CN1334854A - 用于生产完井烃的流体和技术 - Google Patents

用于生产完井烃的流体和技术 Download PDF

Info

Publication number
CN1334854A
CN1334854A CN99816204.3A CN99816204A CN1334854A CN 1334854 A CN1334854 A CN 1334854A CN 99816204 A CN99816204 A CN 99816204A CN 1334854 A CN1334854 A CN 1334854A
Authority
CN
China
Prior art keywords
fluid
finishing liquid
well
ves
well finishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99816204.3A
Other languages
English (en)
Other versions
CN1238463C (zh
Inventor
雷蒙德·J·蒂布尔斯
梅米特·帕拉
弗兰克·F·常
付淀奎
马克·戴维森
伊丽莎白·W·A·莫里斯
安杰·M·威伦加
帕拉辛卡拉·维诺德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Services Petroliers Schlumberger SA
Prad Research and Development Ltd
Original Assignee
Sofitech NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofitech NV filed Critical Sofitech NV
Publication of CN1334854A publication Critical patent/CN1334854A/zh
Application granted granted Critical
Publication of CN1238463C publication Critical patent/CN1238463C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/24Bacteria or enzyme containing gel breakers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/925Completion or workover fluid

Abstract

本发明涉及能够优化/提高地层中的烃的产率的新型流体和技术(如,“完井液”),具体来说,本发明公开和要求保护的流体和技术能够除去在钻井和与生产相关的作业中形成的涂层形式的并眼损坏和邻近井眼损坏(“滤饼”);可单独应用该技术,也可和其它完井作业如砾石充填结合应用该技术;优选的实施方案是粘弹性表面活性剂(VES)基质中的螯合剂和酶系统。

