CN1365290A - 具有延迟吸水特性的超吸收性聚合物 - Google Patents

具有延迟吸水特性的超吸收性聚合物 Download PDF

Info

Publication number
CN1365290A
CN1365290A CN00809627A CN00809627A CN1365290A CN 1365290 A CN1365290 A CN 1365290A CN 00809627 A CN00809627 A CN 00809627A CN 00809627 A CN00809627 A CN 00809627A CN 1365290 A CN1365290 A CN 1365290A
Authority
CN
China
Prior art keywords
absorbent polymer
super absorbent
gram
temperature
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00809627A
Other languages
English (en)
Other versions
CN1326573C (zh
Inventor
孙放
H·S·琼斯
B·S·麦斯纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Stockhausen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26839088&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1365290(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Stockhausen GmbH and Co KG filed Critical Stockhausen GmbH and Co KG
Publication of CN1365290A publication Critical patent/CN1365290A/zh
Application granted granted Critical
Publication of CN1326573C publication Critical patent/CN1326573C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/699Including particulate material other than strand or fiber material

Abstract

一种超吸收聚合物,所说的聚合物含有延迟吸收、超吸收性聚合物,该聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约6秒钟内吸收小于约3克盐水。

Description

具有延迟吸水特性的超吸收性聚合物
技术领域
本发明总的来说涉及可吸收含水液体(如水、血液和尿)的吸收性聚合物。更具体说,本发明涉及超吸收性聚合物,即能够吸收超过其重量100倍水的聚合物,该超吸收性聚合物具有独特的延迟吸水特性,本发明还涉及制作这种超吸收性聚合物的新的方法。正如公知的那样,超吸收性聚合物具有很多用途,特别是用于吸收性的卫生制品,如一次性尿布、一次性成人失禁外套、一次性卫生巾和一次性绷带。本发明的超吸收性聚合物,由于其延迟的吸水特性,特别适合用于制造超吸收性聚合物和纤维素纤维的网,当该网通过湿法成网时可用作卫生制品中的夹层复合材料。缩略语定义
本说明书中通篇使用以下缩略语。缩略语          定义AUL          负荷下吸水性All-PEGMA    烯丙氧基聚甲基丙烯酸乙二醇酯,一种交联剂cm           厘米CRC          离心保留容量EO-TMPTA     氧基化三丙烯酸三羟甲基-丙烷酯,一种交联
         剂FWA          游离水吸收性mg           毫克mm           毫米ppm          百万分之份数psi          每平方英寸磅数SAP           超吸收性聚合物,一种可吸收超过其重量50
          倍、优选超过75倍、更优选超过100倍水的
          聚合物ABAH          2,2’-偶氮二(2-脒基-丙烷)二盐酸盐,一种聚
          合引发剂
发明背景
当第一次开发超吸收性技术时,只有超吸收性聚合物与液体接触时的高溶胀能力(根据游离水吸收性试验(FWA),称作游离水溶胀能力)被首先认识。然而,后来认识到当存在于卫生制品如尿布或失禁外套时,吸水聚合物会受到穿着该制品的人移动所引起的机械负荷影响。因此,对超吸收性聚合物除具有高溶胀能力外又产生新的认识,认为它应当还具有高度的保留液体的能力(根据离心保留容量试验(CRC))和高度的压力下吸水性(负荷下吸水性试验(AUL))。关于AUL试验的详细讨论可参见EP专利申请0 339 461 A1(1989.11.2公开;优先权为US系列号184,302(专利)和334,260(部分继续申请),其部分继续申请为US专利5,147,343),该专利申请的发明人为Kellenberger,转让给Kimberly-Clark公司。
EP专利申请0 437 816 A1(1991.7.24公开,优先权为US系列号464,798,发明人Kim和Nielsen,转让给Hoechst Celanese公司)描述了用于制造超吸收性聚合物和纤维素纤维的网的湿法成网法。这些网被用作一次性卫生制品的夹层复合材料,如上所述。更具体说,公开了一种方法,该方法包括将超吸收性聚合物颗粒与液体共混,形成浆液,接着将纤维素纤维与浆液混合,然后过滤除去部分液体,最后干燥所得物。湿法成网法在US专利4,605,401(1986.8.12授权,授予Chmelir和Künschner,转让给Chemische Fabrik StockhausenGmbH)中也有描述。
杂志文章″用超吸收性聚合物保持干燥″(Chemtech,(1994.9)Buchholz)中包括一篇关于常规方法制作超吸收性聚合物的精彩讨论,某些超吸收性聚合物具有磺酸酯官能团,而某些超吸收性聚合物具有羧酸官能团。而且,Buchholz讨论了超吸收性聚合物的各种用途,如用于上述的卫生制品以及用于构建水下隧道墙壁的混凝土石块之间的密封复合材料和用于纤维光学电缆和功率传输电缆中的防水带。
关于制作超吸收性聚合物的详细讨论还可参见US专利5,409,771(1995.4.25授权,授予Dahmen和Mertens,转让给Chemische FabrikStockhausen GmbH)。更具体说,该专利提到了可商购获得的超吸收性聚合物通常是交联的聚丙烯酸或交联淀粉-丙烯酸-接枝聚合物,其羧基被氢氧化钠或苛性钾碱部分中和。还提到超吸收性聚合物通过两种方法制作,一种是溶剂聚合法并且另一种是反相悬浮或乳液聚合法。
在溶剂聚合法中,将部分中和的丙烯酸和多官能网络交联剂的水溶液通过自由基聚合转变成凝胶。将所得物干燥、磨碎和筛选至所需的粒度。
另一方面,在反相悬浮或乳液聚合法中,通过使用胶体或乳化剂将部分中和的丙烯酸的水溶液分散在疏水有机溶剂中。然后,通过自由基引发剂来引发聚合。聚合完成后从反应混合物中将水共沸除去,接着将所得的产物过滤并干燥。网络交联一般是通过将多官能交联剂溶解在单体溶液中来完成。
另外,US专利5,154,713(1992.10.13授权,授予Lind)和US专利5,399,591(1995.3.21授权,授予Smith和Lind,这两篇专利均转让给Nalco Chemical公司)中描述了制造超吸收性聚合物的新方法,经过该方法,超吸收性聚合物具有增加的、较快吸水性。据描述,该超吸收性聚合物当掺入到吸收性结构如一次性尿布、成人失禁外套和卫生巾中时可用作水和/或含水体液的吸收剂。
关于各种超吸收性聚合物和制造方法的通用背景技术可参见US专利5,229,466(1993.7.20,Brehm和Mertens);US专利5,408,019(1995.4.18,Mertens、Dahmen和Brehm)和US专利5,610,220(1997.3.11,Klimmek和Brehm),这些专利均转让给ChemischeFabrik Stockhausen GmbH。
上述提及的专利和公开的专利申请均引入本文作为参考。
本发明的简单概述和目的
因此,本发明提供一种延迟吸收的粒状超吸收性聚合物,所说的聚合物含有聚合物颗粒,该聚合物颗粒的游离水吸收性,对于全部颗粒粒度分布为约40-约890微米而言,每克聚合物颗粒在约6秒钟内吸收小于约3克水。
而且,本发明提供一种具有上段所述游离水吸收性的超吸收性聚合物的制作方法,其中所说的方法包括第一步通过常规方法制备粒状超吸收性聚合物,接着第二步对所得的粒状聚合物颗粒进行两阶段热曲线分布处理。优选,两阶段热曲线分布处理包括(a)将聚合物颗粒加热约30-约90分钟,在加热过程中将温度从约50-约80℃的开始温度增加至约170-约220℃的最终温度,随后(b)将(a)中所得的经过加热的聚合物颗粒在比(a)的最终温度高约5-约50℃的恒定温度下保持约30-约90分钟。
此外,本发明提供一种湿法成网形成的网,该网包含纤维性组分和上两段所述的具有延迟吸收性的超吸收性聚合物组分。而且,本发明提供一种改进湿法成网形成的网中固体含量的方法,通过用上两段所述的具有延迟吸收性的超吸收性聚合物制作网。
因此,本发明的目的是提供一种超吸收性聚合物,其与现有技术的具有类似粒度的超吸收性聚合物相比,具有降低的、较缓慢的游离水吸收性,其中所述的现有技术的具有类似粒度的超吸收性聚合物的游离水吸收性为6秒钟时达到大于5克的水/每克聚合物颗粒,经常是6秒钟时达到大于7克的水/每克聚合物颗粒中,并且在某些情况中,6秒钟时达到大于20克的水/每克聚合物颗粒中。
另外,本发明的具有延迟吸收性的超吸收性聚合物的一个优点是它们不仅具有可接受的负荷下吸水性,而且还改进了固体含量,结果它们非常适合用于制作超吸收性聚合物和纤维素纤维的湿法成网形成的网,该网可用作卫生制品中的夹层复合材料。
此外,另一个优点是由于本发明超吸收性聚合物的低游离水吸收性,它们特别适合用于通过湿法成网方法制作网,因为在将超吸收性聚合物的含水浆液和纤维素纤维共混的湿法成网过程中,低游离水吸收性应该导致较少的水分吸收,从而导致所得网在用作夹层复合材料放入到最终产品如一次性尿布、一次性成人失禁外套或一次性卫生巾中之前被干燥的时间较短。
此外,再一个优点是本发明的超吸收性聚合物具有与现有技术之超吸收性聚合物基本上相同的终极游离水吸收性(即,当允许超吸收性聚合物在水中置留足够长的时间,通常是3-5分钟,直至没有更多的水可以被吸收时的被吸收水的总量),所以,本发明的超吸收性聚合物的吸收性与现有技术的超吸收性聚合物一样。
随着描述的继续进行,通过参考下述的实验实施例后,已陈述的本发明的一些目的和优点以及其它目的和优点将越来越显而易见。本发明的详细描述
只要对粒状超吸收性聚合物进行上述的两阶段热曲线分布处理,便可以通过现有技术的任何超吸收性聚合物制作方法来制造粒状超吸收性聚合物。例如,如上所述超吸收性聚合物可以通过溶剂聚合技术或通过反相悬浮或乳液聚合技术来制作,这些都是公知的技术。
因此,超吸收性聚合物可以通过将至少约10wt%、更优选约25wt%、更优选约55-约99.9wt%具有烯属不饱和羧酸和/或磺酸基团的单体聚合来获得。这种酸基团包括(但不限于此)丙烯酸、甲基丙烯酸、2-丙烯酰氨基-2-甲基丙磺酸及其混合物。酸基团以盐的形式存在,如钠、钾或铵盐。
酸基团一般来说被中和至至少约25mol%。优选,中和程度达到至少约50mol%。更具体说,优选的超吸收性聚合物是由交联的丙烯酸或甲基丙烯酸形成,其被中和至约50-约80mol%的程度。
其它制作超吸收性聚合物用的有用单体中含有大于0至最多约60wt%的丙烯酰胺、甲基丙烯酰胺、马来酸、马来酸酐、酯(如丙烯酸羟乙基酯、甲基丙烯酸羟乙基酯、甲基丙烯酸羟丙基酯、甲基丙烯酸缩水甘油酯和二甲基-氨基烷基-甲基丙烯酸酯)、二甲基氨基丙基丙烯酰胺和丙烯酰氨基丙基三甲基-氯化铵。这些单体的百分比小于约60%是合意的,因为大于约60%的百分比一般具有有害的效果并且使所得的超吸收性聚合物的溶胀能力下降。
可用于制作超吸收性聚合物的适宜的网络交联剂具有至少两个烯属不饱和双键、具有一个烯属不饱和双键和一个对酸基团活性的官能团和具有多个对酸基团活性的官能团。适宜类型的网络交联剂包括(但不限于此)多元醇的丙烯酸酯和甲基丙烯酸酯(如二丙烯酸丁二醇酯、二甲基丙烯酸己二醇酯、聚二丙烯酸二醇酯、三丙烯酸三羟甲基丙烷酯、四氢糠基-2-甲基丙烯酸酯、二甲基丙烯酸甘油酯、烯丙氧基聚甲基丙烯酸乙二醇酯和乙氧基化三丙烯酸三羟甲基丙烷酯)、丙烯酸烯丙酯、二烯丙基丙烯酰胺、三烯丙基胺、二烯丙基醚、亚甲基双丙烯酰胺、N,N-二甲基氨基乙基甲基丙烯酸酯,N-二甲基氨基丙基甲基丙烯酰胺、N-羟甲基甲基丙烯酰胺和N-羟甲基丙烯酰胺。这些网络交联剂与以下讨论的表面交联剂不同并且不能与之混淆。
另外,根据所需的最终用途,超吸收性聚合物可以具有水溶性聚合物组分。组分的含量为大于0至最多约30wt%,包括(但不限于此)部分或完全皂化的聚乙烯醇、聚乙烯吡咯烷酮、淀粉、淀粉衍生物、聚二醇、聚丙烯酸及其组合。组分的分子量没有限制,前提条件是它是水溶性的。优选的水溶性聚合物组分是淀粉、聚乙烯醇及其混合物。优选,水溶性聚合物组分在超吸收性聚合物中的含量范围为约1-约5wt%,特别是如果淀粉和/或聚乙烯醇作为水溶性聚合物组分存在。而且,水溶性聚合物组分可以是以接枝聚合物的形式存在,其中接技聚合物中具有含酸基团的聚合物。
关于超吸收性聚合物的颗粒形状,没有特别的限制。超吸收性聚合物可以呈小球形,通过反相悬浮聚合获得,或呈不规则形状的颗粒,通过将溶剂聚合得到的凝胶块干燥和破碎而获得。典型的颗粒尺寸分布为约20-约2000微米,优选约40-约890微米,更优选约90-约850微米。
众所周知,颗粒尺寸越小,超吸收性聚合物吸收水分越快,同样,颗粒尺寸越大,超吸收性聚合物吸收水分越慢。因而,本发明中,粒状超吸收性聚合物具有较大的颗粒尺寸是合意的,特别是通过湿法成网法用于制作夹层复合材料时。低于约30微米的粒度通常来说不适宜于湿法成网法。虽然如此,对于任何给定的颗粒尺寸,本发明的超吸收性聚合物与现有技术中具有基本上相同颗粒尺寸的超吸收性聚合物相比,应当在所选定的秒时间内吸收更少的水分(即,显出降低、较低的游离水吸收性)。
总的来说,现有技术的制造超吸收性聚合物的加工技术以热处理为终点。其不能与本发明制造超吸收性聚合物中规定的特定的两阶段热曲线分布处理混为一谈,本发明的两阶段热曲线分布处理是为了使它们具有所需的低游离水吸收性。
更具体说,下面将对本发明所需要的两阶段热曲线分布处理作具体说明。两阶段中每一阶段的加热应当是充分的,并且两阶段中每一阶段的时间应当是足够的,以便达到本发明的具有所需游离水吸收性的超吸收性聚合物,如下所述。
第一阶段中,在将聚合物颗粒磨碎,然后筛成合适的所需粒度之后,将它们在不断增加温度的条件下加热。一般来说,温度开始时为约50℃、更优选约55℃、更优选约60℃,并且终了为约170℃、更优选约190℃、更优选约220℃。之后,进行第二阶段,将温度快速升至比第一阶段的终了温度高至少约5℃,并且保持在此高温下。优选,第二阶段的恒定温度比第一阶段的终了温度高至不超过约50℃、更优选不超过约30℃,并且更优选不超过约10℃。
两阶段温度曲线分布处理中所需要的第一阶段和第二阶段的每一阶段中的加热和时间应当是足够的,以便所得的超吸收性聚合物颗粒,与现有技术的具有基本上相同颗粒粒度的超吸收性聚合物颗粒相比,显出明显降低的游离水吸收性。具体对本发明的粒状超吸收性聚合物来说,约6秒钟时的较慢游离水吸收性应当是小于约3克的水/每克聚合物,并且在很多情况中,是小于约2克的水/每克超吸收性聚合物。
本发明超吸收性聚合物的游离水吸收性,是指在短时间内(即,6秒钟)的游离水吸收性是延迟的、较低的或较慢的。这区别于允许超吸收性聚合物吸收水分直至没有更多的水分可以被吸收(一般为3-5分钟)时的游离水吸收性,并且针对被吸收的水的总量将其称作终极游离水吸收性,而与其吸收了多长时间无关。本发明的超吸收性聚合物与卫生制品中商业使用的现有技术的超吸收性聚合物具有基本上相同的终极游离水吸收性。
温度曲线分布处理的第一阶段中的时间一般为约30分钟-约90分钟,更优选约45分钟-约75分钟,更优选约55分钟-约65分钟,首选约60分钟。当使用较高温度时,可以使用较短的时间。所需要的热曲线分布处理的第二阶段中的时间通常与第一阶段的时间大约相同,同样,使用较高温度时,可以使用较短的时间。
本发明的超吸收性聚合物可以通过连续式方法或不连续式方法大规模制造。另外,本发明的超吸收性聚合物可以广泛用于各种用途,例如,卫生制品、防水带和用于任何存在漏水问题(即,纤维-光学的通讯电缆和功率传输电缆的内部,在构建水下隧道壁用的混凝土石块之间,如连接英格兰和法国的海峡隧道,如上述Buchholz杂志文章中提及的)的片材以及用于杀虫剂、农药和/或除草剂的载体。
当使用本发明的超吸收性聚合物制作将用作卫生制品中夹层复合材料的网时,网中的聚合物组分与纤维性组分的重量比应当控制在约90∶10-约5∶95范围。在非常适宜的网中,所说的比值为约35∶65-约45∶55,更优选约40∶60。
虽然碎化的木浆(即,纤维素纤维,俗语称为绒毛)用于形成本发明的网的纤维性组分是优选的,可以使用其它可润湿的纤维,如棉绒。此外,纤维性组分可以由熔喷法合成的纤维如聚乙烯、聚丙烯、聚酯、聚酯和聚酰胺的共聚物等来形成。纤维性组分还可以由木浆绒毛和一种或多种熔喷法纤维的混合物来形成。例如,纤维性组分中可以含有至少约5wt%、优选约10wt%的合成聚合物纤维,其余可以含有木浆绒毛。网的纤维通常是亲水性的或者通过表面处理表现为亲水性的。纤维素纤维是优选的,优选的纤维素纤维是Georgia Pacific出品的GOLDENISLES。
具体说,本发明的超吸收性聚合物,由于其游离水吸收特性,非常适用于湿法成网法制造湿法成网形成的网,该网具有与纤维素组分相混的超吸收性聚合物组分并且可用作卫生制品的夹层复合材料。湿法成网法的实例可见上述的EP专利申请0 437 816 A1和US专利4,605,401。由于湿法成网法包括将超吸收性聚合物的含水浆液与纤维混合,在湿法成网法的过程中水分被吸收。所以,在湿法成网法结束时,必须要将湿法成网形成的网干燥,之后才能将其放入最终用途如一次性尿布中作为夹层复合材料。
通过使用本发明的超吸收性聚合物,在制作网的湿法成网法期间应当有较少的水分被吸收。因此,在干燥过程中需要除去较少的水分,造成湿网干燥的时间较短,这在大型工厂生产装置中是非常有利的。
此外,在将湿法成网形成的网干燥之后,由于本发明超吸收性聚合物的游离水吸水特性,与含现有技术超吸收性聚合物的湿法成网形成的网相比,本发明的网具有改进的固体含量。一般来说,本发明的湿法成网形成的网具有大于约18%的固体含量。
另外,本发明的超吸收性聚合物极适合在网中使用,这是因为它们一般情况下表现出可接受的离心保留容量,与现有技术的超吸收性聚合物相似。本发明的超吸收性聚合物通常展示的离心保留容量为大于约28、经常是大于约30、甚至大于约32克盐水/每克超吸收性聚合物。
此外,本发明的超吸收性聚合物极适合在网中使用,这是因为它们一般情况下表现出可接受的负荷下吸水特性,与现有技术的超吸收性聚合物相似。本发明的超吸收性聚合物通常展示的负荷下吸水特性为大于约13、经常是大于约15、甚至大于约18克盐水/每克超吸收性聚合物。
正如从上述US专利5,409,771中已知的,用碳酸亚烃酯涂布粒状超吸收性聚合物,接着加热进行表面交联可改进负荷下吸水性。当超吸收性聚合物的最终用途是在卫生制品如一次性尿布中时,至少约13克盐水/每克超吸收性聚合物的负荷下吸水性是特别合意的,所说的卫生制品受到穿着该制品的人的压迫。
因此,在本发明的两阶段热曲线分布处理之前,优选用表面交联剂涂布本发明的超吸收性聚合物。表面交联用的优选的碳酸亚烃酯是碳酸亚乙酯。
更具体说,如US专利5,409,771所述,为将粒状超吸收性聚合物用表面交联剂涂布,可以将聚合物与碳酸亚烃酯表面交联剂的含水醇溶液混合。醇的量取决于碳酸亚烃酯的溶解度并且出于技术原因保持尽可能低,例如,出于防止爆炸原因。适宜的醇是甲醇、乙醇、丁醇或丁基乙二醇以及这些醇的混合物。优选的溶剂是水,其的用量相对于粒状超吸收性聚合物一般为0.3-5.0wt%。在某些情形中,将碳酸亚烃酯表面交联剂溶解在水中,无需任何醇。还可以使用碳酸亚烃酯表面交联剂的粉末混合物,例如,与无机载体材料如SiO2的混合物。
为达到所期望的表面交联特性,需要使碳酸亚烃酯均匀分布在粒状超吸收性聚合物上。为此,在适宜的混合器中进行混合,如流化床混合器、桨式混合器、辊式混合器或双蜗杆-混合器。也可以在粒状超吸收性聚合物生产的加工步骤的一个步骤中完成粒状超吸收性聚合物的涂布。实现此目的的一个特别适宜的方法是反相悬浮聚合法。
根据US专利5,409,771,涂布处理之后的热处理如下进行。通常情况下,热处理的温度为150-300℃。然而,如果使用了优选的碳酸亚烃酯,则热处理的温度为180-250℃。处理温度取决于停留时间和碳酸亚烃酯的类型。在150℃下,热处理要进行数小时。另一方面,在250℃下,几分钟如0.5-5分钟,便足以达到合意的表面交联特性。热处理可以在常规干燥器或烘箱中完成。干燥器和烘箱的实例包括旋转式干燥炉、流化床式干燥器、盘式干燥器或红外干燥器。
与US专利5,409,771中的热处理不同,本发明的热处理(无论是在表面交联剂的存在下还是没有表面交联剂的存在)包括上述的特定的两阶段热曲线分布处理。在第一阶段中,增加温度,并且在第二阶段中,温度保持在比第一阶段的最终温度高至少约5℃、优选高至不超过约50℃的恒定温度下。
为在下面的实验实施例中表征超吸收性聚合物(本发明的超吸收性聚合物以及对比超吸收性聚合物),按以下方式测定离心保留容量(CRC)、负荷下吸水性(AUL)和游离水吸收性(FWA)。
CRC.根据茶叶袋法测定SAP的保留率并且报出两次测定的平均值。将已筛至颗粒尺寸分布为300-600微米(不是下面实施例中所指的颗粒粒度)的大约200mg SAP包在茶叶袋中并且在0.9wt%NaCl水溶液中浸泡30分钟。然后,将茶叶袋在1600rpm下离心3分钟(离心机直径为约18cm)并且称重。使用两个不含SAP的茶叶袋作为空白对照。
然后,按照以下等式计算CRC。CRC=(W3-W2-W1)/W1其中CRC=浸泡30分钟后的保留率(g被吸收的液体/g SAP)W1=SAP的初始重量(g)W2=离心后空白茶叶袋(不含SAP)的平均重量(g)W3=离心后含SAP的茶叶袋的重量(g)
AUL.根据上述EP专利申请0 339 461 A1第7页描述的方法测定SAP在负荷下的0.9wt%NaCl水溶液吸水性。将初始重量的SAP放入带有筛网底部的圆筒中。通过可产生60g/cm2压力负荷的活塞给SAP加负荷(注:60g/cm2≈0.9psi.)。
随后,将圆筒放在需用-吸收性-试验仪(Demand-Absorbency-Tester)(DAT)的125mm直径玻璃烧结盘上,并且用#3号Whatman滤纸覆盖。然后,让SAP吸收0.9%NaCl溶液1小时。SAP的初始重量为大约160mg,其已被筛至颗粒尺寸分布为300-600微米(不是下面实施例中所指的颗粒粒度)。
1小时后,将溶胀的SAP再称重,并且计算保留的0.9%NaCl溶液的克数。SAP的AUL便是保留的克数。
FWA.为测定SAP的游离水吸收性,安装真空装置。更具体说,将真空泵通过Tygon管线与真空烧瓶连接,使用单孔橡胶塞将Buchner漏斗的底部位于真空烧瓶的顶上,其正好将烧瓶密封。在装置的旁边放置一磁力搅拌器。安装好装置之后,启动真空泵并且让其在整个FWA测试过程中保持工作。
使用250ml刻度圆筒,将150ml±1ml的23.0±0.5℃的自来水称量到带有1英寸搅拌棒的250ml烧杯中。将装有H2O的烧杯放在搅拌平皿上并且允许搅拌,以便产生涡流,涡流终止于液体表面的大约2-3cm处。
将一干的80目(180微米)筛在上部装载天平上称重,然后放在Buchner漏斗的顶上并且通过抽吸紧紧地固定。然后在另一个天平上称出各个试验所必需量的SAP:30秒FWA测定使用1克SAP,15秒和6秒测定各自使用3克SAP。将SAP倾入H2O烧杯中,同时用计时表开始从0计时。当将SAP倾入自来水时,离散的颗粒立即分散并且完全分散,没有离散的颗粒结块或聚集的趋势。
达到所需秒数后,将烧杯内含物倾入筛中,移转时间不超过3秒。将筛网留在真空中另外大约30秒种。然后将筛网从Buchner漏斗上取下,并且擦拭网眼底表面,以除去任何残留的H2O。然后将干燥后的筛网放在预先校准的天平上并且记录″凝胶重量″。
然后,根据以下等式从凝胶重量中计算FWA(g被吸收的液体/gSAP)。FWA(g/g)=(g凝胶重量-g超吸收剂)/g超吸收剂
实验实施例I.对比实施例(市售SAP)实施例A:测试各种可商购获得的现有技术的超吸收性聚合物的FWA、CRC和AUL。FWA试验中,在27℃下用750rpm的搅拌速度测试现有技术的每种超吸收性聚合物,并且其的全部颗粒尺寸分布为44-841微米。CRC试验和AUL试验中,将现有技术中的每种超吸收性聚合物筛选,以便达到上述颗粒尺寸分布300-600微米。用水进行FWA试验,而用0.9wt%盐水进行CRC试验和AUL试验。结果汇总在下表IA中。表IA
现有技术SAP及其供应公司 6秒FWA(g/g) 15秒FWA(g/g) 30秒FWA(g/g) CRC(g/g) AUL(g/g)
IM-4510,HoechstCelanese出品  23.7  31.7  59.1   32.6  21.0
ASAP-2300,Chemdal出品  7.6  12.3  31.7   32.2  21.5
Sumitomo-60S,Sumitomo出品  10.8  20.8  50.9   36.9  9.6
SalSorb-CL20,AlliedChemical出品  8.9  14.8  23.1   36.5  11.9
FAVORSXM-77,Stockhausen出品  5.6  11.5  18.7   36.5  21.0
从中可看出,每种现有技术的超吸收性聚合物显示的6秒钟时的FWA为大于5g/g。实施例B:接下来,在23℃下用750rpm的搅拌速度测试各种选择颗粒尺寸分布的Stockhausen的FAVORSXM-77的FWA。结果汇总于下表IB中。表IB
颗粒粒度(微米) 颗粒粒度(US标准目) 15秒FWA(g/g)
 44-841 1-20/+325   10.9
 595-841 -20/+30   5.5
 420-595 -30/+40   7.3
 297-420 -40/+50   12.6
 149-297 -50/+100   26.1
 88-149 -100/+170   53.6
 44-88 -170/+325   73.3
从中可看出,只有最大颗粒尺寸分布(595-841微米)的超吸收性SXM-77显出缓慢和低的15秒时的FWA,为5.5g/g,如上所述其保持着反比关系,即颗粒粒度增加,FWA降低。
相反,如以下实施例IIA-H中对各个本发明的超吸收性聚合物的详细描述,这些超吸收性聚合物的全部颗粒尺寸分布为90-850微米,它们15秒时的FWA为4.0g/g或更少,只有一个这个全部颗粒尺寸分布下的样品显出15秒时的FWA为6.4g/g。II.实施例A-H(本发明的SAP)和对比实施例A和B(未经两阶段热曲线分布处理的SAP)
在以下实施例中,各超吸收性聚合物是通过溶剂聚合制造的交联聚丙烯酸钠。而且,涉及的各百分比以wt%计,除非另外具体指出是以mol%计,并且含水碳酸亚乙酯是50重量份碳酸亚乙酯和50重量份去离子水的溶液。实施例A.将含有0.1%EO-TMPTA作为交联剂、0.25%All-PEGMA作为共-交联剂和2.5%甲氧基聚甲基丙烯酸乙二醇酯的丙烯酸水溶液(所有均以相对于丙烯酸计)在冷却条件下用氢氧化钠溶液中和。单体溶液的丙烯酸浓度总计达29%,中和程度为70mol%。
将单体溶液冷却至约5℃,用氮气吹洗,然后与作为还原剂的异抗坏血酸钠溶液、作为氧化剂的过氧化氢溶液(异抗坏血酸钠与过氧化氢偶联形成氧化还原引发剂)、作为发泡剂的碳酸钠溶液以产生多孔性聚合物凝胶和作为热引发剂的含有ABAH和过硫酸钠的第四种溶液混合,其中第四种溶液在完成聚合的整个反应过程中产生自由基。异抗坏血酸钠、过氧化氢、碳酸钠、ABAH和过硫酸钠的最终浓度分别为57、125、600、125和100ppm,所有浓度均以相对于总单体溶液计。
在将单体溶液与所有其它溶液混合之后,聚合反应立即开始。聚合20分钟之后,将所形成的聚合物凝胶碎裂并且在150℃热空气中干燥20分钟。
接下来将干燥的聚合物磨碎,筛至90-850微米并且以4000kg/小时的速度连续送入桨式混合器(380rpm)中,同时与含水碳酸亚乙酯以1∶167碳酸亚乙酯∶聚合物的重量比混合,以便将这种表面交联剂涂布到聚合物上。
然后,将混合物转移至输送机中,在其中将其在1小时之内从65℃的开始温度加热至185℃的最终温度,进行热曲线分布处理的第一阶段处理。随后,使混合物快速达到200℃并且在此200℃恒定温度下保持另外45分钟,进行热曲线分布处理的第二阶段处理。冷却后,将所得的产品运输到存储容器中。实施例B.使用实施例A描述的相同过程,除热曲线分布处理的第二阶段处理不同,在聚合物/碳酸亚乙酯混合物经过热曲线分布处理第一阶段的加热达到最终温度185℃之后,将混合物在210℃的恒定温度下保持35分钟。冷却后,将所得的产品运输到存储容器中。实施例C.使用实施例A描述的相同过程,除热曲线分布处理的第二阶段处理不同,在聚合物/碳酸亚乙酯混合物经过热曲线分布处理第一阶段的加热达到最终温度185℃之后,将混合物在205℃的恒定温度下保持50分钟。冷却后,将所得的产品运输到存储容器中。实施例D.将含有0.19%三烯丙基胺作为交联剂的丙烯酸水溶液(以相对于丙烯酸计)在冷却条件下用氢氧化钠溶液中和。单体溶液的丙烯酸浓度总计达31%,中和程度为70mol%。
将单体溶液冷却至约5℃,用氮气吹洗,然后与作为还原剂的异抗坏血酸钠溶液、作为氧化剂的叔丁基过氧化氢溶液(异抗坏血酸钠与叔丁基过氧化氢偶联形成氧化还原引发剂)和作为热引发剂的含有ABAH和过硫酸钠的第三种溶液混合,其中第三种溶液在完成聚合的整个反应过程中产生自由基。异抗坏血酸钠、叔丁基过氧化氢、ABAH和过硫酸钠的最终浓度分别为26、182、195和100ppm,所有浓度均以相对于总单体溶液计。
在将单体溶液与所有其它溶液混合之后,聚合反应立即开始。聚合20分钟之后,将所形成的聚合物凝胶碎裂并且在150℃热空气中干燥20分钟。
接下来将干燥聚合物磨碎,筛至90-850微米并且以4000kg/小时的速度连续送入桨式混合器(380rpm)中,同时与作为表面交联剂的含水碳酸亚乙酯以1∶167碳酸亚乙酯∶聚合物的重量比混合,以便将这种表面交联剂涂布到聚合物上。
然后,将混合物转移至输送机中,在其中将其在1小时之内从80℃的开始温度加热至170℃的最终温度,进行热曲线分布处理的第一阶段处理。随后,将混合物在200℃恒定温度下保持另外60分钟,进行热曲线分布处理的第二阶段处理。冷却后,将所得的产品运输到存储容器中。实施例E.使用实施例D描述的相同过程,除热曲线分布处理的第二阶段处理不同,在聚合物/碳酸亚乙酯混合物经过热曲线分布处理第一阶段的加热达到最终温度170℃之后,将混合物在205℃的恒定温度下保持另外60分钟。将所得的产品运输到存储容器中。实施例F.使用实施例D描述的相同过程,除热曲线分布处理的第二阶段处理不同,在聚合物/碳酸亚乙酯混合物经过热曲线分布处理第一阶段的加热达到最终温度170℃之后,将混合物在210℃的恒定温度下保持另外45分钟。冷却后,将所得的产品运输到存储容器中。实施例G.将含有0.19%三烯丙基胺作为交联剂的丙烯酸水溶液(以相对于丙烯酸计)在冷却条件下用氢氧化钠溶液中和。单体溶液的丙烯酸浓度总计达31%,中和程度为60mol%。
将单体溶液冷却至约5℃,用氮气吹洗,然后与作为还原剂的抗坏血酸溶液、作为氧化剂的叔丁基过氧化氢溶液(抗坏血酸与叔丁基过氧化氢偶联形成氧化还原引发剂)和含有ABAH和过硫酸钠的第三种溶液混合。抗坏血酸、叔丁基过氧化氢、ABAH和过硫酸钠的最终浓度分别为22、178、200和100ppm,所有浓度均以相对于总单体溶液计。
在将单体溶液与所有其它溶液混合之后,聚合反应立即开始。聚合20分钟之后,将所形成的聚合物凝胶碎裂并且在150℃热空气中干燥20分钟。
接下来将干燥聚合物磨碎,筛至90-850微米并且以4000kg/小时的速度连续送入桨式混合器(380rpm)中,同时与作为表面交联剂的含水碳酸亚乙酯以1∶206碳酸亚乙酯∶聚合物的重量比混合,以便将这种表面交联剂涂布到聚合物上。
然后,将混合物转移至输送机中,在其中将其在1小时之内从80℃的开始温度加热至175℃的最终温度,进行热曲线分布处理的第一阶段处理。随后,将混合物在180℃恒定温度下保持另外45分钟,进行热曲线分布处理的第二阶段处理。冷却后,将所得的产品运输到存储容器中。实施例H.使用实施例G描述的相同过程,除热曲线分布处理的第二阶段处理不同,在聚合物/碳酸亚乙酯混合物经过加热达到最终温度175℃之后,将混合物在190℃的恒定温度下保持另外35分钟。冷却后,将所得的产品运输到存储容器中。对比实施例A(仅具有两阶段热曲线分布处理的第一阶段处理)
将按实施例E所述制备的聚合物干燥、磨碎、筛选至90-850微米并且以4000kg/小时的速度连续送入桨式混合器(380rpm)中,同时与作为表面交联剂的碳酸亚乙酯以1∶167碳酸亚乙酯∶聚合物的重量比混合,以便将这种表面交联剂涂布到聚合物上。
然后,将混合物转移至输送机中,在其中按热曲线分布处理的第一阶段处理,将其在1小时之内从80℃的开始温度加热至175℃的最终温度。然后冷却,之后将所得的产品运输到存储容器中。不进行热曲线分布处理的第二阶段处理。对比实施例B(仅具有两阶段热曲线分布处理的第二阶段处理)
将按实施例E所述制备的聚合物干燥、磨碎、筛选至90-850微米并且以4000kg/小时的速度连续送入桨式混合器(380rpm)中,同时与碳酸亚乙酯以1∶167碳酸亚乙酯∶聚合物的重量比混合,以便将这种表面交联剂涂布到聚合物上。
然后,将混合物转移至输送机中,在其中将混合物在205℃恒定温度下加热2小时,进行热曲线分布处理的第二阶段处理。将所得的产品冷却并且运输到存储容器中。不进行热曲线分布处理的第一阶段处理。
测试实施例A-H和对比实施例A和B中所得的超吸收性聚合物的FWA、CRC和AUL。在FWA试验中,颗粒尺寸分布全部为90-850微米。然而,CRC试验和AUL试验中,将聚合物筛选,使颗粒尺寸分布如上所述达到300-600微米。FWA试验用水进行,而CRC试验和AUL试验用9wt%盐水进行。结果汇总于下表II中。表II
 SAP实施例 6秒FWA(g/g) 15秒FWA(g/g) 30秒FWA(g/g) CRC(g/g) AUL(g/g)
 实施例A     2.6   6.4   18.8   33.5   19.2
 实施例B     1.9   4.0   14.0   30.3   21.6
 实施例C     1.3   3.0   11.3   28.4   19.7
 实施例D     0.9   2.8   10.0   33.0   15.6
 实施例E     1.1   2.4   9.3   35.3   13.7
 实施例F     1.2   2.7   8.3   31.9   14.7
 实施例G     1.5   3.3   9.7   30.0   18.2
 实施例H     1.6   3.6   10.2   29.4   20.3
 对比实施例A     5.7   13.5   22.4   38.3   11.5
 对比实施例B     3.8   11.4   35.2   37.9   10.0
从中可看出,本发明的经过两阶段热曲线分布处理的超吸收性聚合物,都显示出6秒时的FWA小于3g/g,大部分的6秒时的FWA小于2g/g。另一方面,两个仅经过两阶段热曲线分布中一个阶段处理的对比例,6秒时的FWA都大于3.5g/g。此外,经过两阶段热曲线分布处理的超吸收性聚合物,与两个对比例相比,都显示出卓越的AUL。III.湿法成网法制作SAP和纤维素绒毛的网的实施例
在以下实施例中,选择本发明的SAP和两个对比SAP(如按实施例II所述制作的),将它们分别用于湿法成网法中,以制作SAP和纤维素纤维的湿法成网形成的网。
更具体说,将1.36克纤维素纤维(GOLDEN ISLES4800,GeorgiaPacific出品)添加到200克自来水中,然后加入0.9g经选择的SAP。然后将所得的浆液倾入实验室成网模具中,该模具的底部具有150微米聚酯筛网。
成网模具由不锈钢制造,取样室位于顶部便于保留浆液。经测定,取样室为8.5cm直径和10cm高。而且,成网模具的底部具有通过球阀与真空系统相连的区域。
将浆液用3叶扇型涡轮搅拌器搅拌,搅拌器以上下来回方式移动5次。水温控制在23℃±1℃,并且水与SAP和纤维素纤维混合物的总接触时间控制为10秒。接下来,从浆液中真空排水(60mm Hg)排水时间为60秒。
根据以下等式确定各个网的固体含量:
固体wt%=[(纤维wt+SAPwt)/网wt]×100%其中各wt(即,纤维重量、SAP重量和网重量)以克计。结果汇总于下表III中。表III
 SAP实施例 SAP/纤维素纤维比(重量/重量) 网的固体含量(wt%)
 没有   0/100   23.9
 实施例A   40/60   18.1
 实施例C   40/60   21.6
 实施例D   40/60   22.1
 实施例E   40/60   23.9
 实施例F   40/60   23.0
 实施例H   40/60   22.1
 对比A   40/60   16.3
 对比B   40/60   17.7
从上表III中可看出,用本发明的SAP(实施例A、C、D、E、F和H)制造的湿法成网形成的网,与用对比SAP(对比实施例A和B)制造的湿法成网形成的网相比,其固体含量有所改进。更具体说,用本发明SAP制造的每个湿法成网形成的网的固体含量都是大于18%,而用对比SAP制造的每个湿法成网形成的网的固体含量都是小于18%。
应理解,本发明的各种细节都可以在不背离本发明的范围下来改变。另外,前面的描述仅是举例说明为目的而不是以限制本发明为目的的,本发明受权利要求书的限定。

Claims (29)

1.一种超吸收聚合物,所说的聚合物含有延迟吸收、粒状超吸收性聚合物,该聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约6秒钟内吸收小于约3克水。
2.权利要求1的延迟吸收、粒状超吸收性聚合物,其中超吸收性聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约15秒钟内吸收小于约7克水。
3.权利要求1的延迟吸收、粒状超吸收性聚合物,其中超吸收性聚合物的离心保留容量特性为每克超吸收性聚合物保留大于28克盐水。
4.权利要求1的延迟吸收、粒状超吸收性聚合物,其中超吸收性聚合物的在0.9psi(60g/cm2)下的负荷下吸水性为每克超吸收性聚合物保留大于13克盐水。
5.权利要求1的延迟吸收、粒状超吸收性聚合物,其中超吸收性聚合物是表面交联的。
6.延迟吸收、粒状超吸收性聚合物的制作方法,所说的方法包括:
(a)制备粒状超吸收性聚合物,并且
(b)对步骤(a)的粒状超吸收剂进行具有第一阶段和第二阶段的热曲线分布处理,其中第一阶段包括将超吸收聚合物加热,加热期间将温度从开始温度增加至最终温度,并且第二阶段包括在比第一阶段的最终增加温度高至少约5℃的恒定温度下将超吸收聚合物保持加热,并且其中第一阶段和第二阶段中每一阶段的加热温度和时间足以获得延迟吸收、粒状超吸收性聚合物,使该聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约6秒钟内吸收小于约3克盐水。
7.权利要求6的方法,其中在第二阶段中保持加热的恒定温度是比第一阶段的最终增加温度高约5-约50℃的恒定温度。
8.权利要求6的方法,其中第一阶段的温度从约50-约80℃的开始温度增加至约170-约220℃的最终增加温度,并且第二阶段中的恒定温度为约175-约270℃。
9.权利要求6的方法,其中第一阶段的加热时间为约30分钟-约90分钟。
10.权利要求6的方法,其中第二阶段的加热时间为约30分钟-约90分钟。
11.权利要求6的方法,其中超吸收性聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约15秒钟内吸收小于约6克水。
12.权利要求6的方法,其中超吸收性聚合物的离心保留容量特性为每克超吸收性聚合物保留大于28克盐水。
13.权利要求6的方法,其中超吸收性聚合物的负荷下吸水性为每克超吸收性聚合物保留大于13克盐水。
14.权利要求6的方法,其中步骤(a)包括用表面交联剂的涂布处理并且步骤(b)在涂布处理之后进行。
15.一种湿法成网形成的网,所说的网含有纤维性组分和超吸收性聚合物组分,其中:
(a)超吸收性聚合物含有延迟吸收、粒状超吸收性聚合物,该聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约6秒钟内吸收小于约3克水;并且
(b)超吸收性聚合物组分与纤维性组分的重量比控制在约90∶10-约5∶95。
16.权利要求15的湿法成网形成的网,其中超吸收性聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约15秒钟内吸收小于约7克水。
17.权利要求15的湿法成网形成的网,其中超吸收性聚合物的离心保留容量特性为每克超吸收性聚合物保留大于28克盐水。
18.权利要求15的湿法成网形成的网,其中超吸收性聚合物的在0.9psi(60g/cm2)下的负荷下吸水性为每克超吸收性聚合物保留大于13克盐水。
19.权利要求15的湿法成网形成的网,其中超吸收性聚合物是表面交联的。
20.一种改进湿法成网形成的网的固体含量的方法,其中所说的网具有纤维性组分和超吸收性聚合物组分,所说的方法包括:
(a)制备粒状超吸收性聚合物,
(b)对步骤(a)的粒状超吸收剂进行具有第一阶段和第二阶段的网热曲线分布处理,其中第一阶段包括将超吸收性聚合物加热,加热期间将温度从开始温度增加至最终增加温度,并且第二阶段包括在比第一阶段的最终增加温度高至少约5℃的恒定温度下将超吸收性聚合物保持加热,并且其中第一阶段和第二阶段中每一阶段的加热温度和时间足以获得延迟吸收、粒状超吸收性聚合物,使该聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约6秒钟内吸收小于约3克盐水,
(c)形成纤维性组分与步骤(b)的超吸收性聚合物组分的水悬浮液;并且
(d)将步骤(c)的悬浮液干燥,得到固体含量得到改进的湿法成网形成的网。
21.权利要求20的方法,其中在第二阶段中保持加热的恒定温度是比第一阶段的最终增加温度高约5-约50℃的恒定温度。
22.权利要求20的方法,其中第一阶段的温度从约50-约80℃的开始温度增加至约170-约220℃的最终增加温度,并且第二阶段中的恒定温度为约175-约270℃。
23.权利要求20的方法,其中第一阶段的加热时间为约30分钟-约90分钟。
24.权利要求20的方法,其中第二阶段的加热时间为约30分钟-约90分钟。
25.权利要求20的方法,其中超吸收性聚合物的游离水吸收性,对于全部颗粒尺寸分布为约40-约890微米而言,每克超吸收性聚合物在约15秒钟内吸收小于约6克水。
26.权利要求20的方法,其中超吸收性聚合物的离心保留容量特性为每克超吸收性聚合物保留大于28克盐水。
27.权利要求20的方法,其中超吸收性聚合物的负荷下吸水性为每克超吸收性聚合物保留大于13克盐水。
28.权利要求20的方法,其中步骤(a)包括用表面交联剂的涂布处理并且步骤(b)在涂布处理之后进行。
29.权利要求20的方法,其中所得的湿法成网形成的网的被改进的固体含量为大于约18wt%。
CNB008096279A 1999-06-29 2000-06-28 具有延迟吸水特性的超吸收性聚合物 Expired - Lifetime CN1326573C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14141299P 1999-06-29 1999-06-29
US60/141,412 1999-06-29
US09/602,852 2000-06-26
US09/602,852 US6514615B1 (en) 1999-06-29 2000-06-26 Superabsorbent polymers having delayed water absorption characteristics
PCT/IB2000/000866 WO2001000258A1 (en) 1999-06-29 2000-06-28 Superabsorbent polymers having delayed water absorption characteristics

Publications (2)

Publication Number Publication Date
CN1365290A true CN1365290A (zh) 2002-08-21
CN1326573C CN1326573C (zh) 2007-07-18

Family

ID=26839088

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008096279A Expired - Lifetime CN1326573C (zh) 1999-06-29 2000-06-28 具有延迟吸水特性的超吸收性聚合物

Country Status (10)

Country Link
US (4) US6514615B1 (zh)
EP (1) EP1196204B2 (zh)
JP (1) JP4708646B2 (zh)
CN (1) CN1326573C (zh)
AT (1) ATE257395T1 (zh)
AU (1) AU5418000A (zh)
BR (1) BR0012000A (zh)
CA (1) CA2400758A1 (zh)
DE (1) DE60007635T3 (zh)
WO (1) WO2001000258A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433733A (zh) * 2003-11-12 2009-05-20 艾沃尼克施拖克豪森公司 具有延迟自由吸水性的超吸收性聚合物
CN102535016A (zh) * 2005-08-05 2012-07-04 希尔和塞拉彻有限公司 用超吸收剂粉末配置的纳米纤维织物
CN108271379A (zh) * 2016-11-04 2018-07-10 株式会社Lg化学 超吸收性聚合物及其制备方法
CN111249068A (zh) * 2020-01-14 2020-06-09 百润(中国)有限公司 以扩散抗回渗强化层提高吸收制品扩散与抗回渗性能的方法
CN111302878A (zh) * 2020-04-18 2020-06-19 云南正邦科技有限公司 一种由醇脱水连续制备烯烃的方法
CN114727890A (zh) * 2019-11-26 2022-07-08 尤妮佳股份有限公司 吸收性物品

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088551A (ja) * 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd 吸収体およびそれを用いた吸収性物品
WO2003040194A1 (fr) * 2001-11-06 2003-05-15 Nippon Shokubai Co., Ltd. Polymere d'acide (meth)acrylique (sel) et procede de production associe
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
CN1274754C (zh) * 2003-09-09 2006-09-13 青岛科技大学高分子科学与工程学院 遇水崩解型环境友好高分子共混材料及其制取方法
US20070173610A1 (en) 2003-12-12 2007-07-26 Katsuyuki Wada Water-absorbing agent, manufacture method thereof, and absorbent and absorbent article made therefrom
US7163966B2 (en) * 2003-12-19 2007-01-16 Stockhausen, Inc. Superabsorbent polymer having increased rate of water absorption
TWI344469B (en) 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
TWI394789B (zh) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind 吸水性樹脂組成物及其製造方法、吸收性物品
TWI377222B (en) 2005-12-22 2012-11-21 Nippon Catalytic Chem Ind Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
DE502007003544D1 (de) 2006-10-19 2010-06-02 Basf Se Verfahren zur herstellung von superabsorbern
US9120963B2 (en) * 2006-11-08 2015-09-01 Schlumberger Technology Corporation Delayed water-swelling materials and methods of use
US8383877B2 (en) * 2007-04-28 2013-02-26 Kimberly-Clark Worldwide, Inc. Absorbent composites exhibiting stepped capacity behavior
SA08290542B1 (ar) 2007-08-28 2012-11-14 نيبون شوكوباي كو. ، ليمتد طريقة لإنتاج راتنج ماص للماء
SA08290556B1 (ar) * 2007-09-07 2012-05-16 نيبون شوكوباي كو. ، ليمتد طريقة لربط راتنجات ممتصة للماء
WO2009113896A1 (en) * 2008-02-27 2009-09-17 Schlumberger Canada Limited Slip-layer fluid placement
DE102008030712A1 (de) * 2008-06-27 2009-12-31 Construction Research & Technology Gmbh Zeitverzögerte superabsorbierende Polymere
US20100063180A1 (en) * 2008-09-05 2010-03-11 Seungkoo Kang Fire protection and/or fire fighting additives, associated compositions, and associated methods
BRPI0918389B1 (pt) * 2008-12-26 2019-05-07 San-Dia Polymers, Ltd Partícula de resina absorvente, absorvente, artigo absorvente e processo para produção de partícula de resina absorvente
JP5528714B2 (ja) * 2009-03-02 2014-06-25 株式会社日本触媒 吸水性樹脂の製造方法
JP4752933B2 (ja) * 2009-03-03 2011-08-17 富士ゼロックス株式会社 インク受容性粒子及びその製造方法、硬化性樹脂分散体
EP2404954B1 (en) 2009-03-04 2015-04-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
JP5629688B2 (ja) 2009-08-27 2014-11-26 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
CN102548654A (zh) 2009-09-29 2012-07-04 株式会社日本触媒 颗粒状吸水剂及其制造方法
WO2011099586A1 (ja) 2010-02-10 2011-08-18 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2011111857A1 (ja) 2010-03-12 2011-09-15 株式会社日本触媒 吸水性樹脂の製造方法
JP5485805B2 (ja) * 2010-06-15 2014-05-07 住友精化株式会社 吸水性樹脂
CN103037823A (zh) * 2010-06-15 2013-04-10 旭化成化学株式会社 吸收片及其制造方法
WO2012077159A1 (en) * 2010-12-07 2012-06-14 Empire Technology Development Llc Ventilator units, methods for providing ventilation in response to humidity levels, and wall units
WO2012081355A1 (ja) * 2010-12-16 2012-06-21 住友精化株式会社 吸水性樹脂の製造方法
US8802786B2 (en) 2011-04-21 2014-08-12 Evonik Corporation Particulate superabsorbent polymer composition having improved performance properties
DE102011086516A1 (de) 2011-11-17 2013-05-23 Evonik Degussa Gmbh Superabsorbierende Polymere mit schnellen Absorptionseigenschaften sowieVerfahren zu dessen Herstellung
US9375507B2 (en) 2013-04-10 2016-06-28 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
US9302248B2 (en) 2013-04-10 2016-04-05 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
KR102094453B1 (ko) 2016-12-23 2020-03-27 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102202059B1 (ko) * 2018-05-11 2021-01-12 주식회사 엘지화학 고흡수성 수지 시트의 제조 방법
US11744561B2 (en) 2019-11-07 2023-09-05 Smylio Inc. Saliva collection and testing system

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699103A (en) 1970-10-07 1972-10-17 Hoffmann La Roche Process for the manufacture of 5-desoxy-l-arabinose and novel intermediates
JPS51125468A (en) 1975-03-27 1976-11-01 Sanyo Chem Ind Ltd Method of preparing resins of high water absorbency
JPS5265597A (en) 1975-11-27 1977-05-31 Sumitomo Chem Co Ltd Preparation of high polimeric materials with improved water absorption
US4134748A (en) 1977-06-13 1979-01-16 Lynch Corporation Linkage for operating a mold for a glass making machine
US4260443A (en) 1978-10-20 1981-04-07 Grain Processing Corporation Laminated absorbent process
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4354901A (en) 1979-10-05 1982-10-19 Personal Products Company Flexible absorbent boards
US4270977A (en) 1979-11-01 1981-06-02 Nl Industries, Inc. Process for preparing water sorptive products
US4454055A (en) 1980-08-25 1984-06-12 National Starch And Chemical Corporation Absorbent composition of matter, process for preparing same and article prepared therefrom
US4381782A (en) 1981-04-21 1983-05-03 Kimberly-Clark Corporation Highly absorbent materials having good wicking characteristics which comprise hydrogel particles and surfactant treated filler
US4552618A (en) 1981-08-03 1985-11-12 Personal Products Company Stabilized absorbent boards
US4467012A (en) 1981-08-05 1984-08-21 Grain Processing Corporation Composition for absorbent film and method of preparation
JPS5829846A (ja) 1981-08-17 1983-02-22 Kuraray Co Ltd 吸水性複合体
DE3141098A1 (de) 1981-10-16 1983-04-28 Chemische Fabrik Stockhausen GmbH, 4150 Krefeld Absorptionsmaterial fuer wasser, waessrige loesungen und waessrige koerperfluessigkeiten
FR2530647A1 (fr) 1982-07-20 1984-01-27 Rhone Poulenc Spec Chim Procede de preparation de flocons de polymeres acryliques hydrosolubles
JPS5980459A (ja) 1982-10-29 1984-05-09 Arakawa Chem Ind Co Ltd 吸水性樹脂粉末組成物
JPS59192710A (ja) 1983-04-18 1984-11-01 Toray Ind Inc 吸水性複合繊維状物
US4600458A (en) 1983-12-20 1986-07-15 The Procter & Gamble Co. Method of making an absorbent laminate structure
JPS60163956A (ja) 1984-02-04 1985-08-26 Arakawa Chem Ind Co Ltd 吸水性樹脂の製法
JPS61141760A (ja) 1984-12-13 1986-06-28 Miyata Kogyo Kk 水溶液体のゲル化剤
US4654039A (en) 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
JPS61293228A (ja) 1985-06-21 1986-12-24 Arakawa Chem Ind Co Ltd 吸水性樹脂の製法
US4833198A (en) 1985-07-22 1989-05-23 The Dow Chemical Company Suspending agent for the suspension polymerization of water-soluble monomers
US4699823A (en) 1985-08-21 1987-10-13 Kimberly-Clark Corporation Non-layered absorbent insert having Z-directional superabsorbent concentration gradient
JPH0643500B2 (ja) 1985-12-04 1994-06-08 住友精化株式会社 吸水性樹脂の造粒方法
US4735987A (en) 1986-03-25 1988-04-05 Osaka Yuki Kagaku Kogyo Kabushiki Kaisha Method for manufacture of high-expansion type absorbent polymer
JPS62254841A (ja) 1986-04-26 1987-11-06 Osaka Yuki Kagaku Kogyo Kk 高膨張型吸水性ポリマ−の製造法
JP2604576B2 (ja) 1986-04-15 1997-04-30 佐藤 徹 含水粉粒体
US4929502A (en) 1986-10-14 1990-05-29 American Cyanamid Company Fibrillated fibers and articles made therefrom
JPS63105064A (ja) 1986-10-22 1988-05-10 Nippon Synthetic Chem Ind Co Ltd:The 高吸水性樹脂組成物
JPS63143906A (ja) 1986-12-09 1988-06-16 Hayashikane Zosen Kk 吸水性樹脂を含む脱水シ−ト
JPS63146901A (ja) 1986-12-11 1988-06-18 Shiraishi Chuo Kenkyusho:Kk 逆相懸濁重合法
FR2614555B1 (fr) 1987-04-28 1989-06-09 Coatex Sa Composition polymere chargee en matiere minerale pulverulente a haute capacite d'absorption en eau
JPS6426736A (en) 1987-07-21 1989-01-30 Murata Machinery Ltd Apparatus for testing ending machine
JPS6424808A (en) 1987-07-22 1989-01-26 Arakawa Chem Ind Method of reducing residual monomer content of hydrophilic high-molecular weight polymer
US4865596A (en) 1987-09-01 1989-09-12 The Procter & Gamble Company Composite absorbent structures and absorbent articles containing such structures
US5073612A (en) 1987-12-28 1991-12-17 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Hydrophilic polymer and method for production thereof
JPH01178509A (ja) 1988-01-11 1989-07-14 Kazuo Saotome 吸水性樹脂の製造方法
US5009653A (en) 1988-03-31 1991-04-23 The Procter & Gamble Company Thin, flexible sanitary napkin
US4950264A (en) 1988-03-31 1990-08-21 The Procter & Gamble Company Thin, flexible sanitary napkin
US5383869A (en) 1988-03-31 1995-01-24 The Procter & Gamble Company Thin, flexible sanitary napkin
US5147343B1 (en) 1988-04-21 1998-03-17 Kimberly Clark Co Absorbent products containing hydrogels with ability to swell against pressure
CA1321062C (en) 1988-04-21 1993-08-10 Stanley Roy Kellenberger Absorbent products containing hydrogels with ability to swell against pressure
TW201758B (zh) 1988-06-28 1993-03-11 Catalyst co ltd
JPH082422B2 (ja) 1988-08-16 1996-01-17 理化学研究所 高吸水性樹脂の微細化方法
EP0359615A1 (en) 1988-09-01 1990-03-21 James River Corporation Of Virginia Manufacture of superabsorbent composite structures
AU5086290A (en) 1989-01-24 1990-08-24 Dow Chemical Company, The Aggregates or clusters of water-swellable polymers having increased hydration rate over unassociated water-swellable polymers
US4914066A (en) 1989-02-24 1990-04-03 Hoechst Celanese Corporation Pellets of clay and superabsorbent polymer
JP2888852B2 (ja) 1989-03-13 1999-05-10 三菱化学株式会社 粉体高吸水性ポリマー組成物
JP2579814B2 (ja) 1989-03-16 1997-02-12 三洋化成工業株式会社 吸水剤およびその製造方法
JPH0710922B2 (ja) 1989-04-26 1995-02-08 日本合成化学工業株式会社 高吸水性樹脂の造粒方法
JPH0345799A (ja) 1989-07-11 1991-02-27 Mitsubishi Paper Mills Ltd 紙の製造方法
US4986882A (en) 1989-07-11 1991-01-22 The Proctor & Gamble Company Absorbent paper comprising polymer-modified fibrous pulps and wet-laying process for the production thereof
US5093130A (en) 1989-09-26 1992-03-03 Plant Genetics Powder coated hydrogel capsules
US5453323A (en) 1989-09-28 1995-09-26 Hoechst Celanese Corporation Superabsorbent polymer having improved absorbency properties
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
US5160789A (en) 1989-12-28 1992-11-03 The Procter & Gamble Co. Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber
CA2023097C (en) 1990-01-16 1999-07-06 Kenji Tsubota Method for producing an air-permeable adhesive tape
US5217445A (en) 1990-01-23 1993-06-08 The Procter & Gamble Company Absorbent structures containing superabsorbent material and web of wetlaid stiffened fibers
US5124188A (en) 1990-04-02 1992-06-23 The Procter & Gamble Company Porous, absorbent, polymeric macrostructures and methods of making the same
US5408019A (en) 1990-05-11 1995-04-18 Chemische Fabrik Stockhausen Gmbh Cross-linked, water-absorbing polymer and its use in the production of hygiene items
FR2661912B1 (fr) 1990-05-14 1994-05-13 Hoechst Ste Francaise Nouveaux polymeres absorbants, leur procede de fabrication et leur application.
JP2810489B2 (ja) 1990-05-30 1998-10-15 株式会社ノリタケカンパニーリミテド 砥石車
US5049771A (en) * 1990-06-21 1991-09-17 Iap Research, Inc. Electrical machine
DE4020780C1 (zh) * 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
JPH05506257A (ja) 1990-07-31 1993-09-16 オブスチェストボ エス オグラニチェンノイ オトベツトベンノスチュ “ノバヤ メハニカ” 水膨潤性ポリマー―無機物複合材料及びその製造方法
FR2665903B1 (fr) 1990-08-14 1992-12-04 Hoechst France Nouveaux superabsorbants en poudre, contenant de la silice, leur procede de preparation et leur application.
US5137600A (en) 1990-11-01 1992-08-11 Kimberley-Clark Corporation Hydraulically needled nonwoven pulp fiber web
DE69225354T2 (de) 1991-03-19 1998-12-03 Dow Chemical Co Runzelige Absorbentpartikel mit grosser effektiver Oberfläche und hoher Aufnahmegeschwindigkeit
US5422169A (en) 1991-04-12 1995-06-06 The Procter & Gamble Company Absorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials in relatively high concentrations
DE4116428C2 (de) 1991-05-18 1995-04-13 Stockhausen Chem Fab Gmbh Pulverförmiges Absorptionsmittel für wässrige Flüssigkeiten auf Basis eines wasserquellbaren Polymeren
CA2053733C (en) 1991-08-15 2002-04-30 Chuan-Ling Tsai Thermal treatment of superabsorbents to enhance their rate of absorbency under load
ATE148898T1 (de) 1991-09-03 1997-02-15 Hoechst Celanese Corp Superabsorbierendes polymer mit verbesserten absorbiereigenschaften
US5154713A (en) 1991-10-22 1992-10-13 Nalco Chemical Company Enhancing absorption rates of superabsorbents by incorporating a blowing agent
WO1994025521A1 (de) * 1992-03-05 1994-11-10 Chemische Fabrik Stockhausen Gmbh Polymerzusammensetzungen, herstellung von polymerzusammensetzungen, insbesondere absorptionsmaterialien und deren verwendung
DE4206857C2 (de) 1992-03-05 1996-08-29 Stockhausen Chem Fab Gmbh Polymerzusammensetzung, Absorptionsmaterialzusammensetzung, deren Herstellung und Verwendung
FR2694756B1 (fr) * 1992-08-12 1994-10-07 Atochem Elf Sa Perfectionnement pour la préparation de polyacrylates superabsorbants.
GB2269602A (en) 1992-08-13 1994-02-16 Courtaulds Plc Absorbent nonwoven fabric
US5538783A (en) 1992-08-17 1996-07-23 Hansen; Michael R. Non-polymeric organic binders for binding particles to fibers
US5308896A (en) 1992-08-17 1994-05-03 Weyerhaeuser Company Particle binders for high bulk fibers
US5352480A (en) 1992-08-17 1994-10-04 Weyerhaeuser Company Method for binding particles to fibers using reactivatable binders
US5300192A (en) 1992-08-17 1994-04-05 Weyerhaeuser Company Wet laid fiber sheet manufacturing with reactivatable binders for binding particles to fibers
US5543215A (en) 1992-08-17 1996-08-06 Weyerhaeuser Company Polymeric binders for binding particles to fibers
US5589256A (en) 1992-08-17 1996-12-31 Weyerhaeuser Company Particle binders that enhance fiber densification
EP0641885A4 (en) 1992-12-17 1997-03-05 Kanebo Ltd WETABLE NONWOVEN FABRIC AND PROCESS FOR PRODUCING THE SAME.
DE4244548C2 (de) 1992-12-30 1997-10-02 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene
JP3021227B2 (ja) 1993-04-01 2000-03-15 花王株式会社 吸収紙及びそれを具備する吸収性物品
SE501699C2 (sv) 1993-06-21 1995-04-24 Moelnlycke Ab Superabsorberande material med fördröjd aktiveringstid och absorberande alster innehållande detsamma
US5314420A (en) 1993-09-17 1994-05-24 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
DE4333056C2 (de) 1993-09-29 1998-07-02 Stockhausen Chem Fab Gmbh Pulverförmige, wäßrige Flüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung als Absorptionsmittel
DE4418319C3 (de) 1994-05-26 2001-08-09 Stockhausen Chem Fab Gmbh Schichtförmig aufgebauter Körper zur Absorption von Flüssigkeiten sowie seine Herstellung und seine Verwendung
DE19534542B4 (de) 1994-09-20 2004-01-15 Rench Chemie Gmbh Aufsaugmittel mit inneren Quellräumen zum Binden flüssiger Gefahrstoffe
US5549589A (en) 1995-02-03 1996-08-27 The Procter & Gamble Company Fluid distribution member for absorbent articles exhibiting high suction and high capacity
DE19540951A1 (de) 1995-11-03 1997-05-07 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
JP3383497B2 (ja) * 1995-11-30 2003-03-04 ユニ・チャーム株式会社 使い捨ての体液吸収性着用物品
DE19619680A1 (de) 1996-05-15 1997-11-20 Buna Sow Leuna Olefinverb Gmbh Verfahren zur Herstellung von superabsorbierenden Polymeren auf Stärkebasis
DE19716657A1 (de) * 1997-04-21 1998-10-22 Stockhausen Chem Fab Gmbh Superabsorber mit kontrollierter Absorptionsgeschwindigkeit
EP0979250B1 (en) * 1997-04-29 2004-04-14 Dow Global Technologies Inc. Superabsorbent polymers having improved processability
US5856410A (en) 1997-05-23 1999-01-05 Amcol International Corporation Polyacrylate superabsorbent post-polymerization neutralized with solid, non-hydroxyl neutralizing agent.
DE19807500C1 (de) 1998-02-21 1999-07-29 Clariant Gmbh Vernetzung von Hydrogelen mit Phosphorsäureestern
DE19809540A1 (de) 1998-03-05 1999-09-09 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19813443A1 (de) 1998-03-26 1998-10-08 Stockhausen Chem Fab Gmbh Wasser- und wäßrige Flüssigkeiten absorbierende Polymerisatteilchen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19846413A1 (de) 1998-10-08 2000-04-13 Basf Ag Verfahren zur Herstellung von hydrophilen wasserquellbaren Polymeren sowie deren Verwendung
US6239230B1 (en) * 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433733A (zh) * 2003-11-12 2009-05-20 艾沃尼克施拖克豪森公司 具有延迟自由吸水性的超吸收性聚合物
CN102535016A (zh) * 2005-08-05 2012-07-04 希尔和塞拉彻有限公司 用超吸收剂粉末配置的纳米纤维织物
CN102535016B (zh) * 2005-08-05 2014-08-27 希尔和塞拉彻有限公司 用超吸收剂粉末配置的纳米纤维织物
CN108271379A (zh) * 2016-11-04 2018-07-10 株式会社Lg化学 超吸收性聚合物及其制备方法
US10759912B2 (en) 2016-11-04 2020-09-01 Lg Chem, Ltd. Superabsorbent polymer and preparation method thereof
CN108271379B (zh) * 2016-11-04 2020-12-01 株式会社Lg化学 超吸收性聚合物及其制备方法
CN114727890A (zh) * 2019-11-26 2022-07-08 尤妮佳股份有限公司 吸收性物品
CN114727890B (zh) * 2019-11-26 2023-03-10 尤妮佳股份有限公司 吸收性物品
CN111249068A (zh) * 2020-01-14 2020-06-09 百润(中国)有限公司 以扩散抗回渗强化层提高吸收制品扩散与抗回渗性能的方法
CN111302878A (zh) * 2020-04-18 2020-06-19 云南正邦科技有限公司 一种由醇脱水连续制备烯烃的方法

Also Published As

Publication number Publication date
DE60007635T2 (de) 2004-11-18
US20030118821A1 (en) 2003-06-26
EP1196204A1 (en) 2002-04-17
CN1326573C (zh) 2007-07-18
US20030118820A1 (en) 2003-06-26
JP4708646B2 (ja) 2011-06-22
EP1196204B1 (en) 2004-01-07
CA2400758A1 (en) 2001-01-04
DE60007635D1 (de) 2004-02-12
US6743391B2 (en) 2004-06-01
WO2001000258A1 (en) 2001-01-04
DE60007635T3 (de) 2010-11-25
BR0012000A (pt) 2002-05-14
JP2003503554A (ja) 2003-01-28
US6841229B2 (en) 2005-01-11
US20050101680A1 (en) 2005-05-12
AU5418000A (en) 2001-01-31
ATE257395T1 (de) 2004-01-15
EP1196204B2 (en) 2010-03-24
US6514615B1 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
CN1326573C (zh) 具有延迟吸水特性的超吸收性聚合物
US6911499B1 (en) Polymer composition and a method for producing the same
CN106029220B (zh) 聚(甲基)丙烯酸(盐)系颗粒状吸水剂和制造方法
KR101407176B1 (ko) 압력하에서 향상된 투과성과 흡수성을 가지는 수분-흡수성 중합체 구조
US6300275B1 (en) Resilient superabsorbent compositions
EP1244473B1 (en) Superabsorbent polymers having a slow rate of absorption
EP3085439B1 (en) Water absorbing agent based on polyacrylic acid and/or a salt thereof
CN1142953C (zh) 有改进性能的吸水性聚合物及其生产方法和用途
US20050245684A1 (en) Water absorbing agent and method for the production thereof
CN1411381A (zh) 高渗透性低吸收容量的聚合物
KR20080108502A (ko) 우수한 흡수성과 보유성을 지니는 생분해성 초흡수성 중합체 조성물
TW201313752A (zh) 吸水性樹脂粒子、吸水性樹脂粒子的製造方法、吸收體、吸收性物品及止水材
CN1342180A (zh) 粉末状交联的吸收性聚合物、其制备方法及其应用
CN1342174A (zh) 吸收含水液体和血液的粉末状交联聚合物及其制造方法和应用
JP2002201290A (ja) 吸水性樹脂およびその製造方法
CN100335140C (zh) 网状超吸收性聚合物和纤维的制造
EP0945143B1 (en) Water-absorbing agent and its production process
JP5254225B2 (ja) 吸水性複合材料の製造法
EP1736508A1 (en) Hydrogel-forming polymers with increased permeability and high absorption capacity
CN1874794A (zh) 能够吸收血液和/或体液的聚合物颗粒

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SHITUOKEHESEN CO., LTD.

Free format text: FORMER OWNER: SHITUOKEHESEN KG

Effective date: 20100617

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: EVONIK STOCKHAUSEN GMBH

Free format text: FORMER NAME: SHITUOKEHESEN CO., LTD.

CP01 Change in the name or title of a patent holder

Address after: German Clev Field

Patentee after: Evonik Stockhausen GmbH

Address before: German Clev Field

Patentee before: Stockhaus hearson LLC

TR01 Transfer of patent right

Effective date of registration: 20100617

Address after: German Clev Field

Patentee after: Stockhaus hearson LLC

Address before: German Clev Field

Patentee before: STOCKHAUSEN GmbH & Co.KG

ASS Succession or assignment of patent right

Owner name: EVONIK DEGUSSA GMBH

Free format text: FORMER OWNER: EVONIK STOCKHAUSEN GMBH

Effective date: 20130809

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130809

Address after: essen

Patentee after: Evonik Degussa GmbH

Address before: German Clev Field

Patentee before: Evonik Stockhausen GmbH

CX01 Expiry of patent term

Granted publication date: 20070718

CX01 Expiry of patent term