CN1398423A - 一种成型半导体结构的方法 - Google Patents

一种成型半导体结构的方法 Download PDF

Info

Publication number
CN1398423A
CN1398423A CN01804762A CN01804762A CN1398423A CN 1398423 A CN1398423 A CN 1398423A CN 01804762 A CN01804762 A CN 01804762A CN 01804762 A CN01804762 A CN 01804762A CN 1398423 A CN1398423 A CN 1398423A
Authority
CN
China
Prior art keywords
layer
monocrystalline
epitaxial growth
compound semiconductor
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01804762A
Other languages
English (en)
Inventor
J·兰达尼
R·德鲁帕德
L·L·希尔特
K·W·爱森贝瑟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN1398423A publication Critical patent/CN1398423A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates

Abstract

通过在硅晶片(22)上首先生长缓冲适应层(24)可在大的硅晶片上生长高质量的化合物半导体材料外延层。所述缓冲适应层是通过一个硅氧化物非晶态中间层(28)与所述硅晶片间隔开的单晶氧化物层。所述非晶态中间层优选通过使氧经所述氧化物适应层扩散而形成并可生长出高质量的单晶氧化物缓冲适应层。该方法还可包括模板层(28,30)和半导体缓冲层(32)的形成。其特别适用于化合物半导体与Si SMOS设备的集成。

