Tech Research Corporation Microneedle devices and production thereof
US20050187581A1 (en) * 2000-12-18 2005-08-25 Hakuju Institute For Health Science, Co., Ltd. Methods of treating disorders with electric fields
US20030233124A1 (en) * 2000-12-18 2003-12-18 Hajuku Institute For Health Science Co., Ltd. Methods of treating disorders by altering ion flux across cell membranes with electric fields
US6663820B2 (en) * 2001-03-14 2003-12-16 The Procter & Gamble Company Method of manufacturing microneedle structures using soft lithography and photolithography
MXPA03009121A (es) * 2001-04-04 2004-11-22 Johnson & Johnson Dispositivo de suministro de electrotransporte transdermico que incluye una composicion de reserva compatible antimicrobiana.
EP1752189A3 (en) * 2001-04-20 2007-02-21 Alza Corporation Microprojection array having a beneficial agent containing coating
WO2002085447A2 (en) * 2001-04-20 2002-10-31 Alza Corporation Microprojection array having a beneficial agent containing coating
US20040087992A1 (en) * 2002-08-09 2004-05-06 Vladimir Gartstein Microstructures for delivering a composition cutaneously to skin using rotatable structures
CA2456626C (en) * 2001-09-14 2009-01-20 The Procter & Gamble Company Microstructures for delivering a composition cutaneously to skin using rotatable structures
US6689100B2 (en) 2001-10-05 2004-02-10 Becton, Dickinson And Company Microdevice and method of delivering or withdrawing a substance through the skin of an animal
US6908453B2 (en) * 2002-01-15 2005-06-21 3M Innovative Properties Company Microneedle devices and methods of manufacture
US6780171B2 (en) 2002-04-02 2004-08-24 Becton, Dickinson And Company Intradermal delivery device
US7047070B2 (en) 2002-04-02 2006-05-16 Becton, Dickinson And Company Valved intradermal delivery device and method of intradermally delivering a substance to a patient
US7115108B2 (en) 2002-04-02 2006-10-03 Becton, Dickinson And Company Method and device for intradermally delivering a substance
US6945952B2 (en) * 2002-06-25 2005-09-20 Theraject, Inc. Solid solution perforator for drug delivery and other applications
CA2492867C (en) 2002-07-19 2011-07-05 3M Innovative Properties Company Microneedle devices and microneedle delivery apparatus
IL152575A (en) * 2002-10-31 2008-12-29 Transpharma Medical Ltd A skin-to-skin transmission system of water-insoluble drugs
US7483738B2 (en) * 2002-11-29 2009-01-27 Power Paper Ltd. Combination stimulating and exothermic heating device and method of use thereof
WO2004060476A2 (en) * 2002-12-31 2004-07-22 The Johns Hopkins University Wound healing method and kits
US8290579B2 (en) * 2003-02-19 2012-10-16 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Device, methods and sponges for iontophoretic drug delivery
US7578954B2 (en) * 2003-02-24 2009-08-25 Corium International, Inc. Method for manufacturing microstructures having multiple microelements with through-holes
EP1611920B1 (en) * 2003-03-10 2009-05-13 Kaneka Corporation Stent
US7480530B2 (en) 2003-06-30 2009-01-20 Johnson & Johnson Consumer Companies, Inc. Device for treatment of barrier membranes
CA2530531A1 (en) 2003-06-30 2005-01-20 Alza Corporation Formulations for coated microprojections containing non-volatile counterions
US7477939B2 (en) 2003-06-30 2009-01-13 Johnson & Johnson Consumer Companies, Inc. Methods of treating a wound with galvanic generated electricity
US8734421B2 (en) 2003-06-30 2014-05-27 Johnson & Johnson Consumer Companies, Inc. Methods of treating pores on the skin with electricity
US8097135B2 (en) * 2003-07-09 2012-01-17 Auburn University Reversible electrochemical sensors for polyions
CA2534823A1 (en) * 2003-08-04 2005-02-24 Alza Corporation Method and device for enhancing transdermal agent flux
AU2004268616B2 (en) * 2003-08-25 2010-10-07 3M Innovative Properties Company Delivery of immune response modifier compounds
CN101415443A (zh) * 2003-10-23 2009-04-22 阿尔扎公司 涂覆微喷射体的稳定dna组合物
CA2543154A1 (en) * 2003-10-28 2005-05-19 Alza Corporation Method and apparatus for reducing the incidence of tobacco use
BRPI0417437A (pt) * 2003-12-10 2007-03-06 Acrux Dds Pty Ltd dispositivo para inibição da absorção, dispositivo para remoção de agente fisiologicamente ativo e dispositivo para redução do efeito de overdose