Description

用于生产完井烃的流体和技术
发明的技术领域
本发明涉及能够优化/提高地层中的烃的产率的新型流体和技术,具体来说,本发明公开和要求保护的流体和技术能够除去在钻井和与生产相关的作业中形成的涂层形式的井眼和邻近井眼处的地层损坏;可单独应用该技术,也可和其它完井作业如砾石充填结合应用该技术。
发明背景
本发明涉及能够优化/提高地层中的烃的产率的新型流体和技术。为了回收烃(如,油,天然气),当然需要在地下钻一个孔以接触到含烃地层。通过这种方法,地层中的烃就流入井眼,流到地表上。从地层中回收烃称为“采油”。影响采油率的一个关键参数是沿着烃到达井眼所必须经过的流动通道的地层的渗透率。有时候,地层的岩石天然地具有低渗透率,其它时候,在如钻井过程中,渗透率会降低。当钻井时,要把一种流体循环到该孔中以接触钻头区域,这有很多原因-其中包括,冷却钻头,把岩屑带出钻孔点,在地层壁上保持一定的静水压用以防止在钻井过程中采油。
在钻井过程中必须使用的钻井液由于要大量使用而很昂贵。另外,钻井液由于渗漏到地层中而有所损失。为防止这一问题,常常有意地将钻井液改性以使其渗漏量小并在井眼上形成涂层或“滤饼”。
然而一旦钻井完成,就要进行采油,接下来必须除去该涂层或滤饼。本发明的流体和技术就是要除去井眼和邻近井眼区域中的这些滤饼或其它这样的损坏,这些损坏可以是有意造成的(使用钻井液的情况下),也可以是无意造成的(在井上进行修复/增注作业时产生的水或脱水流体产生水垢的情况下)。
除去滤饼的传统处理包括:氧化剂(如过硫酸盐)的水溶液,盐酸溶液,有机酸(乙酸,甲酸),酸和氧化剂的结合物,及含有酶的水溶液。例如,用酶除去滤饼公开在:美国专利4169818,Mixture of Hydroxypropylcelluloseand Poly(Maleic Anhydride/Alkyl Vinyl Ether)as a Hydrocolloid GellingAgent(1979)(col.1,In.42);美国专利3515667,Drilling Fluid Additive(1970);美国专利3509950,Well Drilling Mud and Screen Composition of UseThereof;美国专利2259419,Well Drilling(1941)。也可用螯合剂(如EDTA)提高碳酸钙的溶解性。参见C.N.Fredd和H.S.Fogler,Chelating Agent asEffective Matrix Stimulation Fluids for Carbonate Formations,SPE372212(1997);C.N.Fredd和H.S.Fogler,Altemative Stimulation Fluids and TheirImpact on Carbonate Acidizing,SPE 31074(1996),此处引入这两篇文献作为参考。传统的讲义认为:氧化剂和酶侵蚀滤饼中的聚合物部分;酸主要侵蚀碳酸盐部分(及其它矿物质)。一般来说,氧化剂和酶不能有效地分解碳酸盐部分;同样,酸对聚合物的影响非常小。
另外,除去滤饼的传统技术受到多种问题的困扰。也许最麻烦的是“放置”问题。例如,滤饼中最常见的成分是碳酸钙。选择用于除去碳酸钙的物质是盐酸。盐酸和碳酸钙非常迅速地发生反应。接下来发生的事情就是滤饼开始溶解,因此,井眼面上的渗透率增加,所以,井眼区域与地层之间不再是“密封”的。一旦发生这种情况,全部的清除液就会通过该渗透率增加的区域渗漏到地层中(“漏失带”,或有非常高渗透率的层段中的不连续带,此处比沿该层段的其它地方有更多的滤饼溶解)。
除去滤饼的第二个问题是滤饼由几种物质构成,如前所述,一般用一种物质不能将其除去。碳酸钙和有机聚合物(如,淀粉和其它的多糖)是在井眼上形成滤饼的传统钻井液的两种主要成分。连续处理这些物质即,用两种不同的流体,一种接着一种,是有问题的,因为这需要至少两种单独的处理。将两种不同的分解剂(一种用于聚合物部分,一种用于方解石)结合是有问题的,因为各有各的活性曲线(或基于温度、pH等的最佳活性范围),并且这两种不同分解剂的活性曲线不一致。如果其中一种分解剂是公知的对温度和pH敏感的酶,则活性曲线不一致是特别可能的。
另外,如果象平常一样首先除去碳酸钙,那么,一旦盐酸接触到滤饼,井眼中就产生更高渗透率的区域(此处的滤饼溶解)。因此,在随后的除去滤饼的处理过程中,流体就渗漏到地层中。
因此,理想的流体必须是在所有滤饼开始溶解之前易于“定位”或置于在所要求区域的整个长度内的井眼中,所要求区域和生产区(如,两千英尺的水平区)相邻接。如果流体开始溶解滤饼太快,那么流体就会通过漏失带损失掉,整个流体处理就是无效的。换句话说,假想的一种理想流体是在一段时间内完全没有反应性,以确保其能沿着生产层段的整个长度定位,一旦定位以后,能足够缓慢地、均匀地反应,以使没有漏失带出现。另外,如果形成漏失带,那么所有的流体就通过该区域渗漏。因此,为了确保流体和沿着整个层段的滤饼保持接触直到沿着整个层段的滤饼几乎完全溶解,合理地均匀/有控制的溶解是必须的。
另外,除去滤饼是一个昂贵的和耗时的步骤。因此,如果可能,就要求在进行其它处理的同时进行该步骤。例如,如果一种材料必须分配到进入井眼中的地层部分(例如,结合补强处理),那么用于运送这种材料的流体可以是还能溶解一部分滤饼的酸溶液。另外,如果载液通过漏失带渗漏到地层中,那么补强作业将彻底失败。
一种常见的对井,尤其是对美国海湾区的井的处理称之为“砾石充填”。进行砾石充填作业是为了防止和烃一起生产出沙子,这在弱固结沙的地层中常常发生。为防止生产出沙子,可以在生产烃的井眼部分的周围放置过滤器(或筛网)。如果在筛网和地层之间的区域中填上砾石,就能达到更长期地解决控制沙子的目的,砾石的大小正好能够防止沙子通过砾石移动到井眼中,砾石的作用就是一个过滤器,因此,当沙子试图通过砾石移动时,砾石或筛网就能滤掉和保持住沙子,但是,烃继续不受阻挡地(通过砾石或筛网)流入井眼中。
另外,如果用于分配砾石的流体还能够用于溶解滤饼,这将有极大的优点,这就不需要仅仅为了溶解滤饼的一个单独处理步骤。这将极大地节约成本,因为单独的处理步骤是昂贵的,并且因为进行这样的处理要消耗额外的时间。
因此,需要的流体是既能用作载液(尽管不一定用于该目的)又能用于分解滤饼。理想的载液是惰性的,即,其不能立即分解滤饼(否则,流体就会损失到地层中),但是,理想的溶解滤饼的流体必须最终能够溶解滤饼。因此,理想的流体必须在一定程度上将这两种相反的性质结合起来。
事实上,在砾石充填完井中特别需要清除滤饼,砾石充填完井是其中的砾石充填/筛网结合体防止了沙子和烃一起移动的井,这是因为地层和筛网或砾石之间的滤饼的截留作用会很大地降低生产率。在水平或高度偏斜井中还特别需要可靠的有良好转换机理(以确保正确放置)的清除滤饼的处理。在这些情况下,与生产区为约30英尺的垂直井相比,这些井的生产层段可以是几千英尺。这是因为在1000英尺的层段上能够达到近乎均匀地溶解而放置大量流体的难度比在30英尺层段上大得多-放置需要更多的时间,并且产生漏失带的可能性大得多。
因此,在钻井和完井方面迫切的需要一种可靠的用于分解滤饼的流体,这种流体可快速地、有效地和彻底地分解滤饼,并且和其它完井/修井/增注作业结合时可用作载液。这是本发明的首要目的。
发明概述
本发明涉及能分解滤饼的流体(滤饼是在进行钻井、采油、完井、修井或增注时产生的,可以是有意产生的,也可以是无意产生的)。在特别优选的实施方案中,本发明的流体和技术是分解由含淀粉/碳酸盐的钻井液如STARDRILLTM(由Schlumberger生产和销售的钻井液)形成的滤饼。在另一个特别优选的实施方案中,本发明的流体可和砾石充填作业结合使用,具体但非排他性地,和砾石充填作业结合分解滤饼。
因此,本发明的一个目的是提供能够分解滤饼的新型完井液,可以单独使用,也可以和其它修井/完井/增注处理结合使用,但是特别是和砾石充填作业结合使用。优选实施方案涉及能够分解主要含有方解石和淀粉的滤饼的流体。特别优选实施方案涉及的处理流体有两种基本成分:螯合剂和酶。选择这些成分是基于它们能够溶解滤饼中的不同成分,并基于它们能够以特定的相对比溶解滤饼中的这些成分。另一个特别优选实施方案是在VES(粘弹性表面活性剂)系统中有这两种成分的流体。VES系统有许多优点(下面引入作为参考的美国专利有详细讨论),这些优点包括其易于胶凝,比瓜耳胶和改性瓜耳胶系统更易于处理,更易于从地下层中除去。另外,本发明特别重要之处在于:与传统载液相比,VES系统产生非常低的摩擦压力,因此,例如在本发明的砾石充填作业中它们特别优选。
本发明的流体可成功地定位或置于如2000英尺的水平生产区上,而基本上没有渗漏。要达到这一目的的特别优选实施方案是加入Mobil的AllPACTM(Schlumberger专有许可)。通过这种方法,例如,可以在没有流体损失的情况下进行砾石充填作业。
同时,本发明的流体在滤饼上慢慢地起反应,慢慢地但稳定地将其溶解,但在特定的修井作业完成之前不会将其溶解。
另外,可优化本发明的流体的分解时间(或滤饼实质溶解时间),使总的或混合溶解速率在低温时非常低而在高温时非常高。这种特有的温度依赖性的主要优点是流体可在滤饼开始溶解之前进入整个目的区,然后当流体温度由于流体和井眼接触而升高时,只有这时候才开始溶解。
本发明的流体和技术在各种设置中是相当通用的和可操作的。这些设置包括但不限定为:只有筛网的完井和砾石充填完井;裸眼和装套管的钻孔;垂直的和高度偏斜的井;单级浸泡液或其中的处理液(本发明的流体)还作为用于如砾石充填作业的载液的循环流体;和胶凝剂或粘弹性表面活性剂(如,ClearFRACTM)结合使用或单独使用,和与各种清除工具结合使用。总之,因为在所有情况下都确实存在着定位和均匀溶解的问题,所以,本发明的流体和技术易于应用在要从地层中的井眼或邻近井眼区域除去滤饼的所有场合,无论滤饼是在钻井过程中还是在其它钻后作业过程中产生的(如,防流体损失球,砾石充填作业,断口,基岩酸化等)。
最后,本发明的流体是HCl基流体、选择用于除去滤饼的传统流体的可行的、节约成本的替代物。也许使用HCl系统的主要问题(除了其不能有效地除去滤饼中的碳酸盐部分外)是地面上的储油箱、泵,井下的用于放置流体的管道及井眼套管的腐蚀。另外,解决腐蚀的节约成本的方法不容易于采用,这可由防腐剂是除去滤饼(或基岩酸化)处理中所有花费中的主要部分这一事实所证明。使用大量本发明的流体(这些流体中没有酸),腐蚀问题急剧减少。另外,使用本发明的流体可大量减少人身安全问题和环境问题。
附图简述
图l示出各种VES溶液在加入K2-EDTA,α-淀粉酶,过硫酸铵(可单独加入,也可结合加入)后,在180°F下经过101分钟在100sec-1下的粘度变化。这些数据例示出:加入0.5%的α-淀粉酶不会对VES的粘度造成很大影响,加入0.5%的α-淀粉酶和28%的K2-EDTA也不会影响VES的粘度。
图2示出α-淀粉酶和K2-EDTA的各种结合对VES(5%体积)的流变学性能产生的影响:3%的NH4C1和28%的K2-EDTA(菱形);4%的KCl(空白方块);28%的K2-EDTA中有4%的KCl(三角形);3%的NH4Cl和0.5%的α-淀粉酶和28%的K2-EDTA(在相互垂直的两条线上有两条对角交叉线);自来水中的3%的NH4Cl(对角交叉线);3%的NH4Cl和0.5%的α-淀粉酶(空白圆);自来水中的4%的KCl和0.5%的α-淀粉酶(相互垂直的两条线);28%的K2-EDTA中有4%的KCl和0.5%的α-淀粉酶(浅色空白方块)。这些数据例示出:在VES溶液中加入α-淀粉酶不会对100sec-1下的VES溶液粘度造成很大的影响,然而如果加入了α-淀粉酶的VES溶液中还加入28%的K2-EDTA和KCl,则其粘度就有很大的降低,尽管用NH4Cl替代KCl时不会出现这种情况。
图3示出VES(5%)对酶和传统的氧化剂分解剂的分解滤饼的活性的影响。白条表示(从左至右):(1)没有VES,0.5%的α-淀粉酶,4%的KCl;(2)没有VES,1%的过硫酸铵,4%的KCl。黑条表示:(1)没有VES,0.5%的α-淀粉酶,4%的KCl;(2)VES,4%的KCl;(3)VES,1%的过硫酸铵;(4)VES,1%的过硫酸铵,0.1%的三乙醇胺,4%的KCl。灰条表示:(1)VES,0.5%的α-淀粉酶,28%的K2-EDTA,4%的KCl;(2)VES,28%的K2-EDTA,4%的KCl;(3)VES,1%的过硫酸铵,28%的K2-EDTA,4%的KCl;(4)VES,5%(最佳的低温下)的过硫酸铵,28%的K2-EDTA,4%的KCl;(5)VES,5%的包在胶囊里的过硫酸铵,28%的K2-EDTA,4%的KCl。所有的分析都是在150°F下进行的。这些数据显示VES消弱了但并未完全破坏其分解滤饼的活性。
图4示出VES(5%)对两种分解剂(α-淀粉酶和过硫酸铵)的影响,(1)1%的过硫酸铵,没有VES(细灰线);1%的过硫酸铵,VES(细黑线);(2)0.5%的α-淀粉酶,没有VES(粗灰线);0.5%的α-淀粉酶,VES(粗黑线)。这些数据显示VES能和这两种分解剂系统相容。
图5示出VES对K2-EDTA的分解滤饼的活性的影响,5%的VES,28%的K2-EDTA(浅灰线),5%的VES,没有K2-EDTA(深灰线),没有VES,28%的K2-EDTA(黑线)。这些数据显示VES的存在对K2-EDTA的活性产生了很大影响。
图6示出两种不同的VES系统(VES和VES1)的流变学性能(剪切率与粘度的关系),125°F下5%的VES中的28%的K2-EDTA/0.5%的α-淀粉酶系统(浅色三角形)和相似的没有α-淀粉酶的系统(交叉线),75°F下1.5%的VES系统(加上K2-EDTA/α-淀粉酶)(深色三角形),140下5%的VES1系统(菱形)进行比较。这些数据显示加入K2-EDTA/α-淀粉酶对不同的VES系统的流变学性能影响不大。
图7和图6相同,除了系统在200°F下测定,而不是在125°F下测定。这些数据显示125°F和200°F下研究的系统活性没有大的不同。
图8示出3%的VES溶液在80°F下的粘度(在170s-1下)与HCl浓度的函数关系。这些数据显示HCl浓度大于15%(15%-25%)时,溶液的粘度降低,但是,小于15%时,VES的稳定性不受酸的影响。
图9对α-淀粉酶和过硫酸铵在5%的VES/28%的K2-EDTA溶液中的作用进行了对比,0.5%的α-淀粉酶(带交叉线的黑线),没有聚合物分解剂(灰线),1%的过硫酸铵(黑线)。这些数据显示在VES/K2-EDTA系统中,α-淀粉酶比过硫酸铵的活性大。
图10是不同的盐对5%的VES+27.3%的K2-EDTA系统的流变学性能的影响的对比:4%的氯化钾(没有K2-EDTA)(交叉线);3%的氯化铵(圆圈)(没有K2-EDTA);4%的氯化钾(垂直线);3%的氯化铵(平的方块)。这些数据显示K2-EDTA基本上不会影响到5%的VES系统的粘度。
图11示出对于三种不同系统来说,分解时间(滤饼分解)的对比曲线:15%的HCl(菱形),9%的甲酸(正方形),和28%的K2-EDTA。这些数据显示HCl系统比其它两种系统能更快地分解滤饼。
图12示出α-淀粉酶对K2-EDTA/VES系统对该系统的分解滤饼的活性的影响。所示的系统是对比/空白(菱形),只有K2-EDTA/VES(正方形),和有α-淀粉酶的K2-EDTA/VES。这些数据显示加入酶能够很大地提高渗漏性(其表示滤饼的分解),且这种作用能非常迅速(<1分钟)地发生。
图13示出两种系统的分解滤饼的性能对比。这两种系统是只有K2-EDTA(菱形),K2-EDTA和α-淀粉酶(正方形)。这些数据显示用K2-EDTA/α-淀粉酶系统能更彻底地进行分解(约500分钟后)。
图14对3%的NH4Cl(2小时,300psi,150°F)中的5%的VES系统中加入各种分解剂后的保留渗透率进行了对比,从左至右为:无;只有VES;只有28%的K2-EDTA;14%的K2-EDTA;pH为5.5的28%的K2-EDTA;28%的K2-EDTA+0.5%的α-淀粉酶;和0.5%的α-淀粉酶。这些数据显示K2-EDTA+α-淀粉酶系统有更高的保留渗透率。
优选实施方案详述
另外,本发明的重点但不是本发明的全部保护范围是一系列用于除去脱水钻井液(即,“滤饼”)的流体组合物和技术。具有这种功能的流体通常称之为“完井液”。本发明的优选实施方案(完井液)的共同特性是对它们进行具体地但不排它地优化以分解/除去由某种钻井液产生的钻井滤饼,钻井液系统是公知的商标为STARDRILLTM的钻井液。STARDRILL的主要成分是方解石,淀粉及较低浓度的黄原胶或硬葡聚糖。
本发明的流体是基于多种标准设计的,两个主要标准是:(1)流变学性能,即,确保在井眼下部的循环温度下的在很宽的剪切率范围内的流体流变学性能在可接受范围内(如,足够的分配砾石的粘度);和(2)清除性能,即,确保该组合物能有效地除去滤饼,同时使其对地层的损坏最小化,并且不会过度妨碍同时进行的完井作业(如,砾石充填)。
另外,任何设计为结合酶和其它分解剂的系统都必须认为是不同分解剂的可变的活性范围,具体来说,这是因为一些酶是对pH和温度高度敏感的。