Description

一种成型半导体结构的方法
发明领域
本发明总体上涉及成型半导体结构的方法,更具体地说,涉及成型化合物半导体的方法以及包括单晶化合物材料的半导体结构的用途。
发明背景
由于廉价、高质量单晶硅基片的易得性,大多数半导体分立设备和集成电路至少部分是由硅来制造。其它的半导体材料如所谓的化合物半导体材料,具有包括比硅更宽的带隙和/或更高的迁移率或直接带隙(direct bandgap)的物理属性,使得这些材料对于某些类型的半导体设备有利。不利的是,化合物半导体材料通常比硅贵得多,且不能如硅那样呈大晶片来得到。最易得到的化合物半导体材料砷化镓(GaAs)可得到的晶片的最大直径仅约为150mm。相反,硅晶片可高达约300mm,且可普通地以200mm来得到。150mm的砷化镓比它们的硅对应物贵许多倍。其它化合物半导体材料晶片更不易得到,并比GaAs还要贵。
由于化合物半导体材料的理想的特性,并由于其通常的高成本和大块形态的低易得性,许多年来一直试图在异质基片上产生化合物半导体材料薄膜。但为获得最佳的化合物半导体材料性能,需要高结晶质量的单晶薄膜。例如,已偿试过在锗、硅、和各种绝缘体上产生单晶化合物半导体材料层。这些尝试一般都是不成功的,因为在基质晶体与生长晶体之间的晶格失配使得所得到的薄膜化合物半导体材料的结晶质量低。
如果能够以低的成本得到高质量的大面积薄膜化合物半导体材料,则可有利地以该薄膜来制造各种半导体设备,这样的制造成本低于在化合物半导体材料大晶片(bulk wafer)上制造这种设备或以在化合物半导体材料大晶片上的这种材料的外延膜来制造这种设备的成本。另外,如可实现在如硅晶片上产生高质量的单晶化合物半导体材料薄膜,则可利用硅与化合物半导体材料两者的最佳性能来获得集成设备结构。
对应的,现在需求在另一种单晶材料上提供高质量的单晶化合物半导体膜的制造半导体结构的方法。
附图简要说明
本发明以实例方式进行说明,并且不局限于所附附图,在附图中相同的标号表示相似的元件,其中:
图1、2、4、5简要图示了本发明各种实施方案中设备结构的横断面图;
图3图示了最大可得到的膜厚度同基质晶体与生长晶体覆盖层之间的晶格失配之间的关系;
图6图示了通信装置的一部分的简图;
图7-11图示了包括化合物半导体部分、双极部分、和MOS部分的一部分集成电路的横断面图;和
图12-18图示了包括半导体层和MOS晶体管的另一种集成电路的一部分的横断面图。
熟练技术人员可理解,为简单和清楚起见在所述图中的元件未按比例来进行图示。例如,在图中的一些元件的尺寸可相对于其它元件进行了放大以有助于增进对本发明实施方案的理解。
附图详细说明
图1简要图示了本发明实施方案的半导体结构20的一部分的横断面图。半导体结构20包括单晶基片22,包含单晶材料的缓冲适应层24、和单晶化合物半导体材料层26。在本文中,术语“单晶”具有在半导体工业中通用的意义。该术语是指单晶或基本为单晶的材料,包括具有较少量缺陷的那些材料,所述缺陷如在硅或锗或硅与锗的混合物的基片中和在半导体工业中常见的这种材料的外延层中常见的位错等。
按照本发明的一种实施方案,所述结构20还包括位于基片22和缓冲适应层24之间的非晶态中间层28。结构20还可包括在缓冲适应层与化合物半导体层26之间的模板层30。如以下将更完全解释的,所述模板层有助于引发在缓冲适应层上化合物半导体层的生长。所述非晶态中间层有助于消除在缓冲适应层中的应变,并此有助于高结晶质量的缓冲适应层的生长。
按照本发明的一种实施方案,基片22是单晶半导体晶片,优选是大直径的。所述晶片可是元素周期表IV族的材料,优选IVA族的材料。IV族材料的实例包括硅、锗、硅与锗的混合物、硅与碳的混合物、硅、锗与碳的混合物等。优选基片22是含有硅或锗的晶片,最优选是在半导体工业中使用的高质量单晶硅晶片。缓冲适应层24优选是在底层基片上外延生长的单晶氧化物或氮化物材料。按照本发明的一种实施方案,在层24的生长过程中,通过基片22的氧化在基片22与生长的缓冲适应层之间的界面处在基片22上生长非晶态中间层28。所述非晶态中间层用来消除由于基片与缓冲层晶格常数的差别在单晶缓冲适应层中可能出现的应变。在这里所使用的晶格常数是指在表面平面上测量的晶胞的原子之间的距离。如果这种应变不通过非晶态中间层来消除,则所述应变可在缓冲适应层的晶体结构中引起缺陷。在缓冲适应层晶体结构中的缺陷又会使得难以在单晶化合物半导体层26中获得高质量的结晶结构。
缓冲适应层24优选是单晶氧化物或氮化物材料,所述材料的选择使得其与底层的基片并与覆盖层化合物半导体材料具有结晶相容性。例如,所述材料可为一种氧化物或氮化物,所述氧化物或氮化物具有与基片并与随后施加的半导体材料相匹配的晶格结构。适用作为缓冲适应层的材料包括金属氧化物如碱土金属钛酸盐、碱土金属锆酸盐、碱土金属铪酸盐、碱土金属钽酸盐、碱土金属钌酸盐、碱土金属铌酸盐、碱土金属钒酸盐、碱土金属锡基钙钛矿、铝酸镧、镧钪氧化物和氧化钆。另外,各种氮化物如氮化镓、氮化铝、和氮化硼也可用作缓冲适应层。大多数这些材料是绝缘体,尽管例如钌酸锶是导体。通常,这些材料是金属氧化物或金属氮化物,更特别是,这些金属氧化物或金属氮化物通常包括至少两种不同的金属元素。在某些具体应用中,所述金属氧化物或金属氮化物可包括三种或更多种不同金属元素。
非晶态中间层28优选是由基片22表面进行氧化所形成的氧化物,更优选是由氧化硅组成。层28的厚度足以消除基片22与缓冲适应层24的晶格常数不匹配所致的应变。通常,层28的厚度范围为约0.5-5nm。
按具体半导体结构的需求,层26的化合物半导体材料可选自任何IIIA和VA族元素(III-V半导体化合物)、混合III-V化合物、II(A或B)族和VIA族元素(II-VI半导体化合物)、和混合II-VI化合物。实例包括砷化镓(GaAs)、镓铟砷化物(GaInAs)、镓铝砷化物(GaAlAs)、磷化铟(InP)、硫化镉(CdS)、镉汞碲化物(CdHgTe)、硒化锌(ZnSe)、锌硫硒化物(ZnSSe)、等。适用的模板材料在选择的部位上与缓冲适应层24表面化学连接并提供随后化合物半导体层26外延生长的成核部位。适用于作为模板30的材料在以下进行讨论。
图2图示了本发明另一种实施方案的半导体结构40的一部分的横断面图。结构40与前述半导体结构20相似,不同之处在于在缓冲适应层24与单晶化合物半导体材料层26之间有附加的缓冲层32。具体来说,所述附加缓冲层们于模板层30和化合物半导体材料覆盖层之间。由半导体或化合物半导体材料形成的所述附加缓冲层用来当缓冲适应层的晶格常数与覆盖化合物半导体材料层不能适当地匹配时提供一种晶格补偿。
如下非限制定性说明性实施例说明了按照本发明各种供选择的实施方案中结构20和结构40中适用的材料的各种组合。这些实施例只是说明性的,不是要将本发明限定于这些说明性实施例。
实施例1
按照本发明的一种实施方案,单晶基片22是沿(100)晶向取向的硅基片。所述硅基片例如可为在制备直径为约200-300mm的互补金属氧化物半导体(CMOS)集成电路中所通用的硅基片。按照本发明的这种实施方案,缓冲适应层24是SrzBa1-zTiO3单晶层,其中Z范围为0至1,且非晶态中间层是在硅基片与缓冲适应层之间的界面上形成的硅氧化物层(SiOX)。Z的数值选择为获得与随后形成的层26的对应晶格常数紧密匹配的一或多种晶格常数。缓冲适应层可具有约2至约100纳米(nm)的厚度,优选厚度为约10nm。通常,希望缓冲适应层的厚度足以使化合物半导体层与基片相互隔离以得到所需的电和光学性能。大于100nm厚度的层在不必要地增加了成本的同时通常不能提供附加的益处;但如果需要可制造较厚的层。硅氧化物非晶态中间层的厚度可为约0.5-5nm,优选厚度为约1.5-2.5nm。
按照本发明的这种实施方案,化合物半导体材料层26是镓砷化物(GaAs)层或铝镓砷化物(AlGaAs)层,其厚度为约1nm至约100微米(μm),优选厚度为约0.5μm至10μm。所述厚度通常取决于所制备的层的应用。为促进镓砷化物或铝镓砷化物在单晶氧化物上的外延生长,通过覆盖氧化物层来形成模板层。所述模板层优选为Ti-As,Sr-O-As,Sr-Ga-O,或Sr-Al-O的1-10单层。作为优选实施例,Ti-As或Sr-Ga-O,的1-2单层已表现出可成功地生长GaAs层。
实施例2
按照本发明的另一实施方案,单晶基片22是上述的硅基片。缓冲适应层是呈立方或斜方相的单晶氧化锶或钡的锆酸盐或铪酸盐,在硅基片与缓冲适应层之间形成有硅氧化物非晶态中间层。所述缓冲适应层的厚度可为约2-100nm,优选为至少5nm,以确保适当的结晶和表面质量,且由单晶SrZrO3,BaZrO3,SrHfO3,BaSnO3或BaHfO3构成。例如,BaZrO3单晶氧化物层可在约为700℃的温度下生长。所得到的结晶氧化物的晶格结构相对于基片硅晶格结构表现出有45度的旋转。
由这些锆酸盐或铪酸盐材料构成的缓冲适应层适用于生长磷化铟(InP)体系的化合物半导体材料。所述化合物半导体材料可例如是厚度为约1.0nm至10μm的磷化铟(InP)或铟镓砷化物(InGaAs)。对这一结构适用的模板是1-10单层的锆-砷(Zr-As)、锆-磷(Zr-P)、铪-砷(Hf-As)、铪-磷(Hf-P)、锶-氧-砷(Sr-O-As)、锶-氧-磷(Sr-O-P)、钡-氧-砷(Ba-O-As)、铟-锶-氧(In-Sr-O)、或钡-氧-磷(Ba-O-P),优选为1-2单层的这些材料中的一种。举例来说,对于锆酸钡缓冲适应层来说,所述表面终端为1-2单层的锆,随后沉积1-2单层的砷以形成Zr-As模板。然后在所述模板层上生长磷化铟体系的化合物半导体材料单晶层。所得到的化合物半导体材料晶格结构相对于缓冲适应层晶格结构表现出有45度的旋转,且与(100)InP不匹配的晶格少于2.5%,优选少于约1.0%。
实施例3
按照本发明的另一实施方案,提供了适用于在硅基片上生长II-VI材料外延膜的结构。所述基片优选是上述的硅晶片。适用的缓冲适应层材料是SrxBa1-xTiO3,其中x的范围为0至1,该层厚度为约2-100nm,优选厚度为约5-15nm。所述II-VI化合物半导体材料可例如为锌硒化物(ZnSe)或锌硫硒化物(ZnSSe)。对于这一材料适用的模板包括1-10单层的锌-氧(Zn-O),随后为1-2单层的过量锌,接着是对表面上的锌进行硒化(selenidation)。模板例如也可为锶-硫(Sr-S),接着为ZnSeS。
实施例4
本发明的这一实施方案是图2中所示的结构40的实施例。基片22、单晶氧化物层24、和单晶化合物半导体材料层26可与实施例1中所述相似。另外,附加缓冲层32用来减轻由缓冲适应层晶格与单晶半导体材料晶格不匹配而可能产生的任何应变。缓冲层32可为镓砷磷化物(GaAsxP1-x)或铟镓磷化物(InyGa1-yP)应变补偿的超晶格。在镓砷的磷化物超晶格(superlattice)中,x的数值范围为0至1,在铟镓磷化物超晶格中,y数值的范围为0至1。视情况而定通过如此变化数值x或y,超晶格从底部至顶部的晶格常数发生改变使得产生被覆盖氧化物层与上覆的化合物半导体材料之间晶格常数匹配。所述超晶格的厚度可为约50-500nm,优选为约200-100nm。这种结构的模板可与在实施例1中所述相同。另外,缓冲层可为单晶锗层,其厚度为1-50nm,优选为约2-20nm。在使用锗缓冲层的情况下,可使用厚度为约一个单层的锗-锶(Ge-Sr)或锗-钛(Ge-Ti)模板层。形成的所述氧化物层覆盖单层的锶或单层的钛而起随后单晶锗沉积的成核部位作用。单层锶或钛提供了第一单层锗可与之连接的成核部位。
实施例5
这一实施例也对在图2中所示结构40中可使用的材料进行说明。基片材料22、缓冲适应层24、单晶化合物半导体材料层26可与在实施例2中的上述那些相同。另外,在缓冲适应层与覆盖单晶化合物半导体材料层之间插有缓冲层32。另一单晶半导体材料的缓冲层可例如是铟镓砷化物(InGaAs)递变层,其中铟的组成在0至约47%之间变化。所述缓冲层的厚度优选为约10-30nm。将缓冲层的组成由GaAs变化为InGaAs用来提供被覆盖单晶氧化物材料与上覆的单晶化合物半导体材料之间的晶格匹配。如果缓冲适应层24与单晶化合物半导体材料层26之间存在不匹配时,这种缓冲层是特别有利的。
再参照图1和2,基片22是单晶基片,例如为单晶硅基片。所述单晶基片的晶体结构的特征在于其晶格常数和晶格取向。以相似的方式,缓冲适应层24也是单晶材料,且其单晶材料的晶格的特征在于晶格常数和晶体取向。缓冲适应层和单晶基片的晶格常数必须紧密配合,或者必须使得当一种结晶取向相对于另一种结晶取向进行旋转时,实现晶格常数的基本匹配。在本文中,术语“基本相等”和“基本匹配”意义是晶格常数之间有足够的相似性使得可在被覆盖层上生长出高质量的结晶层。
图3图示了高结晶质量生长晶体层的可实现的厚度与基质晶体和生长晶体之间晶格常数失配之间的关系。曲线42图示了高结晶质量材料的边界。曲线42右侧面积代表趋于为多晶态的层。在不存在晶格失配的情况下,理论上可在基质晶体上生长出无限厚的高质量的外延层。随着晶格常数失配的增加,高结晶质量层可实现的厚度快速下降。作为一个参照点,例如,如果基质晶体与生长层的晶格常数失配超过约2%,则不可能实现超过约20nm的单晶外延层。
按照本发明的一种实施方案,基片22是(100)或(111)取向的单晶硅晶片,缓冲适应层24是锶钡钛酸盐层。通过将钛酸盐材料的晶体取向相对于硅基片晶片的晶体取向旋转45°,可实现这两种材料的晶格常数的基本匹配。在结构中包含非晶态中间层24,在本实施例中其为氧化硅层,可用来减轻基质硅晶片与生长钛酸盐层晶格常数的任何失配所可能导致的在钛酸盐单晶层中的应变。结果,按照本发明的一种实施方案,实现了高质量厚的单晶钛酸盐层。
仍参照图1和2,层26是外延生长的单晶化合物半导体材料,该结晶材料的特征也在于晶体晶格常数晶体取向。为在这一外延生长层中实现高结晶质量,所述缓冲适应层必须是高结晶质量的。另外,为在层26中实现高结晶质量,需要基质晶体(在这种情况下为单晶缓冲层适应层)与生长晶体之间晶体晶格常数的基本匹配。通过恰当选择的材料,由生长晶体的晶体取向相对于基质晶体取向的旋转实现了晶格常数的基本匹配。如果生长晶体是砷化镓、铝镓的砷化物、锌的硒化物、或锌硫硒化物,并且所述缓冲适应层是单晶SrxBa1-xTiO3,实现了所述两种材料的晶体晶格常数的基本匹配,其中生长层晶体取向相对于基质单晶氧化物的取向旋转45°。相似的,如果基质材料是锶或钡的锆酸盐或锶或钡的铪酸盐或钡锡氧化物且化合物半导体层是铟磷化物或镓铟砷化物或铝铟砷化物,通过生长晶体层的取向相对于基质氧化物晶体旋转45°可实现晶体晶格常数的基本匹配。在某些情况下,可使用基质氧化物与生长化合物半导体层之间的晶态半导体缓冲层来减轻晶格常数的小的差别可能导致的在生长单晶化合物半导体化合物层中的应变。从而可实现在生长单晶化合物半导体层中更佳的结晶质量。
如下实施例说明了按照本发明的一种实施方案的制造如图1和2中所示结构的半导体结构的方法。所述方法的起始步骤是提供包括硅或锗的单晶半导体基片。按照本发明的优选实施方案,所述半导体基片是具有(100)取向的硅晶片。所述基片优选在轴上取向或至多偏离轴约0.5°。至少一部分所述半导体基片具有裸露表面,但如下所述,基片的其它部分可包覆有其它结构。在本文中术语“裸露”的意义是,在该部分基片中的表面已进行过清洗来除去任何氧化物、污染物或其它外来材料。如众所周知,裸露的硅是高反应活性的,易于形成天然氧化物。术语“裸露”意欲包括这类天然氧化物。薄氧化硅也可是在半导体基片上有意生长的,但这种生长的氧化物不是本发明方法必要的。为覆盖单晶基片来外延生长单晶氧化物层,必须首先除去天然氧化物层来暴露出被覆盖基片的晶体结构。优选进行如下的分子束外延(MBE)方法。可在MBE装置中首先热沉积薄层锶来除去天然氧化物。然后加热所述基片至约750℃来使所述锶与硅天然氧化物层进行反应。所述锶用来减少硅氧化物来得到无硅氧化物的表面。表现出规则的2×1结构的所得到的表面,包括锶、氧、和硅。所述规则的2×1结构构成规则生长单晶氧化物覆盖层的模板。所述模板提供了对覆盖层晶体生长起成核作用所必需的化学和物理性能。
按照本发明的另一实施方案,所述天然硅氧化物可进行转化,且所述基片表面可为生长单晶氧化物层而按下述来进行制备,即,通过MBE在低温下在所述基片上沉积氧化锶,随后将所述结构加热至约750℃的温度。在这一温度下,所述氧化锶与天然硅氧化物之间发生固态反应,使得天然硅氧化物被还原,得到基片表面保留有锶、氧、和硅的规则2×1结构。这又形成了随后生长规则单晶氧化物层的模板。
在从基片表面除去硅氧化物之后,按照本发明的一种实施方案,将所述基片冷却到约400-600℃的温度范围,通过分子束外延来在所述模板层上生长钛酸锶层。所述MBE方法的起始步骤是在MBE装置中的遮挡板,使锶、钛和氧源相互接触。锶与钛的比值为约1∶1。氧的分压初始设置在最小值以在约0.3-0.5nm每分钟的生长速率下来生长化学计量的(stochiometric)的钛酸锶。在初始生长钛酸锶后,氧的分压增加到高于初始最小值。氧的过压使得在被覆盖基片与生长的钛酸锶层之间生长了非晶态硅氧化物层。所述硅氧化物层的生长是由如下过程所致,氧穿过生长的钛酸锶层扩散到所述界面,在界面处氧与被覆盖基片表面上的硅进行反应。所述钛酸锶生长为规则单晶,其结晶取向相对于被覆盖基片的规则2×1结晶结构旋转45°。由于硅基片与生长晶体之间晶格常数的微小不匹配可能在钛酸锶层存在的应变在非晶态硅氧化物中间层被减轻。
在钛酸锶层生长至所需厚度后,在所述单晶钛酸锶之上覆盖一模板层,其有助于随后生长外延层所需化合物半导体材料。为随后生长砷化镓层,可在MBE生长的单晶钛酸锶单晶层上覆盖以终止其生长的1-2单层的钛、1-2单层的钛-氧或1-2单层的锶-氧。在形成这种覆盖层之后,沉积砷来形成Ti-As键、Ti-O-As键或Sr-O-As键。任意这些均可形成用于沉积和形成砷化镓单晶层的适宜的模板。在形成所述模板后,引入镓以与砷进行反应从而形成砷化镓。另外,也可在覆盖层上沉积镓来形成Sr-O-Ga键,并引入砷与镓来形成GaAs。
图2中所示结构可通过以上讨论的方法并添加以附加的缓冲层沉积步骤来形成。在沉积单晶化合物半导体层之前形成覆盖模板的缓冲层。如果所述缓冲层是化合物半导体超晶格,这种超晶格可通过例如MBE来沉积在上述模板上。如果所述缓冲层代之以锗,则以上方法变化为用最终的锶或钛层覆盖钛酸锶单晶层,然后沉积锗以与锶或钛进行反应。然后可在这种模板上直接沉积锗缓冲层。
上述方法说明了通过分子束外延法来形成半导体结构的方法,所述结构包括硅基片、单晶钛酸锶缓冲适应层、和单晶砷化镓化合物半导体层。所述方法还可通过化学气相沉积(CVD)、金属有机化学气相沉积(MOCVD)、增强迁移外延法(MEE)、原子层外延法(ALE)、或类似方法来进行。再有,通过相似的方法,还可生长其它单晶缓冲层适应层如碱土金属钛酸盐、锆酸盐、铪酸盐、钽酸盐、钒酸盐、钌酸盐、和铌酸盐、碱土金属锡基钙钛矿、铝酸镧、镧钪氧化物、和钆氧化物。另外,通过相似的如MBE的方法,还可沉积覆盖单晶氧化物缓冲适应层的其它III-V和II-VI单晶态化合物半导体层。
各种变化的化合物半导体材料和单晶氧化物缓冲适应层均使用适宜的模板来引发化合物半导体层生长。例如,如所述缓冲适应层是碱土金属锆酸盐,则所述氧化物可覆盖以薄层锆。在沉积锆之后,可接着沉积砷或磷以与作为前体的锆进行反应来分别沉积铟镓砷化物、铟铝砷化物、或铟磷化物。相似的,如果所述单晶氧化物缓冲适应层是碱土金属铪酸盐,则所述氧化物层可覆盖以薄层铪。在沉积铪之后,接着中砷或磷来与作为前体的铪进行反应从而分别生长铟镓砷化物、铟铝砷化物、或铟磷化物层。以相似的方式,可在钛酸锶上覆盖一层锶或锶和氧,在钛酸钡上可覆盖一层钡或钡与氧。各种这些沉积之后均可随后进行砷或磷的沉积来与所覆盖的金属进行反应从而形成沉积化合物半导体材料层的模板,所述化合物半导体材料层包括铟镓砷化物、铟铝砷化物、或铟磷化物。
图4图示了本发明另一实施方案的设备结构的横断面图。设备结构50包括单晶半导体基片52,优选单晶硅晶片。单晶半导体基片52包括两个区域,53和54。在区域53形成由虚线56所总体标明的半导体电子元件。电子元件56可以是电阻器、电容器、有源半导体元件如二极管或晶体管或集成电路如CMOS集成电路。例如,半导体电子元件56可为CMOS集成电路,其配置为来执行适宜于硅集成电路的数字信号处理或其它功能。在区域53中的半导体电子元件可由半导体工业中公知并广泛实施的通用的半导体加工来形成。可有一层绝缘材料58如一层二氧化硅或类似物来覆盖半导体电子元件56。
从区域54的表面除去在区域53中加工半导体元件56的过程中已形成或沉积的绝缘材料58和任何其它层来在该区域提供裸露的硅表面。如所公知的,裸露的硅表面是高反应活性的,在所述裸露的表面上可快速形成天然硅氧化物层。在区域54表面的天然氧化物层上沉积一层钡或钡和氧,并与氧化表面进行反应来形成第一模板层(未示出)。按照本发明的一种实施方案,通过分子束外延法来形成覆盖模板层的单晶氧化物层60。在模板层上沉积包括钡、钛和氧的反应物来形成单晶氧化物层。在沉积过程的初期,氧的分压保持为接近与钡和钛完全反应来形成单晶钛酸钡层60所需的最小值。然后增加氧的分压来提供氧的超压,并使氧经过生长的单晶氧化物层进行扩散。经过钛酸钡扩散的氧与区域54表面的硅进行反应,从而形成在第二区域上和在硅基片与单晶氧化物之间的界面上的非晶态硅氧化物层62。