EP1706171A1 (en) * 2003-12-29 2006-10-04 3M Innovative Properties Company Medical devices and kits including same
CN1636505B (zh) * 2004-01-09 2011-11-09 希森美康株式会社 提取器具、提取装置和血糖值测量装置
US20070191761A1 (en) * 2004-02-23 2007-08-16 3M Innovative Properties Company Method of molding for microneedle arrays
US8666486B2 (en) * 2004-03-04 2014-03-04 Hadasit Medical Research Services & Development Limited Safe device for iontophoretic delivery of drugs
WO2005094526A2 (en) * 2004-03-24 2005-10-13 Corium International, Inc. Transdermal delivery device
US20050222646A1 (en) * 2004-04-06 2005-10-06 Kai Kroll Method and device for treating cancer with modified output electrical therapy
WO2005107853A1 (ja) * 2004-05-11 2005-11-17 Hakuju Institute For Health Science Co., Ltd. 非薬理的なリウマチ及び疼痛の電界治療改善方法及び装置
BRPI0509788A (pt) 2004-05-13 2007-10-23 Alza Corp aparato e método para liberação transdérmica de agentes de hormÈnio paratireóides
US7315758B2 (en) * 2004-06-03 2008-01-01 Lynntech, Inc. Transdermal delivery of therapeutic agent
ES2650188T3 (es) * 2004-06-10 2018-01-17 3M Innovative Properties Company Dispositivo y kit de aplicación de parches
US20060030811A1 (en) * 2004-08-03 2006-02-09 Wong Patrick S Method and device for enhancing transdermal agent flux
ITPD20040252A1 (it) * 2004-10-14 2005-01-14 Bidoia Sas Di Gianfranco Bidoi Irrigatore chirurgico
US20060095001A1 (en) * 2004-10-29 2006-05-04 Transcutaneous Technologies Inc. Electrode and iontophoresis device
US20060135906A1 (en) * 2004-11-16 2006-06-22 Akihiko Matsumura Iontophoretic device and method for administering immune response-enhancing agents and compositions
CA2587387C (en) 2004-11-18 2013-06-25 3M Innovative Properties Company Method of contact coating a microneedle array
WO2006055799A1 (en) * 2004-11-18 2006-05-26 3M Innovative Properties Company Masking method for coating a microneedle array
KR20130026511A (ko) 2004-11-18 2013-03-13 쓰리엠 이노베이티브 프로퍼티즈 컴파니 로우-프로파일 미세 바늘 어레이 인가 장치
US8057842B2 (en) 2004-11-18 2011-11-15 3M Innovative Properties Company Method of contact coating a microneedle array
JP4927752B2 (ja) 2004-11-18 2012-05-09 スリーエム イノベイティブ プロパティズ カンパニー マイクロニードルアレイアプリケーターおよび保持装置
JP2008522875A (ja) * 2004-12-07 2008-07-03 スリーエム イノベイティブ プロパティズ カンパニー マイクロニードルの成形方法
US20060263257A1 (en) * 2004-12-13 2006-11-23 Beauchamp Jesse L Optical gas sensor based on dyed high surface area substrates
AU2006211176A1 (en) * 2005-01-31 2006-08-10 Alza Corporation Coated microprojections having reduced variability and method for producing same
JP5301985B2 (ja) * 2005-04-07 2013-09-25 スリーエム イノベイティブ プロパティズ カンパニー ツールフィードバック感知のためのシステム及び方法
US20070270738A1 (en) * 2005-04-25 2007-11-22 Wu Jeffrey M Method of treating ACNE with stratum corneum piercing patch
US20080009802A1 (en) * 2005-04-25 2008-01-10 Danilo Lambino Method of treating acne with stratum corneum piercing device
US20060253078A1 (en) * 2005-04-25 2006-11-09 Wu Jeffrey M Method of treating skin disorders with stratum corneum piercing device
US20060258973A1 (en) * 2005-04-27 2006-11-16 Kevin Volt Micro-current Iontophoretic Percutaneous Absorptive Patch
JP2006334164A (ja) * 2005-06-02 2006-12-14 Transcutaneous Technologies Inc イオントフォレーシス装置及びその制御方法
JP2006346368A (ja) * 2005-06-20 2006-12-28 Transcutaneous Technologies Inc イオントフォレーシス装置及びその製造方法
EP1904158B1 (en) 2005-06-24 2013-07-24 3M Innovative Properties Company Collapsible patch with microneedle array
ATE477833T1 (de) 2005-06-27 2010-09-15 3M Innovative Properties Co Mikronadelkartuschenanordnung
JP5144510B2 (ja) * 2005-06-27 2013-02-13 スリーエム イノベイティブ プロパティズ カンパニー マイクロニードルアレイ適用装置
WO2007010900A1 (ja) * 2005-07-15 2007-01-25 Transcu Ltd. 貼付位置表示機能付き経皮吸収用パッチ及びイオントフォレーシス装置
JP2007037868A (ja) * 2005-08-05 2007-02-15 Transcutaneous Technologies Inc 経皮投与装置及びその制御方法
US8386030B2 (en) * 2005-08-08 2013-02-26 Tti Ellebeau, Inc. Iontophoresis device
US8295922B2 (en) * 2005-08-08 2012-10-23 Tti Ellebeau, Inc. Iontophoresis device
US20070060860A1 (en) * 2005-08-18 2007-03-15 Transcutaneous Technologies Inc. Iontophoresis device
US20070048362A1 (en) * 2005-08-29 2007-03-01 Transcutaneous Technologies Inc. General purpose electrolyte solution composition for iontophoresis