实施例1
存在分解剂的VES系统的稳定性
另外,本发明的一个目的是提供能分解滤饼且在和其它油井处理特别是砾石充填作业结合中还能作为载液的新型流体。在进行砾石充填作业的情况下,为了输送砾石,该载液必须是粘性的。因此,优选VES系统。另外,VES表示“粘弹性表面活性剂”。用VES作为油井处理流体在多种实际油井处理中证明是有效的。基于VES的油井处理流体是转让给Schlumberger的多个专利及其专利申请中的主题(此处引入均作为参考)。1993年转让给Schlumberger Technology Corporation的美国专利5258137,Viscoelastic Surfactant Based Foam Fluids;1996年转让给SchlumbergerTechnology Corporation的美国专利5551516,Hydraulic Fracturing Process andCompositions;1996.10.9申请的,转让给Schlumberger Technology Corporation的美国专利申请08/727877,Methods of Fracturing Subterranean Formations;1997.5.29申请的,转让给Schlumberger Technology Corporation的美国专利申请08/865137,Methods for Limiting the Inflow of Formation Water and forStimulating Subterranean Formations;1998.10.5申请的,转让给SchlumbergerTechnology Corporation的美国专利申请09/166658,Methods of FracturingSubterranean Formations。
最常使用的VES系统是下面的例子:N-顺式-13-二十二碳烯-N,N-双(2-羟甲基)-N-甲基氯化铵(又名:N-瓢儿菜基-N,N-双(2-羟甲基)-N-甲基氯化铵)。另外,在实施例中使用的实际VES系统含有25%的异丙醇以提高VES系统在低温下的稳定性。有些情况下,使用第二种VES系统,称之为VES1,其由三种不同的脂肪酸的甘油酯组成,这三种不同的脂肪酸是23.5%的芥酸(有一个双键的C22),32%的油酸(有一个双键的C18)和44.5%的亚油酸(有三个被亚甲基隔开的双键的C18)。
另外,上述VES系统除与普通的自来水能完全相容外,还和海水能完全相容。因此,术语“VES”包括用淡水制备的VES系统和用海水制备的VES系统。1998.10.10申请的,转让给Schlumberger的美国专利申请09/166658,Methods of Fracturing Subterranean Formations中公开和要求保护用海水制备的VES系统。此处引入该申请作为参考,该申请特别公开了用海水制备的VES系统的可操作性。
下面的试验结果说明VES系统中加入本发明的分解剂(单独加入或相结合加入)后能保持其稳定性(粘度)。
进行下面的试验方案,以收集和提出下述实施例中的数据。首先将一个干砂岩芯称重,然后使其浸满盐水(用水润湿该芯),再次称重。根据这两次测试的对比,可测定孔隙体积。接下来,把该芯加热到试验温度(150°F)。然后,使100孔隙体积的煤油以约10psi的压力流经该滤饼芯。这个步骤的目的是使孔隙中充满烃。然后,观察砂岩芯对煤油的渗透率。接下来,将煤油排出,然后,把125ml的STARDRILL钻井液在300psi的压力下在该芯上应用约1小时。其目的是模拟一般井眼中的过平衡状态;因此,将STARDRILL流体“压”入芯中以模拟渗漏。1小时后,将过量的STARDRILL排出,然后用盐水冲洗该芯。
接下来,使该STARDRILL滤饼涂层的芯和一系列“清除”溶液接触-100ml溶液,在300psi的压力下接触2小时(这是为了模拟如一般的砾石充填作业)。在图14例示的数据中,每一种清除溶液都由3%的NH4Cl中的5%的VES的基质所组成。这些溶液是(图14中从左至右)为:“倒流”(为了模拟使油井在没有任何清除的情况下采油);“空白”(只有VES);28%的K2-EDTA;14%的K2-EDTA;pH为5.5的28%的K2-EDTA;28%的K2-EDTA+0.5%的α-淀粉酶;和0.5%的α-淀粉酶。在每一种情况下,与砂岩芯接触的清除溶液的量均为100ml。2小时后,观察渗漏的体积;在试验温度下测试其对煤油的保留渗透率。
在VES基质中制备分解剂系统时,没有流体中有沉淀或相分离;但是,当28%的K2-EDTA中的VES的pH升高到大于11时,观察到白色蜡状物质。显然,在该高pH值时,EDTA络合物影响VES系统中的表面活性剂和螺旋形胶束结构。用API标准装料台在180°F下测定所研究的系统的粘度(100sec-1下的粘度)。VES基溶液的粘弹性能和高的低剪切粘度的原因是由于表面活性剂(4%的KCl或3%的NH4Cl)形成的螺旋形胶束结构。加入滤饼分解剂可能影响该胶束结构,同样还可能影响VES溶液的流变学性能。这可通过添加剂与VES表面活性剂分子的反应而发生,也可以通过添加剂VES和ClearFracTM胶束结构的相互作用而发生。
现在讨论试验结果。图1是测定的有各种添加剂的5%的VES溶液的粘度的概述图。其值对应于在100s-1下将样品剪切101分钟后的100s-1下的值。粘度值是用API装料台在该点处的测定值计算出来的。这些数据例示出:加入EDTA或α-淀粉酶,或者这两种分解剂一起加入不会对VES的粘度造成很大影响(可能显微胶束结构也不会受到影响)。
图2报道了相关的数据。此图示出加入的分解淀粉的酶α-淀粉酶对VES流变学性能的影响。根据图2,往盐水中的VES溶液中加入α-淀粉酶不会对100s-1下的VES的粘度造成很大影响。但是,当把α-淀粉酶加入EDTA/KCl盐水中的VES溶液中时,其粘度有很大的降低。令人吃惊的是:如果使用EDTA/NH4Cl盐水就不会出现这种现象。重复进行这两种试验都得出相似的结果。
图6示出加入28%的K2-EDTA和4%的KCl对VES系统的流变学性能的影响(如果没有特别指出,就是在125°F)。这些数据显示:加入K2-EDTA或α-淀粉酶,或者二者都加入不会对VES的流变学性能造成很大影响。图7中的数据虽然是在更高温度下得到的,但是与图6中的数据类似。另外,这两个图还显示:140°F下的5%的VES(短链)和75°F下的1.5%的VES(长链)都是有竞争力的砾石充填的载液。因此,根据本发明,现在可以配制出用于125°F和150°F的含有滤饼分解剂的砾石充填的载液,这两个温度下的载液有相似的流变学性能。
图8示出改变HCl浓度对80°F下的3%的VES系统的粘度的影响。这些数据证明:HCl浓度是约5%至约15%时,粘度基本不受影响,大于15%时,粘度有很大的降低。
最后,图10比较了不同的盐(水杨酸钠,KCl和NH4Cl)对5%的VES系统的流变学性能的影响。这些数据令人信服地表明:K2-EDTA(浓度可高达28%,这大致是EDTA在水中的溶解度极限)基本不会影响5%的VES系统的粘度。另外,这些数据显示:KCl和NH4Cl都不会影响5%的VES系统的流变学性能;但是,当EDTA存在时,即使浓度非常低(0.5%)的水杨酸钠也会极大地影响VES的粘度(粘度大约降低40%)。
从这些数据可以看出:存在两组特别优选的实施方案。它们是有或没有VES的含有α-淀粉酶和EDTA的完井液。但是,如果使用VES作为基质,那么优选的盐是约3%的NH4Cl。因此,一种特别优选的本发明的完井液含有:在4%的NH4Cl溶液中有5%的VES,0.5%的α-淀粉酶和28%的K2-EDTA。另一种特别优选的完井液是:在4%的盐溶液(如果不用VES,那么盐的类型不是关键)中有0.5%的α-淀粉酶和28%的K2-EDTA。
我们无意被下面设想的机理所束缚,我们假定螯合剂和酶相结合(如,K2-EDTA和α-淀粉酶),可起到协同作用以分解由淀粉和方解石构成的滤饼。更具体地说,淀粉聚合物和方解石以复杂的结构排列,例如,聚合物涂覆在方解石颗粒上。因此,主要对聚合物起反应的分解剂(如,一种酶)只能分解颗粒的涂层,而不会触及颗粒。同样,主要对方解石颗粒起反应的分解剂会由于聚合物涂层的原因难以接触到方解石颗粒-这就是观察到的酶+螯合剂结合流体的协同反应性。
理想的完井液的目标是其能把滤饼最大可能地分解,而同时又能确保有高的保留渗透率。因此,能使滤饼最大程度地分解但使滤饼颗粒嵌在井眼中的完井液是无效的,因为保留渗透率很低。因此,滤饼的分解必须均匀而彻底-即,产生不会塞住井眼但能在循环冲洗中除去或能和烃一起生产的小颗粒。
实施例2
分解剂在VES系统中的活性
前面的实施例充分说明VES系统是稳定的,即,其粘度基本不受本发明的分解剂(如,HCl,甲酸和乙酸,酶和螯合剂)的影响。这个实施例用来说明VES基质基本不会影响分解剂的活性-即,不会影响其分解滤饼的活性。
图3示出VES(5%)对酶(α-淀粉酶)和传统的氧化剂分解剂(过硫酸铵,溶解的或密封的)的影响。这些数据显示VES抑制了已知功效的分解剂的活性。
如图4所示,图3中的数据必须通过对这些系统进行时间依赖性的评价才能证明。图4显示在该试验开始约65分钟后,VES确实提高了α-淀粉酶的活性。
图5示出对K2-EDTA系统的试验结果(存在或不存在5%的VES时)。这些结果显示VES确实对EDTA的活性有很大影响。
实施例3
本发明的完井液的性能
前面已经证明:各种分解剂(如,酸,酶和螯合剂)单独或相结合时,在VES溶液(及无VES的溶液)中都是有效的,并且在一定程度上证明了这些试剂受VES的影响,我们现在更详细地介绍本发明的完井液的优良性能。
这个实施例的目的是说明本发明的某些组合物与传统的系统相比具有优良的除去滤饼的性能。认真设计该试验步骤以最近似地模拟典型的水润湿的、油饱和的砂岩储油层的实际状态。
图9中的数据比较了α-淀粉酶和氧化剂分解剂(过硫酸铵)在VES/K2-EDTA系统(5%的VES,28%的K2-EDTA,4%的KCl)中的作用。这些数据显示酶+EDTA系统明显优于氧化剂+EDTA系统。这些数据是令人吃惊的,因为虽然说EDTA是针对滤饼中的方解石部分,氧化剂和α-淀粉酶是针对滤饼中的聚合物部分。因此,这两个二元系统都是“完全的”,因为它们都含有用于构成滤饼的两部分的分解剂,因此,可以预料其有相当的除去滤饼的比例(或程度)。
图11中的数据对5%的VES中的15%的HCl,甲酸、和28%的K2-EDTA的作为温度函数的活性(分解时间)进行了对比。图11证明,EDTA系统远胜过酸系统,特别是在较低温度下。
图12和13对EDTA系统和EDTA/α-淀粉酶系统在VES(图12)中和不在VES(图13)中的活性进行了对比。这两个图的对比显示出:VES的存在实际提高了只有EDTA的系统的活性,尽管该效果在约90分钟之前观察不到。图12中的早期数据进一步证明:螯合剂/酶系统与螯合剂自身相比具有优良性能。图12还显示:这种效果是非常迅速的-小于1分钟。
图14中的渗漏数据与图12中的数据是一致的。最大的不同是:图14示出EDTA/α-淀粉酶系统能得到最高的保留渗透率-大于90%,而只有EDTA的系统得到的保留渗透率刚超过80%。因此,本发明的VES/EDTA/α-淀粉酶系统比传统的清除配合物在相关坐标的对比中:渗漏量和保留渗透率方面都有更高级的性能。另外,前面的数据(如,图4中的α-淀粉酶;图5中的EDTA)显示VES是可用于EDTA/α-淀粉酶系统的一种有竞争力的载液。同样,图1和2中的结果证明:EDTA/α-淀粉酶系统的活性不会对VES基质的性能(如,粘度)造成很大影响。
最后,熟练的油井处理设计人员会认识到:非EDTA的螯合剂也可用在本发明的流体组合物中。选择流体时的相关参数是:方解石(或其它矿物质)的溶解常数(一个热力学参数),质子离解常数(也是一个热力学参数),和动力参数。熟练的油井处理设计人员会通过将用于EDTA的那些参数和用于考虑使用的螯合剂的参数相比较而推出其它螯合剂的性能。对各种螯合剂溶解方解石的动力学的系统研究出现在C.N.Fredd和H.S.Fogler,TheInfluence of Chelating Agents on the Kinetics of Calcite Dissolution 204J.ColliodInterface Sci.187(1998)中。此处引入该文献作为参考。
实施例4
具体应用
本发明的流体和技术在各种设置中是相当通用的和可操作的。因为在所有情况下都确实存在着定位和均匀溶解的问题,所以,本发明的流体和技术易于应用在要从地层中的井眼或邻近井眼区域除去滤饼的所有场合,无论滤饼是在钻井过程中还是在其它钻后作业过程中产生的(如,防流体损失球,砾石充填作业,断口,基岩酸化等)。本发明的流体和技术可应用在多种不同的环境中,其包括:
只有筛网的完井和砾石充填完井;
裸眼和装套管的钻孔;
垂直的和高度偏斜的井;
单级浸泡液或其中的处理液(本发明的流体)还作为用于如砾石充填作业的载液的循环流体;
和胶凝剂如粘弹性表面活性剂(如,ClearFRACTM)结合使用或单独使用;
和各种清除工具与非传统技术结合使用(如,Mobil的Altemate PathTechnology,参见如,L.G.Jones等人,Gravel Packing Horizontal Wellbores WithLeak-OffUsing Shunts,SPE 38640,此处引入作为参考);或
和其它流体添加剂(如,防腐剂)或溶解成分(如,氧化剂)结合使用。
一种这样特定的可以应用本发明的流体的设置是称为“ALLPAC”或Altemate Path技术的特种砾石充填作业。(本申请中使用的术语“砾石充填”包括结合ALLPAC技术的处理)。该技术在多个专利中都有描述,这些专利都转让给了Mobile,并且为Schlumberger所专有许可:美国专利5560427,Fracturing and Propping a Formation Using a Downhole Slurry Splitter(1996);美国专利5515915,Well Screen Having Internal Shunt Tubes(1996);美国专利5419394,Tools for Delivering Fluid to Spaced Levels in a Wellbore(1995);美国专利5417284,Method for Fracturing and Propping a Formation(1995);美国专利5390996,Single Connector for Shunt Conduits on Well Tool(1995);美国专利5333688,Method and Apparatus for Gravel Packing of Wells(1994);美国专利5161613,Apparatus for Treating Formations Using AlternateFlopaths(1992);美国专利5113935,Gravel Packing of Wells(1992);美国专利5082052,Apparatus for Gravel Packing Wells(1992);美国专利4945991,Method for Gravel Packing Wells(1990)。此处引入这些专利均作为参考。
ALLPAC技术对于本发明的流体和技术的重要性怎样评价都不过分。没有ALLPAC,用粘性载液进行砾石充填是非常困难的,其有些情况下,实际上是不可能的。ALLPAC筛网由分流管构成,使得粘性流体易于通过筛网环流到目的地。
另外,C.Price-Smith等人在Open Hole Horizontal Well Cleanup in SandControl Completions:State of the Art in Field Practice and LaboratoryDevelopment,SPE50673(1998)中对在裸眼水平油井中和治沙结合将滤饼除去进行了充分的讨论,此处引入该文献作为参考。
ALLPAC技术中加入了含有“分流管”或分流通道的新型砾石充填筛网设备,这些“分流管”或分流通道连接在筛网的侧边上。这些分流管通过消除架桥现象(或者更确切地说,是使流体绕过架桥区而流动)而可有效地进行砾石充填,因此,即使是有高的流体损失也能用砾石充填到更长的水平部分。因此,当本发明的流体和ALLPAC技术结合使用时,可以使用一种新方法。在该方法中,由于流体损失(渗漏)不会对砾石充填的质量造成很大影响,所以,在砾石充填作业的过程中,易于将滤饼清除掉。因此,将除去滤饼和砾石充填处理相结合可很大地减少钻井时间。
事实上,应用ALLPAC技术的砾石充填/用本发明的流体进行除去滤饼的处理相结合的方法是一种节约成本的完井方法。用VES进行现场试验,在该试验中,将一个分流管置于充填在整个2000英尺长度的生产区内的割缝衬管里面。在该试验过程中发现:40/60的砾石(约50达西)就足以将流体分流到分流管中。另外,渗漏不是一个关心的问题,这是用本发明的流体和方法开发的ALLPAC技术的另一个重大优点。

Claims (49)

1、一种用于分解滤饼的完井液,其包括VES和酶。
2、根据权利要求1所述的完井液,其中所说的酶选自于α-淀粉酶和β-淀粉酶。
3、根据权利要求2所述的完井液,其中所说的VES是N-顺式-13-二十二碳烯-N,N-双(2-羟甲基)-N-甲基氯化铵。
4、根据权利要求2所述的完井液,其中所说的α-淀粉酶在所说的流体中的浓度是约0.05%至约1.5%。
5、根据权利要求4所述的完井液,其中所说的α-淀粉酶在所说的流体中的浓度是约0.5%。
6、根据权利要求5所述的完井液,其中所说的VES在所说的流体中的浓度是约0.5%至约7%。
7、根据权利要求6所述的完井液,其中所说的VES在所说的流体中的浓度是约5%。
8、根据权利要求7所述的完井液,其中还包括一种选自于4%的KCl和3%的NH4Cl的盐。
9、根据权利要求8所述的完井液,其中所说的盐是NH4Cl。
10、根据权利要求8所述的完井液,其包括异丙醇,其中所说的异丙醇和所说的VES在所说的流体中存在的比是约1∶4。
11、根据权利要求3所述的完井液,其中还包括一种螯合剂。
12、根据权利要求11所述的完井液,其中所说的螯合剂选自于HEDP,ATMP,TTPMP,EDTA,CDTA,DTPA和NTA。
13、根据权利要求12所述的完井液,其中所说的螯合剂是EDTA。
14、根据权利要求13所述的完井液,其中所说的EDTA在所说的流体中的浓度是约28%。
15、根据权利要求14所述的完井液,其中所说的α-淀粉酶,所说的VES和所说的EDTA在所说的流体中的浓度分别是约0.5%,5%和28%。
16、一种用于分解滤饼的完井液,其包括酸和VES。
17、根据权利要求16所述的完井液,其中所说的酸是甲酸。
18、根据权利要求17所述的完井液,其中所说的VES是N-顺式-13-二十二碳烯-N,N-双(2-羟甲基)-N-甲基氯化铵。
19、根据权利要求16所述的完井液,其中所说的甲酸在所说的流体中的浓度是约3%至约7%。
20、根据权利要求16所述的完井液,其还包括防腐剂。
21、根据权利要求16所述的完井液,其还包括一种选自于KCl和NH4Cl的盐。
22、根据权利要求20所述的完井液,其中所说的盐在所说的溶液中的浓度是约1%至约5%。
23、根据权利要求18所述的完井液,其中所说的VES在所说的流体中的浓度是约3%至约7%。
24、根据权利要求21所述的完井液,其中所说的VES,所说的NH4Cl和所说的甲酸在所说的流体中的浓度都是约4%。
25、一种用于分解滤饼的完井液,其包括螯合剂。
26、根据权利要求25所述的完井液,其还包括VES。
27、根据权利要求26所述的完井液,其中所说的VES是N-顺式-13-二十二碳烯-N,N-双(2-羟甲基)-N-甲基氯化铵。
28、根据权利要求25所述的完井液,其中所说的螯合剂选自于HEDP,ATMP,TTPMP,EDTA,CDTA,DTPA和NTA。
29、根据权利要求28所述的完井液,其中所说的螯合剂是EDTA。
30、根据权利要求29所述的完井液,其中所说的EDTA在所说的流体中的浓度是约28%。
31、根据权利要求2所述的完井液,其中所说的EDTA在所说的流体中的浓度是约28%。
32、根据权利要求25所述的完井液,其还包括α-淀粉酶。
33、根据权利要求32所述的完井液,其中所说的α-淀粉酶在所说的流体中的浓度是约0.05%至约1.0%。
34、根据权利要求33所述的完井液,其中所说的α-淀粉酶在所说的流体中的浓度是约0.5%。
35、根据权利要求34所述的完井液,其还包括一种选自于KCl和NH4Cl的盐,其中所说的盐在所说的流体中的浓度是约3%至约5%。
36、一种和砾石充填作业结合分解滤饼的方法,其包括将流体循环通过油井,流体是权利要求1-35中的任一种完井液。
37、一种和砾石充填作业结合分解滤饼的方法,其包括将流体注入油井,流体是权利要求1-35中的任一种完井液。
38、根据权利要求36所述的方法,其还包括首先将预洗流体注入所说的油井中的步骤。
39、根据权利要求38所述的方法,其中所说的预洗流体基本上是由阴离子表面活性剂溶液组成。
40、一种分解滤饼的单级浸泡方法,包括将权利要求1-35中的任一种完井液注入井眼中,然后使所说的流体与所说的井眼接触。
41、一种分解滤饼的方法,包括将流体注入井眼中,然后将流体循环通过所说的井眼,流体是权利要求1-35中的任一种完井液。
42、根据权利要求40所述的方法,其还包括首先将预洗流体注入所说的油井中的步骤。
43、根据权利要求41所述的方法,其还包括首先将预洗流体注入所说的油井中的步骤。
44、根据权利要求40所述的方法,其中所说的完井液可与所说的井眼接触约24小时至约128小时。
45、一种用于分解滤饼的完井液,其包括VES,α-淀粉酶和EDTA,它们在所说的流体中的浓度分别是5%,0.5%和28%。
46、根据权利要求45所述的完井液,其中还包括NH4Cl,其在所说的流体中的浓度是约4%。
47、一种用于分解滤饼的完井液,其包括α-淀粉酶和EDTA,其中所说的α-淀粉酶在所说的流体中的浓度是约0.1%至约1.5%,且其中所说的EDTA在所说的流体中的浓度是约5%至约28%。
48、根据权利要求46所述的完井液,其还包括浓度是约1%至约10%的盐。
49、一种和砾石充填作业结合分解滤饼的方法,其包括将流体注入油井,流体是权利要求45-48中的任一种完井液。
CN99816204.3A 1998-12-31 1999-12-08 用于生产完井烃的流体和技术 Expired - Fee Related CN1238463C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/224,440 US6140277A (en) 1998-12-31 1998-12-31 Fluids and techniques for hydrocarbon well completion
US09/224,440 1998-12-31

Publications (2)

Publication Number Publication Date
CN1334854A true CN1334854A (zh) 2002-02-06
CN1238463C CN1238463C (zh) 2006-01-25

Family

ID=22840694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99816204.3A Expired - Fee Related CN1238463C (zh) 1998-12-31 1999-12-08 用于生产完井烃的流体和技术

Country Status (12)

Country Link
US (3) US6140277A (zh)
EP (1) EP1171543B1 (zh)
CN (1) CN1238463C (zh)
AT (1) ATE550403T1 (zh)
AU (1) AU761262B2 (zh)
BR (1) BR9916631B1 (zh)
CA (2) CA2690140C (zh)
EA (1) EA002585B1 (zh)
ID (1) ID30082A (zh)
NO (1) NO339337B1 (zh)
OA (1) OA12508A (zh)
WO (1) WO2000040667A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304521C (zh) * 2004-02-23 2007-03-14 中海石油(中国)有限公司天津分公司 一种滤饼清除液

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6435277B1 (en) 1996-10-09 2002-08-20 Schlumberger Technology Corporation Compositions containing aqueous viscosifying surfactants and methods for applying such compositions in subterranean formations
US5964295A (en) 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6564814B2 (en) * 1997-05-23 2003-05-20 Shelba F. Bowsman Engine decarbonizing system
US6258859B1 (en) * 1997-06-10 2001-07-10 Rhodia, Inc. Viscoelastic surfactant fluids and related methods of use
CA2257697C (en) 1998-12-31 2003-05-20 Fracmaster Ltd. Foam-fluid for fracturing subterranean formations
US6140277A (en) * 1998-12-31 2000-10-31 Schlumberger Technology Corporation Fluids and techniques for hydrocarbon well completion
GB9906484D0 (en) 1999-03-19 1999-05-12 Cleansorb Ltd Method for treatment of underground reservoirs
US6508307B1 (en) 1999-07-22 2003-01-21 Schlumberger Technology Corporation Techniques for hydraulic fracturing combining oriented perforating and low viscosity fluids
US6818594B1 (en) 1999-11-12 2004-11-16 M-I L.L.C. Method for the triggered release of polymer-degrading agents for oil field use
US6875728B2 (en) * 1999-12-29 2005-04-05 Bj Services Company Canada Method for fracturing subterranean formations
US6571875B2 (en) 2000-02-17 2003-06-03 Schlumberger Technology Corporation Circulation tool for use in gravel packing of wellbores
US6631764B2 (en) * 2000-02-17 2003-10-14 Schlumberger Technology Corporation Filter cake cleanup and gravel pack methods for oil based or water based drilling fluids
US6491099B1 (en) 2000-02-29 2002-12-10 Bj Services Company Viscous fluid applicable for treating subterranean formations
US7451819B2 (en) * 2000-03-02 2008-11-18 Schlumberger Technology Corporation Openhole perforating
CA2649056C (en) * 2000-04-05 2010-10-26 Schlumberger Canada Limited Viscosity reduction of viscoelastic surfactant based fluids
US20030216263A1 (en) * 2000-08-30 2003-11-20 Tibbles Raymond J. Fluids and techniques for hydrocarbon well completion
US6762154B2 (en) * 2000-09-21 2004-07-13 Schlumberger Technology Corporation Viscoelastic surfactant fluids stable at high brine concentrations
US7052901B2 (en) * 2000-10-31 2006-05-30 Baker Hughes Incorporated Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids
US7084095B2 (en) * 2001-04-04 2006-08-01 Schlumberger Technology Corporation Methods for controlling the rheological properties of viscoelastic surfactants based fluids
US6908888B2 (en) * 2001-04-04 2005-06-21 Schlumberger Technology Corporation Viscosity reduction of viscoelastic surfactant based fluids
US6911418B2 (en) * 2001-05-17 2005-06-28 Schlumberger Technology Corporation Method for treating a subterranean formation
US7080688B2 (en) * 2003-08-14 2006-07-25 Halliburton Energy Services, Inc. Compositions and methods for degrading filter cake
US7140438B2 (en) * 2003-08-14 2006-11-28 Halliburton Energy Services, Inc. Orthoester compositions and methods of use in subterranean applications
US7168489B2 (en) * 2001-06-11 2007-01-30 Halliburton Energy Services, Inc. Orthoester compositions and methods for reducing the viscosified treatment fluids
US7276466B2 (en) * 2001-06-11 2007-10-02 Halliburton Energy Services, Inc. Compositions and methods for reducing the viscosity of a fluid
US6828280B2 (en) * 2001-08-14 2004-12-07 Schlumberger Technology Corporation Methods for stimulating hydrocarbon production
US6938693B2 (en) * 2001-10-31 2005-09-06 Schlumberger Technology Corporation Methods for controlling screenouts
US7078370B2 (en) * 2001-09-19 2006-07-18 Baker Hughes Incorporated Biodegradable chelant compositions for fracturing fluid
MXPA04005049A (es) * 2001-12-03 2004-08-19 Schlumberger Technology Bv Fluido de perforacion de control de perdida de fluido que no causa dano y metodo para el uso de la misma.
US8273693B2 (en) 2001-12-12 2012-09-25 Clearwater International Llc Polymeric gel system and methods for making and using same in hydrocarbon recovery
US7405188B2 (en) * 2001-12-12 2008-07-29 Wsp Chemicals & Technology, Llc Polymeric gel system and compositions for treating keratin substrates containing same
US7183239B2 (en) * 2001-12-12 2007-02-27 Clearwater International, Llc Gel plugs and pigs for pipeline use
US7119050B2 (en) * 2001-12-21 2006-10-10 Schlumberger Technology Corporation Fluid system having controllable reversible viscosity
US6929070B2 (en) * 2001-12-21 2005-08-16 Schlumberger Technology Corporation Compositions and methods for treating a subterranean formation
US6791130B2 (en) * 2002-08-27 2004-09-14 E-Phocus, Inc. Photoconductor-on-active-pixel (POAP) sensor utilizing a multi-layered radiation absorbing structure
US6691780B2 (en) 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US6774090B2 (en) * 2002-04-19 2004-08-10 Jacam Chemicals, L.L.C. Compositions and methods for controlling downhole sulfide deposits
AU2003240679A1 (en) * 2002-05-21 2003-12-02 Sofitech N.V. Hydraulic fracturing method
US6840318B2 (en) * 2002-06-20 2005-01-11 Schlumberger Technology Corporation Method for treating subterranean formation
US6968898B2 (en) * 2002-06-28 2005-11-29 Halliburton Energy Services, Inc. System and method for removing particles from a well bore penetrating a possible producing formation
US6978838B2 (en) * 2002-07-19 2005-12-27 Schlumberger Technology Corporation Method for removing filter cake from injection wells
US7398826B2 (en) * 2003-11-14 2008-07-15 Schlumberger Technology Corporation Well treatment with dissolvable polymer
US7219731B2 (en) * 2002-08-26 2007-05-22 Schlumberger Technology Corporation Degradable additive for viscoelastic surfactant based fluid systems
US7677311B2 (en) * 2002-08-26 2010-03-16 Schlumberger Technology Corporation Internal breaker for oilfield treatments
US6886635B2 (en) 2002-08-28 2005-05-03 Tetra Technologies, Inc. Filter cake removal fluid and method
US7345012B2 (en) * 2004-12-15 2008-03-18 Schlumberger Technology Corporation Foamed viscoelastic surfactants
US7378378B2 (en) * 2002-12-19 2008-05-27 Schlumberger Technology Corporation Rheology enhancers
US6923264B2 (en) * 2003-03-05 2005-08-02 Halliburton Energy Services, Inc. Methods of fracturing subterranean zones, fracturing fluids and breaker activators therefor
US7228904B2 (en) * 2003-06-27 2007-06-12 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
US7036587B2 (en) * 2003-06-27 2006-05-02 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
US20050130848A1 (en) * 2003-06-27 2005-06-16 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
US7032663B2 (en) * 2003-06-27 2006-04-25 Halliburton Energy Services, Inc. Permeable cement and sand control methods utilizing permeable cement in subterranean well bores
US7044224B2 (en) * 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Permeable cement and methods of fracturing utilizing permeable cement in subterranean well bores
US7148184B2 (en) * 2003-07-22 2006-12-12 Schlumberger Technology Corporation Self-diverting foamed system
US20050028976A1 (en) * 2003-08-05 2005-02-10 Nguyen Philip D. Compositions and methods for controlling the release of chemicals placed on particulates
US7081438B2 (en) * 2003-08-13 2006-07-25 Brine -Add Fluids Ltd. Drilling fluids, drilling fluids additives and methods useful for limiting tar sands accretion on metal surfaces
US7497278B2 (en) * 2003-08-14 2009-03-03 Halliburton Energy Services, Inc. Methods of degrading filter cakes in a subterranean formation
US8541051B2 (en) 2003-08-14 2013-09-24 Halliburton Energy Services, Inc. On-the fly coating of acid-releasing degradable material onto a particulate
US6997259B2 (en) * 2003-09-05 2006-02-14 Halliburton Energy Services, Inc. Methods for forming a permeable and stable mass in a subterranean formation
US7674753B2 (en) 2003-09-17 2010-03-09 Halliburton Energy Services, Inc. Treatment fluids and methods of forming degradable filter cakes comprising aliphatic polyester and their use in subterranean formations
US7829507B2 (en) 2003-09-17 2010-11-09 Halliburton Energy Services Inc. Subterranean treatment fluids comprising a degradable bridging agent and methods of treating subterranean formations
US7833944B2 (en) 2003-09-17 2010-11-16 Halliburton Energy Services, Inc. Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US7318475B2 (en) * 2003-11-14 2008-01-15 Schlumberger Technology Corporation Matrix acidizing high permeability contrast formations
US7000701B2 (en) * 2003-11-18 2006-02-21 Halliburton Energy Services, Inc. Compositions and methods for weighting a breaker coating for uniform distribution in a particulate pack
US7195068B2 (en) * 2003-12-15 2007-03-27 Halliburton Energy Services, Inc. Filter cake degradation compositions and methods of use in subterranean operations
US7096947B2 (en) * 2004-01-27 2006-08-29 Halliburton Energy Services, Inc. Fluid loss control additives for use in fracturing subterranean formations
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US20050183741A1 (en) * 2004-02-20 2005-08-25 Surjaatmadja Jim B. Methods of cleaning and cutting using jetted fluids
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
GB2412391A (en) * 2004-03-27 2005-09-28 Cleansorb Ltd Process for disruption of filter cakes
GB2412389A (en) * 2004-03-27 2005-09-28 Cleansorb Ltd Process for treating underground formations
US7373977B1 (en) * 2004-03-29 2008-05-20 Oil Chem Technologies Process for oil recovery employing surfactant gels
US20050257932A1 (en) * 2004-05-19 2005-11-24 Davidson Eric A Filter cake degradation compositions and associated methods
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7195070B2 (en) * 2004-07-15 2007-03-27 Weatherford/Lamb, Inc. Method and apparatus for downhole artificial lift system protection
US20060032633A1 (en) * 2004-08-10 2006-02-16 Nguyen Philip D Methods and compositions for carrier fluids comprising water-absorbent fibers
US7275596B2 (en) * 2005-06-20 2007-10-02 Schlumberger Technology Corporation Method of using degradable fiber systems for stimulation
US7775278B2 (en) * 2004-09-01 2010-08-17 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7299869B2 (en) * 2004-09-03 2007-11-27 Halliburton Energy Services, Inc. Carbon foam particulates and methods of using carbon foam particulates in subterranean applications
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7237608B2 (en) * 2004-10-20 2007-07-03 Schlumberger Technology Corporation Self diverting matrix acid
US7648946B2 (en) 2004-11-17 2010-01-19 Halliburton Energy Services, Inc. Methods of degrading filter cakes in subterranean formations
US7380602B2 (en) * 2004-11-18 2008-06-03 Schlumberger Technology Corporation Composition and method for treating a subterranean formation
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US7923419B2 (en) * 2004-12-17 2011-04-12 Baker Hughes Incorporated Methods and compositions for thermal insulation
US20060169182A1 (en) 2005-01-28 2006-08-03 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US8030249B2 (en) * 2005-01-28 2011-10-04 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US20080009423A1 (en) 2005-01-31 2008-01-10 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US7267170B2 (en) * 2005-01-31 2007-09-11 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US7353876B2 (en) * 2005-02-01 2008-04-08 Halliburton Energy Services, Inc. Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
US8598092B2 (en) 2005-02-02 2013-12-03 Halliburton Energy Services, Inc. Methods of preparing degradable materials and methods of use in subterranean formations
US20060172894A1 (en) * 2005-02-02 2006-08-03 Halliburton Energy Services, Inc. Degradable particulate generation and associated methods
US7216705B2 (en) * 2005-02-22 2007-05-15 Halliburton Energy Services, Inc. Methods of placing treatment chemicals
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US20060223714A1 (en) * 2005-04-05 2006-10-05 M-L L.L.C. Invert emulsion based completion and displacement fluid and method of use
US8105989B2 (en) * 2005-04-05 2012-01-31 M-I L.L.C. Water based completion and displacement fluid and method of use