按照本发明的一种实施方案,沉积单晶氧化物层60的步骤通过沉积第二模板层64来终止,所述第二模板层可为1-10单层的钛、钡、钡和氧、或钛和氧。然后通过分子束外延法沉积一层单晶化合物半导体材料层66来覆盖第二模板层。通过在模板上沉积一层砷来起始层66的沉积。这种起始步骤之后接着进行镓和砷的沉积来形成单晶砷化镓。另外,在以上实施例中的钡可由锶替代。
按照本发明的另一实施方案,在化合物半导体层66中形成由虚线68总体标明的半导体元件。可通过制造砷化镓或其它III-V化合物半导体材料设备所通用的加工步骤来形成半导体元件68。半导体元件68可为任何有源或无源元件,优选为半导体激光、发光二极管、光电探测器、异质结双极晶体管(HBT)、高频MESFET、或利用了化合物半导体材料的物理性能的其它元件。可形成由线70所示意标明的金属导体来使设备68与设备56电连接,从而实现包括至少一种在硅基片上形成的元件和在单晶化合物半导体材料层中形成的一种设备的集成设备。虽然例举性结构50叙述为在硅基片52上形成的结构,并具有钛酸钡(或锶)层60和砷化镓层66,但可使用在本公开内容中其它处叙述的其它的基片、单晶氧化物层和其它化合物半导体层来制造相似的设备。
图5图示了按照本发明的另一实施方案的半导体结构72。结构72包括单晶半导体基片74如包括区域75和区域76的单晶硅晶片。使用在半导体工业中通用的常规硅设备加工技术来在区域75中形成由虚线78所示的电子元件。使用与上述相似的加工步骤,形成覆盖模板74的区域76的单晶氧化物层80和中间非晶态硅氧化物层82。在单晶氧化物层80之上形成模板层84和随后的单晶半导体层86。按照本发明的另一实施方案,通过与形成层80所使用的相似的加工步骤来形成覆盖层86的附加单晶氧化物层88,并通过与形成层86所使用的相似的加工步骤形成覆盖单晶氧化物层88的附加单晶半导体层90。按照本发明的一种实施方案,由化合物半导体材料形成层86和90中的至少一种。
由虚线92总体标明的半导体元件至少部分是在单晶半导体层86中形成。按照本发明的一种实施方案,半导体元件92可包括具有部分通过单晶氧化物88形成的栅极电介质的场效应晶体管。另外,单晶半导体层92可用来实现该场效应晶体管的门电极的功能。按照本发明的一种实施方案,由III-V族化合物来形成单晶半导体层86,且半导体元件92是利用了III-V族组成材料的高迁移率特性的射频放大器。按照本发明的另一种实施方案,由线94所示的连接线路将元件78和元件92电连接。因而结构72使利用了两种单晶半导体材料的独特性能的元件结合为整体。
作为更具体的实例,在图6-18中图示了其它集成电路和系统。图6包括一个简化的框图,其图示了通信设备100的一部分,所述设备100具有信号收发装置101、集成电路102、输出单元103、和输入单元104。信号收发装置的实例包括天线、调制解调器、或信息或数据可由其输出至外部单元或由外部单元输入的任何其它装置。在这里,收发用来指所述信号收发装置能够仅接收、仅传递、或同时接收和传递来自通信设备的信号或传递信号至通信装置。输出单元103可包括显示器、监测器、扬声器、或类似物。输入单元可包括话筒、键盘、或类似物。注意在可选择的实施方案中,输出单元103和输入单元104可由单一单元如存储器等来替换。所述存储器可包括随机存取存储器或非易失性存储器,如硬盘、闪存卡或组件、或类似物。
集成电路通常是在连续基片上或其内不可分离地连接的至少两种电路元件(如晶体管、二极管、电阻器、电容器等)的组合。集成电路102包括化合物半导体部分1022、双极部分1024、和MOS部分1026。化合物半导体部分1022包括至少部分在化合物半导体材料内形成的电子元件。在化合物半导体部分1022内的晶体管和其它电子元件能够处理至少约为0.8GHz的射频信号。在其它实施方案中,所述信号可为更低或更高的频率。例如,某些材料如铟砷化物能够加工约为27GHz的射频信号。
化合物半导体部分1022还包括双工器10222、射频至基带转换器10224(解调装置或解调电路)、基带至射频转换器10226(调制装置或调制电路)、功率放大器10228、和隔离器(isolator)10229。双极部分1024和MOS部分1026通常由IV族半导体材料来制备。所述双极部分1024包括接收放大器10242、模拟-数字转换器10244、数字-模拟转换器10246、和输出放大器10248。MOS部分1026包括数字信号处理装置10262。这类装置的一种实例包括在市场上可得到的任何通常可得到拓DSP芯片(cores),如Motorola DSP 566xx(得自Motorola,Incorporated ofSchaumburg,Illinois)和Texas Instruments TMS 320C54x(得自TexasInstruments of Dallas,Texas)族的数字信号处理器。这种数字信号处理装置10262通常包括辅助MOS(CMOS)晶体管和模-数和数-模转换器。显然,在集成电路102中存在其它电子元件。
在一种操作方式中,通信装置100接收来自天线的信号,所述天线是信号收发装置101的部件。所述信号经由双工器10227传送至射频-至-基带转换器10224。通过接收放大器10224所述模似数据或其它信息被放大并传送至数字信号处理装置10262。在所述数字信号处理装置10262对信息或其它数据进行处理之后,处理过的信息或其它数据传送至输出单元103。如果通信装置是寻呼机,则输出单元可是显示器。如通信装置是蜂窝式电话,则输出单元103可包括扬声器、显示器、或两者均包括。
数据或其它信息可以按相反方向经由通信装置100传送。所述数据或其它信息经由输入单元104输入。在蜂窝式电话中,这可包括话筒或小键盘。所述信息或其它数据然后使用数字信号处理装置10262进行处理。在处理后,所述信号然后使用数-模转换器10246进行转换。转换过的信号通过输出放大器10248进行放大。放大过的信号通过基带-至-射频转换器10226进行调制并通过功率放大器10228进一步放大。放大后的RF信号经过隔离器10229和双工器10222传送至天线。
现有技术的通信装置100具有至少两个独立的集成电路:一个用于化合物半导体部分1022,一个用于MOS部分1026。双极部分1024可与MOS部分1026同在一个集成电路上,或者可在另一个集成电路上。而对于本发明的实施方案,所有三部分现均可在单一的集成电路内形成。由于所有晶体管可位于单一的集成电路上,所述通信装置可大大地小型化,并使通信装置具有更大的便携性。
现在关注如图7-11所示的集成电路102的实例部分的制备方法。在图7中,提供了p型掺杂、单晶硅基片110,其具有化合物半导体部分1022、双极部分1024、和MOS部分1026。在双极部分内,对单晶硅基片进行掺杂来形成N+埋入区1102(buried region)。然后在所述埋入区1102和基片110之上形成轻微p型掺杂的外延单晶硅层1104。然后进行掺杂步骤来产生在N+埋入区1102之上的轻微n型掺杂的漂移区1117。所述掺杂步骤将双极区1024段内的轻微p型外延层的掺杂剂类型转换为轻微n型单晶硅区。然后在双极部分1024与MOS部分1026之间形成场隔离区1106。在MOS部分1026内的部分外延层1104之上形成栅极电介质层1110,然后在所述栅极电介质层1110之上形成栅电极1112。沿栅电极1112和栅极电介质层1110的垂直边来形成侧壁隔板(sidewallspacers)1115。
向漂移区1117引入p型掺杂剂来形成活性或固有(active orintrinsic)的基极区1114。然后在双极部分1024内形成n型、深集电极区1108以使得与埋入区1102电连接。进行选择性n型掺杂来形成N+掺杂区1116和发射极区1120。在层1104内沿栅电极1112边来形成N+掺杂区1116,且其是MOS晶体管的源区、漏区、或源/漏区。N+掺杂区1116和发射极区1120具有每立方厘米至少1E19原子的掺杂浓度以使得形成电阻性接触。形成p型掺杂区来产生非活性的或非固有的基极区1118,其为P+掺杂区(掺杂浓度为每立方厘米至少1E19原子)。
在所述的实施方案中,已进行了若干个加工步骤,但对其未进行图示或进一步进行叙述,如形成了阱区、阈值调整注入物、防通道穿通注入物、防场穿通注入物、以及各种掩蔽层。在所述方法中至此的设备制备均使用通用步骤来进行。如所图示的,在MOS区1026内已形成了标准N通道MOS晶体管,且在双极部分1024内已形成了垂直NPN双极晶体管。至此,在化合物半导体部分1022内未形成电路。
从化合物半导体部分1022的表面现在除去在集成电路的双极和MOS部分的加工过程中已形成的所有层。从而对这一部分的后续的加工提供裸露的硅表面,例如以上述方式。
然后在基片110上形成图8所示的缓冲适应层124。在部分1022中的适当制备(即,具有适当的模板层)的裸露硅表面上来形成呈单晶层的所述缓冲适应层。但在部分1024和1026上形成的层124部分可为多晶态或非晶态的,因为其是在非单晶材料上形成的,因而不对单晶生长起成核作用。所述缓冲适应层124通常是单晶金属氧化物或氮化物层,通常厚度范围约为2-100纳米。在一种具体实施方案中,所述缓冲适应层为约5-15nm厚。在所述缓冲适应层的形成过程中,沿集成电路102的最顶部硅表面形成非晶态中间层122。这种非晶态中间层122通常包括硅的氧化物,其厚度范围约为1-5nm。在一种具体实施方案中,所述厚度为约2nm。在形成缓冲适应层124和非晶态中间层122之后,然后形成模板层126,其厚度范围为约1至10单层材料。在一种具体实施方案中,所述材料包括钛-砷、锶-氧-砷、或与参照图1-5前面所述相似的材料。
然后如图9所示在缓冲适应层124的单晶部分之上来外延生长单晶化合物半导体层132。在为非单晶态的层124部分上生长的层132部分可是多晶态或非晶态的。可通过许多方法来形成所述单晶化合物半导体层,其通常包括如砷化镓、铝镓砷化物、铟磷化物、或前述的其它化合物半导体材料。该层厚度范围约为1-5000nm,更优选100-500nm。在这种具体实施方案中,在所述缓冲适应层124、单晶化合物半导体材料132、或两者中也存在模板层的各种元素(elements)。因而,在加工过程中,所述模板层126与其两紧邻层之间的界限消失。因而,当摄制透射电子显微(TEM)照片时,可见缓冲适应层124与单晶化合物半导体层132之间的界面。
在这一点上,如图10所示从覆盖双极部分1024和MOS部分1026的部分中除去化合物半导体层132和缓冲适应层124区段。在除去所述区段后,然后在基片110上形成隔离层142。所述隔离层142可包括许多材料如氧化物、氮化物、氧氮化物、低k电介质、或类似物。在这里使用时,低k是具有不高于约3.5的介电常数的材料。在已沉积了隔离层142后,然后对其进行抛光,除去覆盖单晶化合物半导体层132的隔离层142的部分。
然后在单晶化合物半导体部分1022内形成晶体管144。然后在单晶化合物半导体层132上形成栅电极148。然后在单晶化合物半导体层132内形成掺杂区146。在这一实施方案中,所述晶体管是金属半导体场效应晶体管(MESFET)。如果所述MESFET是n型MESFET,则所述掺杂区146和单晶化合物半导体层132也是n型掺杂的。如果要形成p型MESFET,则所述掺杂区146和单晶化合物半导体层132将为相反的掺杂类型。较重的掺杂(N+)区146使得可与单晶化合物半导体层132进行电阻性接触。在这一点上,已形成了集成电路内的有源设备。这一具体实施方案包括n型MESFET、垂直NPN双极晶体管、和平板n通道MOS晶体管。可使用许多其它类型的晶体管,包括p通道MOS晶体管、p型垂直双极晶体管、p型MESFET、及垂直与平板晶体管的结合。另外,在一或多种的部分1022、1024、和1026中可形成其它电子元件,如电阻器、电容器、二极管、及类似物。
加工持续至形成如图11所示的基本完成的集成电路102。在基片110上形成隔离层152。所述隔离层152可包括在图11中未示出的刻蚀终止区或抛光终止区。然后在第一隔离层152之上形成第二隔离层154。除去部分层154、152、142、124、和122以界定要对所述设备进行互相连接的接触开口。在隔离层154内形成互连槽以提供接触点之间的横向连接。如图11所示,互连1562使部分1022内的n型MESFET的源或漏区与双极部分1024内的NPN晶体管的深集电极区1108相连接。NPN晶体管的发射极区1120与MOS部分1026内的n通道MOS晶体管的一个掺杂区1116相连接。其它掺杂区1116与集成电路未示出的其它部分相电连接。
在互连物1562、1564、和1566和隔离层154之上形成钝化层156。对所示的晶体管以及在所述图中未示出的集成电路102内的其它电子或电器元件进行电连接。再有,如必要可形成附加隔离层和互连来形成集成电路102内各种元件的适当互连。
如从前述实施方案中可见,化合物半导体和IV族半导体材料两者的有源设备可组合在单一的集成电路中。由于在同一集成电路内包含双极晶体管和MOS晶体管有一些困难,可将双极部分中的一些元件移入到化合物半导体部分1022或MOS部分1024中。更具体地说,对于参照图6所述的实施方案,可将放大器10248和10242移入到化合物半导体部分1022中,转换器10244和10246可移入到MOS部分1026中。因而,可消除只用于制备双极晶体管所需要的特殊制造步骤。因而,集成电路只有化合物半导体部分和MOS部分。
在另一实施方案中,可制备一种集成电路,其包括在化合物半导体部分中的激光器和与同一集成电路的IV族半导体区的MOS晶体管的光学互连(光波导管)。图12-18包括对一种实施方案的图示说明。
图12图示了一种包括单晶硅晶片161的集成电路160的一部分的横断面图。在晶片161上形成了与前述相似的非晶态中间层162和缓冲适应层164。在这种具体实施方案中,首先形成需要构成激光器的层,随后形成MOS晶体管所需的层。在图12中,下部镜面层(mirror layer)166包括化合物半导体材料的交替层。例如,在激光器内的第一、第三、和第五层膜可包括如砷化镓的材料,下部镜面层166内的第二、第四、和第六层膜可包括铝镓砷化物或次序相反。层168包括用于产生光子的有源区。上部像层170以与下部镜面层166相似的方式形成,且其包括化合物半导体材料的交替膜。在一种具体实施方案中,上部镜面层170可为p型掺杂化合物半导体材料,下部镜面层166可为n型掺杂化合物半导体材料。
与缓冲适应层164相似,在上部镜面层170之上形成另一缓冲适应层172。在另一种实施方案中,所述缓冲适应层164和172可包括不同的材料。但它们的功能基本相同,各用于产生由化合物半导体层至单晶IV族半导体层的转变。在缓冲适应层172之上形成单晶IV族半导体层174。在一种具体实施方案中,所述单晶IV族半导体层174包括锗、硅锗、硅锗碳化物、或类似物。
在图13中,对MOS部分进行加工来形成在这种上部单晶IV族半导体层174内的电子元件。如图13所示,由层174部分来形成场隔离区171。在层174之上形成栅极电介质层173,并在栅极电介质层173之上形成栅电极175。掺杂区177是晶体管181的源、漏区、或源/漏区,如图所示。邻近栅电极175的垂直侧形成侧壁隔板(sidewall spacer)179。可在至少部分层174内来形成其它元件。这些其它元件包括其它晶体管(n通道或p通道)、电容器、晶体管、二极管、及类似物。
在一种掺杂区177之上来外延生长单晶IV族半导体层。上部部分184是P+掺杂的,下部部分182基本上仍为固有的(未掺杂的),如图13所示。可使用选择性外延方法来形成所述层。在一种实施方案中,在晶体管181和场隔离区171之上形成隔离层(未示出)。所述隔离层的图案形成为限定一个暴露一种掺杂区177的开口。所述选择性外延层至少最初制备为无掺杂剂。所述的全部选择性外延层可是固有的,或在接近形成选择性外延层结束时添加p型掺杂剂。如果所述选择性外延层是固有的,如所形成的那样,可通过注入(Implantation)或通过炉掺杂来进行掺杂步骤。无论P+上部部分184如何形成,然后除去隔离层来形成图13中所示的所得到的结构。
进行后续系列步骤来限定如图14所示的激光器180。除去集成电路的化合物半导体部分之上的场隔离区171和缓冲适应层172。进行附加的步骤来确定上部镜面层170和激光器180的有源层168。上部镜面层170和有源层168是基本上相连的。
形成接触物186和188使其分别与上部镜面层170和下部镜面层166电连接,如图14所示。接触物186具有环形形状以使光线(光子)穿过上部镜面层170进入随后形成的光波导管。
然后形成隔离层190,其图像形成为限定延伸至接触层186和一种掺杂区177的光学开口,如图15所示。所述隔离材料可为任何种不同的材料,包括氧化物、氮化物、氧氮化物、低k电介质、或它们的任何组合。在限定了开口192后,然后在所述开口内形成更高折射率材料202来对其填充并在隔离层190之上来沉积该层,如图16所示。对于更高折射率材料202,“更高”是相对于隔离层190的材料(即,材料202具有比隔离层190更高的折射率)。任选地还可以在形成更高折射率材料202之前先形成较薄的较低折射率膜(未示出)。然后在高折射率层202之上形成硬掩蔽层204。从覆盖所述开口及接近图16的侧边区域的部分中除去部分硬掩蔽层204、和高折射率层202。
完成形成作为光学互连物的光波导管的其余步骤,如图17所示。进行一种沉积步骤(可为沉积-刻蚀(dep-etch)方法)来有效地产生侧壁段212。在这种实施方案中,所述侧壁段212由与材料202相同的材料来制备。然后除去硬掩蔽层204,在更高折射率材料212和202之上形成低折射率层214(相对于材料202和层212低)并暴露出部分隔离层190。在图17中的虚线所示为高折射率材料202和212之间的边界。这种作法的目的是确定所述两者均由相同的材料制备但在不同时间来形成。
继续进行加工来形成如图18所示的基本完成的集成电路。然后在激光器180和MOSFET晶体管181之上形成纯化层220。虽未示出,但对集成电路内未在图18中图示的元件进行了其它的电或光学连接。这些互连可包括其它光波导管或可包括金属互连。
在其它实施方案中,可形成其它类型的激光器。例如,另一种类型的激光器可水平而不是垂直地发射光(光子)。如果光水平发射,则所述MOSFET晶体管可在基片161中形成,并可变换光波导管的结构,使得所述激光器与所述晶体管适当地连接(光学连接)。在一种具体实施方案中,所述光波导管可包括至少部分缓冲适应层。还可以是其它结构。
显然,这些具有化合物半导体部分和IV族半导体部分的集成电路的实施方案是用来对本发明的实施方案进行说明而不是对本发明进行限制。本发明可有多种其它组合和其它实施方案。例如,所述化合物半导体部分可包括发光二极管、光检测器、二极管、或类似物,所述IV族半导体可包括数字逻辑电路、存储器阵列、和在通用MOS集成电路中可形成的大多数结构。通过使用本发明的实施方案,现在可更简单地使在化合物半导体材料中更好运行的设备与在IV族半导体材料中更好运行的其它元件组合。这使得装置缩小,制造成本降低,增加产率和可靠性。
虽然未进行图示,但可使用单晶IV族晶片来在所述晶片上只形成化合物半导体电子元件。以这种方式,所述晶片实际为在覆盖所述晶片的单晶化合物半导体层内化合物半导体电子元件的制造过程中所使用的“操作”晶片。因而,可在直径至少为约200毫米并可至少为约300毫米的晶片上的III-V或II-VI半导体材料内来形成电子元件。
通过使用这种类型的基片,通过将其置于相对更耐久并易于制造的基体材料上,较廉价的“操作”晶片克服了化合物半导体晶片的脆性。因而,可形成集成电路使得所有电子元件、特别是所有有源电子设备可在化合物半导体材料内形成,尽管所述基片本身可包括IV族半导体材料。由于与较小和更易碎的通用化合物半导体晶片相对比,较大基片可更经济更容易地进行加工,所以化合物半导体设备的制造成本应降低。
在前述的说明中,参照具体实施方案对本发明进行了叙述。但本领域普通技术人员可理解,在不偏离以下权利要求书所限定的本发明的范围的条件下,还可进行各种改进和变化。对应的,所述说明和附图应认为是说明性的而不是限制性的,所有这些改进都包括在本发明的范围内。
以上针对具体实施方案叙述了益处、其它优点、和对问题的解决方案。但所述益处、其它优点、对问题的解决方案、和可使任何益处、优点、或解决方案看起来或变得更明显的任何要素都不应认为是任何或全部权利要求的关键、需要、或必需的特征或要素。在这里使用时,术语“包括”、“包含”或其任何其它变化形式是指覆盖了非排除性的包括,因而包括一系列要素的过程、方法、器具、装置不是仅包括那些要素,而是可包括其它未列举或这些过程、方法、器具、或装置所固有的要素。