US20100030128A1 (en) * 2005-09-06 2010-02-04 Kazuma Mitsuguchi Iontophoresis device
ES2478623T3 (es) * 2005-09-06 2014-07-22 Theraject, Inc. Perforador de solución sólido que contiene partículas de medicamentos y/o partículas adsorbentes de medicamentos
US20070112294A1 (en) * 2005-09-14 2007-05-17 Transcutaneous Technologies Inc. Iontophoresis device
JPWO2007032446A1 (ja) * 2005-09-15 2009-03-19 Tti・エルビュー株式会社 ロッド型イオントフォレーシス装置
US20090216177A1 (en) * 2005-09-16 2009-08-27 Tti Ellebeau,Inc Catheter-type iontophoresis device
US20070071807A1 (en) * 2005-09-28 2007-03-29 Hidero Akiyama Capsule-type drug-releasing device and capsule-type drug-releasing device system
WO2007037324A1 (ja) * 2005-09-28 2007-04-05 Transcu Ltd. 乾燥型イオントフォレーシス用電極構造体
US20090299265A1 (en) * 2005-09-30 2009-12-03 Tti Ellebeau, Inc. Electrode Assembly for Iontophoresis Having Shape-Memory Separator and Iontophoresis Device Using the Same
EP1928539A1 (en) * 2005-09-30 2008-06-11 Tti Ellebeau, Inc. Functionalized microneedles transdermal drug delivery systems, devices, and methods
US20070232983A1 (en) * 2005-09-30 2007-10-04 Smith Gregory A Handheld apparatus to deliver active agents to biological interfaces
WO2007041323A1 (en) * 2005-09-30 2007-04-12 Tti Ellebeau, Inc. Iontophoretic delivery of vesicle-encapsulated active agents
KR20080066712A (ko) * 2005-09-30 2008-07-16 티티아이 엘뷰 가부시키가이샤 관능화된 미세바늘 경피 약물 전달 시스템, 장치 및 방법
EP1944057A4 (en) * 2005-09-30 2009-02-18 Tti Ellebeau Inc IONTOPHORESIS DEVICE FOR MONITORING THE DOSE AND TIME OF ADMINISTRATION OF A SLEEP-INDUCING AND ANALYTICAL AGENT
US20070078445A1 (en) * 2005-09-30 2007-04-05 Curt Malloy Synchronization apparatus and method for iontophoresis device to deliver active agents to biological interfaces
US7574256B2 (en) * 2005-09-30 2009-08-11 Tti Ellebeau, Inc. Iontophoretic device and method of delivery of active agents to biological interface
JP2009509676A (ja) * 2005-09-30 2009-03-12 Tti・エルビュー株式会社 ナノ粒子と接合された活性物質のイオントフォレーシス送達
WO2007041115A1 (en) * 2005-09-30 2007-04-12 Tti Ellebeau Inc. Method and system to detect malfunctions in an iontophoresis device that delivers active agents to biological interfaces
US20070083185A1 (en) * 2005-09-30 2007-04-12 Darrick Carter Iontophoretic device and method of delivery of active agents to biological interface
US20070197955A1 (en) * 2005-10-12 2007-08-23 Transcutaneous Technologies Inc. Mucous membrane adhesion-type iontophoresis device
US20080262416A1 (en) * 2005-11-18 2008-10-23 Duan Daniel C Microneedle Arrays and Methods of Preparing Same
US8900180B2 (en) * 2005-11-18 2014-12-02 3M Innovative Properties Company Coatable compositions, coatings derived therefrom and microarrays having such coatings
EP1962942A1 (en) * 2005-12-21 2008-09-03 3M Innovative Properties Company Microneedle devices
US20080033338A1 (en) * 2005-12-28 2008-02-07 Smith Gregory A Electroosmotic pump apparatus and method to deliver active agents to biological interfaces
JP2009522288A (ja) 2005-12-28 2009-06-11 アルザ コーポレイション 安定な治療剤形
WO2007079190A2 (en) * 2005-12-29 2007-07-12 Tti Ellebeau, Inc. Device and method for enhancing immune response by electrical stimulation
EP1965858A2 (en) * 2005-12-30 2008-09-10 Tti Ellebeau, Inc. System and method for remote based control of an iontophoresis device
US7848801B2 (en) * 2005-12-30 2010-12-07 Tti Ellebeau, Inc. Iontophoretic systems, devices, and methods of delivery of active agents to biological interface
WO2007123707A1 (en) * 2006-03-30 2007-11-01 Tti Ellebeau, Inc. Controlled release membrane and methods of use
WO2007124411A1 (en) * 2006-04-20 2007-11-01 3M Innovative Properties Company Device for applying a microneedle array
NZ594136A (en) 2006-06-15 2013-03-28 Seagull Ip Pty Ltd Delivery of bound material from body to surface using ultrasonic signal
CA2655164A1 (en) * 2006-07-05 2008-01-10 Tti Ellebeau, Inc. Delivery device having self-assembling dendritic polymers and method of use thereof
US20080027371A1 (en) * 2006-07-26 2008-01-31 Higuchi John W Method and device for minimally invasive site specific ocular drug delivery
MX2009002321A (es) * 2006-09-05 2009-03-23 Tti Ellebeau Inc Sistemas, dispositivos y metodos de suministro transdermico de farmacos que utilizan suministros de energia inductiva.