US7662753B2 (en) 2005-05-12 2010-02-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7677315B2 (en) 2005-05-12 2010-03-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7803743B2 (en) * 2005-06-06 2010-09-28 Baker Hughes Incorporated Invert emulsion carrier fluid and oil-wetting agent and method of using same
US7497267B2 (en) * 2005-06-16 2009-03-03 Weatherford/Lamb, Inc. Shunt tube connector lock
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US7261160B2 (en) * 2005-09-13 2007-08-28 Halliburton Energy Services, Inc. Methods and compositions for controlling the viscosity of viscoelastic surfactant fluids
US20070060482A1 (en) * 2005-09-13 2007-03-15 Halliburton Energy Services, Inc. Methods and compositions for controlling the viscosity of viscoelastic surfactant fluids
US7713916B2 (en) 2005-09-22 2010-05-11 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US7665517B2 (en) 2006-02-15 2010-02-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
US7691789B2 (en) * 2006-03-31 2010-04-06 Schlumberger Technology Corporation Self-cleaning well control fluid
US8329621B2 (en) 2006-07-25 2012-12-11 Halliburton Energy Services, Inc. Degradable particulates and associated methods
US8567503B2 (en) 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US9027647B2 (en) 2006-08-04 2015-05-12 Halliburton Energy Services, Inc. Treatment fluids containing a biodegradable chelating agent and methods for use thereof
US8567504B2 (en) * 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US9127194B2 (en) 2006-08-04 2015-09-08 Halliburton Energy Services, Inc. Treatment fluids containing a boron trifluoride complex and methods for use thereof
US9120964B2 (en) 2006-08-04 2015-09-01 Halliburton Energy Services, Inc. Treatment fluids containing biodegradable chelating agents and methods for use thereof
US8481462B2 (en) * 2006-09-18 2013-07-09 Schlumberger Technology Corporation Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids
US7287590B1 (en) 2006-09-18 2007-10-30 Schlumberger Technology Corporation Internal breaker for oilfield fluids
US7635028B2 (en) * 2006-09-18 2009-12-22 Schlumberger Technology Corporation Acidic internal breaker for viscoelastic surfactant fluids in brine
US8067342B2 (en) * 2006-09-18 2011-11-29 Schlumberger Technology Corporation Internal breakers for viscoelastic surfactant fluids
US7879770B2 (en) * 2006-09-18 2011-02-01 Schlumberger Technology Corporation Oxidative internal breaker for viscoelastic surfactant fluids
US7678743B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7678742B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7687438B2 (en) 2006-09-20 2010-03-30 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7686080B2 (en) 2006-11-09 2010-03-30 Halliburton Energy Services, Inc. Acid-generating fluid loss control additives and associated methods
US9018146B2 (en) * 2006-11-22 2015-04-28 Baker Hughes Incorporated Method of treating a well with viscoelastic surfactant and viscosification activator
US7998908B2 (en) 2006-12-12 2011-08-16 Schlumberger Technology Corporation Fluid loss control and well cleanup methods
US8220548B2 (en) 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US8695708B2 (en) * 2007-03-26 2014-04-15 Schlumberger Technology Corporation Method for treating subterranean formation with degradable material
US20080236832A1 (en) * 2007-03-26 2008-10-02 Diankui Fu Method for Treating Subterranean Formation
EP1985682A1 (en) * 2007-04-17 2008-10-29 Services Pétroliers Schlumberger Method and composition for treatment of a well
US8071511B2 (en) * 2007-05-10 2011-12-06 Halliburton Energy Services, Inc. Methods for stimulating oil or gas production using a viscosified aqueous fluid with a chelating agent to remove scale from wellbore tubulars or subsurface equipment
US20080277112A1 (en) * 2007-05-10 2008-11-13 Halliburton Energy Services, Inc. Methods for stimulating oil or gas production using a viscosified aqueous fluid with a chelating agent to remove calcium carbonate and similar materials from the matrix of a formation or a proppant pack
US8099997B2 (en) 2007-06-22 2012-01-24 Weatherford/Lamb, Inc. Potassium formate gel designed for the prevention of water ingress and dewatering of pipelines or flowlines
US8065905B2 (en) 2007-06-22 2011-11-29 Clearwater International, Llc Composition and method for pipeline conditioning and freezing point suppression
US7950454B2 (en) * 2007-07-23 2011-05-31 Schlumberger Technology Corporation Technique and system for completing a well
US8020617B2 (en) * 2007-09-11 2011-09-20 Schlumberger Technology Corporation Well treatment to inhibit fines migration
US20090137429A1 (en) * 2007-11-26 2009-05-28 Rimassa Shawn Mccleskey Temperature-Extended Enzyme Systems
US7712536B2 (en) * 2007-11-29 2010-05-11 Schlumberger Technology Corporation Filtercake removal
EA018816B1 (ru) 2007-12-03 2013-10-30 Шлюмбергер Текнолоджи Б.В. Способы перфорирования с использованием вязкоупругих поверхностно-активных текучих сред и связанные с ними составы
US8839865B2 (en) * 2008-02-27 2014-09-23 Schlumberger Technology Corporation Slip-layer fluid placement
US20090247430A1 (en) * 2008-03-28 2009-10-01 Diankui Fu Elongated particle breakers in low pH fracturing fluids
US8006760B2 (en) 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
CA2723586C (en) * 2008-05-05 2013-06-18 Raul Navarro-Mascarell Breaker fluids comprising a chelating agent and an enzyme
US7906464B2 (en) 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
WO2010001323A1 (en) * 2008-07-01 2010-01-07 Schlumberger Canada Limited System, method, and apparatus for injection well clean-up operations
US8322419B2 (en) * 2008-07-25 2012-12-04 Schlumberger Technology Corporation Method of gravel packing a well containing synthetic or oil-based drilling fluids
US8316939B2 (en) * 2008-08-20 2012-11-27 Schlumberger Technology Corporation Method of installing sand control screens in wellbores containing synthetic or oil-based drilling fluids
US8658574B2 (en) * 2008-08-29 2014-02-25 Schlumberger Technology Corporation Treatment and reuse of oilfield produced water for operations in a well
US7833943B2 (en) 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US8322420B2 (en) * 2008-10-20 2012-12-04 Schlumberger Technology Corporation Toe-to-heel gravel packing methods
US8016040B2 (en) * 2008-11-26 2011-09-13 Schlumberger Technology Corporation Fluid loss control
US8293696B2 (en) * 2009-02-06 2012-10-23 Ecolab, Inc. Alkaline composition comprising a chelant mixture, including HEIDA, and method of producing same
US8177526B2 (en) * 2009-02-18 2012-05-15 Schlumberger Technology Corporation Gas well dewatering system
US8127835B2 (en) * 2009-02-18 2012-03-06 Schlumberger Technology Corporation Integrated cable hanger pick-up system
US7980311B2 (en) * 2009-02-18 2011-07-19 Schlumberger Technology Corporation Devices, systems and methods for equalizing pressure in a gas well
US8082991B2 (en) * 2009-02-19 2011-12-27 Schlumberger Technology Corporation Monitoring and control system for a gas well dewatering pump
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US9034804B2 (en) * 2009-06-05 2015-05-19 Kroff Chemical Company Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance
US20100323932A1 (en) 2009-06-17 2010-12-23 Oscar Bustos Methods for treating a well or the like
US8082992B2 (en) 2009-07-13 2011-12-27 Halliburton Energy Services, Inc. Methods of fluid-controlled geometry stimulation
US20110017457A1 (en) * 2009-07-21 2011-01-27 Samuel Mathew M Environmental compositions and methods for well treatment
US20110021386A1 (en) 2009-07-27 2011-01-27 Ali Syed A Microemulsion to improve shale gas production by controlling water imbibition
US8567499B2 (en) * 2009-08-04 2013-10-29 Schlumberger Technology Corporation Gelled liquid hydrocarbon treatment fluids and their associated methods of use
US9103200B2 (en) 2009-08-26 2015-08-11 Schlumberger Technology Corporation Rate induced diversion for multi-stage stimulation
CA2782370C (en) 2009-12-23 2018-01-16 Bp Corporation North America Inc. Rigless low volume pump system
US20110186293A1 (en) * 2010-02-01 2011-08-04 Gurmen M Nihat Use of reactive solids and fibers in wellbore clean-out and stimulation applications
US8517100B2 (en) 2010-05-12 2013-08-27 Schlumberger Technology Corporation Compositions and methods for cleaning a wellbore prior to cementing
US9022112B2 (en) 2010-05-20 2015-05-05 Schlumberger Technology Corporation Chelant based system and polylactide resin for acid diversion
WO2012001396A1 (en) * 2010-06-28 2012-01-05 M-I Drilling Fluids U.K. Limited Method of removing water-based filter cake
MX348072B (es) 2010-06-30 2017-05-25 M-I L L C * Fluido rompedor y de desplazamiento.
MX350787B (es) * 2010-09-30 2017-09-18 M I L L C * Agente viscosificado para el control de la perdida de fluido que utiliza quelatos.
US8561699B2 (en) 2010-12-13 2013-10-22 Halliburton Energy Services, Inc. Well screens having enhanced well treatment capabilities
US8881823B2 (en) 2011-05-03 2014-11-11 Halliburton Energy Services, Inc. Environmentally friendly low temperature breaker systems and related methods
RU2524227C2 (ru) * 2011-12-30 2014-07-27 Шлюмберже Текнолоджи Б.В. Добавка к жидкости для обработки подземного пласта и способ обработки подземного пласта
US9010417B2 (en) 2012-02-09 2015-04-21 Baker Hughes Incorporated Downhole screen with exterior bypass tubes and fluid interconnections at tubular joints therefore
US9334716B2 (en) 2012-04-12 2016-05-10 Halliburton Energy Services, Inc. Treatment fluids comprising a hydroxypyridinecarboxylic acid and methods for use thereof
NO335083B1 (no) * 2012-08-21 2014-09-08 Altus Intervention As Anordning for oppsamling av partikulært materiale i en ledning
US9803130B2 (en) 2012-10-25 2017-10-31 Schlumberger Technology Corporation Methods of activating enzyme breakers
CN102942907A (zh) * 2012-11-23 2013-02-27 大庆百晟石油科技有限公司 一种新型调剖速解液
WO2014164835A1 (en) * 2013-03-13 2014-10-09 M-I Drilling Fluids U.K. Limited Chelant acid particulate bridging solids for acid based wellbore fluids
US9670399B2 (en) 2013-03-15 2017-06-06 Halliburton Energy Services, Inc. Methods for acidizing a subterranean formation using a stabilized microemulsion carrier fluid
EP2796662B1 (en) * 2013-04-24 2016-06-08 GE Oil & Gas UK Limited Method and apparatus for cleaning a subsea stabplate connection
MX365430B (es) 2013-06-04 2019-06-03 Akzo Nobel Chemicals Int Bv Proceso para tratar formaciones subterraneas usando un agente quelante.
AU2014339778B2 (en) 2013-10-25 2018-08-23 Flex-Chem Holding Company, Llc Method for remediation of subterranean-formed metal-polymer complexes using a metal complexing agent
CA2944700C (en) 2014-04-14 2023-02-14 Flex-Chem Holding Company, Llc Stimulation of wells in nano-darcy shale formations
CA2888027A1 (en) 2014-04-16 2015-10-16 Bp Corporation North America, Inc. Reciprocating pumps for downhole deliquification systems and fluid distribution systems for actuating reciprocating pumps
US9238771B1 (en) * 2014-08-29 2016-01-19 King Fahd University Of Petroleum And Minerals Non-coiled tubing well clean-up
DK3189116T3 (da) 2014-09-04 2023-11-06 Flex Chem Holding Company Llc Slickvandfrakturering ved anvendelse af tidsforsinket frigivelse af metalkompleksdannende middel
US10329859B2 (en) 2015-05-20 2019-06-25 Halliburton Energy Services, Inc. Alkylpolyglucoside derivative fluid loss control additives for wellbore treatment fluids
WO2017007781A1 (en) * 2015-07-06 2017-01-12 Schlumberger Technology Corporation Hedta based chelants used with divalent brines, hedta based chelants used with divalent brines, wellbore fluids including the same and methods of use thereof
CA2997608C (en) * 2015-10-14 2021-06-22 Landmark Graphics Corporation History matching of hydrocarbon production from heterogenous reservoirs
US10294407B2 (en) 2015-11-25 2019-05-21 King Fahd University Of Petroleum And Minerals Barite filter cake removing composition and method
CN106367052A (zh) * 2016-09-07 2017-02-01 中国石油化工股份有限公司 一种用于注水井的降压增注剂及其制备方法和应用
US10844278B2 (en) 2017-07-14 2020-11-24 King Fahd University Of Petroleum And Minerals Composition and method for removing oil-based filter cake
EP4041843A1 (en) 2019-10-10 2022-08-17 Flex-Chem Holding Company, LLC Method for remediation of subterranean-formed metal-polymer complexes using peracetic acid
US11352548B2 (en) 2019-12-31 2022-06-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
CA3169214A1 (en) 2020-02-07 2021-08-12 Flex-Chem Holding Company, Llc Iron control as part of a well treatment using time-released agents
AU2021215942A1 (en) 2020-02-07 2022-08-18 Flex-Chem Holding Company, Llc Iron control as part of a well treatment using time-released agents
WO2022031913A1 (en) * 2020-08-06 2022-02-10 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
US11787997B2 (en) 2022-03-21 2023-10-17 Saudi Arabian Oil Company Treatment fluid composition for high temperature multi-stage fracturing applications

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2259419A (en) * 1937-10-23 1941-10-14 Dow Chemical Co Well drilling
US2343136A (en) * 1941-08-02 1944-02-29 Richfield Oil Corp Well completion fluid
US2525783A (en) * 1946-04-06 1950-10-17 Nat Lead Co Treatment of well-drilling fluids
US2651500A (en) * 1948-05-04 1953-09-08 Texaco Development Corp Art of drilling wells
US2681704A (en) * 1951-01-02 1954-06-22 Paul L Menaul Treating wells with a substrate
US3480511A (en) * 1966-08-11 1969-11-25 Gen Mills Inc Enzymatic breaker system for tamarind polysaccharide
US3515667A (en) * 1966-12-12 1970-06-02 Universal Oil Prod Co Drilling fluid additive
US3509950A (en) * 1968-03-27 1970-05-05 Raphael G Kazmann Well drilling mud and screen composition and method of use thereof
US4081030A (en) * 1976-11-01 1978-03-28 The Dow Chemical Company Aqueous based slurry with chelating agent and method of forming a consolidated gravel pack
US4169818A (en) * 1978-04-17 1979-10-02 Celanese Corporation Mixture of hydroxypropylcellulose and poly(maleic anhydride/alkyl vinyl ether) as a hydrocolloid gelling agent
US4190462A (en) * 1978-07-04 1980-02-26 Shell Oil Company Dissolving barium sulfate scale with aqueous solutions of salts of carboxymethyl monocyclic macrocyclic polyamines
US4636327A (en) 1980-12-05 1987-01-13 Dowell Schlumberger Incorporated Aqueous acid composition and method of use
US4430128A (en) 1980-12-05 1984-02-07 The Dow Chemical Company Aqueous acid composition and method of use
US4615825A (en) 1981-10-30 1986-10-07 The Dow Chemical Company Friction reduction using a viscoelastic surfactant
US4695389A (en) * 1984-03-16 1987-09-22 Dowell Schlumberger Incorporated Aqueous gelling and/or foaming agents for aqueous acids and methods of using the same
US4591447A (en) * 1984-03-16 1986-05-27 Dowell Schlumberger Incorporated Aqueous gelling and/or foaming agents for aqueous acids and methods of using the same
US4735731A (en) * 1984-06-15 1988-04-05 The Dow Chemical Company Process for reversible thickening of a liquid
US5258137A (en) * 1984-12-24 1993-11-02 The Dow Chemical Company Viscoelastic surfactant based foam fluids
US4623399A (en) 1985-02-04 1986-11-18 Dowell Schlumberger Incorporated Solvent for removing iron oxide deposits
US4734259A (en) * 1985-11-22 1988-03-29 Dowell Schlumberger Incorporated Mixtures of α,β-unsaturated aldehides and surface active agents used as corrosion inhibitors in aqueous fluids
US4888121A (en) 1988-04-05 1989-12-19 Halliburton Company Compositions and method for controlling precipitation when acidizing sour wells
US4945991A (en) 1989-08-23 1990-08-07 Mobile Oil Corporation Method for gravel packing wells
US5165477A (en) * 1990-12-21 1992-11-24 Phillips Petroleum Company Enzymatic decomposition of drilling mud
US5126051A (en) * 1990-12-21 1992-06-30 Phillips Petroleum Company Enzymatic decomposition of drilling mud
US5082052A (en) 1991-01-31 1992-01-21 Mobil Oil Corporation Apparatus for gravel packing wells
US5224546A (en) * 1991-03-18 1993-07-06 Smith William H Method of breaking metal-crosslinked polymers
US5113935A (en) 1991-05-01 1992-05-19 Mobil Oil Corporation Gravel packing of wells
US5161613A (en) 1991-08-16 1992-11-10 Mobil Oil Corporation Apparatus for treating formations using alternate flowpaths
US5247995A (en) * 1992-02-26 1993-09-28 Bj Services Company Method of dissolving organic filter cake obtained from polysaccharide based fluids used in production operations and completions of oil and gas wells
GB2282619B (en) * 1992-06-03 1996-06-05 Mobil Oil Corp Method for removing alkaline sulfate scale
US5333688A (en) 1993-01-07 1994-08-02 Mobil Oil Corporation Method and apparatus for gravel packing of wells
GB9308884D0 (en) * 1993-04-29 1993-06-16 Archaeus Tech Group Acidising oil reservoirs
US5390966A (en) 1993-10-22 1995-02-21 Mobil Oil Corporation Single connector for shunt conduits on well tool
US5419394A (en) 1993-11-22 1995-05-30 Mobil Oil Corporation Tools for delivering fluid to spaced levels in a wellbore
US5417284A (en) 1994-06-06 1995-05-23 Mobil Oil Corporation Method for fracturing and propping a formation
US5562160A (en) * 1994-08-08 1996-10-08 B. J. Services Company Fracturing fluid treatment design to optimize fluid rheology and proppant pack conductivity
US5566759A (en) * 1995-01-09 1996-10-22 Bj Services Co. Method of degrading cellulose-containing fluids during completions, workover and fracturing operations of oil and gas wells
US5551516A (en) * 1995-02-17 1996-09-03 Dowell, A Division Of Schlumberger Technology Corporation Hydraulic fracturing process and compositions
US5515915A (en) 1995-04-10 1996-05-14 Mobil Oil Corporation Well screen having internal shunt tubes
US5560427A (en) 1995-07-24 1996-10-01 Mobil Oil Corporation Fracturing and propping a formation using a downhole slurry splitter
US5972868A (en) * 1995-12-13 1999-10-26 The Dow Chemical Company Method for controlling alkaline earth and transition metal scaling with 2-hydroxyethyl iminodiacetic acid
US5964295A (en) 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US5881813A (en) * 1996-11-06 1999-03-16 Bj Services Company Method for improved stimulation treatment
US5981447A (en) * 1997-05-28 1999-11-09 Schlumberger Technology Corporation Method and composition for controlling fluid loss in high permeability hydrocarbon bearing formations
US6258859B1 (en) 1997-06-10 2001-07-10 Rhodia, Inc. Viscoelastic surfactant fluids and related methods of use
US6035936A (en) * 1997-11-06 2000-03-14 Whalen; Robert T. Viscoelastic surfactant fracturing fluids and a method for fracturing subterranean formations
GB2338254B (en) * 1998-06-12 2002-10-16 Sofitech Nv Well completion clean-up fluids and method for cleaning up drilling and completion filtercakes
US6140277A (en) * 1998-12-31 2000-10-31 Schlumberger Technology Corporation Fluids and techniques for hydrocarbon well completion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304521C (zh) * 2004-02-23 2007-03-14 中海石油(中国)有限公司天津分公司 一种滤饼清除液

Also Published As

Publication number Publication date
OA12508A (en) 2006-05-29
CA2356332C (en) 2010-03-23
NO20013280L (no) 2001-08-29
US6638896B1 (en) 2003-10-28
NO339337B1 (no) 2016-11-28
BR9916631A (pt) 2002-06-04
ATE550403T1 (de) 2012-04-15
WO2000040667A1 (en) 2000-07-13
EP1171543A4 (en) 2005-04-13
BR9916631B1 (pt) 2009-08-11
US6569814B1 (en) 2003-05-27
AU761262B2 (en) 2003-05-29
EP1171543A1 (en) 2002-01-16
ID30082A (id) 2001-11-01
CA2690140C (en) 2011-09-06
AU3113400A (en) 2000-07-24
US6140277A (en) 2000-10-31
CA2690140A1 (en) 2000-07-13
EA200100739A1 (ru) 2002-04-25
CA2356332A1 (en) 2000-07-13
CN1238463C (zh) 2006-01-25
EA002585B1 (ru) 2002-06-27
NO20013280D0 (no) 2001-06-29
EP1171543B1 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
CN1238463C (zh) 用于生产完井烃的流体和技术
Magzoub et al. Loss circulation in drilling and well construction: The significance of applications of crosslinked polymers in wellbore strengthening: A review
US5881813A (en) Method for improved stimulation treatment
CN1756892A (zh) 具有较高有效表面积的加撑裂缝
CN109097011B (zh) 一种基于地温加热的胶囊型膨胀体及其用于封堵地层漏失及其提高地层承载能力的方法
NO20161566A1 (en) Smart lcm for stregthening earthen formations
CN1639445A (zh) 用于控制滤筛的方法
CN109796943A (zh) 钻井液用裂缝性地层高弹性、高抗温堵漏剂及其制备方法
US20030216263A1 (en) Fluids and techniques for hydrocarbon well completion
Davidson et al. Control of lost circulation in fractured limestone reservoirs
US7500520B2 (en) Method of cementing well bores
CN100471928C (zh) 一种注水用多功能高效粘土防膨稳定剂及其制备方法
Stanley et al. Single step enzyme treatment enhances production capacity on horizontal wells
O'Driscoll et al. New treatment for removal of mud-polymer damage in multilateral wells drilled using starch-based fluids
Dashti et al. Combination of chemical diverters and degradable fiber technology enhances the success of stimulation in complex carbonate environments
Verret et al. Use of micronized cellulose fibers to protect producing formations
Felber Selected US department of energy’s EOR technology applications
Bist et al. Diverting agents in the oil and gas industry: A comprehensive analysis of their origins, types, and applications
Dawson et al. Reduced Polymer Based Fracturing Fluid: Is Less Really More?
Nozaki et al. Completion and Stimulation Design Evolution in Tight Chalk Formations in Offshore Norway
Suhy et al. Application of polymer specific enzymes to clean up drill-in fluids
Magzoub et al. Rapid Curing Environmentally Degradable Polymeric Pill for Loss Circulation Treatment
Raza et al. Making Workovers Easy and Cost Effective: Turning Old Ways into New Opportunities
Habsi et al. Multiple Key Operational Achievements Yield Major Economic Impact as a Result of Successfully Controlling Fluid Losses in Troublesome Zones of Jurassic to Permian Age in Offshore United Arab Emirates
Khalil et al. A Successful Rigless Water Shut Off Solution in an Open Hole Horizontal Water Injection Field in the Sultanate of Oman Using a Water-Swelling Polymer System

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: PETROLEUM RES AND DEV N. V.

Free format text: FORMER OWNER: SOFITECH N.V.

Effective date: 20081031

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: PRADER RESEARCH AND DEVELOPMENT CORPORATION.

Free format text: FORMER NAME OR ADDRESS: PETROLEUM RES AND DEV N. V.

CP03 Change of name, title or address

Address after: The British Virgin Islands

Patentee after: PRAD RESEARCH AND DEVELOPMENT Ltd.

Address before: The Netherlands Antilles

Patentee before: SERVICES PETROLIERS SCHLUMBERGER

TR01 Transfer of patent right

Effective date of registration: 20081031

Address after: The Netherlands Antilles

Patentee after: SERVICES PETROLIERS SCHLUMBERGER

Address before: Antwerp

Patentee before: SCHLUMBERGER CANADA LTD.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060125

Termination date: 20131208