Claims (48)

1.一种制造半导体结构的方法,包括如下步骤:
提供包括硅的单晶半导体基片;
外延生长覆盖该单晶基片的单晶氧化物层;
在所述外延生长步骤的过程中对单晶半导体基片进行氧化以形成在所述单晶半导体基片与单晶氧化物层之间的硅氧化物层;
外延生长覆盖该单晶氧化物层的单晶化合物半导体层。
2.根据权利要求1的方法,还包括在该单晶半导体基片上形成第一模板层的步骤。
3.根据权利要求2的方法,其中所述提供单晶半导体基片的步骤包括提供在其表面上具有硅氧化物层的基片,且形成所述第一模板层的步骤包括如下步骤:
在所述硅氧化物层上沉积选自钡和锶的材料,和
加热所述基片以使所述材料与硅氧化物进行反应。
4.根据权利要求2的方法,其中所述提供单晶半导体基片的步骤包括提供在其表面上具有硅氧化物层的基片,且形成所述第一模板层的步骤包括如下步骤:
在所述硅氧化物层上沉积锶和氧,和
加热所述基片以使锶和氧与硅氧化物进行反应。
5.根据权利要求1的方法,其中外延生长单晶氧化物层的步骤包括如下步骤:
将所述基片加热至约400℃至约600℃之间的温度;和
引入包括锶、钛、和氧的反应物。
6.根据权利要求5的方法,其中所述引入步骤包括控制锶与钛的比例和控制氧的分压。
7.根据权利要求6的方法,其中所述对单晶半导体基片进行氧化的步骤包括将氧的分压增加至高于外延生长单晶氧化物层所必需的数值。
8.根据权利要求1的方法,还包括形成覆盖所述单晶氧化物层的第二模板层的步骤。
9.根据权利要求8的方法,其中形成第二模板层的步骤包括用包含选自钛、钛和氧、锶、和锶和氧材料的单层的层来覆盖单晶氧化物层的步骤。
10.根据权利要求9的方法,其中外延生长单晶化合物半导体层的步骤包括:
在第二模板层上沉积砷;和
使砷与第二模板层上的材料进行反应。
11.根据权利要求10的方法,其中外延生长单晶化合物半导体层的步骤还包括在反应步骤之后来沉积镓和砷的步骤。
12.根据权利要求8的方法,还包括形成覆盖第二模板层的缓冲层的步骤。
13.根据权利要求1的方法,还包括形成覆盖单晶氧化物层的缓冲层的步骤。
14.根据权利要求13的方法,其中所述形成缓冲层的过程包括外延沉积覆盖单晶氧化物层的锗层的步骤。
15.根据权利要求13的方法,其中所述形成缓冲层的过程包括沉积包括III-V族化合物半导体材料的超晶格的步骤。
16.根据权利要求1的方法,其中所述外延生长单晶氧化物层的步骤包括外延生长碱土金属钛酸盐的步骤。
17.根据权利要求16的方法,其中所述外延生长单晶化合物半导体层的步骤包括外延生长一层选自GaAs,AlGaAs,ZnSe,和ZnSSe的材料的步骤。
18.根据权利要求1的方法,其中所述外延生长单晶氧化物层的步骤包括外延生长选自碱土金属锆酸盐和碱土金属铪酸盐的氧化物的步骤。
19.根据权利要求18的方法,其中所述外延生长单晶化合物半导体层的步骤包括外延生长选自InP和InGaAs的化合物半导体材料的单晶层。
20.根据权利要求19的方法,还包括通过沉积一层厚度为约1-10单层的材料来形成覆盖单晶氧化物层的第二模板层的步骤,所述材料选自Zr-As、Zr-P、Hf-As、Hf-P、Sr-O-As、Sr-O-P、Sr-As,Sr-P,Ba-O-As、Ba-O-P,Ba-As,Sr-Ga-O,Ba-Ga-O,和Ba-P。
21.根据权利要求1的方法,其中外延生长单晶氧化物层的步骤包括以每分钟约0.3-0.5nm的生长速率来外延生长。
22.一种制造半导体结构的方法,包括如下步骤:
提供单晶半导体基片;
外延生长覆盖该单晶基片的单晶氧化物层;
在所述外延生长步骤的过程中对单晶半导体基片进行氧化以形成在所述单晶半导体基片与单晶氧化物层之间的硅氧化物层;
外延生长覆盖该单晶氧化物层的单晶化合物半导体层。
23.一种制造半导体结构的方法,包括如下步骤:
提供具有表面的单晶氧化物层;
在所述表面上形成模板层;和
外延生长覆盖所述模板的单晶化合物半导体层。
24.根据权利要求23的方法,其中所述提供单晶氧化物层的步骤包括提供包含选自碱土金属钛酸盐、碱土金属锆酸盐、和碱土金属铪酸盐的材料的单晶氧化物层。
25.根据权利要求23的方法,其中所述提供单晶氧化物层的步骤包括外延生长与其下层单晶硅基片相匹配的单晶氧化物层晶格。
26.根据权利要求23的方法,其中所述提供单晶氧化物层的步骤包括提供包含SrzBa1-zTiO3的氧化物层,其中z的范围为0至1。
27.根据权利要求26的方法,其中所述形成模板层的步骤包括用选自Ti,TiO,Sr,和SrO的1-10单层材料来覆盖所述氧化物层。
28.根据权利要求27的方法,其中所述外延生长单晶化合物半导体层的步骤包括外延沉积选自GaAs,AlGaAs,GaAsP,和GaInP的层。
29.根据权利要求27的方法,还包括沉积覆盖所述模板层的缓冲层的步骤。
30.根据权利要求29的方法,其中所述沉积缓冲层的步骤包括外延沉积一种材料的超晶格层,所述材料选自其中x范围为0至1的GaAsxP1-x和其中y范围为0至1的InyGa1-yP。
31.根据权利要求30的方法,其中所述外延生长单晶化合物半导体层的步骤包括外延沉积选自GaAs,AlGaAs,GaAsP,GaInAs,InP和GaInP的层。
32.根据权利要求26的方法,所述形成模板层的步骤包括用选自Ge-Sr和Ge-Ti的1-10单层材料来覆盖单晶氧化物层的步骤。
33.根据权利要求32的方法,还包括外延沉积锗缓冲层的步骤。
34.根据权利要求26的方法,其中所述形成模板层的步骤包括如下步骤:
用1-10单层的ZnO来覆盖单晶氧化物层;和
在单层ZnO之上沉积1-3单层的富锌ZnO。
35.根据权利要求34的方法,其中所述外延生长单晶化合物半导体层的步骤包括外延生长选自ZnSe和ZnSeS的层。
36.根据权利要求26的方法,其中所述形成模板层的步骤包括用1-2单层的SrS覆盖单晶氧化物层的步骤。
37.根据权利要求36的方法,其中所述外延生长单晶化合物半导体层的步骤包括外延生长ZnSeS层。
38.根据权利要求23的方法,其中所述提供单晶氧化物层的步骤包括提供包含一种材料的单晶氧化物层,所述材料选自碱土金属锆酸盐、和碱土金属铪酸盐。
39.根据权利要求38的方法,其中所述形成模板层的步骤包括用1-10单层的一种材料来覆盖单晶氧化物层,所述材料选自Zr-As、Zr-P、Hf-As、Hf-P、Sr-As,Sr-O-As、Sr-P,Sr-O-P、Ba-As,Ba-O-As、Ba-P、Sr-Ga-O,Ba-Ga-O,和Ba-O-P。
40.根据权利要求39的方法,其中所述外延生长单晶化合物半导体层的步骤包括外延生长包含选自InP和InGaAs的材料的层。
41.根据权利要求40的方法,还包括沉积在所述模板层上的包含超晶格的缓冲层,所述超晶格包含InGaAs,其中铟的范围为0至约47%。
42.一种制造半导体结构的方法,包括如下步骤:
提供单晶半导体基片;
形成覆盖该单晶半导体基片的缓冲适应层;
形成在所述单晶半导体基片与所述缓冲适应层之间的非晶态中间层;和
外延生长覆盖该缓冲适应层的单晶化合物半导体层。
43.根据权利要求42的方法,其中所述形成非晶态中间层的步骤包括使氧经所述缓冲适应层扩散来氧化所述单晶半导体基片的步骤。
44.根据权利要求42的方法,其中所述形成缓冲适应层的步骤包括通过选自MBE、MOCVC、MEE、和ALE的方法来生长一种外延层。
45.根据权利要求42的方法,其中所述提供单晶半导体基片的步骤包括提供在其表面具有硅氧化物层的单晶硅基片。
46.根据权利要求45的方法,其中所述形成缓冲适应层的步骤包括如下步骤:
使选自Sr和SrO的材料与硅氧化物层进行反应来在硅基片表面形成模板;和
在所述模板上外延沉积包含SrzBa1-zTiO3的层,其中z的范围为0至1。
47.根据权利要求42的方法,还包括在所述外延生长步骤之前形成覆盖所述缓冲适应层的模板的步骤。
48.一种制造半导体结构的方法,包括如下步骤:
提供包含第一区和第二区的单晶硅基片,所述第二区具有氧化的表面;
在所述第一区中形成CMOS电路;
在具有氧化的表面的第二区上沉积包含锶的材料,并使所述材料与氧化的表面进行反应来形成第一模板层;
通过向所述模板层引入锶、钛、和氧的分压来在所述第一模板层之上沉积包含锶、钛和氧的单晶氧化物层;
增加氧的分压来在所述第二区上生长非晶态硅氧化物层;
通过沉积包括包含钛的单层的第二模板层来终止沉积单晶氧化物层的步骤;
在所述第二模板层之上沉积一层包含镓和砷的单晶化合物半导体材料;
在所述单晶化合物半导体材料层中形成半导体元件;和
沉积金属导体,其设置为使所述CMOS电路与半导体元件电连接。
CN01804762A 2000-02-10 2001-02-08 一种成型半导体结构的方法 Pending CN1398423A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/502,023 2000-02-10
US09/502,023 US6392257B1 (en) 2000-02-10 2000-02-10 Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same

Publications (1)

Publication Number Publication Date
CN1398423A true CN1398423A (zh) 2003-02-19

Family

ID=23995993

Family Applications (5)

Application Number Title Priority Date Filing Date
CN01804762A Pending CN1398423A (zh) 2000-02-10 2001-02-08 一种成型半导体结构的方法
CN01804746A Pending CN1416590A (zh) 2000-02-10 2001-02-08 半导体结构
CNB01804753XA Expired - Fee Related CN1261978C (zh) 2000-02-10 2001-02-08 半导体结构
CN01804799A Pending CN1398430A (zh) 2000-02-10 2001-02-08 半导体器件
CNB01804798XA Expired - Fee Related CN1222032C (zh) 2000-02-10 2001-02-08 通信装置

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN01804746A Pending CN1416590A (zh) 2000-02-10 2001-02-08 半导体结构
CNB01804753XA Expired - Fee Related CN1261978C (zh) 2000-02-10 2001-02-08 半导体结构
CN01804799A Pending CN1398430A (zh) 2000-02-10 2001-02-08 半导体器件
CNB01804798XA Expired - Fee Related CN1222032C (zh) 2000-02-10 2001-02-08 通信装置

Country Status (9)

Country Link
US (9) US6392257B1 (zh)
EP (5) EP1258027A2 (zh)
JP (5) JP2003523078A (zh)
KR (5) KR100695662B1 (zh)
CN (5) CN1398423A (zh)
AU (7) AU2001234973A1 (zh)
CA (2) CA2400513A1 (zh)
TW (6) TW487969B (zh)
WO (7) WO2001059836A1 (zh)