CN101541374B (zh) * 2006-11-24 2012-12-05 皇家飞利浦电子股份有限公司 离子电渗设备
JP5383497B2 (ja) * 2006-12-01 2014-01-08 Tti・エルビュー株式会社 装置、例として経皮送達装置に給電し且つ/又は当該装置を制御するシステム及び装置
US20080152592A1 (en) * 2006-12-21 2008-06-26 Bayer Healthcare Llc Method of therapeutic drug monitoring
WO2008091602A2 (en) * 2007-01-22 2008-07-31 Corium International, Inc. Applicators for microneedle arrays
US20100286467A1 (en) * 2007-03-19 2010-11-11 Benny Pesach Device for drug delivery and associated connections thereto
US20100210932A1 (en) * 2007-03-20 2010-08-19 Bayer Healthcare Llc Method of analyzing an analyte
AU2014200648B2 (en) * 2007-04-16 2015-09-24 Corium Pharma Solutions, Inc. Solvent-cast microneedle arrays containing active
US9114238B2 (en) * 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US8439861B2 (en) 2007-04-24 2013-05-14 Velcro Industries B.V. Skin penetrating touch fasteners
US8079269B2 (en) * 2007-05-16 2011-12-20 Rosemount Inc. Electrostatic pressure sensor with porous dielectric diaphragm
CA2686286A1 (en) * 2007-05-18 2008-11-27 Tti Ellebeau, Inc. Transdermal delivery devices assuring an improved release of an active principle through a biological interface
JP2010187707A (ja) * 2007-06-12 2010-09-02 Hokkaido Univ インスリンを封入したイオントフォレーシス用リポソーム製剤
WO2009048607A1 (en) 2007-10-10 2009-04-16 Corium International, Inc. Vaccine delivery via microneedle arrays
JP5178132B2 (ja) * 2007-10-11 2013-04-10 キヤノン株式会社 画像処理システム並びに画像処理方法
KR101383285B1 (ko) * 2008-05-21 2014-04-08 테라젝트, 인코포레이티드 고용체 퍼포레이터 패치의 제조 방법 및 그 사용
US20100069726A1 (en) * 2008-06-04 2010-03-18 Seventh Sense Biosystems, Inc. Compositions and methods for rapid one-step diagnosis
US10736689B2 (en) 2008-08-20 2020-08-11 Prostacare Pty Ltd Low-corrosion electrode for treating tissue
US8150525B2 (en) 2008-08-27 2012-04-03 Johnson & Johnson Consumer Companies, Inc. Treatment of hyperhydrosis
CN102209573A (zh) * 2008-09-10 2011-10-05 透皮株式会社 将基于hpc的粘性液体分配至多孔基材中的设备和方法,例如基于连续匹的工艺
US20100256524A1 (en) 2009-03-02 2010-10-07 Seventh Sense Biosystems, Inc. Techniques and devices associated with blood sampling
US9033898B2 (en) 2010-06-23 2015-05-19 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
US9041541B2 (en) * 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US20120089232A1 (en) 2009-03-27 2012-04-12 Jennifer Hagyoung Kang Choi Medical devices with galvanic particulates
CA2759850C (en) * 2009-04-24 2019-10-22 Corium International, Inc. Methods for manufacturing microprojection arrays
US20110092881A1 (en) * 2009-05-08 2011-04-21 Isis Biopolymer Inc. Iontophoretic device with contact sensor
TW201121604A (en) * 2009-06-09 2011-07-01 Tti Ellebeau Inc Long life high capacity electrode, device, and method of manufacture
US9017310B2 (en) * 2009-10-08 2015-04-28 Palo Alto Research Center Incorporated Transmucosal drug delivery device and method including microneedles
US8882748B2 (en) 2009-10-08 2014-11-11 Palo Alto Research Center Incorporated Transmucosal drug delivery device and method including chemical permeation enhancers
US9014799B2 (en) * 2009-10-08 2015-04-21 Palo Alto Research Center Incorporated Transmucosal drug delivery device and method including electrically-actuated permeation enhancement
EP2493535A2 (en) * 2009-10-30 2012-09-05 Seventh Sense Biosystems, Inc. Systems and methods for application to skin and control of actuation, delivery and/or perception thereof
WO2011065972A2 (en) * 2009-11-24 2011-06-03 Seventh Sense Biosystems, Inc. Patient-enacted sampling technique
EP2523603A2 (en) * 2010-01-13 2012-11-21 Seventh Sense Biosystems, Inc. Sampling device interfaces
JP5806236B2 (ja) * 2010-01-13 2015-11-10 セブンス センス バイオシステムズ,インコーポレーテッド 流体の急速送達および/また採取
US8476227B2 (en) 2010-01-22 2013-07-02 Ethicon Endo-Surgery, Inc. Methods of activating a melanocortin-4 receptor pathway in obese subjects
US9044606B2 (en) 2010-01-22 2015-06-02 Ethicon Endo-Surgery, Inc. Methods and devices for activating brown adipose tissue using electrical energy
WO2011140274A2 (en) 2010-05-04 2011-11-10 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
ES2561824T3 (es) 2010-07-16 2016-03-01 Seventh Sense Biosystems, Inc. Ambiente a baja presión para dispositivos de transferencia de fluidos
US20130158482A1 (en) 2010-07-26 2013-06-20 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
WO2012064802A1 (en) 2010-11-09 2012-05-18 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
WO2012092056A1 (en) 2010-12-29 2012-07-05 Ethicon Endo-Surgery, Inc. Methods and devices for activating brown adipose tissue with targeted substance delivery
EP2701598A1 (en) 2011-04-29 2014-03-05 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
EP2702406B1 (en) 2011-04-29 2017-06-21 Seventh Sense Biosystems, Inc. Plasma or serum production and removal of fluids under reduced pressure
KR102237667B1 (ko) 2011-04-29 2021-04-12 세븐쓰 센스 바이오시스템즈, 인크. 유체들의 전달 및/또는 수용
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9610546B2 (en) 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US10418143B2 (en) 2015-08-05 2019-09-17 Lockheed Martin Corporation Perforatable sheets of graphene-based material
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9999720B2 (en) 2012-09-27 2018-06-19 Palo Alto Research Center Incorporated Drug reconstitution and delivery device and methods
US9005108B2 (en) 2012-09-27 2015-04-14 Palo Alto Research Center Incorporated Multiple reservoir drug delivery device and methods
US9008389B2 (en) * 2012-09-28 2015-04-14 Robert D. Williams System and method for determining the amount of vitamin D generated by a user
ES2743404T3 (es) 2012-12-21 2020-02-19 Corium Inc Matriz para suministro de agente terapéutico y método de fabricación
US9744341B2 (en) 2013-01-15 2017-08-29 Palo Alto Research Center Incorporated Devices and methods for intraluminal retention and drug delivery
EP2968887B1 (en) 2013-03-12 2022-05-04 Corium, Inc. Microprojection applicators
WO2014164621A1 (en) 2013-03-12 2014-10-09 Lockheed Martin Corporation Method for forming filter with uniform aperture size
EP2968118B1 (en) 2013-03-15 2022-02-09 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
EP2968119B1 (en) 2013-03-15 2019-09-18 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
AU2014237279B2 (en) 2013-03-15 2018-11-22 Corium Pharma Solutions, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
CA2903459C (en) 2013-03-15 2024-02-20 Corium International, Inc. Multiple impact microprojection applicators and methods of use
JP2016518932A (ja) * 2013-05-06 2016-06-30 ミューファーマ ピーティーワイ リミテッド 非侵襲的薬剤アプリケータ
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US9297083B2 (en) 2013-12-16 2016-03-29 Palo Alto Research Center Incorporated Electrolytic gas generating devices, actuators, and methods
CN105940479A (zh) 2014-01-31 2016-09-14 洛克希德马丁公司 使用宽离子场穿孔二维材料
EP3099645A4 (en) 2014-01-31 2017-09-27 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
CN106232205A (zh) 2014-03-12 2016-12-14 洛克希德马丁公司 由有孔石墨烯形成的分离膜
US10278675B2 (en) 2014-07-31 2019-05-07 Palo Alto Research Center Incorporated Implantable estrus detection devices, systems, and methods
US9801660B2 (en) 2014-07-31 2017-10-31 Palo Alto Research Center Incorporated Implantable fluid delivery devices, systems, and methods
AU2015311978A1 (en) 2014-09-02 2017-05-11 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
EP3188714A1 (en) 2014-09-04 2017-07-12 Corium International, Inc. Microstructure array, methods of making, and methods of use
JP5967595B2 (ja) * 2014-09-08 2016-08-10 株式会社かいわ 穿刺器具
KR200483166Y1 (ko) * 2014-11-03 2017-04-21 (주)아모레퍼시픽 무선전기 공급을 받아 작동되는 침패치를 부착한 마스크팩
WO2016072493A1 (ja) * 2014-11-06 2016-05-12 凸版印刷株式会社 経皮投与デバイス、および、経皮投与デバイスの製造方法
US10092738B2 (en) 2014-12-29 2018-10-09 Ethicon Llc Methods and devices for inhibiting nerves when activating brown adipose tissue
US10080884B2 (en) 2014-12-29 2018-09-25 Ethicon Llc Methods and devices for activating brown adipose tissue using electrical energy
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
MX2018001559A (es) 2015-08-06 2018-09-27 Lockheed Corp Modificacion de nanoparticula y perforacion de grafeno.
EP3442786A4 (en) 2016-04-14 2020-03-18 Lockheed Martin Corporation TWO-DIMENSIONAL MEMBRANE STRUCTURES HAVING FLOW PASSAGES
JP2019521055A (ja) 2016-04-14 2019-07-25 ロッキード・マーチン・コーポレーション グラフェン欠陥の選択的界面緩和
WO2017180134A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
CA3020686A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
SG11201808961QA (en) 2016-04-14 2018-11-29 Lockheed Corp Methods for in situ monitoring and control of defect formation or healing
EP3338853A1 (en) 2016-12-23 2018-06-27 Sanofi-Aventis Deutschland GmbH Medicament delivery device
KR20190001355U (ko) 2017-11-27 2019-06-07 프로스타캐어 피티와이 엘티디 전립선 질환의 치료를 위한 장치 및 방법
US11224474B2 (en) 2018-02-28 2022-01-18 Prostacare Pty Ltd System for managing high impedance changes in a non-thermal ablation system for BPH
US11666741B1 (en) * 2021-06-01 2023-06-06 TruCelium Inc. Method for delivering matter into the human body

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1017883B (de) 1954-07-08 1957-10-17 Fellows Gear Shaper Co Schalt- und Vorschubeinrichtung fuer Zahnradherstellungsmaschinen
US3315665A (en) 1963-10-11 1967-04-25 Norman A Macleod Method and apparatus for therapy of skin tissue
US3964482A (en) 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
CA1029288A (en) 1973-05-29 1978-04-11 William J. O'malley Silicone pressure-sensitive adhesive
US4231372A (en) 1974-11-04 1980-11-04 Valleylab, Inc. Safety monitoring circuit for electrosurgical unit
US4071028A (en) 1976-02-17 1978-01-31 Perkins George C Radio frequency cautery instrument and control unit therefor
US4141359A (en) 1976-08-16 1979-02-27 University Of Utah Epidermal iontophoresis device
US4340047A (en) 1978-10-18 1982-07-20 Robert Tapper Iontophoretic treatment apparatus
US4301794A (en) 1978-10-18 1981-11-24 Robert Tapper Method for iontophoretic treatment
WO1981003271A1 (en) 1980-05-13 1981-11-26 American Hospital Supply Corp A multipolar electrosurgical device
US4805616A (en) 1980-12-08 1989-02-21 Pao David S C Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4674499A (en) 1980-12-08 1987-06-23 Pao David S C Coaxial bipolar probe
US4406658A (en) 1981-03-06 1983-09-27 Medtronic, Inc. Iontophoretic device with reversible polarity
US4925671A (en) 1981-11-24 1990-05-15 Flexcon Company, Inc. Silicone pressure sensitive adhesive and uses
US5385544A (en) 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
JPS60174716A (ja) 1984-02-21 1985-09-09 Yamanouchi Pharmaceut Co Ltd パツチ剤
US4655767A (en) 1984-10-29 1987-04-07 Dow Corning Corporation Transdermal drug delivery devices with amine-resistant silicone adhesives
US4747819A (en) 1984-10-29 1988-05-31 Medtronic, Inc. Iontophoretic drug delivery
US4655766A (en) 1985-08-01 1987-04-07 Alza Corporation Fluid imbibing pump with self-regulating skin patch
US4744788A (en) 1986-01-13 1988-05-17 Mercer Jr Leo C Method of using a surgical clip for cholangiography
US4722726A (en) 1986-02-12 1988-02-02 Key Pharmaceuticals, Inc. Method and apparatus for iontophoretic drug delivery
US4752285B1 (en) 1986-03-19 1995-08-22 Univ Utah Res Found Methods and apparatus for iontophoresis application of medicaments
US4767402A (en) 1986-07-08 1988-08-30 Massachusetts Institute Of Technology Ultrasound enhancement of transdermal drug delivery
US5042975A (en) 1986-07-25 1991-08-27 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
US4935346A (en) 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US4731049A (en) 1987-01-30 1988-03-15 Ionics, Incorporated Cell for electrically controlled transdermal drug delivery
US5013293A (en) 1987-05-28 1991-05-07 Drug Delivery Systems Inc. Pulsating transdermal drug delivery system
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US4898920A (en) 1987-10-15 1990-02-06 Dow Corning Corporation Adhesive compositions, controlled release compositions and transdermal delivery device
US5547467A (en) 1988-01-21 1996-08-20 Massachusettes Institute Of Technology Method for rapid temporal control of molecular transport across tissue
EP0398960B1 (en) 1988-01-21 1995-12-06 Massachusetts Institute Of Technology Transport of molecules across tissue using electroporation
US5749847A (en) 1988-01-21 1998-05-12 Massachusetts Institute Of Technology Delivery of nucleotides into organisms by electroporation
US5362307A (en) 1989-01-24 1994-11-08 The Regents Of The University Of California Method for the iontophoretic non-invasive-determination of the in vivo concentration level of an inorganic or organic substance
WO1989006989A1 (en) 1988-01-29 1989-08-10 The Regents Of The University Of California Iontophoretic non-invasive sampling or delivery device
US4994267A (en) 1988-03-04 1991-02-19 Noven Pharmaceuticals, Inc. Transdermal acrylic multipolymer drug delivery system
US5438984A (en) 1988-09-08 1995-08-08 Sudor Partners Apparatus and method for the collection of analytes on a dermal patch
US4927408A (en) 1988-10-03 1990-05-22 Alza Corporation Electrotransport transdermal system
US5496266A (en) 1990-04-30 1996-03-05 Alza Corporation Device and method of iontophoretic drug delivery
US5125928A (en) 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US4979948A (en) 1989-04-13 1990-12-25 Purdue Research Foundation Method and apparatus for thermally destroying a layer of an organ
US5135478A (en) 1989-05-10 1992-08-04 Drug Delivery Systems Inc. Multi-signal electrical transdermal drug applicator
US5252334A (en) 1989-09-08 1993-10-12 Cygnus Therapeutic Systems Solid matrix system for transdermal drug delivery
EP0429842B1 (en) 1989-10-27 1996-08-28 Korea Research Institute Of Chemical Technology Device for the transdermal administration of protein or peptide drug
US5036861A (en) 1990-01-11 1991-08-06 Sembrowich Walter L Method and apparatus for non-invasively monitoring plasma glucose levels
US5147916A (en) 1990-02-21 1992-09-15 Dow Corning Corporation Hot-melt silicone pressure sensitive adhesive composition and related methods and articles
US5115805A (en) 1990-02-23 1992-05-26 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
US5098430A (en) 1990-03-16 1992-03-24 Beacon Laboratories, Inc. Dual mode electrosurgical pencil
US5213568A (en) 1990-03-30 1993-05-25 Medtronic Inc. Activity controlled electrotransport drug delivery device
US5125894A (en) 1990-03-30 1992-06-30 Alza Corporation Method and apparatus for controlled environment electrotransport
US5162410A (en) 1990-04-13 1992-11-10 Dow Corning Corporation Hot-melt silicon pressure sensitive adhesives with phenyl-containing siloxane fluid additive and related methods and articles
US5282799A (en) 1990-08-24 1994-02-01 Everest Medical Corporation Bipolar electrosurgical scalpel with paired loop electrodes
DE4032471C2 (de) 1990-10-12 1997-02-06 Delma Elektro Med App Elektrochirurgische Vorrichtung
US5224927A (en) 1990-11-01 1993-07-06 Robert Tapper Iontophoretic treatment system
US5156591A (en) 1990-12-13 1992-10-20 S. I. Scientific Innovations Ltd. Skin electrode construction and transdermal drug delivery device utilizing same
US5279544A (en) 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
US5527288A (en) 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
SE9101022D0 (sv) 1991-01-09 1991-04-08 Paal Svedman Medicinsk suganordning
US5182938A (en) 1991-02-22 1993-02-02 Nordson Corporation Method and apparatus for detecting bubbles in pressurized liquid dispensing systems
US5571149A (en) 1991-05-21 1996-11-05 E.P., Inc. Non-intrusive analgesic neuroaugmentive and iontophoretic delivery apparatus and management system
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5232702A (en) 1991-07-22 1993-08-03 Dow Corning Corporation Silicone pressure sensitive adhesive compositons for transdermal drug delivery devices and related medical devices
EP0555045B1 (en) 1992-02-03 1997-10-08 Lifescan, Inc. Improved oxidative coupling dye for spectrophotometric quantitative analysis of analytes
JP2572823Y2 (ja) 1992-02-13 1998-05-25 株式会社アドバンス 簡易採血器
GB9204218D0 (en) 1992-02-27 1992-04-08 Goble Nigel M A surgical cutting tool
US5540681A (en) 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US5542916A (en) 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
JPH0670987A (ja) 1992-08-28 1994-03-15 Katsuro Tachibana 薬物投与・体液採取ユニット及び装置
US5545161A (en) 1992-12-01 1996-08-13 Cardiac Pathways Corporation Catheter for RF ablation having cooled electrode with electrically insulated sleeve
US5614502A (en) 1993-01-15 1997-03-25 The General Hospital Corporation High-pressure impulse transient drug delivery for the treatment of proliferative diseases
US5993434A (en) 1993-04-01 1999-11-30 Genetronics, Inc. Method of treatment using electroporation mediated delivery of drugs and genes
US5533971A (en) 1993-09-03 1996-07-09 Alza Corporation Reduction of skin irritation during electrotransport
US5540669A (en) 1993-09-30 1996-07-30 Becton, Dickinson And Company Iontophoretic drug delivery system and method for using same
US5653892A (en) 1994-04-04 1997-08-05 Texas Instruments Incorporated Etching of ceramic materials with an elevated thin film
KR0134152B1 (ko) 1994-05-23 1998-04-14 이형도 의약품 투여용 피부흠집 형성장치
US5771890A (en) 1994-06-24 1998-06-30 Cygnus, Inc. Device and method for sampling of substances using alternating polarity
US5609151A (en) 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
US5563031A (en) 1994-09-08 1996-10-08 Lifescan, Inc. Highly stable oxidative coupling dye for spectrophotometric determination of analytes
US5514130A (en) 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5785705A (en) 1994-10-11 1998-07-28 Oratec Interventions, Inc. RF method for controlled depth ablation of soft tissue
NO180024C (no) 1994-10-11 1997-01-29 Oerjan G Martinsen Måling av fuktighet i hud
DE59505328D1 (de) * 1994-12-09 1999-04-15 Novartis Ag Transdermales system
US5897553A (en) 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US5573778A (en) 1995-03-17 1996-11-12 Adhesives Research, Inc. Drug flux enhancer-tolerant pressure sensitive adhesive composition
US5853383A (en) 1995-05-03 1998-12-29 Alza Corporation Preparation for formulations for electrotransport drug delivery
DE19525607A1 (de) 1995-07-14 1997-01-16 Boehringer Ingelheim Kg Transcorneales Arzneimittelfreigabesystem
US5780050A (en) 1995-07-20 1998-07-14 Theratech, Inc. Drug delivery compositions for improved stability of steroids
US5693052A (en) 1995-09-01 1997-12-02 Megadyne Medical Products, Inc. Coated bipolar electrocautery
US5735273A (en) 1995-09-12 1998-04-07 Cygnus, Inc. Chemical signal-impermeable mask
AU722471B2 (en) 1995-10-17 2000-08-03 Lifescan, Inc. Blood glucose strip having reduced sensitivity to hematocrit
EP0914178B1 (en) * 1996-06-18 2003-03-12 Alza Corporation Device for enhancing transdermal agent delivery or sampling
US5869326A (en) 1996-09-09 1999-02-09 Genetronics, Inc. Electroporation employing user-configured pulsing scheme
US5893885A (en) 1996-11-01 1999-04-13 Cordis Webster, Inc. Multi-electrode ablation catheter
KR100453132B1 (ko) * 1996-12-20 2004-10-15 앨자 코포레이션 경피 약제 플럭스를 향상시키기 위한 장치 및 방법
US6055043A (en) 1997-06-05 2000-04-25 Gn Nettest New York, Inc. Method and apparatus for using phase modulation to reduce coherence/polarization noise in reflectometers
US6117660A (en) 1997-06-10 2000-09-12 Cytopulse Sciences, Inc. Method and apparatus for treating materials with electrical fields having varying orientations
US6055453A (en) 1997-08-01 2000-04-25 Genetronics, Inc. Apparatus for addressing needle array electrodes for electroporation therapy
WO1999029365A1 (en) * 1997-12-11 1999-06-17 Alza Corporation Device for enhancing transdermal agent flux
WO1999029364A1 (en) * 1997-12-11 1999-06-17 Alza Corporation Device for enhancing transdermal agent flux
US6120493A (en) 1998-01-27 2000-09-19 Genetronics, Inc. Method for the introduction of therapeutic agents utilizing an electroporation apparatus
US6148232A (en) 1998-11-09 2000-11-14 Elecsys Ltd. Transdermal drug delivery and analyte extraction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536037A (zh) * 2014-06-19 2017-03-22 生命技术公司 掺入固体缓冲剂的系统和方法
CN106536037B (zh) * 2014-06-19 2019-10-25 生命技术公司 掺入固体缓冲剂的系统和方法

Also Published As

Publication number Publication date
CA2341446C (en) 2008-10-07
CA2341446A1 (en) 2000-03-09
ATE280615T1 (de) 2004-11-15
EP1109594A1 (en) 2001-06-27
US6532386B2 (en) 2003-03-11
WO2000012173A1 (en) 2000-03-09
DE69921489D1 (de) 2004-12-02
JP2002523195A (ja) 2002-07-30
DE69921489T2 (de) 2005-10-27
US20020115957A1 (en) 2002-08-22
EP1109594B1 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
CN1315877A (zh) 含刀片的电传送装置
EP1171195B1 (en) Electrotransport delivery system comprising internal sensors
Cross et al. Physical enhancement of transdermal drug application: is delivery technology keeping up with pharmaceutical development?
RU2290216C2 (ru) Устройство для трансдермального электротранспортного введения, содержащее резервуар с противомикробной совместимой композицией
US7558625B2 (en) Combined micro-channel generation and iontophoresis for transdermal delivery of pharmaceutical agents
JP4090072B2 (ja) 経皮電気的移送式作用剤投与を促進するための組成物と方法
US20060036209A1 (en) System and method for transdermal delivery
EP0429842A2 (en) Device for the transdermal administration of protein or peptide drug
JP2000512529A (ja) 薬剤の経皮放出又はサンプリングを高めるための装置
JP2003531698A (ja) 生物流体のサンプリングおよび活性物質の配給のための剪断力による組織切除
JP2001521798A (ja) 治療薬剤の生体内送出しのための装置および方法
AU2001259324A1 (en) Tissue ablation by shear force for sampling biological fluids and delivering active agents
WO2000062856A1 (en) Drug delivery device comprising a dual chamber reservoir
Singh et al. Transcending the skin barrier to deliver peptides and proteins using active technologies
CN111956951A (zh) 离子导入微针药贴及制备方法
Levin Advances in radio-frequency transdermal drug delivery
Kwiatkowski et al. Transdermal delivery of therapeutic agent

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication