CN1367765A - 形成粒状玻璃批料组合物同时减少排气流中挥发性组分的方法 - Google Patents

形成粒状玻璃批料组合物同时减少排气流中挥发性组分的方法 Download PDF

Info

Publication number
CN1367765A
CN1367765A CN00811069A CN00811069A CN1367765A CN 1367765 A CN1367765 A CN 1367765A CN 00811069 A CN00811069 A CN 00811069A CN 00811069 A CN00811069 A CN 00811069A CN 1367765 A CN1367765 A CN 1367765A
Authority
CN
China
Prior art keywords
exhaust stream
glass batch
volatile components
mixing chamber
particulate glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00811069A
Other languages
English (en)
Other versions
CN100339325C (zh
Inventor
W·H·利尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Ohio Inc
PPG Industries Inc
Original Assignee
PPG Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Inc filed Critical PPG Industries Inc
Publication of CN1367765A publication Critical patent/CN1367765A/zh
Application granted granted Critical
Publication of CN100339325C publication Critical patent/CN100339325C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/026Pelletisation or prereacting of powdered raw materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Treating Waste Gases (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种在形成粒状玻璃批料组合物的同时减少排气流中挥发性组分的方法,其包括以下步骤:(a)将包含一种或多种挥发性组分的排气流引到混合室中;(b)将一种粒状玻璃批料前体组合物加到混合室中,其中该前体组合物包括至少一种试剂材料,其可与排气流中一种或多种挥发性组分的至少一种进行反应;(c)混合室中,至少有一部分粒状玻璃批料前体组合物与排气流中一种或多种挥发性组分的至少一部分进行反应从而形成一种粒状玻璃批料组合物并减少排气流中一种或多种挥发性组分的含量;(d)将粒状玻璃批料组合物从排气流中分离出来;以及(e)将含有更少挥发性组分的排气流排到大气。

Description

形成粒状玻璃批料组合物同时 减少排气流中挥发性组分的方法
交叉引用的相关申请
本申请请求1999年7月13提交的美国临时申请No.60/143,602的利益。
技术领域
本发明涉及一种在形成粒状玻璃批料组合物的同时减少玻璃熔炉排气流中挥发性组分的方法。
背景技术
当玻璃批料组合物在玻璃熔炉中熔化时,挥发性组分会从一种或多种玻璃批料中释放出来。这里所用的术语“玻璃批料”或“玻璃批料组合物”是指一种或多种玻璃原料其在熔化时形成的一种特定的玻璃组合物。特别是当熔化玻璃原料以形成确定类型的玻璃组合物如“E型玻璃”时,挥发性组分如含硼、氟和/或硫的化合物会释放到炉内气氛中。根据气氛的温度和湿度,这些挥发性组分可形成气态化合物如HF、SO2、和H3BO3或者凝结成固体化合物如HBO2。挥发性组分从玻璃批料的损失不仅会增加批料的成本并且当排气流排放到大气时还会造成许多的问题。例如,在高温时,这些挥发性组分可形成腐蚀性很强的酸性气体而夹带在排气系统中。随着排气流的冷却,腐蚀性酸气以及其它不需要的粒状材料会在排气系统中凝结从而损坏系统部件、提高维护成本、降低运行效率并产生排放控制问题。比如,现已发现H3BO3气体的凝结会形成粘性的固体微粒(HBO2)从而阻塞管路系统和过滤系统并增加排放气流中的可见的排放物(或浊度)。尽管所有这些挥发性成分都具有一定的排放物控制问题,但人们特别关注的是难以控制并回收的挥发性硼化物。
通常,人们在减少或消除排气物中的挥发性组分这方面的工作都会涉及专门的干洗法、湿洗法或者两者的结合的使用。美国专利No.4,208,201公开了一种方法,在该方法中,将批料室(batch house)中的粉末引到一个或多个熔炉的排气流中。这种粉末颗粒直径优选为十个微米或更大,其可形成凝结核,排气流中的可凝成分会凝结在凝结核上(第2栏的第38-44行)。粉末颗粒在与排气混合后从排气流中过滤出来并返回到批料源并被重复利用(参见第2栏的第67-68行和第3栏的第1-2行)。美国专利No.3,995,005和3,969,482公开了一种利用两级工艺处理熔炉烟气的方法,包括:第一步,用碱性溶液或碱性料浆冷却烟气形成盐;第二步,使烟气与粒状吸附材料接触从而将剩余的酸气去掉。烟气在与吸附材料混合前的温度优选为约从200°F到300°F(约从93℃到149℃)。此外烟气中剩余的酸气在与吸附材料的混合前其浓度优选降到少于约百万分之五百,这是因为吸附过程在高浓度下通常都不够经济(参见US3,969,482第7栏第33-38行)。还有,引到袋式收尘室中的气流温度优选为低于约185°F(约85℃),从而使那些沉积在袋滤器中的硼酸的挥发性降到最小。
这样的两步式工艺比较复杂、昂贵并且运行和维护起来也很困难。此外,还发现通过冷凝回收硼化物,例如将含有挥发性硼酸的烟气引到温度低于约190°F(约88℃)的袋滤器中会因粘性硼酸凝结物的沉积而导致管道系统阻塞并堵死过滤袋(bag-blinding)。这里所用的术语“堵死过滤袋”是指过滤袋被涂渍或被阻塞,这样穿过布袋的气流严重受阻。此外,这种系统中无法从烟气中回收能量,或者回收不到能量。
其它还有许多专利文献都是使排气流穿过一床或一塔颗粒状批料而从烟气或熔炉的排气流中回收能量、粒料和挥发性组分的。美国专利文献US3,953,190公开了一种具有玻璃批料球的预热器和再循环的结构,其具有一个中段,热的排气穿过其中。当排气穿插过该结构时,该球被加热同时气流被冷却从而使挥发性材料和粉末在这里凝结(参见第3栏第31-35行)。进入该结构的气体温度约从1000°F到1600°F(即约从538℃到871℃),在其穿过该结构时则被冷却到大约600°F(约316℃),并在约450°F下排放(参见第4栏第6-13行)。预热后的小球接着被送到熔炉中。美国专利文献US4,248,615公开了一种在玻璃生产工艺中回收能量并降低污染的方法,其中熔炉的烟气被导入一个含有成块批料的预热器中从而在它们引入炉堂之前加热这些块料。气体在穿过预热器之后,进到一个或多个预调理室中从而在成块批料引入预热器之前对其进行预热。颗粒会因块料的“过滤”作用而从烟气分离出来(参见第6栏第7-8行)。此外,某些气体污染物也会随着烟气温度的下降而凝结回收(参见第6栏第11-15行)。
尽管这种方法和装置能够很方便地用于球状批料,但由于与块料或球料相关的活性表面积很低,因此它们在挥发物回收方面的效率很差,并且不能很好地适用于粒状批料,这是因为将排气流穿过一床粒料是很困难的。比如,使热排气流穿过一床非成块的粒料可导致粉末的形成和颗粒损失并形成聚集体以及很高的系统压降。此外,粒状玻璃批料会由于其颗粒尺寸微细而难于流化。
美国专利文献US4,298,369和US4,282,019公开了一种用烟气预热球状批料同时更好地将挥发性物质从烟气中去除的系统。美国专利文献US4,298,369公开了一种玻璃加工方法,其中一种粒状硼和/或氟反应材料被引到约500℃(约932°F)多度的烟气流中并与其进行反应(参见第2栏第1-8行)。该反应材料优选根据氧化原理以这样一种速率加到烟气中,即氧化剂与来自同流换热器的气体中硼和/或氟的总流量的重量比至少为4,更为通常的是5-10倍(参见第5栏第17-24行)。然后使烟气流过一个熔渣箱(slag box)以去除掉较大的颗粒,接着再穿过一床球状批料从而将该球状批料优选预热到约500℃(约932°F)。美国专利文献US4,282,019公开了煅烧硬硼酸钙石、减少污染并预热球状批料的方法,其中硬硼酸钙石原料被引到超过约500℃(约932°F)的烟气流中从而用烟气中的挥发性硼和/或氟烧烤硬硼酸钙石并与之进行反应,然后将气体和硬硼酸钙石流过一个旋风分离器以分离并回收硬硼酸钙石。分离后,气体流过一个球团预热器,穿过球团预热器的气体的温度优选超过500℃(约932°F)(参见第3栏第58-63行)。
还有,由于很难使排气流流过一床粒料(如上所述),因此这些方法并不十分适用于那些将非球形批料送入熔炉的系统。
人们一直在努力利用排气流来预热粒料。美国专利文献US4,099,953公开了一种利用流化床预热器来预热玻璃批料组合物的初始物料。排气从熔炉流入流化床以预热其中的初始物料。采用一个高性能的过滤器来收集在流化床预热器残气中夹带的颗粒。美国专利文献US4,349,367公开了一种利用颗粒状热交换介质回收废热的方法,其中排气流过第一床粒料以从中回收热量,然后将加热了的颗粒介质流入一个第二床,并在其中预热燃烧空气。排气流中的颗粒可通过第一床的颗粒状热交换介质来回收,或者在穿过第一床之前与碎玻璃原料接触而过滤出来。然后将碎玻璃原料通入熔炉。然而,上面这些专利文献没有一篇提到从排气流中回收挥发性污染物。
因此就需要一种减少并回收排气流中各种挥发性组分特别是挥发性硼化物的有效方法,其可与粒状批料的馈送系统一同使用并能降低系统的复杂性、降低批料成本、提高能量的利用率并增强袋式收尘室的操作性。
发明简述
本发明提供一种在形成粒状玻璃批料组合物的同时减少排气流中挥发性组分的方法,其包括以下步骤:(a)将包含一种或多种挥发性组分的排气流引到混合室中;(b)将一种粒状玻璃批料前体组合物加到混合室中,其中该前体组合物包含至少一种试剂材料,其可与排气流中一种或多种挥发性组分中的至少一种进行反应;(c)混合室中,至少有一部分粒状玻璃批料前体组合物与排气流中一种或多种挥发性组分的至少一部分进行反应从而形成一种粒状玻璃批料组合物并减少排气流中一种或多种挥发性组分的含量;(d)将粒状玻璃批料组合物从排气流中分离出来;以及(e)将挥发性组分减少的排气流排到大气。在本发明的一个特定实施例中,至少有一种试剂材料是从下面这组物质选自碱土化合物、碱金属化合物、铝的化合物、硅的化合物以及它们的混合物,并且试剂材料加入的量至少是五倍于混合室中一种或多种挥发性组分的至少一种完全反应时所必须的摩尔量。
本发明还提供一种在形成粒状玻璃批料组合物的同时减少排气流中一种或多种挥发性组分的方法,其包括以下步骤:(a)将包含一种或多种挥发性组分的排气流在最高约1400°F(约760℃)的温度下引到混合室中;(b)将一种粒状玻璃批料前体组合物和空气加到混合室中,其中该前体组合物包含至少一种试剂材料,其可与排气流中一种或多种挥发性组分的至少一种进行反应,其中粒状玻璃批料前体组合物中缺少排气流中一种或多种挥发性组分的至少一种可与试剂材料反应的组分;(c)混合室中,至少有一部分粒状玻璃批料前体组合物与排气流中一种或多种挥发性组分的至少一部分进行反应从而形成一种粒状玻璃批料组合物并减少排气流中一种或多种挥发性组分的含量。
本发明进一步提供一种在形成粒状玻璃批料组合物的同时减少排气流中一种或多种挥发性组分的方法,其包括以下步骤:(a)将包含一种或多种挥发性组分的排气流引到混合室中;(b)将一种可与排气流中挥发性组分反应的试剂材料注入到到混合室中;(c)混合室中,至少有一部分试剂材料与排气流中一种或多种挥发性组分的至少一部分进行反应从而形成一种粒状玻璃批料组合物并减少排气流中一种或多种挥发性组分的含量;(d)将粒状玻璃批料成形材料从排气流中分离出来;以及(e)将粒状玻璃批料与其它的粒状玻璃批料成形材料混合以形成一种玻璃批料组合物。
附图的简要说明
结合下面的附图能够更好地理解前面的技术方案和下面优选实施方案的详细说明。
图1为本发明方法的一个实施方案的流程示意图。
具体实施方式描述
本发明提供一种成本高效的方法,该方法在用粒状玻璃批料前体组合物形成玻璃批料组合物的同时可减少排气流中的挥发性组分,并且随后还将玻璃批料组合物送入玻璃熔炉。本发明方法的优点包括,但不限于:降低了烟囱的排放量、提高了挥发性硼化物的回收率、降低了批料的成本、提高了能量的利用率、提高了袋式收尘室的操作性并降低了系统的复杂性。此外,本发明方法还特别适用于氧-燃料燃烧熔炉(将在下面进行论述)。
本发明方法还适用于各种玻璃制造操作,这包括但不限于:连续式玻璃纤维制造操作、浮式玻璃制造操作、玻璃纤维绝缘制造操作以及本领域普通技术人员所公知的含硼玻璃组分的其它玻璃制造操作。
现在参见图1,图中说明了一个具有一个或多个排气口12和一个或多个玻璃批料入口14的玻璃熔炉10。玻璃熔炉10可以是本领域中任何公知类型的玻璃熔炉例如直燃炉。如果玻璃熔炉10是直燃炉,那么燃料可是本领域中任何公知的燃料,比如天然气或矿物燃料。在本发明一特定的非限定性的实施方案中,直燃炉中所用的燃气优选为氧(即所谓的“氧-燃料”炉)。以氧作燃料可降低气流所需的速率、消除二氧化氮的排放并提高熔融效率。然而,本领域普通技术人员都知道也可使用其它种类的燃气如空气。
尽管并非限定于本发明,但在一特定实施方案中,玻璃熔炉可以是一种纤维玻璃熔炉,纤维玻璃熔炉的产量优选大于约1000磅/小时(约455千克/小时),更为优选的是大于约2000磅/小时(约909千克/小时),当然本发明也可采用更高产量的熔炉。适于本发明的纤维玻璃熔炉的更多信息请参见K.Loewenstein的The Manufacturing Technology ofContinuous Glass Fibers(1993年的第三版)第47-81页,这里将其以参考的形式并入本申请。
参见图1,玻璃熔炉10中含有熔融的玻璃批料成形材料所释放出来的一种或多种挥发性组分的排气流经一个或多个排气口12取出并流入管道16中。排气流离开玻璃熔炉10的温度以及排气流中一种或多种挥发性组分的成分取决于所熔融的玻璃批料的组分。例如,如果熔融在玻璃熔炉10中的是“E型玻璃”批料组合物(这将在下面论述),那么从中取出的排气流的温度约从2200°F到2500°F(即约从1204℃到1371℃)。尽管本发明并非限定于此,但熔融中从玻璃批料释放出来一种或多种挥发性成分可包括:含硼的化合物、含氟的化合物、含硫的化合物、含铝的化合物、含硅的化合物以及它们的混合物。本领域普通技术人员还知道排气流中还可包括来自燃气的挥发性组分,例如但并非限定于二氧化硫,其能采用本发明所公开的方法从排气流中去除出去。然而,我们还是希望排气流中的挥发性组分主要是熔融过程中从玻璃批料的成形材料释放出来的。
适用于本发明的玻璃批料组合物包括但并非限于:形成纤维玻璃的组合物,如“E型玻璃”(其为优选)、“A型玻璃”、“C型玻璃”、“D型玻璃”、“R型玻璃”、“S型玻璃”、玄武岩玻璃纤维和至多含有微量硼和/或氟的E型玻璃的衍生物。这里所用的“微量”是指氟少于1%重量并且硼少于5%重量。这些玻璃组合物和其它玻璃组合物的配方对本领域的普通技术人员是公知的。如果需要更多的信息,可参见Loewenstein(1993年第三版)第30-36页,这里将其作为参考并入本申请。
尽管并非必须,但可将本领域所公知的同流换热器、热交换器或其它的冷却设备18(剖视图)与玻璃熔炉10的一个或多个排气口12相结合或与管道16相结合从而更快地冷却从中排出的排气流,并将排气中损失的一些能量以热能的形式回收。如果采用冷却设备18,那么最优选的是该冷却设备在排气流穿过其中时不会明显地提高排气流的湿度,即该冷却设备18不是一个水淬(water quenching)冷却设备,这是因为高湿度会使腐蚀性液体在管道系统中凝结并形成粘性粒料(如HBO2),其会阻塞管道系统并增加该系统的压降。
参见图1,管道16与混合室20相连。尽管并非必须,但混合室20优选为旋风-文丘里型混合室,其中引到混合室20中的排气流以这样一种方式输送,从而使排气流贴着混合室20的壁流动以形成一个旋涡,粒状玻璃批料前体组合物(下面再论述)可输送到该旋涡中。然而,根据本发明也可采用其它类型的、能充分混合排气流和粒状玻璃批料前体组合物的混合室。
进入混合室20的排气流所需的温度取决于排气流中一种或多种挥发性组分的成分和粒状玻璃批料前体组合物中与挥发性组分反应的试剂材料(其将在下面论述)。例如(但本发明并非限定于此),如果进到混合室的排气流中含有挥发性硼化物,并且试剂材料为碳酸钙,那么进到混合室20的排气流的温度优选不超过约800°F(约427℃),并且优选在约700°F到约800°F(即约从371℃到427℃)的范围内,从而能够促进硼和含钙化合物之间的反应。尽管并非必须,但进到混合室20的排气流的温度优选不超过约1400°F(约760℃),更为优选的是不超过约900°F(约482℃),最为优选的是不超过约800°F(约427℃)。
混合室20中所需的温降以及排气流的出口温度取决于准备从试剂材料和排气流中去除的挥发物。更具体地,混合室20中的温度优选在所需挥发物能与试剂材料反应的温度范围内下降。例如(但本发明并非限定于此),在一实施方案中,混合室20中排气流的温度可降到约400°F(约204℃)之下,优选降到约220°F(约104℃)之下。这样可确保混合室20中硫与试剂材料的反应。
显然,本领域普通技术人员都知道排气流中挥发物的去除效率取决于混合室20中试剂材料与挥发性化合物之间的反应得如何。该反应反过来又受到混合室20中排气流与粒状玻璃批料前体组合物的混合情况、混合室20中的温度、反应时间等条件的影响。如果排气流与粒状玻璃批料前体组合物的混合不充分、混合室20内的滞留时间太短并且混合室20内的温度无法提供最佳的反应条件,这些都将使去除效率降低。
继续参见图1,一粒料输送系统22同样也与混合室20相连。输送系统22将粒状玻璃批料前体组合物即还未反应的批料送到混合室20中并与排气流混合。尽管并非必须,但输送系统22优选是一种稀相气动输送型输送系统,该系统中,粒状玻璃批料前体材料与稀释空气一起注入到混合室20中从而更好地与排气流混合并进一步促进混合流的冷却。在本发明一特定的非限定性实施方案中,粒状玻璃批料前体材料和稀释空气优选以不超过约150°F(约66℃),更为优选是在约95°F(约35℃),最为优选是约在65°F到95°F(约18℃到约35℃)的温度下注入到混合室20中从而将排气流有效地冷却到所需温度。尽管不是优选,但本领域所公知的其它类型的材料输送系统如机械式注射器或机械式螺杆送料器都可用于本发明。
本发明中,注入到混合室20中的粒状玻璃批料前体组合物优于球状或其它的块状材料,这是因为粒料具有更高的表面积,一般更容易与排气流中的挥发物反应。此外,粒料比起球料来能够和排气流更均匀地混合并且需要的加工过程更少(即,可减少系统的复杂性)。尽管并非必须,但在本发明一个特定的非限定性实施方案中,粒状玻璃批料前体组合物优选至少约有90%,更为优选的是至少约有95%的粒料的平均颗粒尺寸小于325目(约44.5微米)。
注入到混合室20中的粒状玻璃批料前体组合物包括一种或多种所需的粒状玻璃原料以生产出所需的玻璃组分。优选的是,至少有一种玻璃批料是一种试剂材料,即其可与排气流中至少一种挥发性组分反应。这里所用的措词“可与排气流中至少一种挥发性组分反应”是指排气流中的挥发性组分可吸附、凝结在试剂材料上,或与试剂材料化学反应形成一种载有污染物的粒料。一般来说,玻璃批料包括:矿石、粘土、沙子和碎玻璃(如压碎的玻璃或磨碎的玻璃)。作为这种材料的非限定实例可参见Loewenstein(1993年第三版)第36-44页,这里将其作为参考并入本申请。尽管并非必须,但在本发明的一个非限定性实施方案中,至少有一种试剂材料优选为至少包括约10%,更为优选是至少包括约20%,最为优选是至少包括约25%重量的粒状玻璃批料前体组合物。
粒状玻璃批料前体组合物中的实际材料取决于所生产的玻璃的类型、排气流中挥发性组分的含量和种类以及试剂材料的反应性。例如,如果所需的最终玻璃组分是一种E玻璃纤维的组分,那么粒状玻璃批料前体组合物可包括含有或可分解出或可形成二氧化硅、氧化铝、氧化硼、氧化镁、氧化钙、氧化钠、氧化钾、氧化铁和氟的粒状玻璃批料。显然,本领域普通技术人员都知道这里的E型玻璃纤维组合物的范围,包括那些不含硼和/或氟的组合物,并且上述的组合物是为了清楚起见而并非用来限定本发明。
尽管本发明并非限定于此,但粒状玻璃批料前体组合物中优选缺少排气流中一种或多种挥发性组分的至少一种挥发性组分,并且至少有一种试剂材料可与这种组分反应。这里所用的术语“缺少”是指粒状玻璃批料前体组合物所含的挥发性组分的量少于排气流中所希望存在的、试剂材料可与之反应的、通常包含在玻璃批料中的量。例如,如果排气流中的一种或多种挥发性组分包括硼和氟,并且试剂材料可与氟反应而不能与硼的反应,那么粒状玻璃批料前体组合物中应缺少含氟的玻璃批料,但应有足够的玻璃批料来提供最终玻璃批料组合物中所需的硼。同样,当排气流中的一种或多种挥发性组分包括硼和氟,并且试剂材料可与硼和氟反应,那么粒状玻璃批料前体组合物中应优选缺少含硼和氟的玻璃批料。通过将试剂材料和粒状玻璃批料前体组合物在混合室中结合起来,其中批料前体组合物至少缺少一种可与试剂材料反应的挥发性组分并且至少有一部分试剂材料和排气流中至少一部分挥发性组分进行反应,可在原位处形成具有所需最终批料组合物的玻璃批料组合物,排气流中一种或多种挥发性组分的量也同时减少。
典型的几例非限定性的粒状玻璃原料同样也是用于氟、硼和/或硫的试剂材料,其包括碱土化合物、碱金属化合物、铝化物、硅化物和它们的混合物。非限定性的几例碱土化合物包括含钙的化合物、含镁的化合物及它们的混合物。非限定性的几例含钙化物包括:碳酸钙、氧化钙、氢氧化钙及它们的混合物。非限定性的几例碱金属化合物包括:含钠化合物、含钾化合物及它们的混合物。非限定性的几例含钠化合物包括:碳酸钠、氢氧化钠及它们的混合物。
显然,本领域的普通技术人员都知道注入到混合室20的前体组合物的量取决于许多因素,如玻璃熔炉的生产速率、排气流的速度和流量、排气流中挥发性组分的种类和量、粒状玻璃批料组合物中试剂材料的量以及试剂材料的反应性。尽管本发明并非限于此,但在一个实施方案中,注入到混合室20中的粒状玻璃批料组合物优选为至少是五倍于:试剂材料与排气流中要去除的挥发性组分完全反应时所必须的化学计量的摩尔量,更为优选是10倍于该化学计量的摩尔量,最为优选的是20倍于该化学计量的摩尔量。这里所用的“化学计量的摩尔量”是指与排气流中希望去除的那些摩尔的挥发性组分反应时所需试剂材料的摩尔数。例如,当采用碳酸钙(CaCO3)作为试剂材料同时与之反应的挥发性组分是以氢氟酸(HF)形式存在的氟时,与氢氟酸完全反应所需的碳酸钙的摩尔量由下式给出:
                            公式1
这里,与2摩尔氢氟酸反应时需要1摩尔的碳酸钙。因此至少10倍于碳酸钙的化学计量的摩尔数就意味着每2摩尔氢氟酸所需要10摩尔的碳酸钙。这种计算对本领域普通技术人员来说是公知的,因此从本发明角度来看没有必要对此进行更多的讨论。尽管如上所述采用过量试剂材料并不受任何特定理论的限制,但可以相信足量的试剂材料可使排气流中的挥发性组分减少到所需的程度。此外,采用过量的试剂材料可使混合室中连续形成的玻璃批料组合物具有始终如一的组成。
本领域普通技术人员都知道:除了受玻璃熔炉产量和所需最终玻璃批料组合物的限制之外,注入到混合室20中的试剂材料的超过化学计量摩尔数的程度并没有什么实际的上限。
再回到图1,一种或多种挥发性组分减少后的排气流和混合室20中形成的玻璃批料组合物从混合室20经第二管道24取出并引到过滤装置26中。管道24还可使排气在引入过滤装置26之前对其进行额外地混合、反应和冷却。尽管并非必须,但是如果需要,可在排气流和玻璃批料流过管道24时将额外的稀释空气加到其中以进一步冷却。本领域普通技术人员都知道管道24中所需的额外冷却的量部分取决于排气流中剩余的挥发性组分。例如,如果排气流中还含有额外的挥发性硼化物如H3BO3,那么最好将排气流在管道中冷却到约150°F(约68℃)或更低从而促进HBO2从排气流中升华出来。
尽管本发明并非限定于此,但在一实施方案中排气流和玻璃批料在引入过滤装置26时的温度优选不大于约135℃(约275°F)从而可采用低成本的过滤装置如聚脂过滤袋。该温度更为优选的是约从65℃到121℃(约150°F到250°F)。然而,如果能够允许更高的运行温度,那么排气流和原料的温度可以更高。
在本发明另一非限定性实施方案中,排气流和批料在穿过第二管道24时,不在其中有意地加入稀释空气,这时排气流和玻璃批料在引入过滤装置26时的温度约在104℃到121℃(约220°F到250°F)之间。在本发明的这个实施方案中,由于没将稀释空气加到管道24中,过滤装置26的尺寸可设计到最小,从而降低整个系统的成本。
过滤装置26可以是本领域中任何一种公知的类型。适于本发明的几例非限定性的过滤装置包括:静电过滤器、纤维玻璃过滤器以及布袋过滤器。尽管本发明并非限定于此,但在一实施方案中过滤器优选是一种本领域公知的脉冲喷射式袋式过滤器。在本发明另一非限定性实施方案中,过滤装置优选是一种带有聚四氟乙烯膜(其可为美国Kansas City的BHA公司的产品BHA-Tex从市场买到)的聚脂纺粘折叠式过滤元件(spunbond polyester pleated filter element)。
参见图1,在过滤装置26中批料从排气流中分离出来,一种或多种挥发性组分的含量减少后的排气流从通风孔28排到大气中。在本发明的一实施方案中,经通风孔28排放出去的排气流在排放到大气时具有的混浊度不超过大约20%,其更为优选的是不超过大约5%,最为优选的是0%。正如前面的讨论的那样,排放到大气的排气流的混浊度取决于所去除的挥发物的种类以及这种去除的效率。
如图1所示,经过滤装置26从排气流中分离出来的粒状玻璃批料组合物由收集室30收集。尽管并非必须,但收集室30可包括一个混合设备(图中未示出)从而使粒状玻璃批料组合物更加均匀。然后将玻璃批料组合物输送到所需的位置。例如,但本发明并不限于此,玻璃批料组合物可经一个玻璃批料进给系统32输送并直接给入玻璃熔炉10,其中该玻璃批料进给系统32与收集室30以及玻璃熔炉10的一个或多个玻璃批料入口14互连。作为选择,玻璃批料组合物可再循环到一个存贮区或送到不同的玻璃熔炉。可进一步想到的是,根据收集室30输送的玻璃批料组合物的量的不同,批料进给系统32可将组分完全供给玻璃熔炉10,也可与一个与玻璃熔炉10的一个或多个玻璃批料入口14相连的第二批料输送系统(图1中未示出)一起根据需要将多余的玻璃批料形成材料提供给玻璃熔炉10。当粒状玻璃批料组合物直接送入玻璃熔炉10时,其温度部分取决于过滤装置26的操作温度。尽管本发明并非限定于此,但在一实施方案中,粒状玻璃批料组合物在约150°F到约250°F(约65℃到约121℃)之间送到玻璃熔炉10中。显然,本领域普通技术人员都清楚本发明还有一个优点即粒状玻璃批料组合物在引入玻璃熔炉10之间被预热。
尽管上述讨论是以单个熔炉、混合室和过滤装置的形式进行的,但本领域普通技术人员都清楚本发明也可采用多个熔炉、混合室和/或过滤装置。例如,在本发明的一个实施方案中,可通过一根或多根管道将多个玻璃熔炉连接到一个混合室上。在本发明的另一实施方案中,可通过一根或多根管道将多个玻璃熔炉连接到一个或多个混合室和一个过滤装置上。
现在在总体上对本发明的形成粒状玻璃批料组合物的同时减少排气流中挥发性组分的方法进行论述。将包含一种或多种挥发性组分的排气流在低于约1400°F(约760℃)的温度下引到混合室20中;将一种粒状玻璃批料前体组合物加到混合室20,其中该前体组合物至少包括一种试剂材料,该试剂材料可与排气流中的至少一种挥发性组分进行反应,然后将空气注入到混合室20中。粒状玻璃批料前体组合物中优选至少缺少排气流中的一种挥发性组分,这种组分可与试剂材料反应;然后在混合室20中,至少有一部分粒状玻璃批料前体组合物与排气流中至少一部分挥发性组分进行反应从而形成一种粒状玻璃批料组合物并减少排气流中一种或多种挥发性组分的含量。
还可以想到的是排气流可以仅暴露于所选择的试剂材料以去除挥发性组分,这之后将材料加到其它批料中。更为特别的是,在本发明的一个实施方案中,将包含一种或多种挥发性组分的排气流引到混合室中并与同样注入到混合室中的试剂材料反应以形成所选择的粒状玻璃批料。然后将这种粒状玻璃原料从排气流中分离出来并与其它的粒状玻璃批料混合以形成一种用于所需玻璃组分的粒状玻璃批料组合物,同时将一种或多种挥发性组分减少了的排气流排到大气。然后将玻璃批料组合物输送到前面所讨论的位置上。例如,如果排气流中待除去的特定挥发性组分是含硼、氟或硫的化合物,那么加到混合室的试剂材料可以是一种含钙或含钠的化合物。
本领域普通技术人员都清楚在不脱离本发明发明构思的基础上还可对上述的实施方案做出修改。因此,本发明显然并不限于所公开的特定实施方案而应含盖本发明精神和范围内的所有修改,其保护范围由权利要求书确定。

Claims (27)

1.一种在形成粒状玻璃批料组合物的同时减少排气流中挥发性组分的方法,其包括以下步骤:
(a)将包含一种或多种挥发性组分的排气流引到混合室中;
(b)将一种粒状玻璃批料前体组合物加到混合室中,其中该前体组合物至少包括一种试剂材料,该试剂材料能与排气流中一种或多种挥发性组分的至少一种进行反应;
(c)混合室中,至少有一部分粒状玻璃批料前体组合物与排气流中一种或多种挥发性组分的至少一部分进行反应从而形成一种粒状玻璃批料组合物并减少排气流中一种或多种挥发性组分的含量;
(d)将粒状玻璃批料组合物从排气流中分离出来;以及
(e)将挥发性组分减少后的排气流排到大气。
2.如权利要求1的方法,其中排气流中的一种或多种挥发性组分从下面一组物质中选取:含硼的化合物、含氟的化合物、含硫的化合物以及它们的混合物。
3.如权利要求1的方法,其中的排气流在不超过约1400°F(约760℃)的温度下引到混合室中。
4.如权利要求3的方法,其中的排气流在不超过约900°F(约482℃)的温度下引到混合室中。
5.如权利要求3的方法,其中至少有一种试剂材料从下面这组物质中选取:碱土化合物、碱金属化合物、铝的化合物、硅的化合物以及它们的混合物;并且试剂材料加入的量至少是五倍于混合室中与一种或多种挥发性组分的至少一种完全反应时所必须的化学计量摩尔量。
6.如权利要求1的方法,其中排气流在混合室中的温度减少到约400°F或更低。
7.如权利要求1的方法,其中的至少一种试剂材料包含至少约10%重量的粒状玻璃批料前体组合物。
8.如权利要求7的方法,其中的至少一种试剂材料包含至少约20%重量的粒状玻璃批料前体组合物。
9.如权利要求1的方法,其中至少有一种试剂材料从下面一组物质中选取:碱土化合物、碱金属化合物、铝的化合物、硅的化合物以及它们的混合物。
10.如权利要求9的方法,其中的至少一种试剂材料从下面一组碱土化合物中选取:含钙的化合物、含镁的化合物以及它们的混合物。
11.如权利要求10的方法,其中的至少一种试剂材料从下面一组含钙化合物中选取:碳酸钙、氢氧化钙、氧化钙以及它们的混合物。
12.如权利要求9的方法,其中的至少一种试剂材料从下面一组碱金属化合物中选取:含钠化合物、含钾化合物以及它们的混合物。
13.如权利要求12的方法,其中的至少一种试剂材料从下面一组含钠化合物中选取:碳酸钠、氢氧化钠及它们的混合物。
14.如权利要求1的方法,其中粒状玻璃批料前体组合物注入到混合室中,从而提供一定量的至少一种试剂材料,该试剂材料的量至少五倍于与混合室中一种或多种挥发性组分的至少一种完全反应时所必须的化学计量摩尔量。
15.如权利要求14的方法,其中粒状玻璃批料前体组合物注入到混合室中,从而提供一定量的至少一种试剂材料,该试剂材料的量至少十倍于与混合室中一种或多种挥发性组分的至少一种完全反应时所必须的化学计量摩尔量。
16.如权利要求15的方法,其中粒状玻璃批料前体组合物注入到混合室中,从而提供一定量的至少一种试剂材料,该试剂材料的量至少二十倍于与混合室中一种或多种挥发性组分的至少一种完全反应时所必须的化学计量摩尔量。
17.如权利要求1的方法,其中的分离步骤是在约150°F到约250°F(约65℃到约121℃)之间进行的。
18.如权利要求17的方法,其中的分离步骤是在约220°F到约250°F(约104℃到约121℃)之间进行的。
19.如权利要求1的方法,其进一步包括将粒状玻璃批料组合物送入玻璃熔炉的步骤。
20.如权利要求19的方法,其中的玻璃批料组合物在送入步骤的过程中的温度为约150°F到约250°F(约65℃到约121℃)之间。
21.如权利要求1的方法,其中挥发性组分减少了的排气流在排放步骤的混浊度不超过约20%。
22.如权利要求21的方法,其中挥发性组分减少了的排气流在排放步骤的混浊度不超过约5%。
23.如权利要求22的方法,其中挥发性组分减少了的排气流在排放步骤的混浊度为0%。
24.如权利要求1的方法,其中加入步骤包括将粒状玻璃批料前体组合物与空气注入到混合室的步骤。
25.如权利要求1的方法,其中粒状玻璃批料前体组合物中缺少排气流中一种或多种挥发性组分的至少一种组分,这种组分可与试剂材料反应。
26.一种在形成粒状玻璃批料组合物的同时减少排气流中一种或多种挥发性组分的方法,其包括以下步骤:
(a)将包含一种或多种挥发性组分的排气流在最高约1400°F(约760℃)的温度下引到混合室中;
(b)将一种粒状玻璃批料前体组合物和空气加到混合室中,其中该前体组合物包括至少一种试剂材料,该试剂材料能与排气流中一种或多种挥发性组分的至少一种进行反应,其中粒状玻璃批料前体组合物中缺少排气流中一种或多种挥发性组分的至少一种组分,这种组分可与试剂材料反应;
(c)混合室中,至少有一部分粒状玻璃批料前体组合物与排气流中一种或多种挥发性组分的至少一部分进行反应从而形成一种粒状玻璃批料组合物并减少排气流中一种或多种挥发性组分的含量。
27.一种在形成粒状玻璃批料组合物的同时减少排气流中一种或多种挥发性组分的方法,其包括以下步骤:
(a)将包含一种或多种挥发性组分的排气流引到混合室中;
(b)将一种可与排气流中的挥发性组分反应的试剂材料注入到到混合室中;
(c)混合室中,至少有一部分试剂材料与排气流中一种或多种挥发性组分的至少一部分进行反应从而形成一种粒状玻璃批料组合物并减少排气流中一种或多种挥发性组分的含量;
(d)将粒状玻璃批料成形材料从排气流中分离出来;以及
将粒状玻璃批料与其它的粒状玻璃批料形成材料混合以形成一种玻璃批料组合物。
CNB008110697A 1999-07-13 2000-06-29 形成粒状玻璃批料组合物同时减少排气流中挥发性组分的方法 Expired - Fee Related CN100339325C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14360299P 1999-07-13 1999-07-13
US60/143,602 1999-07-13
US09/526,772 US7373791B1 (en) 1999-07-13 2000-03-16 Methods of forming particulate glass batch compositions
US09/526,772 2000-03-16

Publications (2)

Publication Number Publication Date
CN1367765A true CN1367765A (zh) 2002-09-04
CN100339325C CN100339325C (zh) 2007-09-26

Family

ID=26841218

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008110697A Expired - Fee Related CN100339325C (zh) 1999-07-13 2000-06-29 形成粒状玻璃批料组合物同时减少排气流中挥发性组分的方法

Country Status (7)

Country Link
US (1) US7373791B1 (zh)
EP (1) EP1198426B1 (zh)
CN (1) CN100339325C (zh)
CA (1) CA2379202C (zh)
DE (1) DE60022200T2 (zh)
TW (1) TWI267495B (zh)
WO (1) WO2001004065A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859627A (zh) * 2016-04-27 2016-08-17 陕西科技大学 一种硫脲基松香咪唑啉季铵盐化合物及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0612316D0 (en) 2006-06-21 2006-08-02 United States Borax Inc Glaze compositions
GB2455974A (en) 2007-12-20 2009-07-01 United States Borax Inc Boron-containing compositions
EP2135849A1 (en) * 2008-06-16 2009-12-23 Johns Manville Method for producing reactive raw material for manufacture of glass suitable for fiberization
US20100081103A1 (en) * 2008-09-26 2010-04-01 Hisashi Kobayashi Furnace with multiple heat recovery systems
KR101835148B1 (ko) * 2009-08-20 2018-03-06 아사히 가라스 가부시키가이샤 유리 용융로, 용융 유리의 제조 방법, 유리 제품의 제조 장치, 및 유리 제품의 제조 방법
US9024016B2 (en) 2012-06-08 2015-05-05 Nutrinova Nutrition Specialists & Food Ingredients GmbH Process for producing acesulfame potassium
JP2017534554A (ja) * 2014-09-24 2017-11-24 コーニング インコーポレイテッド フュージョンドロー機械のための揮発濾過システム
EP3218317B1 (en) 2014-11-13 2018-10-17 Gerresheimer Glas GmbH Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726697A (en) 1967-08-17 1973-04-10 Dow Chemical Co Glass manufacture from prereacted batch and composition
CA951251A (en) 1968-09-05 1974-07-16 Wellman-Lord Pretreated alumina and hf removal therewith
JPS4929284B1 (zh) 1970-12-18 1974-08-02
US3721066A (en) 1970-12-29 1973-03-20 Teller Environmental Systems Process for recovery of acid gases
US3789628A (en) 1971-12-23 1974-02-05 Ball Corp Method for controlling furnace emissions
US3919392A (en) 1972-04-12 1975-11-11 Teller Environmental Systems Abatement and selective recovery of acid gas emissions
US3788832A (en) 1972-08-25 1974-01-29 Inst Gas Technology Process for pre-treating and melting glassmaking materials
US3880639A (en) * 1972-12-13 1975-04-29 Owens Illinois Inc Sulfur recovery from glass melting and refining
US3880629A (en) 1973-07-09 1975-04-29 Industrial Resources Air pollution control process for glass manufacture
US3953190A (en) 1973-08-06 1976-04-27 Pullman Incorporated Pellet preheating and volatile recycling structure for glass making furnace
US3957464A (en) 1974-04-25 1976-05-18 Teller Environmental Systems, Inc. Process for removing particulates from a gas
US3969482A (en) 1974-04-25 1976-07-13 Teller Environmental Systems, Inc. Abatement of high concentrations of acid gas emissions
US4049399A (en) 1975-04-08 1977-09-20 Teller Environmental Systems, Inc. Treatment of flue gases
US4208201A (en) 1975-05-15 1980-06-17 Owens-Corning Fiberglas Corporation Process and apparatus for treatment of exhaust gases from glass melting furnaces
US4045197A (en) 1976-09-08 1977-08-30 Ppg Industries, Inc. Glassmaking furnace employing heat pipes for preheating glass batch
LU78447A1 (zh) 1976-11-12 1978-02-16
US4358304A (en) 1977-02-02 1982-11-09 Owens-Corning Fiberglas Corporation Method for preparing molten glass
US4319890A (en) 1978-04-05 1982-03-16 Teller Environmental Systems, Inc. Dry impact capture of aerosol particulates
US4184861A (en) 1978-07-13 1980-01-22 Owens-Corning Fiberglas Corporation Energy efficient apparatus and process for manufacture of glass
US4225332A (en) 1978-08-14 1980-09-30 Owens-Corning Fiberglas Corporation Energy efficient pollution abating glass manufacturing process with external recovery of heat from furnace flue gases
US4293524A (en) 1978-09-20 1981-10-06 Teller Environmental Systems, Inc. Method and apparatus for cooling and neutralizing acid gases
US4248616A (en) 1979-04-19 1981-02-03 Owens-Corning Fiberglas Corporation Pollution abating, energy conserving glass manufacturing apparatus
US4325922A (en) 1979-10-18 1982-04-20 United Mcgill Corporation Treatment of high-temperature stack gases containing condensable boron compounds
US4248615A (en) 1979-11-19 1981-02-03 Owens-Corning Fiberglas Corporation Pollution abating, energy conserving glass manufacturing process
US4298369A (en) 1980-03-31 1981-11-03 Owens-Corning Fiberglas Corporation Glass manufacturing process having boron and fluorine pollution abating features
US4282019A (en) 1980-05-12 1981-08-04 Owens-Corning Fiberglas Corporation Glass manufacturing process with in-situ colemanite calcination and pollution abatement features
US4335660A (en) 1980-06-02 1982-06-22 Research Cottrell Technologies, Inc. Apparatus and method for flue gas recirculation in a solid fuel boiler
US4316732A (en) 1980-06-11 1982-02-23 Owens-Corning Fiberglas Corporation Bypass wedge for drying and preheating glass batch agglomerates
US4375455A (en) 1980-06-18 1983-03-01 Teller Environmental Systems, Inc. Method and apparatus for cooling and neutralizing acid gases
US4337229A (en) 1980-12-08 1982-06-29 Teller Environmental Systems, Inc. Treatment of flue gases
US4328016A (en) 1980-12-15 1982-05-04 Owens-Corning Fiberglas Corporation Method and apparatus for drying glass batch pellets
US4330316A (en) 1980-12-15 1982-05-18 Owens-Corning Fiberglas Corporation Method of preheating glass pellets
US4338112A (en) 1981-03-19 1982-07-06 Owens-Corning Fiberglas Corporation Method for controlling particulate emissions from a glass furnace
US4338113A (en) 1981-03-19 1982-07-06 Owens-Corning Fiberglas Corporation Method for controlling particulate emissions
US4362543A (en) 1981-03-19 1982-12-07 Owens-Corning Fiberglas Corporation Method for controlling particulate emissions
US4350512A (en) 1981-03-31 1982-09-21 Ppg Industries, Inc. Glass melting method using cullet as heat recovery and particulate collection medium
US4349367A (en) 1981-03-31 1982-09-14 Ppg Industries, Inc. Method of recovering waste heat from furnace flue gases using a granular heat exchange means
US4342730A (en) 1981-04-23 1982-08-03 Whatman Reeve Angel Limited Apparatus for and method of removing volatile boiler-feed additives from pressurized steam
US4378987A (en) 1981-10-15 1983-04-05 Corning Glass Works Low temperature method for making optical fibers
JPS5874183A (ja) 1981-10-27 1983-05-04 Seitetsu Kagaku Co Ltd 廃液の処理方法
US4478627A (en) 1982-07-16 1984-10-23 Owens-Corning Fiberglas Corporation Recuperation of heat absorbent media to preheat combustion gases and glass batch
US4519814A (en) 1983-07-25 1985-05-28 Ppg Industries, Inc. Two stage batch liquefaction process and apparatus
US4539030A (en) 1983-08-03 1985-09-03 Ppg Industries, Inc. Method of calcining and liquefying glass batch
US4604121A (en) 1983-08-03 1986-08-05 Ppg Industries, Inc. Method of pretreating glass batch
US4559211A (en) 1983-08-05 1985-12-17 Research-Cottrell, Inc. Method for reduced temperature operation of flue gas collectors
DE3343639A1 (de) * 1983-12-02 1985-06-13 Henkel KGaA, 4000 Düsseldorf Verfahren zum verhindern der bildung schwer entfernbarer ablagerungen in abhitze-rueckgewinnungsanlagen von glasoefen, insbesondere von wasserglasoefen
US4525142A (en) 1984-06-11 1985-06-25 Research-Cottrell, Inc. Process for treating flue gas with alkali injection and electron beam
US4581210A (en) 1984-11-09 1986-04-08 Teller Environmental Systems, Inc. Method for the removal of sulphur oxides from a flue gas with a baghouse used as a secondary reactor
US4652289A (en) * 1984-11-26 1987-03-24 Hydro-Quebec Purification of effluent gases
DE3605509A1 (de) 1986-02-20 1987-08-27 Gruenzweig Hartmann Glasfaser Verfahren zum erschmelzen von silikatischen rohstoffen, insbesondere zur herstellung von mineralwolle, sowie vorrichtung zur vorwaermung des rohstoffgemenges und reinigungseinrichtung fuer die wannenabgase zur durchfuehrung des verfahrens
US4696691A (en) 1986-10-02 1987-09-29 Ppg Industries, Inc. Method of glass batch preheating and liquefying with recycling of particulates
US4726830A (en) 1986-10-02 1988-02-23 Ppg Industries, Inc. Glass batch transfer arrangements between preheating stage and liquefying stage
US4944785A (en) 1988-12-13 1990-07-31 Sorg Gmbh & Co. Kg Process using melt accelerator for the conversion of solid waste substances into glass
AU5078390A (en) * 1989-03-28 1990-10-18 Avir Finanziaria S.P.A. Process for the purification of waste gases emitted from a melting furnace
US4985219A (en) 1990-02-14 1991-01-15 Research-Cottrell, Inc. Removal of nitrogen oxides from waste gases
US5240575A (en) 1990-07-19 1993-08-31 Tecogen Inc. NOx reduction by sulfur tolerant coronal-catalytic apparatus and method
US5147516A (en) 1990-07-19 1992-09-15 Tecogen, Inc. NOx reduction by sulfur tolerant coronal-catalytic apparatus and method
US5213780A (en) 1991-06-04 1993-05-25 Research-Cottrell, Inc. Method for nitrogen oxide reduction and flue gas reheating
US5165902A (en) 1991-07-31 1992-11-24 Research Cottrell, Inc. Method and apparatus for reducing nitrogen dioxide emissions in a dry sodium scrubbing process using humidification
RU2057727C1 (ru) * 1992-04-28 1996-04-10 Акционерное общество открытого типа Научно-производственное объединение "Стеклопластик" Способ варки отходов стекловолокна
DE69316905T2 (de) 1992-09-21 1998-05-28 Edmeston Ab Verfahren zur verringerung der schadstoffemission beim glas-schmelzöfen
US5290334A (en) 1992-09-21 1994-03-01 Edmeston Ab Apparatus for batch preheating and pollution abatement in glass manufacture
DE4319691C2 (de) 1993-06-16 1997-11-13 Sorg Gmbh & Co Kg Verfahren und Vorrichtung zum Vorwärmen von Beschickungsgut für Glas-Schmelzöfen
US5713977A (en) * 1994-09-12 1998-02-03 Praxair Technology, Inc. Fixed bed filtering preheater process for high temperature process furnaces
DE19603365A1 (de) 1996-01-31 1997-08-07 Abb Research Ltd Verfahren zum Verglasen von Reststoffen aus der Rauchgasreinigung
US5893940A (en) 1997-05-05 1999-04-13 Ppg Industries, Inc. Reduction of NOx emissions in a glass melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859627A (zh) * 2016-04-27 2016-08-17 陕西科技大学 一种硫脲基松香咪唑啉季铵盐化合物及其制备方法

Also Published As

Publication number Publication date
WO2001004065A1 (en) 2001-01-18
CA2379202A1 (en) 2001-01-18
CN100339325C (zh) 2007-09-26
DE60022200D1 (de) 2005-09-29
EP1198426B1 (en) 2005-08-24
TWI267495B (en) 2006-12-01
DE60022200T2 (de) 2006-06-08
EP1198426A1 (en) 2002-04-24
CA2379202C (en) 2007-02-20
US7373791B1 (en) 2008-05-20

Similar Documents

Publication Publication Date Title
US7531154B2 (en) Method of removing sulfur dioxide from a flue gas stream
CA1212824A (en) Process of removing polluants from exhaust gases
CA1236266A (en) Process of removing polluants from exhaust gases
CN1089622C (zh) 烟道气的脱硫方法和装置
JP4932840B2 (ja) 排ガス気流から三酸化硫黄を除去する方法
CN1143728C (zh) 除去燃烧器的燃烧废气中SOx和颗粒的方法
CN1152547A (zh) 制备高纯度二氧化碳的方法
US8187364B2 (en) Method and apparatus for removing volatile contaminants from industrial plants
EA015416B1 (ru) Удаление триоксида серы из потока топочного газа
CN1125157A (zh) 用于从气流中除去氧化硫的组合物粘土材料
US20040018133A1 (en) Combustion emissions control and utilization of byproducts
EP2379468B1 (en) Process for purifying a flow of combustion fumes from a clinker production plant and relative apparatus
CN1367765A (zh) 形成粒状玻璃批料组合物同时减少排气流中挥发性组分的方法
CN1006761B (zh) 烟气净化脱硫方法
US4867955A (en) Method of desulfurizing combustion gases
US5380505A (en) Production of low sulfur content lime from limestone
JPH02289432A (ja) 溶融炉からの排ガス浄化方法と浄化装置
EP1524245A2 (en) Methods of forming particulate glass batch compositions and reducing volatile components from an exhaust stream
JP4355817B2 (ja) 高温排ガス用の浄化処理剤及びそれを用いた高温排ガスの浄化処理方法
CN1308558A (zh) 生产so2吸收剂和利用这种so2吸收剂使燃烧气体脱硫的方法
EP1547667A1 (en) Method of removing particulate from exhaust fumes, in particular of melting furnaces used in the glassmaking industry, and relative melting furnace
EP4146373A1 (en) A method of scavenging alkali from flue gas
CN85105199A (zh) 从烟道气中脱除氮的氧化物和二氧化硫的处理方法
CN1300234A (zh) 适合于使燃烧气体脱硫的so2吸收剂的生产方法
PL141220B1 (en) Method of removing gaseous and aerosolic impurities from a stream of gases

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070926

Termination date: 20160629