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942692B4 (de) * 1999-09-07 2007-04-12 Infineon Technologies Ag Optoelektronische Mikroelektronikanordnung
US6693033B2 (en) 2000-02-10 2004-02-17 Motorola, Inc. Method of removing an amorphous oxide from a monocrystalline surface
US20020030246A1 (en) * 2000-06-28 2002-03-14 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices not lattice matched to the substrate
WO2002003437A1 (en) * 2000-06-30 2002-01-10 Motorola, Inc., A Corporation Of The State Of Delaware Hybrid semiconductor structure and device
US6590236B1 (en) * 2000-07-24 2003-07-08 Motorola, Inc. Semiconductor structure for use with high-frequency signals
WO2002009148A2 (en) * 2000-07-24 2002-01-31 Motorola, Inc. Integrated radiation emitting system and process for fabricating same
US6555946B1 (en) 2000-07-24 2003-04-29 Motorola, Inc. Acoustic wave device and process for forming the same
DE60124766T2 (de) 2000-08-04 2007-10-11 Amberwave Systems Corp. Siliziumwafer mit monolithischen optoelektronischen komponenten
US7273657B2 (en) * 2000-08-08 2007-09-25 Translucent Photonics, Inc. Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
US6638838B1 (en) 2000-10-02 2003-10-28 Motorola, Inc. Semiconductor structure including a partially annealed layer and method of forming the same
AU2001294601A1 (en) * 2000-10-19 2002-04-29 Motorola, Inc. Biochip excitation and analysis structure
US7065124B2 (en) * 2000-11-28 2006-06-20 Finlsar Corporation Electron affinity engineered VCSELs
US6905900B1 (en) * 2000-11-28 2005-06-14 Finisar Corporation Versatile method and system for single mode VCSELs
US6563118B2 (en) * 2000-12-08 2003-05-13 Motorola, Inc. Pyroelectric device on a monocrystalline semiconductor substrate and process for fabricating same
US6589335B2 (en) * 2001-02-08 2003-07-08 Amberwave Systems Corporation Relaxed InxGa1-xAs layers integrated with Si
US6673646B2 (en) 2001-02-28 2004-01-06 Motorola, Inc. Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
US20020140012A1 (en) * 2001-03-30 2002-10-03 Motorola, Inc. Semiconductor structures and devices for detecting far-infrared light and methods for fabricating same
US6594409B2 (en) * 2001-04-18 2003-07-15 Apic Corporation WDM transmitter or receiver including an array waveguide grating and active optical elements
US20020163010A1 (en) * 2001-05-04 2002-11-07 Motorola, Inc. Wide bandgap semiconductor structure, semiconductor device including the structure, and methods of forming the structure and device
US20020175347A1 (en) * 2001-05-22 2002-11-28 Motorola, Inc. Hybrid semiconductor input/output structure
US20020179957A1 (en) * 2001-05-29 2002-12-05 Motorola, Inc. Structure and method for fabricating high Q varactor diodes
US20020182762A1 (en) * 2001-05-30 2002-12-05 Motorola Inc. Direct conversion/sampling at antenna
US20020181827A1 (en) * 2001-06-01 2002-12-05 Motorola, Inc. Optically-communicating integrated circuits
US7037862B2 (en) 2001-06-13 2006-05-02 Micron Technology, Inc. Dielectric layer forming method and devices formed therewith
US20020195599A1 (en) * 2001-06-20 2002-12-26 Motorola, Inc. Low-defect semiconductor structure, device including the structure and method for fabricating structure and device
US6709989B2 (en) 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US20030012965A1 (en) * 2001-07-10 2003-01-16 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate comprising an oxygen-doped compound semiconductor layer
US20030013219A1 (en) * 2001-07-13 2003-01-16 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing electro-optic structures
US6992321B2 (en) * 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US20030015767A1 (en) * 2001-07-17 2003-01-23 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices with integrated control components
US20030015134A1 (en) * 2001-07-18 2003-01-23 Motorola, Inc. Semiconductor structure for edge mounting applications and process for fabrication
US6646293B2 (en) 2001-07-18 2003-11-11 Motorola, Inc. Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
US6693298B2 (en) 2001-07-20 2004-02-17 Motorola, Inc. Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
US20030020144A1 (en) * 2001-07-24 2003-01-30 Motorola, Inc. Integrated communications apparatus and method
US20030020090A1 (en) * 2001-07-25 2003-01-30 Motorola, Inc. Structure including both compound semiconductor devices and silicon devices for optimal performance and function and method for fabricating the structure
US20030021538A1 (en) * 2001-07-25 2003-01-30 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing optical waveguides
US20030020071A1 (en) * 2001-07-25 2003-01-30 Motorola, Inc. Integral semiconductor apparatus for conducting a plurality of functions
US6667196B2 (en) 2001-07-25 2003-12-23 Motorola, Inc. Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
US6589856B2 (en) 2001-08-06 2003-07-08 Motorola, Inc. Method and apparatus for controlling anti-phase domains in semiconductor structures and devices
US6639249B2 (en) 2001-08-06 2003-10-28 Motorola, Inc. Structure and method for fabrication for a solid-state lighting device
US20030034491A1 (en) * 2001-08-14 2003-02-20 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices for detecting an object
US6673667B2 (en) 2001-08-15 2004-01-06 Motorola, Inc. Method for manufacturing a substantially integral monolithic apparatus including a plurality of semiconductor materials
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
JP4543162B2 (ja) * 2001-09-05 2010-09-15 独立行政法人産業技術総合研究所 ZnOSSe混晶半導体
WO2003038955A1 (de) * 2001-10-15 2003-05-08 Infineon Technologies Ag Laserdiodeneinheit und anordnung zum betreiben einer laserdiode
US20030071327A1 (en) * 2001-10-17 2003-04-17 Motorola, Inc. Method and apparatus utilizing monocrystalline insulator
US6737339B2 (en) * 2001-10-24 2004-05-18 Agere Systems Inc. Semiconductor device having a doped lattice matching layer and a method of manufacture therefor
WO2003038878A2 (en) * 2001-10-26 2003-05-08 Motorola Inc. Method for fabricating semiconductor structures
US6893984B2 (en) * 2002-02-20 2005-05-17 Micron Technology Inc. Evaporated LaA1O3 films for gate dielectrics
US6872252B2 (en) * 2002-03-06 2005-03-29 Agilent Technologies, Inc. Lead-based perovskite buffer for forming indium phosphide on silicon
US6815248B2 (en) * 2002-04-18 2004-11-09 Infineon Technologies Ag Material combinations for tunnel junction cap layer, tunnel junction hard mask and tunnel junction stack seed layer in MRAM processing
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
EP1359614A1 (en) * 2002-05-02 2003-11-05 Agilent Technologies, Inc. - a Delaware corporation - Semiconductor substrates and structures with an oxide layer
US6916717B2 (en) * 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US6884739B2 (en) * 2002-08-15 2005-04-26 Micron Technology Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US7608927B2 (en) * 2002-08-29 2009-10-27 Micron Technology, Inc. Localized biasing for silicon on insulator structures
US6965626B2 (en) * 2002-09-03 2005-11-15 Finisar Corporation Single mode VCSEL
US6791125B2 (en) * 2002-09-30 2004-09-14 Freescale Semiconductor, Inc. Semiconductor device structures which utilize metal sulfides
JP2004158717A (ja) * 2002-11-07 2004-06-03 Fujitsu Ltd 薄膜積層体、その薄膜積層体を用いた電子装置及びアクチュエータ、並びにアクチュエータの製造方法
US6813293B2 (en) * 2002-11-21 2004-11-02 Finisar Corporation Long wavelength VCSEL with tunnel junction, and implant
US6806202B2 (en) 2002-12-03 2004-10-19 Motorola, Inc. Method of removing silicon oxide from a surface of a substrate
US6770504B2 (en) * 2003-01-06 2004-08-03 Honeywell International Inc. Methods and structure for improving wafer bow control
US6890816B2 (en) * 2003-02-07 2005-05-10 Freescale Semiconductor, Inc. Compound semiconductor structure including an epitaxial perovskite layer and method for fabricating semiconductor structures and devices
US7026690B2 (en) * 2003-02-12 2006-04-11 Micron Technology, Inc. Memory devices and electronic systems comprising integrated bipolar and FET devices
JP2004273562A (ja) * 2003-03-05 2004-09-30 Seiko Epson Corp 発光素子およびその製造方法
US7135369B2 (en) 2003-03-31 2006-11-14 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9
US7183186B2 (en) 2003-04-22 2007-02-27 Micro Technology, Inc. Atomic layer deposited ZrTiO4 films
US20040222363A1 (en) * 2003-05-07 2004-11-11 Honeywell International Inc. Connectorized optical component misalignment detection system
WO2004109775A2 (en) * 2003-06-03 2004-12-16 The Research Foundation Of State University Of New York Formation of highly dislocation free compound semiconductor on a lattice mismatched substrate
US8889530B2 (en) * 2003-06-03 2014-11-18 The Research Foundation Of State University Of New York Formation of highly dislocation free compound semiconductor on a lattice mismatched substrate
US20040247250A1 (en) * 2003-06-03 2004-12-09 Honeywell International Inc. Integrated sleeve pluggable package
JP4663216B2 (ja) * 2003-06-10 2011-04-06 ルネサスエレクトロニクス株式会社 半導体記憶装置およびその製造方法
US7075962B2 (en) * 2003-06-27 2006-07-11 Finisar Corporation VCSEL having thermal management
US7277461B2 (en) * 2003-06-27 2007-10-02 Finisar Corporation Dielectric VCSEL gain guide
US6961489B2 (en) * 2003-06-30 2005-11-01 Finisar Corporation High speed optical system
US7149383B2 (en) * 2003-06-30 2006-12-12 Finisar Corporation Optical system with reduced back reflection
US20060056762A1 (en) * 2003-07-02 2006-03-16 Honeywell International Inc. Lens optical coupler
US7210857B2 (en) * 2003-07-16 2007-05-01 Finisar Corporation Optical coupling system
US20050013539A1 (en) * 2003-07-17 2005-01-20 Honeywell International Inc. Optical coupling system
US6887801B2 (en) * 2003-07-18 2005-05-03 Finisar Corporation Edge bead control method and apparatus
JP4689153B2 (ja) * 2003-07-18 2011-05-25 株式会社リコー 積層基体および半導体デバイス
US7031363B2 (en) * 2003-10-29 2006-04-18 Finisar Corporation Long wavelength VCSEL device processing
US7135753B2 (en) 2003-12-05 2006-11-14 International Rectifier Corporation Structure and method for III-nitride monolithic power IC
GB0405325D0 (en) * 2004-03-10 2004-04-21 Koninkl Philips Electronics Nv Trench-gate transistors and their manufacture
JP4874527B2 (ja) * 2004-04-01 2012-02-15 トヨタ自動車株式会社 炭化珪素半導体基板及びその製造方法
CN100492668C (zh) * 2004-05-25 2009-05-27 中国科学院福建物质结构研究所 一系列半导体材料
CN100485867C (zh) * 2004-07-20 2009-05-06 中国科学院物理研究所 在硅衬底上外延生长有铝酸镧薄膜材料及制备方法
US7601649B2 (en) 2004-08-02 2009-10-13 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7081421B2 (en) 2004-08-26 2006-07-25 Micron Technology, Inc. Lanthanide oxide dielectric layer
US7494939B2 (en) 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US7309660B2 (en) * 2004-09-16 2007-12-18 International Business Machines Corporation Buffer layer for selective SiGe growth for uniform nucleation
US7560395B2 (en) 2005-01-05 2009-07-14 Micron Technology, Inc. Atomic layer deposited hafnium tantalum oxide dielectrics
US7217643B2 (en) * 2005-02-24 2007-05-15 Freescale Semiconductors, Inc. Semiconductor structures and methods for fabricating semiconductor structures comprising high dielectric constant stacked structures
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
JP4876418B2 (ja) * 2005-03-29 2012-02-15 富士電機株式会社 半導体装置
US7390756B2 (en) * 2005-04-28 2008-06-24 Micron Technology, Inc. Atomic layer deposited zirconium silicon oxide films
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7572695B2 (en) 2005-05-27 2009-08-11 Micron Technology, Inc. Hafnium titanium oxide films
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US7575978B2 (en) 2005-08-04 2009-08-18 Micron Technology, Inc. Method for making conductive nanoparticle charge storage element
WO2007025062A2 (en) * 2005-08-25 2007-03-01 Wakonda Technologies, Inc. Photovoltaic template
US7410910B2 (en) 2005-08-31 2008-08-12 Micron Technology, Inc. Lanthanum aluminum oxynitride dielectric films
JP5243256B2 (ja) * 2005-11-01 2013-07-24 マサチューセッツ インスティテュート オブ テクノロジー モノリシックに集積化された半導体材料およびデバイス
US7410859B1 (en) * 2005-11-07 2008-08-12 Advanced Micro Devices, Inc. Stressed MOS device and method for its fabrication
US7700423B2 (en) * 2006-07-28 2010-04-20 Iqe Rf, Llc Process for manufacturing epitaxial wafers for integrated devices on a common compound semiconductor III-V wafer
US7588951B2 (en) * 2006-11-17 2009-09-15 Freescale Semiconductor, Inc. Method of packaging a semiconductor device and a prefabricated connector
US20080119004A1 (en) * 2006-11-17 2008-05-22 Burch Kenneth R Method of packaging a device having a keypad switch point
US7696016B2 (en) * 2006-11-17 2010-04-13 Freescale Semiconductor, Inc. Method of packaging a device having a tangible element and device thereof
US7807511B2 (en) * 2006-11-17 2010-10-05 Freescale Semiconductor, Inc. Method of packaging a device having a multi-contact elastomer connector contact area and device thereof
JP2011503847A (ja) * 2007-11-02 2011-01-27 ワコンダ テクノロジーズ, インコーポレイテッド 結晶質薄膜光起電力構造およびその形成方法
US20090261346A1 (en) * 2008-04-16 2009-10-22 Ding-Yuan Chen Integrating CMOS and Optical Devices on a Same Chip
US8236603B1 (en) 2008-09-04 2012-08-07 Solexant Corp. Polycrystalline semiconductor layers and methods for forming the same
US8093559B1 (en) * 2008-12-02 2012-01-10 Hrl Laboratories, Llc Methods and apparatus for three-color infrared sensors
US8415187B2 (en) * 2009-01-28 2013-04-09 Solexant Corporation Large-grain crystalline thin-film structures and devices and methods for forming the same
CN101840971B (zh) * 2009-03-17 2012-09-05 展晶科技(深圳)有限公司 一种发光二极管及其制造方法
US8897470B2 (en) * 2009-07-31 2014-11-25 Macronix International Co., Ltd. Method of fabricating integrated semiconductor device with MOS, NPN BJT, LDMOS, pre-amplifier and MEMS unit
KR102462043B1 (ko) 2009-10-16 2022-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
DE102009051521B4 (de) * 2009-10-31 2012-04-26 X-Fab Semiconductor Foundries Ag Herstellung von Siliziumhalbleiterscheiben mit III-V-Schichtstrukturen für High Electron Mobility Transistoren (HEMT) und eine entsprechende Halbleiterschichtanordnung
US9012253B2 (en) 2009-12-16 2015-04-21 Micron Technology, Inc. Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods
US8680510B2 (en) 2010-06-28 2014-03-25 International Business Machines Corporation Method of forming compound semiconductor
US8164092B2 (en) * 2010-10-18 2012-04-24 The University Of Utah Research Foundation PIN structures including intrinsic gallium arsenide, devices incorporating the same, and related methods
US20120126239A1 (en) * 2010-11-24 2012-05-24 Transphorm Inc. Layer structures for controlling stress of heteroepitaxially grown iii-nitride layers
US9312436B2 (en) 2011-05-16 2016-04-12 Kabushiki Kaisha Toshiba Nitride semiconductor device, nitride semiconductor wafer, and method for manufacturing nitride semiconductor layer
US9879357B2 (en) 2013-03-11 2018-01-30 Tivra Corporation Methods and systems for thin film deposition processes
CN104781938B (zh) * 2012-06-14 2018-06-26 帝维拉公司 多层基底结构以及制造其的方法和系统
JP6107435B2 (ja) * 2013-06-04 2017-04-05 三菱電機株式会社 半導体装置及びその製造方法
KR102171268B1 (ko) * 2014-09-30 2020-11-06 삼성전자 주식회사 하이브리드 실리콘 레이저 제조 방법
EP3375091A1 (en) * 2015-11-13 2018-09-19 IQE Plc. Layer structures for rf filters fabricated using rare earth oxides and epitaxial aluminum nitride
CN105428384B (zh) * 2015-12-28 2018-08-10 上海集成电路研发中心有限公司 一种图形传感器及其制造方法
WO2018004693A1 (en) * 2016-07-01 2018-01-04 Intel Corporation Substrates for integrated circuits
US11495670B2 (en) 2016-09-22 2022-11-08 Iqe Plc Integrated epitaxial metal electrodes
US10083963B2 (en) * 2016-12-21 2018-09-25 Qualcomm Incorporated Logic circuit block layouts with dual-side processing
US10847553B2 (en) * 2017-01-13 2020-11-24 Massachusetts Institute Of Technology Method of forming a multilayer structure for a pixelated display and a multilayer structure for a pixelated display
GB2565054A (en) * 2017-07-28 2019-02-06 Comptek Solutions Oy Heterostructure semiconductor device and manufacturing method
US10373936B2 (en) 2017-08-22 2019-08-06 Facebook Technologies, Llc Pixel elements including light emitters of variable heights
FR3079534B1 (fr) * 2018-03-28 2022-03-18 Soitec Silicon On Insulator Procede de fabrication d'une couche monocristalline de materiau gaas et substrat pour croissance par epitaxie d'une couche monocristalline de materiau gaas
CN110600362B (zh) * 2019-08-01 2022-05-20 中国科学院微电子研究所 硅基异构集成材料及其制备方法、半导体器件
WO2022187462A1 (en) * 2021-03-03 2022-09-09 Atomera Incorporated Radio frequency (rf) semiconductor devices including a ground plane layer having a superlattice and associated methods
CN116364825A (zh) * 2023-06-01 2023-06-30 江西兆驰半导体有限公司 复合缓冲层及其制备方法、外延片及发光二极管

Family Cites Families (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US247722A (en) * 1881-09-27 John westinghotjse
US1037272A (en) * 1907-11-16 1912-09-03 William Godson Lindsay Bottle.
US2152315A (en) * 1936-12-07 1939-03-28 Kohn Samuel Frankfurter cooker
US3046384A (en) * 1960-05-04 1962-07-24 Taylor Winfield Corp Flash welding and trimming apparatus
US3617951A (en) 1968-11-21 1971-11-02 Western Microwave Lab Inc Broadband circulator or isolator of the strip line or microstrip type
US3670213A (en) 1969-05-24 1972-06-13 Tokyo Shibaura Electric Co Semiconductor photosensitive device with a rare earth oxide compound forming a rectifying junction
US4404265A (en) 1969-10-01 1983-09-13 Rockwell International Corporation Epitaxial composite and method of making
GB1319311A (en) 1970-06-04 1973-06-06 North American Rockwell Epitaxial composite and method of making
US3766370A (en) 1971-05-14 1973-10-16 Hewlett Packard Co Elementary floating point cordic function processor and shifter
US3802967A (en) 1971-08-27 1974-04-09 Rca Corp Iii-v compound on insulating substrate and its preparation and use
US3914137A (en) 1971-10-06 1975-10-21 Motorola Inc Method of manufacturing a light coupled monolithic circuit by selective epitaxial deposition
US3758199A (en) * 1971-11-22 1973-09-11 Sperry Rand Corp Piezoelectrically actuated light deflector
US3818451A (en) * 1972-03-15 1974-06-18 Motorola Inc Light-emitting and light-receiving logic array
US4006989A (en) * 1972-10-02 1977-02-08 Raytheon Company Laser gyroscope
US3935031A (en) * 1973-05-07 1976-01-27 New England Institute, Inc. Photovoltaic cell with enhanced power output
US4084130A (en) 1974-01-18 1978-04-11 Texas Instruments Incorporated Laser for integrated optical circuits
JPS528835A (en) 1975-07-11 1977-01-24 Fujitsu Ltd Connector for fiber optics
JPS604962B2 (ja) * 1976-01-20 1985-02-07 松下電器産業株式会社 光導波装置
JPS5816335B2 (ja) * 1976-01-20 1983-03-30 松下電器産業株式会社 半導体装置
US4120588A (en) 1976-07-12 1978-10-17 Erik Chaum Multiple path configuration for a laser interferometer
JPS5413455A (en) 1977-07-01 1979-01-31 Hitachi Ltd Uniformly expanding device for tube
NL7710164A (nl) 1977-09-16 1979-03-20 Philips Nv Werkwijze ter behandeling van een eenkristal- lijn lichaam.
US4174422A (en) 1977-12-30 1979-11-13 International Business Machines Corporation Growing epitaxial films when the misfit between film and substrate is large
US4284329A (en) 1978-01-03 1981-08-18 Raytheon Company Laser gyroscope system
US4146297A (en) * 1978-01-16 1979-03-27 Bell Telephone Laboratories, Incorporated Tunable optical waveguide directional coupler filter
US4174504A (en) * 1978-01-25 1979-11-13 United Technologies Corporation Apparatus and method for cavity dumping a Q-switched laser
JPS558742A (en) 1978-06-30 1980-01-22 Matsushita Electric Works Ltd Waterproof facial beauty instrument
US4242595A (en) 1978-07-27 1980-12-30 University Of Southern California Tunnel diode load for ultra-fast low power switching circuits
US4297656A (en) 1979-03-23 1981-10-27 Harris Corporation Plural frequency oscillator employing multiple fiber-optic delay line
FR2453423A1 (fr) * 1979-04-04 1980-10-31 Quantel Sa Element optique epais a courbure variable
JPS5696834A (en) * 1979-12-28 1981-08-05 Mitsubishi Monsanto Chem Co Compound semiconductor epitaxial wafer and manufacture thereof
US4424589A (en) * 1980-04-11 1984-01-03 Coulter Systems Corporation Flat bed scanner system and method
US4452720A (en) 1980-06-04 1984-06-05 Teijin Limited Fluorescent composition having the ability to change wavelengths of light, shaped article of said composition as a light wavelength converting element and device for converting optical energy to electrical energy using said element
US4289920A (en) 1980-06-23 1981-09-15 International Business Machines Corporation Multiple bandgap solar cell on transparent substrate
DE3168688D1 (en) 1980-11-06 1985-03-14 Toshiba Kk Method for manufacturing a semiconductor device
US4442590A (en) 1980-11-17 1984-04-17 Ball Corporation Monolithic microwave integrated circuit with integral array antenna
US4392297A (en) 1980-11-20 1983-07-12 Spire Corporation Process of making thin film high efficiency solar cells
GB2096785B (en) * 1981-04-09 1984-10-10 Standard Telephones Cables Ltd Integrated optic device
JPS57177583A (en) 1981-04-14 1982-11-01 Int Standard Electric Corp Holl effect device
JPS57176785A (en) * 1981-04-22 1982-10-30 Hitachi Ltd Semiconductor laser device
GB2115996B (en) 1981-11-02 1985-03-20 Kramer Kane N Portable data processing and storage system
US4439014A (en) * 1981-11-13 1984-03-27 Mcdonnell Douglas Corporation Low voltage electro-optic modulator
US4626878A (en) * 1981-12-11 1986-12-02 Sanyo Electric Co., Ltd. Semiconductor optical logical device
US4525871A (en) * 1982-02-03 1985-06-25 Massachusetts Institute Of Technology High speed optoelectronic mixer
US4482422A (en) 1982-02-26 1984-11-13 Rca Corporation Method for growing a low defect monocrystalline layer on a mask
JPS58158944A (ja) 1982-03-16 1983-09-21 Futaba Corp 半導体装置
US4484332A (en) 1982-06-02 1984-11-20 The United States Of America As Represented By The Secretary Of The Air Force Multiple double heterojunction buried laser device
US4482906A (en) 1982-06-30 1984-11-13 International Business Machines Corporation Gallium aluminum arsenide integrated circuit structure using germanium
US4594000A (en) 1983-04-04 1986-06-10 Ball Corporation Method and apparatus for optically measuring distance and velocity
US4756007A (en) 1984-03-08 1988-07-05 Codex Corporation Adaptive communication rate modem
JPS6110818A (ja) 1984-06-25 1986-01-18 オムロン株式会社 電歪アクチユエ−タの駆動回路
US4629821A (en) 1984-08-16 1986-12-16 Polaroid Corporation Photovoltaic cell
JPH069334B2 (ja) 1984-09-03 1994-02-02 株式会社東芝 光・電気集積化素子
JPS61108187A (ja) * 1984-11-01 1986-05-26 Seiko Epson Corp 半導体光電子装置
US4773063A (en) 1984-11-13 1988-09-20 University Of Delaware Optical wavelength division multiplexing/demultiplexing system
US4661176A (en) 1985-02-27 1987-04-28 The United States Of America As Represented By The Secretary Of The Air Force Process for improving the quality of epitaxial silicon films grown on insulating substrates utilizing oxygen ion conductor substrates
US4748485A (en) 1985-03-21 1988-05-31 Hughes Aircraft Company Opposed dual-gate hybrid structure for three-dimensional integrated circuits
JPS61255074A (ja) 1985-05-08 1986-11-12 Mitsubishi Electric Corp 光電変換半導体装置
US4846926A (en) 1985-08-26 1989-07-11 Ford Aerospace & Communications Corporation HcCdTe epitaxially grown on crystalline support
DE3676019D1 (de) 1985-09-03 1991-01-17 Daido Steel Co Ltd Epitaktische gallium-arsenid-halbleiterscheibe und verfahren zu ihrer herstellung.
JPS6263828A (ja) 1985-09-06 1987-03-20 Yokogawa Electric Corp 振動式トランスジューサ
US4695120A (en) 1985-09-26 1987-09-22 The United States Of America As Represented By The Secretary Of The Army Optic-coupled integrated circuits
JPS62119196A (ja) 1985-11-18 1987-05-30 Univ Nagoya 化合物半導体の成長方法
US4872046A (en) 1986-01-24 1989-10-03 University Of Illinois Heterojunction semiconductor device with <001> tilt
FR2595509B1 (fr) 1986-03-07 1988-05-13 Thomson Csf Composant en materiau semiconducteur epitaxie sur un substrat a parametre de maille different et application a divers composants en semiconducteurs
JPS62216600A (ja) * 1986-03-18 1987-09-24 Oki Electric Ind Co Ltd 光−音響変換装置
US4804866A (en) 1986-03-24 1989-02-14 Matsushita Electric Works, Ltd. Solid state relay
US4777613A (en) 1986-04-01 1988-10-11 Motorola Inc. Floating point numeric data processor
US4901133A (en) 1986-04-02 1990-02-13 Texas Instruments Incorporated Multilayer semi-insulating film for hermetic wafer passivation and method for making same
US4774205A (en) 1986-06-13 1988-09-27 Massachusetts Institute Of Technology Monolithic integration of silicon and gallium arsenide devices
JPS633499A (ja) 1986-06-23 1988-01-08 日本電気ホームエレクトロニクス株式会社 電子部品の装着状態検出方法
US4891091A (en) 1986-07-14 1990-01-02 Gte Laboratories Incorporated Method of epitaxially growing compound semiconductor materials
JPS6319836A (ja) 1986-07-14 1988-01-27 Toshiba Corp 半導体ウエ−ハの搬送方式
US4866489A (en) 1986-07-22 1989-09-12 Matsushita Electric Industrial Co., Ltd. Semiconductor device
JPS6334994A (ja) * 1986-07-29 1988-02-15 Mitsubishi Electric Corp 光電子集積回路装置およびその製造方法
US4888202A (en) 1986-07-31 1989-12-19 Nippon Telegraph And Telephone Corporation Method of manufacturing thin compound oxide film and apparatus for manufacturing thin oxide film
JP2516604B2 (ja) 1986-10-17 1996-07-24 キヤノン株式会社 相補性mos集積回路装置の製造方法
US4723321A (en) * 1986-11-07 1988-02-02 American Telephone And Telegraph Company, At&T Bell Laboratories Techniques for cross-polarization cancellation in a space diversity radio system
JPH087288B2 (ja) * 1986-11-20 1996-01-29 日本電信電話株式会社 ハイブリッド光集積回路の製造方法
JPH07120835B2 (ja) * 1986-12-26 1995-12-20 松下電器産業株式会社 光集積回路
US4772929A (en) 1987-01-09 1988-09-20 Sprague Electric Company Hall sensor with integrated pole pieces
US4876208A (en) 1987-01-30 1989-10-24 Yellowstone Diagnostics Corporation Diffraction immunoassay apparatus and method
JPS63198365A (ja) * 1987-02-13 1988-08-17 Sharp Corp 半導体装置
US4868376A (en) 1987-05-15 1989-09-19 Smartcard International Inc. Intelligent portable interactive personal data system
US4815084A (en) 1987-05-20 1989-03-21 Spectra Diode Laboratories, Inc. Semiconductor laser with integrated optical elements
US4801184A (en) * 1987-06-15 1989-01-31 Eastman Kodak Company Integrated optical read/write head and apparatus incorporating same
JPS6414949A (en) * 1987-07-08 1989-01-19 Nec Corp Semiconductor device and manufacture of the same
JPH0766922B2 (ja) 1987-07-29 1995-07-19 株式会社村田製作所 半導体装置の製造方法
GB8718552D0 (en) 1987-08-05 1987-09-09 British Railways Board Track to train communications systems
US5081062A (en) * 1987-08-27 1992-01-14 Prahalad Vasudev Monolithic integration of silicon on insulator and gallium arsenide semiconductor technologies
FI81926C (fi) * 1987-09-29 1990-12-10 Nokia Oy Ab Foerfarande foer uppbyggning av gaas-filmer pao si- och gaas-substrater.
JPH0695554B2 (ja) 1987-10-12 1994-11-24 工業技術院長 単結晶マグネシアスピネル膜の形成方法
US4885376A (en) 1987-10-13 1989-12-05 Iowa State University Research Foundation, Inc. New types of organometallic reagents and catalysts for asymmetric synthesis
JPH0239A (ja) 1987-10-20 1990-01-05 Konica Corp 高コントラストハロゲン化銀写真感光材料
US4802182A (en) 1987-11-05 1989-01-31 Xerox Corporation Monolithic two dimensional waveguide coupled cavity laser/modulator
US4981714A (en) * 1987-12-14 1991-01-01 Sharp Kabushiki Kaisha Method of producing ferroelectric LiNb1-31 x Tax O3 0<x<1) thin film by activated evaporation
JPH01207920A (ja) 1988-02-16 1989-08-21 Oki Electric Ind Co Ltd InP半導体薄膜の製造方法
JP2691721B2 (ja) 1988-03-04 1997-12-17 富士通株式会社 半導体薄膜の製造方法
US4912087A (en) 1988-04-15 1990-03-27 Ford Motor Company Rapid thermal annealing of superconducting oxide precursor films on Si and SiO2 substrates
US5130269A (en) * 1988-04-27 1992-07-14 Fujitsu Limited Hetero-epitaxially grown compound semiconductor substrate and a method of growing the same
US5063166A (en) 1988-04-29 1991-11-05 Sri International Method of forming a low dislocation density semiconductor device
JPH01289108A (ja) 1988-05-17 1989-11-21 Fujitsu Ltd ヘテロエピタキシャル成長方法
US4910164A (en) * 1988-07-27 1990-03-20 Texas Instruments Incorporated Method of making planarized heterostructures using selective epitaxial growth
US5221367A (en) 1988-08-03 1993-06-22 International Business Machines, Corp. Strained defect-free epitaxial mismatched heterostructures and method of fabrication
US4889402A (en) 1988-08-31 1989-12-26 American Telephone And Telegraph Company, At&T Bell Laboratories Electro-optic polarization modulation in multi-electrode waveguides
US4963949A (en) 1988-09-30 1990-10-16 The United States Of America As Represented Of The United States Department Of Energy Substrate structures for InP-based devices
US4952420A (en) 1988-10-12 1990-08-28 Advanced Dielectric Technologies, Inc. Vapor deposition patterning method
JPH02105910A (ja) * 1988-10-14 1990-04-18 Hitachi Ltd 論理集積回路
DE68923756T2 (de) * 1988-10-28 1996-03-07 Texas Instruments Inc Abgedeckte Wärmebehandlung.
US5286985A (en) * 1988-11-04 1994-02-15 Texas Instruments Incorporated Interface circuit operable to perform level shifting between a first type of device and a second type of device
US5063081A (en) 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US5087829A (en) * 1988-12-07 1992-02-11 Hitachi, Ltd. High speed clock distribution system
US4965649A (en) 1988-12-23 1990-10-23 Ford Aerospace Corporation Manufacture of monolithic infrared focal plane arrays
US5028563A (en) 1989-02-24 1991-07-02 Laser Photonics, Inc. Method for making low tuning rate single mode PbTe/PbEuSeTe buried heterostructure tunable diode lasers and arrays
US4999842A (en) 1989-03-01 1991-03-12 At&T Bell Laboratories Quantum well vertical cavity laser
US4990974A (en) 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
GB2230395B (en) 1989-03-15 1992-09-30 Matsushita Electric Works Ltd Semiconductor relay circuit
US4934777A (en) 1989-03-21 1990-06-19 Pco, Inc. Cascaded recirculating transmission line without bending loss limitations
US5198269A (en) * 1989-04-24 1993-03-30 Battelle Memorial Institute Process for making sol-gel deposited ferroelectric thin films insensitive to their substrates
JPH02306680A (ja) * 1989-05-22 1990-12-20 Hikari Gijutsu Kenkyu Kaihatsu Kk 光電子集積回路装置およびその製造方法
US5067809A (en) 1989-06-09 1991-11-26 Oki Electric Industry Co., Ltd. Opto-semiconductor device and method of fabrication of the same
US5594000A (en) * 1989-06-21 1997-01-14 Astra Ab Spirofurane derivatives
FR2650704B1 (fr) 1989-08-01 1994-05-06 Thomson Csf Procede de fabrication par epitaxie de couches monocristallines de materiaux a parametres de mailles differents
US5399898A (en) * 1992-07-17 1995-03-21 Lsi Logic Corporation Multi-chip semiconductor arrangements using flip chip dies
US5055445A (en) 1989-09-25 1991-10-08 Litton Systems, Inc. Method of forming oxidic high Tc superconducting materials on substantially lattice matched monocrystalline substrates utilizing liquid phase epitaxy
US4959702A (en) 1989-10-05 1990-09-25 Motorola, Inc. Si-GaP-Si heterojunction bipolar transistor (HBT) on Si substrate
US5051790A (en) 1989-12-22 1991-09-24 David Sarnoff Research Center, Inc. Optoelectronic interconnections for integrated circuits
JPH088214B2 (ja) * 1990-01-19 1996-01-29 三菱電機株式会社 半導体装置
US5997638A (en) * 1990-03-23 1999-12-07 International Business Machines Corporation Localized lattice-mismatch-accomodation dislocation network epitaxy
US5310707A (en) 1990-03-28 1994-05-10 Superconductivity Research Laboratory International Substrate material for the preparation of oxide superconductors
FR2661040A1 (fr) 1990-04-13 1991-10-18 Thomson Csf Procede d'adaptation entre deux materiaux semiconducteurs cristallises, et dispositif semiconducteur.
US5358925A (en) 1990-04-18 1994-10-25 Board Of Trustees Of The Leland Stanford Junior University Silicon substrate having YSZ epitaxial barrier layer and an epitaxial superconducting layer
US5164359A (en) * 1990-04-20 1992-11-17 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5018816A (en) 1990-06-11 1991-05-28 Amp Incorporated Optical delay switch and variable delay system
US5188976A (en) * 1990-07-13 1993-02-23 Hitachi, Ltd. Manufacturing method of non-volatile semiconductor memory device
US5608046A (en) * 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
GB2250751B (en) * 1990-08-24 1995-04-12 Kawasaki Heavy Ind Ltd Process for the production of dielectric thin films
DE4027024A1 (de) * 1990-08-27 1992-03-05 Standard Elektrik Lorenz Ag Faserkreisel
US5064781A (en) * 1990-08-31 1991-11-12 Motorola, Inc. Method of fabricating integrated silicon and non-silicon semiconductor devices
US5281834A (en) * 1990-08-31 1994-01-25 Motorola, Inc. Non-silicon and silicon bonded structure and method of manufacture
DE4029060C2 (de) 1990-09-13 1994-01-13 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung von Bauteilen für elektronische, elektrooptische und optische Bauelemente
US5060031A (en) 1990-09-18 1991-10-22 Motorola, Inc Complementary heterojunction field effect transistor with an anisotype N+ ga-channel devices
JP3028840B2 (ja) * 1990-09-19 2000-04-04 株式会社日立製作所 バイポーラトランジスタとmosトランジスタの複合回路、及びそれを用いた半導体集積回路装置
FR2670050B1 (fr) * 1990-11-09 1997-03-14 Thomson Csf Detecteur optoelectronique a semiconducteurs.
US5880452A (en) * 1990-11-15 1999-03-09 Geo Labs, Inc. Laser based PCMCIA data collection system with automatic triggering for portable applications and method of use
US5418216A (en) 1990-11-30 1995-05-23 Fork; David K. Superconducting thin films on epitaxial magnesium oxide grown on silicon
US5387811A (en) * 1991-01-25 1995-02-07 Nec Corporation Composite semiconductor device with a particular bipolar structure
US5166761A (en) * 1991-04-01 1992-11-24 Midwest Research Institute Tunnel junction multiple wavelength light-emitting diodes
KR940005454B1 (ko) * 1991-04-03 1994-06-18 삼성전자 주식회사 화합물반도체장치
US5482003A (en) 1991-04-10 1996-01-09 Martin Marietta Energy Systems, Inc. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process
US5225031A (en) 1991-04-10 1993-07-06 Martin Marietta Energy Systems, Inc. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process
SE468267B (sv) * 1991-04-10 1992-11-30 Ericsson Telefon Ab L M Terminal foer ett frekvensdelat, optiskt kommunikationssystem
US5221413A (en) 1991-04-24 1993-06-22 At&T Bell Laboratories Method for making low defect density semiconductor heterostructure and devices made thereby
US5185589A (en) * 1991-05-17 1993-02-09 Westinghouse Electric Corp. Microwave film bulk acoustic resonator and manifolded filter bank
US5194397A (en) * 1991-06-05 1993-03-16 International Business Machines Corporation Method for controlling interfacial oxide at a polycrystalline/monocrystalline silicon interface
JPH07187892A (ja) * 1991-06-28 1995-07-25 Internatl Business Mach Corp <Ibm> シリコン及びその形成方法
EP0584410A1 (en) * 1991-07-05 1994-03-02 Conductus, Inc. Superconducting electronic structures and methods of preparing same
JP3130575B2 (ja) * 1991-07-25 2001-01-31 日本電気株式会社 マイクロ波ミリ波送受信モジュール
JPH0548072A (ja) 1991-08-12 1993-02-26 Nippon Telegr & Teleph Corp <Ntt> 半導体素子
US5238894A (en) * 1991-09-20 1993-08-24 Air Products And Chemcials, Inc. Hydroxyl group-containing amine-boron adducts as reduced odor catalyst compositions for the production of polyurethanes
US5283462A (en) * 1991-11-04 1994-02-01 Motorola, Inc. Integrated distributed inductive-capacitive network
US5397428A (en) * 1991-12-20 1995-03-14 The University Of North Carolina At Chapel Hill Nucleation enhancement for chemical vapor deposition of diamond
JP3250673B2 (ja) * 1992-01-31 2002-01-28 キヤノン株式会社 半導体素子基体とその作製方法
JP2610076B2 (ja) 1992-02-28 1997-05-14 松下電器産業株式会社 ハイブリッド集積回路とその製造方法
US5270298A (en) 1992-03-05 1993-12-14 Bell Communications Research, Inc. Cubic metal oxide thin film epitaxially grown on silicon
US5155658A (en) 1992-03-05 1992-10-13 Bell Communications Research, Inc. Crystallographically aligned ferroelectric films usable in memories and method of crystallographically aligning perovskite films
JP3379106B2 (ja) * 1992-04-23 2003-02-17 セイコーエプソン株式会社 液体噴射ヘッド
US5238877A (en) * 1992-04-30 1993-08-24 The United States Of America As Represented By The Secretary Of The Navy Conformal method of fabricating an optical waveguide on a semiconductor substrate
DE69325614T2 (de) 1992-05-01 2000-01-13 Texas Instruments Inc Pb/Bi enthaltende Oxide von hohen Dielektrizitätskonstanten unter Verwendung von Perovskiten als Pufferschicht, die keine Pb/Bi enthalten
US5326721A (en) 1992-05-01 1994-07-05 Texas Instruments Incorporated Method of fabricating high-dielectric constant oxides on semiconductors using a GE buffer layer
US5365477A (en) * 1992-06-16 1994-11-15 The United States Of America As Represented By The Secretary Of The Navy Dynamic random access memory device
CA2120610C (en) 1992-08-07 1999-03-02 Hideaki Imai Nitride based semiconductor device and manufacture thereof
JPH08501416A (ja) * 1992-09-14 1996-02-13 コンダクタス・インコーポレーテッド 酸化物超伝導体装置及び回路のための改善されたバリア層
US5514484A (en) 1992-11-05 1996-05-07 Fuji Xerox Co., Ltd. Oriented ferroelectric thin film
JPH06151872A (ja) 1992-11-09 1994-05-31 Mitsubishi Kasei Corp Fet素子
DE69331538T2 (de) 1992-12-01 2002-08-29 Matsushita Electric Ind Co Ltd Verfahren zur Herstellung einer elektrischen Dünnschicht
US5248564A (en) 1992-12-09 1993-09-28 Bell Communications Research, Inc. C-axis perovskite thin films grown on silicon dioxide
US5347157A (en) 1992-12-17 1994-09-13 Eastman Kodak Company Multilayer structure having a (111)-oriented buffer layer
JP3047656B2 (ja) * 1993-01-12 2000-05-29 株式会社村田製作所 InSb薄膜の製造方法
KR100293596B1 (ko) * 1993-01-27 2001-09-17 가나이 쓰도무 Lsi내클럭분배회로
JP3248636B2 (ja) 1993-02-03 2002-01-21 日本電信電話株式会社 複合半導体回路装置の作製方法
US5642371A (en) * 1993-03-12 1997-06-24 Kabushiki Kaisha Toshiba Optical transmission apparatus
US5293050A (en) * 1993-03-25 1994-03-08 International Business Machines Corporation Semiconductor quantum dot light emitting/detecting devices
JP3425185B2 (ja) 1993-03-26 2003-07-07 日本オプネクスト株式会社 半導体素子
US5315128A (en) * 1993-04-30 1994-05-24 At&T Bell Laboratories Photodetector with a resonant cavity
JPH06327862A (ja) 1993-05-19 1994-11-29 Brother Ind Ltd 自動制御ミシンにおける故障箇所検出装置
US5456205A (en) 1993-06-01 1995-10-10 Midwest Research Institute System for monitoring the growth of crystalline films on stationary substrates
US5480829A (en) * 1993-06-25 1996-01-02 Motorola, Inc. Method of making a III-V complementary heterostructure device with compatible non-gold ohmic contacts
US5572040A (en) * 1993-07-12 1996-11-05 Peregrine Semiconductor Corporation High-frequency wireless communication system on a single ultrathin silicon on sapphire chip
US5394489A (en) * 1993-07-27 1995-02-28 At&T Corp. Wavelength division multiplexed optical communication transmitters
US5450812A (en) 1993-07-30 1995-09-19 Martin Marietta Energy Systems, Inc. Process for growing a film epitaxially upon an oxide surface and structures formed with the process
JP3644980B2 (ja) * 1993-09-06 2005-05-11 株式会社ルネサステクノロジ 半導体装置の製造方法
EP0685113B1 (en) * 1993-12-20 1999-11-03 General Electric Company Method of repairing a conductive line of a thin film imager or display device and structure produced thereby
JP3395318B2 (ja) * 1994-01-07 2003-04-14 住友化学工業株式会社 3−5族化合物半導体結晶の成長方法
US6469357B1 (en) 1994-03-23 2002-10-22 Agere Systems Guardian Corp. Article comprising an oxide layer on a GaAs or GaN-based semiconductor body
US5481102A (en) * 1994-03-31 1996-01-02 Hazelrigg, Jr.; George A. Micromechanical/microelectromechanical identification devices and methods of fabrication and encoding thereof
US5478653A (en) * 1994-04-04 1995-12-26 Guenzer; Charles S. Bismuth titanate as a template layer for growth of crystallographically oriented silicon
US5883564A (en) * 1994-04-18 1999-03-16 General Motors Corporation Magnetic field sensor having high mobility thin indium antimonide active layer on thin aluminum indium antimonide buffer layer
US5436181A (en) * 1994-04-18 1995-07-25 Texas Instruments Incorporated Method of self aligning an emitter contact in a heterojunction bipolar transistor
US5491461A (en) * 1994-05-09 1996-02-13 General Motors Corporation Magnetic field sensor on elemental semiconductor substrate with electric field reduction means
JP2643833B2 (ja) * 1994-05-30 1997-08-20 日本電気株式会社 半導体記憶装置及びその製造方法
US5828080A (en) 1994-08-17 1998-10-27 Tdk Corporation Oxide thin film, electronic device substrate and electronic device
US5873977A (en) * 1994-09-02 1999-02-23 Sharp Kabushiki Kaisha Dry etching of layer structure oxides
US5754714A (en) * 1994-09-17 1998-05-19 Kabushiki Kaisha Toshiba Semiconductor optical waveguide device, optical control type optical switch, and wavelength conversion device
US5635741A (en) 1994-09-30 1997-06-03 Texas Instruments Incorporated Barium strontium titanate (BST) thin films by erbium donor doping
US5486406A (en) * 1994-11-07 1996-01-23 Motorola Green-emitting organometallic complexes for use in light emitting devices
US5677551A (en) * 1994-11-15 1997-10-14 Fujitsu Limited Semiconductor optical device and an optical processing system that uses such a semiconductor optical system
JPH09139480A (ja) * 1995-01-27 1997-05-27 Toshiba Corp 薄膜キャパシタおよびこれを用いた半導体記憶装置
US5563428A (en) * 1995-01-30 1996-10-08 Ek; Bruce A. Layered structure of a substrate, a dielectric layer and a single crystal layer
US5574744A (en) * 1995-02-03 1996-11-12 Motorola Optical coupler
US5610744A (en) * 1995-02-16 1997-03-11 Board Of Trustees Of The University Of Illinois Optical communications and interconnection networks having opto-electronic switches and direct optical routers
WO1996029725A1 (en) * 1995-03-21 1996-09-26 Northern Telecom Limited Ferroelectric dielectric for integrated circuit applications at microwave frequencies
US5670798A (en) 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
JP3557011B2 (ja) * 1995-03-30 2004-08-25 株式会社東芝 半導体発光素子、及びその製造方法
US5919522A (en) * 1995-03-31 1999-07-06 Advanced Technology Materials, Inc. Growth of BaSrTiO3 using polyamine-based precursors
US6140746A (en) * 1995-04-03 2000-10-31 Seiko Epson Corporation Piezoelectric thin film, method for producing the same, and ink jet recording head using the thin film
US5606184A (en) * 1995-05-04 1997-02-25 Motorola, Inc. Heterostructure field effect device having refractory ohmic contact directly on channel layer and method for making
US6151240A (en) * 1995-06-01 2000-11-21 Sony Corporation Ferroelectric nonvolatile memory and oxide multi-layered structure
US5614739A (en) * 1995-06-02 1997-03-25 Motorola HIGFET and method
KR100189966B1 (ko) 1995-06-13 1999-06-01 윤종용 소이 구조의 모스 트랜지스터 및 그 제조방법
US5753300A (en) * 1995-06-19 1998-05-19 Northwestern University Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films
KR100193219B1 (ko) * 1995-07-06 1999-06-15 박원훈 수동형 편광변환기
US5753934A (en) 1995-08-04 1998-05-19 Tok Corporation Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
JP3310881B2 (ja) * 1995-08-04 2002-08-05 ティーディーケイ株式会社 積層薄膜、電子デバイス用基板、電子デバイスおよび積層薄膜の製造方法
US5760740A (en) * 1995-08-08 1998-06-02 Lucent Technologies, Inc. Apparatus and method for electronic polarization correction
JP3137880B2 (ja) * 1995-08-25 2001-02-26 ティーディーケイ株式会社 強誘電体薄膜、電子デバイスおよび強誘電体薄膜の製造方法
JPH0964477A (ja) * 1995-08-25 1997-03-07 Toshiba Corp 半導体発光素子及びその製造方法
JPH09113767A (ja) * 1995-09-29 1997-05-02 Motorola Inc 光伝送構造を整合するための電子部品
US6022963A (en) * 1995-12-15 2000-02-08 Affymetrix, Inc. Synthesis of oligonucleotide arrays using photocleavable protecting groups
US5861966A (en) * 1995-12-27 1999-01-19 Nynex Science & Technology, Inc. Broad band optical fiber telecommunications network
KR100199095B1 (ko) * 1995-12-27 1999-06-15 구본준 반도체 메모리 셀의 캐패시터 구조 및 그 제조방법
US5729394A (en) * 1996-01-24 1998-03-17 Hewlett-Packard Company Multi-direction optical data port
FR2744578B1 (fr) 1996-02-06 1998-04-30 Motorola Semiconducteurs Amlificateur hautes frequences
TW410272B (en) * 1996-05-07 2000-11-01 Thermoscan Lnc Enhanced protective lens cover
US5729641A (en) * 1996-05-30 1998-03-17 Sdl, Inc. Optical device employing edge-coupled waveguide geometry
US5733641A (en) 1996-05-31 1998-03-31 Xerox Corporation Buffered substrate for semiconductor devices
SE518132C2 (sv) * 1996-06-07 2002-08-27 Ericsson Telefon Ab L M Metod och anordning för synkronisering av kombinerade mottagare och sändare i ett cellulärt system
US6039803A (en) * 1996-06-28 2000-03-21 Massachusetts Institute Of Technology Utilization of miscut substrates to improve relaxed graded silicon-germanium and germanium layers on silicon
US5863326A (en) * 1996-07-03 1999-01-26 Cermet, Inc. Pressurized skull crucible for crystal growth using the Czochralski technique
US5858814A (en) * 1996-07-17 1999-01-12 Lucent Technologies Inc. Hybrid chip and method therefor
US5830270A (en) 1996-08-05 1998-11-03 Lockheed Martin Energy Systems, Inc. CaTiO3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class
US6023082A (en) * 1996-08-05 2000-02-08 Lockheed Martin Energy Research Corporation Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material
US5734672A (en) * 1996-08-06 1998-03-31 Cutting Edge Optronics, Inc. Smart laser diode array assembly and operating method using same
EP0917719A2 (en) * 1996-08-12 1999-05-26 Energenius, Inc. Semiconductor supercapacitor system, method for making same and articles produced therefrom
US5985404A (en) * 1996-08-28 1999-11-16 Tdk Corporation Recording medium, method of making, and information processing apparatus
US5767543A (en) * 1996-09-16 1998-06-16 Motorola, Inc. Ferroelectric semiconductor device having a layered ferroelectric structure
EP0839653A3 (en) * 1996-10-29 1999-06-30 Matsushita Electric Industrial Co., Ltd. Ink jet recording apparatus and its manufacturing method
US5725641A (en) * 1996-10-30 1998-03-10 Macleod; Cheryl A. Lightfast inks for ink-jet printing
US5719417A (en) * 1996-11-27 1998-02-17 Advanced Technology Materials, Inc. Ferroelectric integrated circuit structure
US5912068A (en) 1996-12-05 1999-06-15 The Regents Of The University Of California Epitaxial oxides on amorphous SiO2 on single crystal silicon
US5741724A (en) 1996-12-27 1998-04-21 Motorola Method of growing gallium nitride on a spinel substrate
GB2321114B (en) * 1997-01-10 2001-02-21 Lasor Ltd An optical modulator
US5864543A (en) * 1997-02-24 1999-01-26 At&T Wireless Services, Inc. Transmit/receive compensation in a time division duplex system
US5952695A (en) 1997-03-05 1999-09-14 International Business Machines Corporation Silicon-on-insulator and CMOS-on-SOI double film structures
US6022671A (en) * 1997-03-11 2000-02-08 Lightwave Microsystems Corporation Method of making optical interconnects with hybrid construction
US5872493A (en) * 1997-03-13 1999-02-16 Nokia Mobile Phones, Ltd. Bulk acoustic wave (BAW) filter having a top portion that includes a protective acoustic mirror
JPH10265948A (ja) * 1997-03-25 1998-10-06 Rohm Co Ltd 半導体装置用基板およびその製法
US5906951A (en) * 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
US5857049A (en) * 1997-05-05 1999-01-05 Lucent Technologies, Inc., Precision alignment of optoelectronic devices
US6107653A (en) 1997-06-24 2000-08-22 Massachusetts Institute Of Technology Controlling threading dislocation densities in Ge on Si using graded GeSi layers and planarization
US5869845A (en) * 1997-06-26 1999-02-09 Texas Instruments Incorporated Resonant tunneling memory
JP3813740B2 (ja) * 1997-07-11 2006-08-23 Tdk株式会社 電子デバイス用基板
US6020243A (en) * 1997-07-24 2000-02-01 Texas Instruments Incorporated Zirconium and/or hafnium silicon-oxynitride gate dielectric
US5940691A (en) 1997-08-20 1999-08-17 Micron Technology, Inc. Methods of forming SOI insulator layers and methods of forming transistor devices
US6002375A (en) 1997-09-02 1999-12-14 Motorola, Inc. Multi-substrate radio-frequency circuit
WO1999014804A1 (en) 1997-09-16 1999-03-25 Massachusetts Institute Of Technology CO-PLANAR Si AND Ge COMPOSITE SUBSTRATE AND METHOD OF PRODUCING SAME
US6204525B1 (en) * 1997-09-22 2001-03-20 Murata Manufacturing Co., Ltd. Ferroelectric thin film device and method of producing the same
US6184144B1 (en) * 1997-10-10 2001-02-06 Cornell Research Foundation, Inc. Methods for growing defect-free heteroepitaxial layers
US6233435B1 (en) * 1997-10-14 2001-05-15 Telecommunications Equipment Corporation Multi-function interactive communications system with circularly/elliptically polarized signal transmission and reception
US6181920B1 (en) * 1997-10-20 2001-01-30 Ericsson Inc. Transmitter that selectively polarizes a radio wave
JP3521711B2 (ja) 1997-10-22 2004-04-19 松下電器産業株式会社 カラオケ再生装置
JPH11123868A (ja) 1997-10-24 1999-05-11 Mitsubishi Kagaku Polyester Film Kk 白色ポリエステル被記録媒体
JP4002643B2 (ja) * 1997-11-12 2007-11-07 昭和電工株式会社 単結晶基板とその上に成長させた窒化ガリウム系化合物半導体結晶とから構成されるエピタキシャルウェハ
US6197503B1 (en) * 1997-11-26 2001-03-06 Ut-Battelle, Llc Integrated circuit biochip microsystem containing lens
JP3092659B2 (ja) * 1997-12-10 2000-09-25 日本電気株式会社 薄膜キャパシタ及びその製造方法
US6020222A (en) 1997-12-16 2000-02-01 Advanced Micro Devices, Inc. Silicon oxide insulator (SOI) semiconductor having selectively linked body
US6110840A (en) * 1998-02-17 2000-08-29 Motorola, Inc. Method of passivating the surface of a Si substrate
GB2334594A (en) * 1998-02-20 1999-08-25 Fujitsu Telecommunications Eur Arrayed waveguide grating device
US6011646A (en) * 1998-02-20 2000-01-04 The Regents Of The Unviersity Of California Method to adjust multilayer film stress induced deformation of optics
JPH11274467A (ja) * 1998-03-26 1999-10-08 Murata Mfg Co Ltd 光電子集積回路素子
US6051874A (en) * 1998-04-01 2000-04-18 Citizen Watch Co., Ltd. Diode formed in a surface silicon layer on an SOI substrate
US6055179A (en) 1998-05-19 2000-04-25 Canon Kk Memory device utilizing giant magnetoresistance effect
US6064078A (en) 1998-05-22 2000-05-16 Xerox Corporation Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities
DE69801648T2 (de) * 1998-05-25 2002-04-18 Alcatel Sa Optoelektronisches Modul mit wenigstens einem optoelektronischen Bauelement und Verfahren zur Temperaturstabilisierung
US6888175B1 (en) 1998-05-29 2005-05-03 Massachusetts Institute Of Technology Compound semiconductor structure with lattice and polarity matched heteroepitaxial layers
FI108583B (fi) * 1998-06-02 2002-02-15 Nokia Corp Resonaattorirakenteita
US6113690A (en) 1998-06-08 2000-09-05 Motorola, Inc. Method of preparing crystalline alkaline earth metal oxides on a Si substrate
KR20000003975A (ko) 1998-06-30 2000-01-25 김영환 필드 산화막을 구비한 본딩형 실리콘 이중막 웨이퍼 제조방법
US6338756B2 (en) * 1998-06-30 2002-01-15 Seh America, Inc. In-situ post epitaxial treatment process
JP2000022128A (ja) * 1998-07-06 2000-01-21 Murata Mfg Co Ltd 半導体発光素子、および光電子集積回路素子
JP3450713B2 (ja) * 1998-07-21 2003-09-29 富士通カンタムデバイス株式会社 半導体装置およびその製造方法、マイクロストリップ線路の製造方法
US6103008A (en) 1998-07-30 2000-08-15 Ut-Battelle, Llc Silicon-integrated thin-film structure for electro-optic applications
US6022410A (en) * 1998-09-01 2000-02-08 Motorola, Inc. Alkaline-earth metal silicides on silicon
US6191011B1 (en) * 1998-09-28 2001-02-20 Ag Associates (Israel) Ltd. Selective hemispherical grain silicon deposition
TW399309B (en) * 1998-09-30 2000-07-21 World Wiser Electronics Inc Cavity-down package structure with thermal via
US6343171B1 (en) * 1998-10-09 2002-01-29 Fujitsu Limited Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making
US6232806B1 (en) * 1998-10-21 2001-05-15 International Business Machines Corporation Multiple-mode clock distribution apparatus and method with adaptive skew compensation
US6355939B1 (en) 1998-11-03 2002-03-12 Lockheed Martin Corporation Multi-band infrared photodetector
US6173474B1 (en) 1999-01-08 2001-01-16 Fantom Technologies Inc. Construction of a vacuum cleaner head
US6180486B1 (en) 1999-02-16 2001-01-30 International Business Machines Corporation Process of fabricating planar and densely patterned silicon-on-insulator structure
JP2000278085A (ja) * 1999-03-24 2000-10-06 Yamaha Corp 弾性表面波素子
EP1039559A1 (en) * 1999-03-25 2000-09-27 Seiko Epson Corporation Method for manufacturing piezoelectric material
US6143072A (en) 1999-04-06 2000-11-07 Ut-Battelle, Llc Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate
US6326667B1 (en) * 1999-09-09 2001-12-04 Kabushiki Kaisha Toshiba Semiconductor devices and methods for producing semiconductor devices
US6329277B1 (en) * 1999-10-14 2001-12-11 Advanced Micro Devices, Inc. Method of forming cobalt silicide
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US6362558B1 (en) * 1999-12-24 2002-03-26 Kansai Research Institute Piezoelectric element, process for producing the same and ink jet recording head
US6445724B2 (en) * 2000-02-23 2002-09-03 Sarnoff Corporation Master oscillator vertical emission laser
KR100430751B1 (ko) * 2000-02-23 2004-05-10 주식회사 세라콤 페로브스카이트형 구조 산화물의 단결정 성장 방법
US6348373B1 (en) * 2000-03-29 2002-02-19 Sharp Laboratories Of America, Inc. Method for improving electrical properties of high dielectric constant films
US6415140B1 (en) * 2000-04-28 2002-07-02 Bae Systems Aerospace Inc. Null elimination in a space diversity antenna system
US20020030246A1 (en) * 2000-06-28 2002-03-14 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices not lattice matched to the substrate
US20020008234A1 (en) * 2000-06-28 2002-01-24 Motorola, Inc. Mixed-signal semiconductor structure, device including the structure, and methods of forming the device and the structure
JP2002023123A (ja) * 2000-07-11 2002-01-23 Fujitsu Ltd 非主要光を導波する光導波路を備える光回路
US6661940B2 (en) * 2000-07-21 2003-12-09 Finisar Corporation Apparatus and method for rebroadcasting signals in an optical backplane bus system
DE60124766T2 (de) * 2000-08-04 2007-10-11 Amberwave Systems Corp. Siliziumwafer mit monolithischen optoelektronischen komponenten
US6501121B1 (en) * 2000-11-15 2002-12-31 Motorola, Inc. Semiconductor structure
KR100360413B1 (ko) * 2000-12-19 2002-11-13 삼성전자 주식회사 2단계 열처리에 의한 반도체 메모리 소자의 커패시터 제조방법
US6524651B2 (en) * 2001-01-26 2003-02-25 Battelle Memorial Institute Oxidized film structure and method of making epitaxial metal oxide structure
US6528374B2 (en) * 2001-02-05 2003-03-04 International Business Machines Corporation Method for forming dielectric stack without interfacial layer
US6498358B1 (en) * 2001-07-20 2002-12-24 Motorola, Inc. Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating
US6589887B1 (en) * 2001-10-11 2003-07-08 Novellus Systems, Inc. Forming metal-derived layers by simultaneous deposition and evaporation of metal

Also Published As

Publication number Publication date
WO2001059837A1 (en) 2001-08-16
US20020047123A1 (en) 2002-04-25
JP2003523078A (ja) 2003-07-29
EP1258027A2 (en) 2002-11-20
TW497152B (en) 2002-08-01
TWI301292B (en) 2008-09-21
KR100695662B1 (ko) 2007-03-19
JP2003523084A (ja) 2003-07-29
TW494450B (en) 2002-07-11
AU2001236820A1 (en) 2001-08-20
AU2001234999A1 (en) 2001-08-20
JP2003523083A (ja) 2003-07-29
WO2001059820A1 (en) 2001-08-16
AU2001236895A1 (en) 2001-08-20
US20040232525A1 (en) 2004-11-25
KR20020077678A (ko) 2002-10-12
EP1258030A1 (en) 2002-11-20
AU2001234972A1 (en) 2001-08-20
WO2001059836A1 (en) 2001-08-16
US7067856B2 (en) 2006-06-27
US6392257B1 (en) 2002-05-21
CN1222032C (zh) 2005-10-05
WO2001059814A2 (en) 2001-08-16
WO2001059822A1 (en) 2001-08-16
AU2001238137A1 (en) 2001-08-20
EP1258031A1 (en) 2002-11-20
WO2001059835A1 (en) 2001-08-16
KR20020086514A (ko) 2002-11-18
US20040149202A1 (en) 2004-08-05
TW487969B (en) 2002-05-21
US20020074624A1 (en) 2002-06-20
US20040149203A1 (en) 2004-08-05
CN1261978C (zh) 2006-06-28
WO2001059814A3 (en) 2002-04-18
WO2001059821A8 (en) 2001-11-15
AU2001234973A1 (en) 2001-08-20
CN1416591A (zh) 2003-05-07
CN1398429A (zh) 2003-02-19
JP2003523081A (ja) 2003-07-29
CA2399394A1 (en) 2001-08-16
CN1398430A (zh) 2003-02-19
JP2003523080A (ja) 2003-07-29
EP1258038A1 (en) 2002-11-20
KR20020075403A (ko) 2002-10-04
US20040150076A1 (en) 2004-08-05
KR20020077907A (ko) 2002-10-14
CN1416590A (zh) 2003-05-07
KR20020091089A (ko) 2002-12-05
EP1258039A1 (en) 2002-11-20
WO2001059821A1 (en) 2001-08-16
TWI235491B (en) 2005-07-01
WO2001059820A8 (en) 2001-11-15
AU2001234993A1 (en) 2001-08-20
US20040150003A1 (en) 2004-08-05
TW483050B (en) 2002-04-11
CA2400513A1 (en) 2001-08-16
US20020047143A1 (en) 2002-04-25

Similar Documents

Publication Publication Date Title
CN1222032C (zh) 通信装置
US20030162507A1 (en) Semiconductor structure for high speed digital and radio frequency processing
US20020030246A1 (en) Structure and method for fabricating semiconductor structures and devices not lattice matched to the substrate
WO2002001648A1 (en) Semiconductor structure, device, circuit, and process
US20030027409A1 (en) Germanium semiconductor structure, integrated circuit, and process for fabricating the same
US20030013319A1 (en) Semiconductor structure with selective doping and process for fabrication
US20030020144A1 (en) Integrated communications apparatus and method
US20030020121A1 (en) Semiconductor structure for monolithic switch matrix and method of manufacturing
US20030034545A1 (en) Structure and method for fabricating semiconductor structures with switched capacitor circuits
US20030015711A1 (en) Structure and method for fabricating semiconductor structures and devices utilizing the formation of a complaint substrate with an intermetallic layer
US20030020070A1 (en) Semiconductor structure for isolating high frequency circuitry and method for fabricating
US20020175347A1 (en) Hybrid semiconductor input/output structure
US20030020071A1 (en) Integral semiconductor apparatus for conducting a plurality of functions
US20030017621A1 (en) Fabrication of buried devices within a semiconductor structure
US20030017624A1 (en) Structure and method for fabricating semiconductor structures and devices utilizing compliant substrate for materials used to form the same
US20030015760A1 (en) Structure and process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same including a combined anneal of CMOS and compound semiconductor regions
WO2003010805A2 (en) Complementary iii-v structures and devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication