CN1434893A - 从地下储藏田开采液态烃的组合物及方法 - Google Patents

从地下储藏田开采液态烃的组合物及方法 Download PDF

Info

Publication number
CN1434893A
CN1434893A CN01810851A CN01810851A CN1434893A CN 1434893 A CN1434893 A CN 1434893A CN 01810851 A CN01810851 A CN 01810851A CN 01810851 A CN01810851 A CN 01810851A CN 1434893 A CN1434893 A CN 1434893A
Authority
CN
China
Prior art keywords
composition
stratum
polymer
water
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01810851A
Other languages
English (en)
Inventor
K-T·常
H·弗兰普通
J·C·摩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nalco Energy Services LP
Original Assignee
Ondeo Nalco Energy Services LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ondeo Nalco Energy Services LP filed Critical Ondeo Nalco Energy Services LP
Publication of CN1434893A publication Critical patent/CN1434893A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers

Abstract

本发明涉及一种组合物,该组合物含有未膨胀体积平均粒度为0.05-10微米的可膨胀交联聚合物微粒,和含量约为9,000-约200,000ppm的不稳定交联剂和0-约300ppm的稳定交联剂的交联剂。应用该组合物可以调节储藏田岩层的渗透性,并能提高储藏田中液态烃的流动化作用和/或回采率。

Description

从地下储藏田开采液态烃的组合物及方法
技术领域
本发明涉及从地下储藏田开采液态烃的组合物及方法,特别是涉及一种可膨胀交联聚合物微粒组合物,它能调节地层的渗透性,并能提高地层中液态烃的活动化作用和回采率。
发明概要
从储藏田中开采能源烃的第一阶段是让石油、天然气、冷凝物等移到采油井,再从采油井流到或泵送到地面处理设施。通常地层中只有相当小部分的烃油可以通过这种方式开采。广泛采用的方法是在临近的井中注入流体从而维持油藏中的能源并确保将烃油推入采油井中。这就是通常所说的二次开采。
常用的流体是水(如蓄水层的水,河水,海水或产出水)或气(如产出气,二氧化碳,废气和其他不同气体)。如果注入的流体引起通常不动的残留石油或烃油的运动,该过程就是通常所说的三次开采。
二次开采和三次开采工程中存在的普遍问题与含油岩层的不均匀性有关。注入流体的流动性通常和烃油的流动性不同,在其流动性较好时,再加上各种各样的流动性控制工艺使储藏田的清扫更加均衡,随后的烃油开采效率更高。在储藏田岩层存在的高渗透区通常称作漏失带或条痕区,该工艺的作用是有限的。注入的流体从注入点到采油井间有一条低阻力路线,在这种情况下,注入的流体不能有效地从临近处的低渗透区清扫出烃油。当产出流体重用时,将导致流体通过漏失带循环从而对采油没多大用途,但是为保持泵系统工作还将耗费大量的燃料。
为将注入流体引出漏失带到采油井或注入井内或其附近,采用了大量的物理和化学方法,当应用于采油井时通常称谓水(或气)切断处理。当应用于注入井时就被称谓剖面调整或一致控制处理。
在将漏失层从附近的低渗透区隔离开地情况下,并在完成的采油井通过引起隔离的障碍(如页岩层或低产井)形成良好密封时,可以在采油井中用机械密封和塞子来堵塞注入流体的入口。如果流体从采油井底进入或离开油层,可用水泥来填补入口区域上的井孔。
当完成的采油井允许注入流体进入漏失层和附近区域时,比如在采油井上所作的水泥保护层和注水泥的工作完成得欠佳时,通常挤水泥浆是隔离漏水带的合适办法。
在某些情况下,此类方法也不奏效,因为在储藏田岩层间水泥不能到达的地方存在窜流。比较典型的情况是在保护层后存在裂缝、碎石区和冲刷岩洞。这时可以用能在储藏田岩层间流动的化学凝胶来封锁扫除区。
当该方法失败时,剩下唯一选择就是以低的回采率采油,远离原扫除区另钻新井,或放弃该井。偶尔采油井会被转化成流体注入点,以在净烃油采油率的基础上提高油田的注入率。这将提高整个回采率,但值得注意的是,注入流体的大部分将在新的注入点进入漏失层,并在附近采油井导致类似的问题。所有这些都是造价很高的选择。
当漏失层与邻近的含烃低渗透带广泛接触时,在井筒附近一致控制方法常遭失败。究其原因在于注入流体可以绕过处理作业,并再次进入与小部分烃油接触的漏失层,甚至不剩一点烃油。在现有技术中众所周知,在井筒附近此类处理并未成功地提高储藏田地回采率,注入流体在区域之间交叉流动。
为降低漏失层的大部分区域的或距注入井和采油井相当远处的渗透性,已经研制了一些工艺。其中一个例子就是阿而巴尼亚的Morgan等人的深度转移凝胶工艺专利。该专利已在油田得到应用,但问题是对药剂质量的不均恒性敏感,导致分布不好。凝胶组合物是两种成分配方,并认为这造成它在储藏田中分布不佳。
美国专利US546792和US5735349中披露了用交联超吸收剂聚合物微粒调节储藏田渗透性。但是,这里所说的超吸收剂微粒的膨胀通过将载体从烃改为水或从高盐度水改为低盐度水来诱导。
发明概述
我们发现一种新的聚合物微粒,微粒的构造受限于可逆的(不稳定的)内交键(internal crosslinks)。微粒的性质,如粒径分布和密度,使其能构有效地扩展于烃储藏田的岩层多孔结构间,如砂岩。当加热至储藏田温度和/或在预定的pH值条件下,可逆的(不稳定的)内交键开始断裂,粒子通过吸收注入流体(通常是水)而膨胀。
粒子从其原始大小(在注入点)开始膨胀的能力仅仅取决于导致可逆的(不稳定的)内交键断裂的发生条件。并不决定于运送流体的种类和储藏田水的盐度。本发明的粒子能够在储藏田的多孔结构间扩展,而不需用指定的流体或盐度高于储藏田流体的流体。
设计膨胀粒子具有一定的粒径分布和物理特性,例如,粒子的流变能力使之可以阻止注入流体在多孔结构间的流动。如此以来,它就具有将流体较少逐入储藏田扫描带的能力。
粒子的流变能力和膨胀粒径可以通过设计来满足储藏田指标,如选择聚合体中合适单体或聚体地比率,或在生产过程中合适选择引入可逆的(不稳定的)和不可逆交联键。
因此,在它的主要实施例中,本发明涉及一种组合物,其包含未膨胀体积平均粒度约为0.05-10微米的高交联的可膨胀聚合物微粒,和含量约为9,000-200,000ppm的不稳定(labile)交联剂和0-300ppm的稳定交联剂的交联剂。本发明的详细内容
名词解释
“两性聚合物微粒”是指交联聚合物微粒具有阳离子取代基和阴离子取代基,但并不要求它们具有相同的化学计量比。典型的两性聚合物微粒包括如本文所定义的非离子单体、阴离子单体和阳离子单体的三元共聚物。优选的选两性聚合物微粒的阴离子单体和阳离子单体的摩尔比大于1∶1。
“两性离子对单体”是指碱性的含氮酸碱盐单体如丙烯酸二甲氨基乙酯(DMAEA)、甲基丙烯酸二甲氨基乙酯(DMAEM)、2-甲基丙烯酰基乙氧基二乙胺等,以及酸性单体如丙烯酸和磺酸如2-丙烯酰胺基-2-甲基丙磺酸、2-甲基丙烯酰基氧乙烷磺酸、乙烯基磺酸和苯乙烯磺酸等。
“阴离子单体”是指含有酸性官能团及其碱性加成盐的单体。代表性的阴离子单体有丙烯酸、甲基丙烯酸、顺丁烯二酸、亚甲基丁二酸、2-丙烯酸、2-甲基-2-丙烯酸、2-丙烯酰胺基-2-甲基丙烷磺酸、磺丙基丙烯酸以及它们的其它水溶形式,或其它可聚合的羧酸或磺酸、磺甲基化的丙烯酰胺、烯丙基磺酸、乙烯基磺酸、丙烯酸和甲基丙烯酸的季盐如丙烯酸铵和甲基丙烯酸铵等。优先选用的阴离子单体包括:2-丙烯酰胺基-2-甲基丙烷磺酸钠盐、乙烯基磺酸钠盐和苯乙烯磺酸钠盐,其中更优选2-丙烯酰胺基-2-甲基丙烷磺酸钠盐。
“阴离子聚合物微粒”是指含有净负电荷的交联聚合物微粒。代表性的阴离子聚合物微粒包括:丙烯酰胺和2-丙烯酰胺基-2-甲基丙烷磺酸的共聚物、丙烯酸钠和丙烯酰胺的共聚物、丙烯酰胺,2-丙烯酰胺基-2-甲基丙烷磺酸和丙烯酸钠的三聚物,以及2-丙烯酰胺基-2-甲基丙烷磺酸的均聚物。优先选用的阴离子聚合物微粒是由约95%~10%(克分子百分数)的非离子单体和约5%~90%(克分子百分数)的阴离子单体制备的。更优选的阴离子聚合物微粒由约95%~10%(克分子百分数)的丙烯酰胺和约5%~90%(克分子百分数)的2-丙烯酰胺基-2-甲基丙烷磺酸来制备。
“含甜菜碱聚合物微粒”是指由一种甜菜碱单体和一种或多种非离子单体聚合得到的交联聚合物微粒。
“甜菜碱单体”是指含有相同比例的正负电荷官能团的单体,因此该单体是中性的。典型的甜菜碱型单体有:N,N-二甲基-N-丙烯酰基乙氧基-N-(3-磺丙基)-铵甜菜碱、N,N-二甲基-N-甲基丙烯酰基乙氧基-N-(3-磺丙基)-铵甜菜碱、N,N-二甲基-N-丙烯酰胺基丙基-N-(2-羧甲基)-铵甜菜碱、N,N-二甲基-N-丙烯酰胺基丙基-N-(2-羧甲基)-铵甜菜碱、N,N-二甲基-N-丙烯基乙氧基-N-(3-磺丙基)-铵甜菜碱、N,N-二甲基-N-丙烯酰胺基丙基-N-(2-羧甲基)-铵甜菜碱、N-3-丙磺酸基乙烯基吡啶铵甜菜碱、2-(乙硫基)乙基甲基丙烯酰基-S-(磺丙基)-锍甜菜碱、1-(3-磺丙基)-2-乙烯基吡啶盐甜菜碱、N-(4-磺丁基)-N-甲基二烯丙基胺铵甜菜碱(MDABS)、N,N-二烯丙基-N-甲基-N-(2-磺乙基)铵甜菜碱等。其中N,N-二甲基-N-甲基丙烯酰基乙氧基-N-(3-磺丙基)-铵甜菜碱是优选的甜菜碱型单体。
“阳离子单体”这里是指含有净正电荷的单体。典型的阳离子单体包括:丙烯酸二烷氨基烷基酯和甲基丙烯酸二烷氨基烷基酯的季盐和酸性盐,如丙烯酸二甲氨基乙酯甲基氯季盐(DMAEA.MCQ)、甲基丙烯酸二甲氨基乙酯甲基氯季盐(DMAEM.MCQ)、丙烯酸二甲氨基乙酯盐酸盐、丙烯酸二甲氨基乙酯硫酸盐、丙烯酸二甲氨基乙酯苄基氯季盐(DMAEA.BCQ)、和丙烯酸二甲氨基乙酯甲基硫酸季盐;二烷氨基烷基丙烯酰胺和二烷氨基烷基甲基丙烯酰胺的季盐和酸性盐,如二甲氨基丙基丙烯酰胺盐酸盐、二甲氨基丙基丙烯酰胺硫酸盐、二甲氨基丙基甲基丙烯酰胺盐酸盐、二甲氨基丙基甲基丙烯酰胺硫酸盐、甲基丙烯酰胺丙基三甲基氯化铵和丙烯酰胺丙基三甲基氯化铵;以及N,N-二烯丙基二烷基卤化铵,如二烯丙基二甲基氯化铵(DADMAC)。优先选用的阳离子单体为丙烯酸二甲氨基乙酯甲基氯季盐(DMAEA.MCQ)、甲基丙烯酸二甲氨基乙酯甲基氯季盐(DMAEM.MCQ)和二烯丙基二甲基氯化铵(DADMAC),其中更优选二烯丙基二甲基氯化铵(DADMAC)。
“交联单体”是指烯键未饱和的单体,含有至少两个未饱和烯键,将其加入到本发明的聚合物微粒中约束该微粒的结构。为保持微粒结构的刚性无膨胀性,与传统的超吸收性聚合物相比,这些聚合物微粒中的交联度较高。本发明所指的交联单体包括不稳定交联单体和稳定交联单体。
“乳液”、“微乳液”和“反向乳液”是指油包水型聚合物乳液,由水相中的聚合物微粒、用作油相的烃油和一种或多种油包水型乳化剂组成。乳液聚合物的特点是烃连续的,水溶性聚合物分散在烃介质中。这些乳液聚合物可通过切变、稀释以及通常所用的转向表面活化剂随意“转化”或转变为水相连续形式。参见美国专利:US3734873。
“流体流动性”为一比率,用来定义流体流经一多孔介质的容易程度。该比率即通常所说的流动性,对一给定液体,表示为多孔介质的渗透性与液体粘度的比率。
对于流经一多孔介质的单流体x可表示为: λ = k x η x ( 1 ) .
对于一种以上的流体,必须用相对渗透性代替式(1)中的绝对渗透性。
在其它一种或多种流体存在的情况,流体x流经一多孔介质可表示为: λ x = k rx η x ( 2 ) .
当有两种或多种流体流动时,流体流动性可用来定义流度比: M = λ x λ y = η y k rx η x k ry ( 3 ) .
可用流度比研究流体驱替,例如在采油的注水过程中(x代表水,y代表油),驱替过程的效率与流度比是相关的。一般来说,流度比为1时,流体以“活塞流”的形式流动,驱油效果好。当水的流动性是油的粘滞不稳定性十倍(即指进)时,驱油效果差。当油的流动性是水十倍时,几乎可将油完全驱除出来。
“离子对聚合物微粒”是指通过聚合两性离子对单体和一种或多种阴离子或非离子单体制备的交联聚合物微粒。
“不稳定交联单体”是指该单体在引入到聚合物结构中后,可在一定条件下被热或/和pH降解,用来降低本发明聚合物微粒的交联度。上述条件只打开“交联单体”的键,而不降解剩余的聚合物骨架。代表性的不稳定交联单体有:二胺类的二丙烯酰胺类和甲基烯酰胺类,如哌嗪的二丙烯酰胺,二、三和四羟基化合物的丙烯酸酯或甲基丙烯酸酯,包括乙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、乙氧化三羟甲基三丙烯酸酯和乙氧化季戊四醇四丙烯酸酯等;由偶氮隔开的二乙烯基或二烯丙基化合物,如2,2’-偶二Azobis异丁酸(isbutyric acid)的二丙烯基酰胺以及双或三官能酸的乙烯基酯或烯丙基酯。优先选用的交联单体包括水溶性二丙烯酸酯类,如PEG200二丙烯酸酯和PEG400二丙烯酸酯,和多元醇的多官能乙烯基衍生物,如乙氧化(9-20)三羟甲基三丙烯酸酯。
不稳定交联剂的用量为9000~200000ppm(基于单体的总摩尔数),优先选用的量为9000~100000ppm,更优选20000~60000ppm。
“单体”是指可聚合的烯丙基、乙烯基或丙烯酸基化合物。可以是阴离子型、阳离子型、非离子型或两性离子型单体。优先选用乙烯基单体,首选丙烯酸基单体。
“非离子单体”这里定义为电中性的单体。代表性的非离子单体包括:N-异丙基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二乙基丙烯酰胺、二甲基氨丙基丙烯酰胺、二甲基氨丙基甲基丙烯酰胺、丙烯酰基吗啉、丙烯酸羟乙酯、丙烯酸羟丙酯、甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯、丙烯酸二甲氨基乙酯(DMAEA)、甲基丙烯酸二甲氨乙酯(DMAEM)、马来酸酐、N-乙烯基吡咯烷酮、醋酸乙烯酯和N-乙烯基甲酰胺。优先选用的非离子单体包括丙烯酰胺、N-甲基丙烯酰胺、N,N-二甲基丙烯酰胺和甲基丙烯酰胺,其中更优选丙烯酰胺。
“稳定交联单体”是指在热或/和pH条件下不被降解的交联单体,这一条件却能够使不稳定交联单体分解。加入稳定交联单体和不稳定交联单体可以控制聚合物微粒的膨胀性结构。稳定交联单体包括:亚甲基二丙烯酰胺、二烯丙基胺、三烯丙基胺、二乙烯基砜、二乙二醇二烯丙基醚等。其中优选的稳定交联单体为亚甲基二丙烯酰胺。
稳定交联剂的用量为0~300ppm(基于单体的总摩尔数),优先选用的量为0~200ppm,首选0~100ppm。如果不存在稳定交联剂,由于不稳定交联剂的完全断裂,聚合物颗粒将转变成线性带状聚合物的混合物。因此颗粒分散相变为聚合物溶液。由于粘度不同,该聚合物溶液在多孔介质上的流动性也有所变化。在少量稳定交联剂存在的条件下,从颗粒到线性分子的转变是不完全的。这些颗粒变成一个松散交联的网络,但仍保持其“结构”。存在这样“结构”的颗粒会阻塞多孔介质的孔间通道造成堵塞。最佳实施例
本发明的聚合物微粒优先推选的制备方式是反向乳液或微乳液聚合,以保证一定的粒度范围。聚合物微粒的未膨胀体积的平均颗粒直径约在0.1~3微米之间为好,最好在0.1~1微米之间。
使用微乳液工艺制备交联聚合物微粒的典型方法已在美国专利US4956400、US4968435、US5171808、US5465792和US5735439中作了介绍。
在反向乳液或微乳液工艺过程中,将交联剂和单体的水溶液加入到含有适量表面活性剂或表面活性剂组合物的液态烃中形成反向单体微乳液,其由分散在烃类液体连续相中的小水滴组成,这可使单体微乳液进行自由基聚合。
除了单体和交联剂外,该水溶液还含有其它的传统添加剂,如用来除去聚合抑制剂的螯合试剂、pH调节剂、引发剂和其它的传统添加剂。
液态烃相包括一种液态烃或多种液态烃的混合物,优先选取饱和液态烃及它们的混合物。代表性的液态烃有:苯、甲苯、燃料油、煤油、无臭石油溶剂油和它们的混合物。
这里所述的在微乳液工艺中可用到的表面活性剂包括:山梨糖醇酐脂肪酸酯、乙氧化山梨糖醇酐脂肪酸酯等以及它们的混合物。优先选取的乳化剂有:乙氧化山梨醇油酸酯和山梨醇倍半油酸酯(sorbitansesquioleate)。有关这些试剂的详细叙述可参见McCutcheon编写的《洗涤剂和乳化剂》一书(北美版,1980)。
在现有技术中可采用许多方式进行乳液聚合,可使用多种热分解和氧化还原自由基引发剂来引发聚合,包括:偶氮化合物,如偶氮二异丁腈;过氧化物,如过氧化叔丁基;有机化合物,如过硫酸钾;以及氧化还原电对,如亚硫酸氢钠/溴酸钠。可将该乳液添加到含转向表面活性剂的水中制备其水产物。
作为选择,用不稳定交联剂交联的聚合物微粒可通过内部交联的聚合物颗粒制备,该聚合物颗粒含有带羧酸和羟基侧基的聚合物。交联通过羧酸和羟基之间的酯形成来实现。为脱除水分,酯化可用共沸蒸馏(美国专利:US4599379)或薄膜蒸发技术(美国专利:US5589525)来完成。例如,以丙烯酸、2-羟乙基丙烯酸酯、丙烯酰胺和2-丙烯酰胺-2-甲基丙烷磺酸钠为单体,由反向乳状聚合制备的聚合物微粒可通过上述提到的脱水过程转换成交联聚合物颗粒。
任选地,可用干型方式来制备聚合物微粒,即向乳液中添加使聚合物沉淀的溶剂,如异丙醇、异丙醇/丙酮或甲醇/丙酮,或其它溶剂,或这些溶剂的组合物,它们与烃类和水都互溶,然后过滤得到固体颗粒并进行干燥。
将干燥的聚合物重新分散到水中可得到聚合物微粒的水悬浮液。
在另一实施方案中,本发明提出了调节地层水渗透性的一种方法,包括向地层注入一种含有交联聚合物微粒的组合物,其含有的交联剂含量为约0.9~20克分子百分数的不稳定交联剂和约0~300ppm的稳定交联剂。这里所用微粒的直径小于地层的孔径,不稳定交联剂在温度和pH的条件下断裂,在地层形成膨胀的微粒。
在温度不断升高的条件下,该组合物在地层流经渗透性相对较高的地带,直到温度或pH足够高的地点,引起聚合物微粒的膨胀。
与传统的封堵剂不同,如聚合物溶液和聚合物凝胶,它们不能深远地渗入地层中,本发明的组合物,由于其粒度和低粘度,可渗入远离注入点处,直到遇到高温地带才停止。
而且,本发明的聚合物微粒,由于其高度的交联特性,在不同盐度的溶液中都不膨胀。因此,其渗透粘度不受地层流体盐度的影响。同样也不需要专门的携带液进行处理。只有当颗粒遇到可降低交联密度的充足条件后,流体流变学才发生改变,达到预期的效果。
交联密度的降低依赖于不稳定交联剂的断裂速度。特别是不同的不稳定交联剂在不同温度下其键裂的速度也不相同。键裂的温度和机理依赖于交联化学键的性质。例如,当不稳定交联剂是PEG二丙烯酸酯时,酯键的水解是破坏交联的机理。不同醇类的水解速度略有不同。一般来说,在相似的条件下,甲基丙烯酸酯的水解速度小于丙烯酸酯的水解速度。对于被偶氮基团分开的二乙烯基或二烯丙基化合物如2,2’-偶二Azobis异丁酸(isbutyric acid)的二丙烯胺,交联破坏的机理是氮分子的消除。有各种各样的偶氮型引发剂用于自由基聚合,不同偶氮化合物的分解半衰期温度也不相同。
除了交联断裂速度外,我们认为颗粒直径的膨胀速度也依赖于剩余的交联总量。我们已观测到,当交联量降低时,颗粒开始逐渐膨胀。当交联总量低于某一临界密度时,其粘度爆发性地增加。因此,通过正确选择不稳定交联剂,可使聚合颗粒具有依时和依温特性。
膨胀前聚合颗粒粒度根据由最高渗透性漏失层计算的孔径来选择。交联剂的类型和浓度(其决定注入颗粒开始膨胀前的延迟时间)由以下因素来选择:注入井及地层更深处的温度、注入颗粒通过漏失层预期的移动速度、以及其使水从漏失层流出到临近的含烃类低渗透性地带的容易程度。考虑以上因素设计出的聚合物微粒在膨胀后会有更好的水堵作用,以及在地层更佳的位置停留。
在本发明的最佳实施例中,该组合物添加到注入水中,作为从地层开采烃类第二或第三工艺的一部分。
在另一实施例中,加入到地层中的注入水温度低于地层的温度。
根据聚合物的活性,该组合物的加入量约为100~10000ppm,优先选用的范围为500~1500ppm,其中首选500~1000ppm。
在该实施方案的另一方面,膨胀聚合颗粒的直径大于地层岩石孔隙待控制孔喉半径的十分之一。
在该实施方案的另一方面,膨胀聚合颗粒的直径大于地层岩石孔隙待控制孔喉半径的四分之一。
在该实施方案的另一方面,地层为一砂岩或碳酸盐烃类贮藏田。
在该实施方案的另一方面,该组合物用于二氧化碳和水三次开采项目。
在该实施方案的另一方面,该组合物用于三次采油工艺,其为注入水中的一个成分。
在另一实施例中,本发明提出了一种增加地层中流体烃流动或开采速度的方法,包括向地层注入一组合物,根据本专利要求权项1,微粒直径小于地层孔径,在地层的温度和pH条件下不稳定交联剂断裂,以降低该组合物的流动性。
在在该实施方案的另一方面,该组合物添加到注入水中,作为从地层开采烃类第二或第三工艺的一部分。
在在该实施方案的另一方面,该注入水灌注到采油井中。在采油井使用本发明的组合物可增加液体开采物中的油水比。通过注入含有本发明聚合物微粒的组合物并使其膨胀,可选择性地封堵产水区。
在该实施方案的另一方面,加入到地层中的注入水温度低于地层的温度。
在该实施方案的另一方面,地层为一砂岩或碳酸盐烃类贮藏田。
以下的实例将对本发明作进一步说明,但本发明的保护范围并不受这些实例的限制。
实例1-8
聚合物微粒的制备
采用反向乳液聚合技术按照下述方法很容易制备本发明的聚合物微粒。
代表性的乳液聚合物是通过聚合单体乳液来制备的。单体乳液的组成是:50%的丙烯酰胺164.9g、58%的丙烯酰胺基甲基丙磺酸钠(AMPS)375.1g、16.38g水、0.5g 40%的二乙烯基三胺五醋酸五钠、3.2g 1%的亚甲基双丙烯酰胺(mba)溶液和36.24g聚乙二醇(PEG)二丙烯酸酯组成的水溶液作为分散相;336g石油馏出物、60g乙氧化油酸山梨糖醇酯和4g山梨糖醇酐倍半油酸酯的混合物作为连续相。
将水相和油相混合,并用Silverson均质器将其均质化来制备单体乳液。用氮脱氧30分钟后,用氧化还原电对型引发剂亚硫酸氢钠/溴酸钠在室温下引发聚合。聚合温度不需要调节。通常在5分钟内聚合热会使温度从25℃升高到80℃。最高温度过后,反应混合物会在75℃下保持2个小时。
如果需要,使用丙酮和异丙醇通过沉淀、过滤和洗涤,可将聚合物微粒从乳化液中分离出来。干燥后,油和表面活性剂游离颗粒可重新分散到水介质中。在去离子水中用Malvern Instruments’MastersizerE测量的该乳液颗粒的平均粒度为0.28微米。
表1列出了实例1给出的典型的乳液聚合物制备方法。表1乳液方式制备聚合物微粒
实例1  实例2  实例3  实例4  实例5  实例6  实例7  实例8
50%丙烯酰胺 164.9  164.9  82.45  131.84  82.5  82.5  82.5  82.5
58%丙烯酰胺基甲基丙磺酸钠 375.1  375.1  187.55  300  187.5  187.5  187.5  187.5
去离子水 19.58  19.58  12.5  36.8  18  22.9  25.3  26.5
亚甲基双丙烯酰胺 0.032  0.032  0  7.36  0  0  0  0
PEG-200二丙烯酸酯 36.24  18.12  30.46*  0  9.75  4.87  2.44  1.22
交联剂/单体摩尔比ppm 56890  28500  28390  28390  18390  9080  4540  2270
石油馏出物 336  336  168  268.8  168  168  168  168
乙氧化油酸山梨糖醇酯 60  60  30  48  30  30  30  30
山梨糖醇酐倍半油酸酯 4  4  2  3.2  2  2  2  2
*PEG-400二丙烯酸酯
            实例9可膨胀与不可膨胀颗粒
实例5-8制备的聚合物在去离子水和720ppm氯化钠溶液中1%悬浮液的粘度(厘泊)列于表2中。1%悬浮液是通过转向表面活性剂转向水介质聚合物乳液来制备的。粘度是室温下用布氏(低粘度)粘度计在60转数/分条件下测定的。
               表2室温下1%聚合物悬浮液的粘度(厘泊)
                  粘度(厘泊)
   实例5    实例6    实例7   实例8
去离子水     5.5     54    1360   8300
720ppm氯化钠溶液     3.8     6.2    26   138
去离子水与720ppm氯化钠溶液的比值     1.45     8.7    52.3   60
交联剂/单体摩尔比ppm     18000     9080    4540   2270
以上数据表明随交联剂用量的增加,交联颗粒的膨胀能力在下降。当交联密度达到一定水平时,即使在去离子水中,颗粒表现出的膨胀倾向也非常小。去离子水与盐水中粘度的比值是表征颗粒膨胀能力的一个较好指标。该数据还表明即使浓度非常低的电解质也会降低颗粒的膨胀能力。实例5制备的颗粒表现出了不可膨胀颗粒的特性。
                      实例10
为说明本发明聚合物微粒的非膨胀性,实例1和实例2制备的胶乳颗粒在不同盐度水溶液中的悬浮液的粘度列于表3。该粘度是75°F温度下用布氏(低粘度)粘度计(带有高粘度适配器)在60转数/分条件下测定的。
                  表3聚合物悬浮液在盐水溶液中的粘度
    浓度   样品        在不同介质中的粘度(厘米/秒)
  去离子水     合成盐水0.45%总溶解固体量     2%KCl   去离子水与2%KCl的比值
  1.5%悬浮液   实例1     1.45      1.45     1.6     0.9
  1.5%悬浮液   实例2     3.55      1.75     2.1     1.7
  1%悬浮液   实例1     1.3      1.3     1.4     0.9
  1%悬浮液   实例2     2      1.35     1.35     1.5
  0.5%悬浮液   实例1     1.1      1.05     0.95     1.2
  0.5%悬浮液   实例2     1.45      1.1     1.1     1.3
  空白     1      0.95     1.05     0.95
去离子水与2%KCl的低粘度比值表明,即使盐度对比度达到20000ppm,实例1和实例2的颗粒是不膨胀的。
         实例11热对聚合物微粒的活化作用
本实例用来说明热对本发明聚合物微粒的活化作用。
表4列出了0.5%胶乳颗粒水悬浮液在合成盐水(其成分见表6,总溶解固体量4570ppm)中经140°F、175°F和210°F温度老化后的粘度(厘泊)。该粘度是75°F温度下用布氏低粘度(Brookfield LV)US1轴在60转数/分(剪切速率13.2秒-1)条件下测定的。
                                             表4
  老化天数                                              粘度(厘泊)
             140°F          175°F                  210°F
    实例1    实例2   实例3    实例1    实例2   实例3    实例1    实例2    实例3    实例4
    0     3.3     3.1   3.3     3.3     3.1    3.3     3.3     3.1     3.3     2.3
    2     -     -   -     -     -    -     5     9     12     -
    5     -     -   -     4.1     6    12     5     13     36     -
    10     3.5     4.2   5     4.2     8.9    21.4     7     33     64     2.3
    15     -     -   -     -     -    -     14     46     44     -
    20     3.2     5.6   -     4.8     20.4    41     27     49     -     2.8
    25     -     -   6.5     -     -    50     -     -     50     -
    30     3.6     5.4   -     5.7     40.4    -     36     55     -     3.2
    40     4.1     6.8   -     7.2     37.8    -     -     48     -     3.1
    45     -     -   -     -     -    -     57     -     -     -
以上数据表明,对于实例1制备的颗粒,在140°F、175°F温度下老化30天未发现膨胀,该颗粒在210°F温度下老化10天后被活化(开始膨胀)。对于实例2制备的颗粒,在140°F温度下老化30天未发现膨胀,在175°F温度下老化至少10天或210°F温度下老化至少2天开始膨胀。对于实例3制备的颗粒,在175°F温度下老化5天或210°F温度下老化2天便被活化。对于实例4制备的颗粒,在210°F温度下老化40天仍未发现活化。该数据说明,用可逆交联剂交联的颗粒在热引发下能够膨胀。用非可逆交联剂交联的颗粒(实例4)不能膨胀。
                        实例12
本实例用来说明用内含的可逆交联剂限定结构的聚合物微粒能够扩散,当可逆交联剂断裂后微粒将膨胀,以产生合适大小的颗粒获得预想的效果。
用脱脂洗净的316不锈钢管制作了一40英尺长内径为0.25英寸的填沙柱,它由8部分组成。填柱所用的沙为商品沙(似水泥的参考材料-F沙),从英国的一家公司购买(David Ball PLC,HuntingdonRoad,Bar Hill,Cambridge CB38HN,UK)。该沙的粒度分布用试验筛进行了测定,列于表5中。在使用前,先用高浓度盐酸对该沙进行洗涤,除去铁和其它杂质,然后进行用清水漂洗,直到洗液的pH值恒定为止。最后,再在140°F(60℃)温度下的烘箱中用空气干燥。
                      表5F沙试验筛颗粒大小分析
  分级中最小的粒度μm   筛上物的重量     筛上物%     累积和%
    150     12.14     6.12     6.12
    125     75.91     38.23     44.35
    90     85.67     43.14     87.49
    63     17.04     8.58     96.07
    45     2.28     1.15     97.22
    0     0.71     0.36     97.58
5英尺长的各部分通过充沙的SwagelokTM连接器连接在一起。每隔两部分都有一T形支管用于安装压力传感器。每一个传感器臂都含有一325网眼的环状US筛,(45微米孔径),使填充沙保留在管中。在管的出口和入口都装有3/8″~1/4″缩径管接头,也含有阻滞筛。
仔细地将整个管卷成直径约为17英尺的圆圈,并装入GallenkampTM Model“Plus II”Laboratory烘箱。用Gilson 307容积活塞泵将液体从34液量盎司(1升)的硼硅玻璃容器中打进管的入口。DruckTM PDCR压力传感器安装到管的T形支管上,并通过DruckTMDPI 260系列数字压力指示器、DatascanTM 7010测量处理机和RS 232总线与LabviewTM可视成组仪表联接,用其来记录实验数据。
在管的出口侧安装有TescomTM止回阀,其向前与PharmaciaTMLKB-Frac-200馏分收集器连接。
当该系统装配完毕后,用入口压力为26psi的二氧化碳气体冲扫填沙柱至少2小时,然后将合成的油田灌注水(其组成见表6)充满该系统。
  表5试验盐水的组成
  离子     组成mg/L
  Na     1497.2
  K     40
  Mg     6.1
  Ca     11.6
  Cl     1350.9
  SO4     46
  HCO3     1645.9
  固溶物总量     4571
注入速度为1mL/min保持367分钟,然后降为0.1mL/min再保持100分钟。根据所用沙的重量和颗粒密度测定出该填沙柱的孔隙体积(PV)为142.2mL,0.1mL/min流速下所测的总渗透性为2.57达西。各部分的渗透性如下:
0~20英尺   2.46达西;
20~30英尺  2.46达西;
30~40英尺  2.95达西
用以上试验盐水制备1500ppm的实例3制备的聚合物微粒的悬浮液。在140°F(63℃)温度下向489.9g试验盐水中加入7.5g乙氧化硫酸酯,然后用Turbine Ultra-Turrax搅拌器低速搅拌30秒。将搅拌器速度增大,然后称取2.56g聚合物乳液注入到盐水涡流中。在高速下对该混合物剪切10秒,然后降低速度再进行30秒。在最初阶段不需要维持溶液的温度。随后用Decon Ultrasonics Limited FS400超声波浴对该“溶液”进行5分钟超声波处理,然后装入带螺旋盖的硼硅玻璃瓶中备用。本试验使用两个溶液配制品,实验开始前将其混合。
在泵送前,通过一玻璃粉鼓泡器用99%的氮气和1%二氧化碳(BOC PLC UK)的混合气在约2mL/min的低速下对该溶液鼓泡,以脱除溶解氧。使用混合气体是为了避免pH的变化,pH变化与只使用氮气鼓泡脱除溶解二氧化碳有关。在整个实验中需要连续对溶液鼓泡,以确保该溶液无氧,避免聚合物自由基降解的可能性。
实验在0.288天观测时间开始,聚合物“溶液”以0.1mL/min的速度注入填沙柱中充满孔隙空间,注入时间为1432分钟(1.0PV),然后流速降为0.01mL/min。在1.27天观测时间开始馏分收集。以0.01mL/min速度再注入263.5小时聚合物(等于1.1倍的填沙柱的孔隙体积),监测填沙柱各部分的压降,以显示由可逆交联水解引起的聚合物微粒的结构变化。在最后10英尺随着压降的急剧上升,聚合物微粒“突然开启”,其在7.15天观测时间开始发生,相当于212°F温度下6.87天滞留时间,在RF(滞留因子)约为300时达到顶峰。一聚合物单元在填沙柱中的最长停留时间为9.875天(在0.01mL/min流速下该填沙柱的滞留时间)。
在12.26天观测时间(这时聚合物微粒的结构已发生变化,观测这一个趋势的时间也已足够),将流速增加为0.035mL/min,进行47.3小时(0.7PV),用来测定增加流速/压降对在填沙柱底端已形成的封阻的影响。由表7可以看出,0.035mL/min流速时的滞留因子(RF)约是0.01mL/min的三分之一。然后将料液变回流速为0.035L/min的盐水,来测定该聚合物的残余滞留因子(RRF),在注入1.77PV(251.4mL)盐水过程中,观测到的RRF为60~90。随后将流速增加到0.05mL/min,进行64.8小时(1.37PV),期间观测到的RRF为75~100。
以上数据表明,聚合物微粒能够通过填沙柱的前两部分而不改变这两部分的RRF。但在填沙柱的最后一部分,经过足够的滞留时间积累,颗粒发生了膨胀得到了较高的RRF。当注入液体由聚合物悬浮液变为盐水时,RRF仍能保持较高值。
该实验无疑证明了本发明的两个重要方面:
1.用内含可逆交联剂限定结构的聚合物微粒能够通过多孔介质扩散。
2.即使在高渗透性多孔介质中,当交联断裂后,其也能膨胀成合适大小的颗粒得到预想的效果。
                                 表7填沙柱实验一览表
  观测时间(天) 流动液体   注入量(孔隙体积)    7.34/s出口液体的粘度(厘泊)   流速(mL/min)           滞留因子/残余滞留因子
    0~20英尺     20~30英尺     30~40英尺
    1 聚合物   3.096   不恒定        盐水冲洗和最初的聚合物充填
    2 聚合物   3.454   0.01     6.1     4.4     3.1
    3 聚合物   3.555   0.01     6.3     4.3     4.2
    4 聚合物   3.6565     45.62   0.01     6.3     4.6     4.7
    5 聚合物   3.7577     38.85   0.01     6.2     4.7     5.4
    6 聚合物   3.8589     42.63   0.01     6.7     5.4     5.8
    7 聚合物   3.9602     38.74   0.01     6.1     5.6     4.8
    7.5 聚合物   4.0109     55.1   0.01     6.5     5.4     20.9
    8 聚合物   4.0816     44.8   0.01     6.7     5.6     39.9
    9 聚合物   4.1627     41.12   0.01     5.3     5.4     84.6
    10 聚合物   4.2639     42.79   0.01     5.9     5.4     159.4
    11 聚合物   4.3653     31.24   0.01     6.3     5.2     230.1
    12 聚合物   4.4766     58.5   0.01     6.6     5.2     297.4
    12.2 聚合物   4.4868   0.01     7.0     5.3     297.9
    12.3 聚合物   4.509   0.035     2.8     2.7     104.4
    12.4 聚合物   4.5435   0.035     2.1     2.7     102.8
    12.6 聚合物   4.6145   0.035     2.6     2.4     91.5
    12.8 聚合物   4.686   0.035     2.4     2.3     79.1
    13 聚合物   4.756     74.51   0.035     2.6     2.2     69.4
    13.2 聚合物   4.826   0.035     2.3     2.2     59.3
    13.4 聚合物   4.8982   0.035     2.1     2.2     53.4
    13.6 聚合物   4.97   0.035     2.6     2.1     49.8
    13.8 聚合物   5.039   0.035     2.3     2.1     49.8
    14 聚合物   5.1115     64.87   0.035     2.4     2.1     49.4
    14.4   盐水   5.2526     0.035     2.2     2.0     49.0
    15   盐水   5.465     0.035     2.2     2.1     51.3
    16   盐水   5.8195     0.035     2.0     2.0     58.8
    17   盐水   6.174     58.90     0.035     2.0     1.8     60.2
    18   盐水   6.528     71.7     0.035     2.0     1.8     71.2
    19   盐水   6.882     80.61     0.035     1.9     1.9     89.7
    19.1   盐水   6.919     0.035     1.9     1.9     91.1
    19.3   盐水   7.003     0.05     1.6     1.6     88.8
    20   盐水   7.356     42.0     0.05     1.6     1.6     99.1
    21   盐水   7.862     22.66     0.05     1.7     1.7     91.3
    21.9   盐水   8.268     0.05     1.7     1.6     75.8
                   实例13pH的影响
实例13和14所用的胶乳样品是根据实例1的方法按照表8给出的配方制备的。
                      表8
   实例13    实例14
    50%丙烯酰胺   164.9   164.9
    58%丙烯酰胺基甲基丙磺酸钠   375.1   375.1
    去离子水   43.90   37.40
    PEG-200二丙烯酸酯   11.96   18.12
    交联剂/单体摩尔比ppm   18740   28390
    石油馏出物   336   336
    乙氧化油酸山梨糖醇酯   60   60
    山梨糖醇酐倍半油酸酯   4   4
实例13和14制备聚合物微粒在不同pH水溶液中老化时间的膨胀特性(以0.5%悬浮液的粘度变化表示)列于表9。表10给出了所用盐水的成分。该粘度是75°F温度下用布氏(低粘度)粘度计(带有US1轴)在60转数/分条件下测定的。
粘度数据表明,在中性pH范围内(6.2~7.5),颗粒的膨胀程度非常小(由粘度增加的微小变化可以说明)。相似条件下,在弱碱性介质(pH8.5~9.0)中,粘度增加非常迅速。这表明该颗粒在碱性介质(pH>8)中会膨胀。由于这些颗粒中含有的可逆交联剂实际上是二元酸酯,所以在弱酸条件下(pH<6)这些颗粒会发生膨胀。
表9不同老化时间不同pH水溶液的0.5%聚合物颗粒悬浮液的粘度变化(厘泊)
老化时间     实例13@175°F     实例13@175°F     实例14@175°F     实例14@175°F     实例14@210°F     实例14@210°F
    pH6.2-7.5     pH8.5-9.0     pH6.2-7.5     pH8.5-9.0     pH6.2-7.5     pH8.5-9.0
    0     3.1     3.1     3.1     3.3     3.2     3.3
    24     8.8     5.9     8.5
    48     13.9     6.9     12.1
    120     6.6     19.3     6.1     12.0     5.0     36.5
    240     24.0     21.4     64.1
    360     37.9     51.3     7.2     43.8
    480     7.5     33.5     5.4     41.0     32.7
    600     7.2     34.8     5.7     49.8     8.3     49.8
                   表10实例13所用盐水的成分
    离子 盐水1  pH6.2-7.5mg/L 盐水1  pH8.5-9.0mg/L
    Na     1497.2     1497.2
    K     40     40
    Mg     6.1     6.1
    Ca     11.6     11.6
    Cl     2308.7     1350.9
    SO4     46     46
    HCO3     -     1645.9
    固溶物总量     3901     4571
         实例14不稳定交联剂对聚合物微粒体积的影响
以粘度作为颗粒体积的近似估计值,测量了含有不同交联剂量的一系列交联颗粒水悬浮液的粘度。这些聚合物颗粒采用实例1~8的方法制备,只使用PEG-400二丙烯酸酯作交联剂。由表11数据可以看出,随交联剂浓度的降低,最初颗粒缓慢变大,随后剧增。
       表11  718ppm盐水的1%聚合物颗粒悬浮液的粘度
交联剂量(ppm)   28390   18170     9088     4544     2272
粘度(厘泊)   3.4   3.8     6.2     26     137

Claims (31)

1.一种组合物,包含未膨胀体积平均粒度为0.05-10微米的高交联的可膨胀聚合物微粒,和约9,000-约200,000ppm的不稳定交联剂和0-约300ppm的稳定交联剂的交联剂。
2.如权利要求1所述的组合物,其特征在于所述未膨胀体积平均粒度为约0.1-3微米。
3.如权利要求1所述的组合物,其特征在于所述未膨胀体积平均粒度为约0.1-1微米。
4.如权利要求1所述的组合物,其特征在于所述不稳定交联剂选自二丙烯酸酯和多元醇的多官能乙烯基衍生物。
5.如权利要求1所述的组合物,其特征在于所述组合物包括交联阴离子的、两性的、离子对的或含有甜菜碱的聚合物微粒。
6.如权利要求5所述的组合物,其特征在于所述组合物呈乳液或水悬浮液的形式。
7.如权利要求6所述的组合物,其特征在于所述交联聚合物微粒是阴离子型的。
8.如权利要求7所述的组合物,其特征在于所述阴离子聚合物微粒是由约95mol%~10mol%的非离子单体和5mol%~90mol%的阴离子单体通过自由基聚合反应制备。
9.如权利要求8所述的组合物,其特征在于所述非离子单体是丙烯酰胺。
10.如权利要求9所述的组合物,其特征在于所述阴离子单体是2-丙烯酰胺基-2-甲基丙烷磺酸。
11.如权利要求10所述的组合物,其特征在于所述不稳定交联剂是聚乙二醇二丙烯酸酯。
12.如权利要求11所述的组合物,其特征在于所述稳定交联剂是亚甲基二丙烯酰胺。
13.调节地层水渗透性的方法,包括向地层注入含有如权利要求1所述聚合物微粒的组合物,其中:所述微粒直径小于地层的孔隙,所述不稳定交联剂在地层的温度和pH条件下断裂,形成膨胀微粒。
14.如权利要求13所述方法,其特征在于基于聚合物活性物,向地层中加入组合物的量约为100~10,000ppm。
15.如权利要求13所述方法,其特征在于基于聚合物活性物,向地层中加入组合物的量约为500~1500ppm。
16.如权利要求13所述方法,其特征在于基于聚合物活性物,向地层中加入组合物的量约为500~1000ppm。
17.如权利要求13所述方法,其特征在于将所述组合物添加到注入水中,为从地层中开采烃类的第二或第三工艺的一部分。
18.如权利要求17所述方法,其特征在于所述加入地层的注入水的温度低于地层的温度。
19.如权利要求13所述方法,其特征在于所述膨胀聚合物颗粒的直径大于地层岩石孔隙控制孔喉半径的十分之一。
20.如权利要求13所述方法,其特征在于所述膨胀聚合颗粒的直径大于地层岩石孔隙控制孔喉半径的四分之一。
21.如权利要求13所述方法,其特征在于所述地层为一砂岩或碳酸酯烃类贮藏田。
22.如权利要求17所述方法,其特征在于所述组合物用于二氧化碳和水三次开采项目。
23.如权利要求17所述方法,其特征在于所述组合物用于三次采油工艺,其构成注入水中的一种组分。
24.如权利要求17所述方法,其特征在于所述注入水灌注到采油井中。
25.提高地层中液态烃的活动化作用和回采率的方法,包括向地层注入含有权利要求1所述聚合物微粒的组合物,其特征在于所述微粒直径小于地层的孔隙直径,所述不稳定交联剂在地层的温度和pH条件下断裂以降低组合物的流动度。
26.如权利要求25所述方法,其特征在于基于聚合物活性物,向地层中加入组合物的量约为100~5000ppm。
27.如权利要求25所述方法,其特征在于基于聚合物活性物,向地层中加入组合物的量约为500~1500ppm。
28.如权利要求25所述方法,其特征在于基于聚合物活性物,向地层中加入组合物的量约为100~1000ppm。
29.如权利要求25所述方法,其特征在于将所述组合物添加到注入水中,为从地层中开采烃类的第二或第三工艺的一部分。
30.如权利要求29所述方法,其特征在于所述加入地层的注入水的温度低于地层的温度。
31.如权利要求25所述方法,其特征在于所述地层为一砂岩或碳酸酯烃类贮藏田。
CN01810851A 2000-06-14 2001-05-23 从地下储藏田开采液态烃的组合物及方法 Pending CN1434893A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/593,197 US6454003B1 (en) 2000-06-14 2000-06-14 Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
US09/593,197 2000-06-14

Publications (1)

Publication Number Publication Date
CN1434893A true CN1434893A (zh) 2003-08-06

Family

ID=24373780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01810851A Pending CN1434893A (zh) 2000-06-14 2001-05-23 从地下储藏田开采液态烃的组合物及方法

Country Status (14)

Country Link
US (4) US6454003B1 (zh)
EP (1) EP1290310B1 (zh)
CN (1) CN1434893A (zh)
AU (2) AU2001266600B2 (zh)
BR (1) BR0111613B1 (zh)
CA (1) CA2408312C (zh)
DK (1) DK1290310T3 (zh)
EC (1) ECSP024391A (zh)
MX (1) MXPA02011661A (zh)
NO (1) NO330481B1 (zh)
NZ (1) NZ522534A (zh)
OA (1) OA12332A (zh)
RU (1) RU2256071C2 (zh)
WO (1) WO2001096707A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835956A (zh) * 2007-03-23 2010-09-15 德克萨斯州立大学董事会 用于处理水堵井的组合物和方法
CN102031097A (zh) * 2009-09-29 2011-04-27 中国石油集团西部钻探工程有限公司克拉玛依钻井工艺研究院 一种增强油井水泥浆的方法
CN102134478A (zh) * 2010-01-25 2011-07-27 中国石油化工集团 一种石油钻井用可控膨胀堵漏剂及其生产工艺
CN102392627A (zh) * 2011-11-16 2012-03-28 中国石油天然气股份有限公司 一种提高油田采收率的方法
CN102459364A (zh) * 2009-06-10 2012-05-16 科诺科菲利浦公司 具有阴离子部位的可溶胀聚合物
CN102587876A (zh) * 2012-02-24 2012-07-18 中国石油天然气股份有限公司 利用爆破型预胶联凝胶颗粒提高油田采收率方法
CN102177217B (zh) * 2008-08-08 2014-01-29 哈利伯顿能源服务公司 改进的降滤失组合物和用于地下作业的使用方法
CN104053743A (zh) * 2012-01-27 2014-09-17 纳尔科公司 从地下储层开采烃流体的组合物和方法
CN105441041A (zh) * 2015-11-29 2016-03-30 辽宁石油化工大学 一种钻井液用阳离子型封堵剂及其制备方法
CN107066680A (zh) * 2017-02-04 2017-08-18 中国石油大学(北京) 一种微观窜流分析方法及装置
CN109642147A (zh) * 2016-07-21 2019-04-16 Bp探索操作有限公司 方法
CN110099982A (zh) * 2017-01-19 2019-08-06 S.P.C.M.股份公司 通过注入含微凝胶的水性聚合物组合物强化采油的方法
CN110872506A (zh) * 2013-01-18 2020-03-10 科诺科菲利浦公司 用于延缓胶凝化的纳米凝胶

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454003B1 (en) * 2000-06-14 2002-09-24 Ondeo Nalco Energy Services, L.P. Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
US6627719B2 (en) * 2001-01-31 2003-09-30 Ondeo Nalco Company Cationic latex terpolymers for sludge dewatering
DE10118020A1 (de) * 2001-04-10 2002-10-17 Stockhausen Chem Fab Gmbh Löschwasser-Additive
US6569983B1 (en) * 2001-12-20 2003-05-27 Ondeo Nalco Energy Services, L.P. Method and composition for recovering hydrocarbon fluids from a subterranean reservoir
US6691780B2 (en) 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US6936574B2 (en) * 2002-08-30 2005-08-30 Halliburton Energy Services, Inc. Process for controlling gas migration during well cementing
US7741251B2 (en) * 2002-09-06 2010-06-22 Halliburton Energy Services, Inc. Compositions and methods of stabilizing subterranean formations containing reactive shales
AU2003285254A1 (en) * 2002-12-02 2004-06-23 Genesis International Oilfield Services Inc. Drilling fluid and methods of use thereof
FR2851251B1 (fr) * 2003-02-13 2005-04-08 Seppic Sa Nouveaux epaississants cationiques, procede pour leur preparation et composition en contenant
US8091638B2 (en) 2003-05-16 2012-01-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US8631869B2 (en) 2003-05-16 2014-01-21 Leopoldo Sierra Methods useful for controlling fluid loss in subterranean treatments
US8181703B2 (en) 2003-05-16 2012-05-22 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US8251141B2 (en) 2003-05-16 2012-08-28 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US8278250B2 (en) 2003-05-16 2012-10-02 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US7759292B2 (en) 2003-05-16 2010-07-20 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US7036587B2 (en) * 2003-06-27 2006-05-02 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
US8541051B2 (en) 2003-08-14 2013-09-24 Halliburton Energy Services, Inc. On-the fly coating of acid-releasing degradable material onto a particulate
US7833944B2 (en) 2003-09-17 2010-11-16 Halliburton Energy Services, Inc. Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US7674753B2 (en) 2003-09-17 2010-03-09 Halliburton Energy Services, Inc. Treatment fluids and methods of forming degradable filter cakes comprising aliphatic polyester and their use in subterranean formations
US7829507B2 (en) 2003-09-17 2010-11-09 Halliburton Energy Services Inc. Subterranean treatment fluids comprising a degradable bridging agent and methods of treating subterranean formations
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US20050215439A1 (en) * 2004-03-29 2005-09-29 Blair Cecil C Clay stabilization in sub-surface formations
RU2363718C2 (ru) * 2004-04-13 2009-08-10 КОРИБА ТЕКНОЛОДЖИЗ, Эл.Эл.Си. Композиция и способ повышенной добычи нефти
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
FR2874617B1 (fr) 2004-08-25 2006-10-27 Inst Francais Du Petrole Methode de traitement de formations ou de cavites souterraines par des microgels
US7628909B2 (en) * 2004-09-27 2009-12-08 Coriba Technologies, L.L.C. Composition and process for the extraction of bitumen from oil sands
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7131492B2 (en) * 2004-10-20 2006-11-07 Halliburton Energy Services, Inc. Divinyl sulfone crosslinking agents and methods of use in subterranean applications
US7648946B2 (en) 2004-11-17 2010-01-19 Halliburton Energy Services, Inc. Methods of degrading filter cakes in subterranean formations
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US8030249B2 (en) 2005-01-28 2011-10-04 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US20060169182A1 (en) 2005-01-28 2006-08-03 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US20080009423A1 (en) 2005-01-31 2008-01-10 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US8598092B2 (en) 2005-02-02 2013-12-03 Halliburton Energy Services, Inc. Methods of preparing degradable materials and methods of use in subterranean formations
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
WO2006102762A1 (en) * 2005-04-01 2006-10-05 Mcmaster University Glucose responsive microgels
US7662753B2 (en) 2005-05-12 2010-02-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7677315B2 (en) 2005-05-12 2010-03-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US7870903B2 (en) * 2005-07-13 2011-01-18 Halliburton Energy Services Inc. Inverse emulsion polymers as lost circulation material
US7678201B2 (en) * 2005-07-22 2010-03-16 Coriba Technologies, L.L.C. Composition and process for the removal and recovery of hydrocarbons from substrates
US7713916B2 (en) 2005-09-22 2010-05-11 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US7819192B2 (en) * 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US7665517B2 (en) 2006-02-15 2010-02-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
US20070204989A1 (en) * 2006-02-28 2007-09-06 Hongxin Tang Preformed particle gel for conformance control in an oil reservoir
NO324590B1 (no) * 2006-04-26 2007-11-26 Wellcem Innovation As Fremgangsmate og middel for reduksjon av vannproduksjon fra olje- og gassbronner samt fremgangsmate for fremstilling av slikt middel
US8329621B2 (en) 2006-07-25 2012-12-11 Halliburton Energy Services, Inc. Degradable particulates and associated methods
US9120964B2 (en) 2006-08-04 2015-09-01 Halliburton Energy Services, Inc. Treatment fluids containing biodegradable chelating agents and methods for use thereof
US9127194B2 (en) 2006-08-04 2015-09-08 Halliburton Energy Services, Inc. Treatment fluids containing a boron trifluoride complex and methods for use thereof
US8567504B2 (en) 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US9027647B2 (en) 2006-08-04 2015-05-12 Halliburton Energy Services, Inc. Treatment fluids containing a biodegradable chelating agent and methods for use thereof
US8067342B2 (en) * 2006-09-18 2011-11-29 Schlumberger Technology Corporation Internal breakers for viscoelastic surfactant fluids
US7635028B2 (en) 2006-09-18 2009-12-22 Schlumberger Technology Corporation Acidic internal breaker for viscoelastic surfactant fluids in brine
US8481462B2 (en) * 2006-09-18 2013-07-09 Schlumberger Technology Corporation Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids
US7687438B2 (en) 2006-09-20 2010-03-30 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7678742B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7678743B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7686080B2 (en) 2006-11-09 2010-03-30 Halliburton Energy Services, Inc. Acid-generating fluid loss control additives and associated methods
US8220548B2 (en) 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
US9057014B2 (en) 2007-12-11 2015-06-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US10920494B2 (en) 2007-12-11 2021-02-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US9856415B1 (en) 2007-12-11 2018-01-02 Superior Silica Sands, LLC Hydraulic fracture composition and method
US20170137703A1 (en) 2007-12-11 2017-05-18 Superior Silica Sands, LLC Hydraulic fracture composition and method
US8006760B2 (en) 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
GB2471642B (en) * 2008-04-20 2012-12-12 Nalco Co Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
US7888296B2 (en) * 2008-04-21 2011-02-15 Nalco Company Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
AU2009239586B2 (en) * 2008-04-21 2013-10-03 Championx Llc Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
US7989401B2 (en) * 2008-04-21 2011-08-02 Nalco Company Block copolymers for recovering hydrocarbon fluids from a subterranean reservoir
US8889603B2 (en) * 2008-04-21 2014-11-18 Nalco Company Compositions and methods for diverting injected fluids to achieve improved hydrocarbon fluid recovery
US7897546B2 (en) * 2008-04-21 2011-03-01 Nalco Company Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
CA2721973C (en) * 2008-04-21 2014-12-02 Nalco Company Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
US7947630B2 (en) * 2008-04-21 2011-05-24 Nalco Company Compositions comprising at least two different polymeric microparticles and methods for recovering hydrocarbon fluids from a subterranean reservoir
US7906464B2 (en) 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
US20100063180A1 (en) * 2008-09-05 2010-03-11 Seungkoo Kang Fire protection and/or fire fighting additives, associated compositions, and associated methods
US7833943B2 (en) 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US9222013B1 (en) 2008-11-13 2015-12-29 Cesi Chemical, Inc. Water-in-oil microemulsions for oilfield applications
FR2940348B1 (fr) 2008-12-18 2011-01-21 Spcm Sa Amelioration de la recuperation assistee du petrole par polymere sans equipement ou produit complementaire.
EP2204431A1 (de) * 2008-12-18 2010-07-07 Basf Se Verfahren zur Blockierung unterirdischer Formationen
CA2751361C (en) * 2009-02-04 2016-07-19 Rhodia Operations Method for modifying the properties of an aqueous suspension
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US8648018B2 (en) * 2009-03-12 2014-02-11 Conocophillips Company Crosslinked swellable polymer
FR2943353B1 (fr) * 2009-03-19 2011-03-11 Rhodia Operations Composition viscoelastique a viscosite amelioree
AR076870A1 (es) * 2009-05-15 2011-07-13 Conocophillips Co Composiciones que comprenden particulas polimericas expandibles y metodo para aumentar la recuperacion de fluidos hidrocarbonados en una formacion subterranea
US20100300928A1 (en) * 2009-05-29 2010-12-02 Dow Global Technologies Inc. Aqueous compositions for enhanced hydrocarbon fluid recovery and methods of their use
US8691736B2 (en) * 2009-06-15 2014-04-08 Conocophillips Company Swellable polymer with cationic sites
US8394872B2 (en) * 2009-07-10 2013-03-12 Nalco Company Method of reducing the viscosity of hydrocarbon fluids
US8082992B2 (en) 2009-07-13 2011-12-27 Halliburton Energy Services, Inc. Methods of fluid-controlled geometry stimulation
US9315715B2 (en) * 2009-10-20 2016-04-19 Nalco Company Method of reducing the viscosity of hydrocarbons
CA2786021A1 (en) * 2009-12-30 2011-07-07 Schlumberger Canada Limited Synthesis of degradable polymers downhole for oilfield applications
US8406589B2 (en) 2010-01-26 2013-03-26 E I Du Pont De Nemours And Company Method of making a fiber optical cable assembly
CA2789122A1 (en) 2010-02-12 2011-08-18 Bp Exploration Operating Company Limited Method and system for predicting the effect of microbes injected into an oil-bearing reservoir
BR112012021278A2 (pt) 2010-03-15 2016-10-25 Spcm Sa processo melhorado de recuperação de petróleo utilizando polímero de elevado peso molecular solúvel em água.
US8662171B2 (en) * 2010-03-25 2014-03-04 Montgomery Chemicals, Llc Method and composition for oil enhanced recovery
US8590621B2 (en) 2010-04-06 2013-11-26 Halliburton Energy Services, Inc. Low damage seawater based frac pack fluid
EP2397649A1 (en) 2010-06-10 2011-12-21 BP Exploration Operating Company Limited Method and system for determining relative mass fluxes
US9121271B2 (en) 2010-06-24 2015-09-01 Chevron U.S.A. Inc. System and method for conformance control in a subterranean reservoir
WO2012021213A1 (en) 2010-08-11 2012-02-16 Conocophillips Company-Ip Services Group Delayed gelling agents
BR112013009424A2 (pt) * 2010-10-20 2016-08-09 Prad Res & Dev Ltd látex degradável, método para produzir um látex biodegradável, método de degradar um látex degradável, método de tratamento de uma formação, método de fraturar uma formação, e fluido de tratamento
CA2823106C (en) * 2011-01-19 2019-02-19 Rhodia Operations Families of scale-inhibitors having different absorption profiles and their application in oilfield
EA201300899A1 (ru) 2011-02-11 2014-02-28 Бп Корпорейшн Норт Эмерике Инк. Обработка продуктивного пласта
US8881823B2 (en) 2011-05-03 2014-11-11 Halliburton Energy Services, Inc. Environmentally friendly low temperature breaker systems and related methods
US20120279707A1 (en) * 2011-05-05 2012-11-08 Halliburton Energy Services, Inc. Thermally-Activated, High-Temperature Cement Suspending Agent
US20130000900A1 (en) * 2011-07-01 2013-01-03 Halliburton Energy Services, Inc. Down-hole placement of water-swellable polymers
CN102504795B (zh) * 2011-11-16 2013-12-04 中国石油天然气股份有限公司 调剖和深部液流转向双功能爆破型预交联凝胶颗粒
US9090812B2 (en) * 2011-12-09 2015-07-28 Baker Hughes Incorporated Self-inhibited swell packer compound
FR2986005B1 (fr) 2012-01-25 2014-06-27 Rhodia Operations Agents de controle du filtrat sous forme solide
US9459184B2 (en) * 2012-03-08 2016-10-04 Dionex Corporation Sorption of water from a sample using a polymeric drying agent
GB201206415D0 (en) * 2012-04-12 2012-05-23 Fujifilm Mfg Europe Bv Curable compositions and membranes
US20130292121A1 (en) 2012-04-15 2013-11-07 Cesi Chemical, Inc. Surfactant formulations for foam flooding
US11407930B2 (en) 2012-05-08 2022-08-09 Flotek Chemistry, Llc Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons
US9200192B2 (en) 2012-05-08 2015-12-01 Cesi Chemical, Inc. Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons
US20140144628A1 (en) 2012-11-26 2014-05-29 University Of Kansas Crosslinking of swellable polymer with pei
CN105121591B (zh) 2013-01-31 2018-09-18 艺康美国股份有限公司 用于提高油采收的流动性控制聚合物
US20140262228A1 (en) * 2013-03-12 2014-09-18 Halliburton Energy Services, Inc. Mechanically Degradable Polymers For Wellbore Work Fluid Applications
US9644134B2 (en) 2013-03-13 2017-05-09 Exxonmobil Upstream Research Company Methods for improving the sweep efficiency of gas injection
US10421707B2 (en) 2013-03-14 2019-09-24 Flotek Chemistry, Llc Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells
US10000693B2 (en) 2013-03-14 2018-06-19 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10590332B2 (en) 2013-03-14 2020-03-17 Flotek Chemistry, Llc Siloxane surfactant additives for oil and gas applications
US10287483B2 (en) 2013-03-14 2019-05-14 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol
US10577531B2 (en) 2013-03-14 2020-03-03 Flotek Chemistry, Llc Polymers and emulsions for use in oil and/or gas wells
US20140262090A1 (en) 2013-03-14 2014-09-18 Ecolab Usa Inc. Methods for Increasing Retention and Drainage in Papermaking Processes
US9884988B2 (en) 2013-03-14 2018-02-06 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US9321955B2 (en) 2013-06-14 2016-04-26 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US10717919B2 (en) 2013-03-14 2020-07-21 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US9868893B2 (en) 2013-03-14 2018-01-16 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10053619B2 (en) 2013-03-14 2018-08-21 Flotek Chemistry, Llc Siloxane surfactant additives for oil and gas applications
US11254856B2 (en) 2013-03-14 2022-02-22 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US9068108B2 (en) 2013-03-14 2015-06-30 Cesi Chemical, Inc. Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US11180690B2 (en) 2013-03-14 2021-11-23 Flotek Chemistry, Llc Diluted microemulsions with low surface tensions
US9428683B2 (en) 2013-03-14 2016-08-30 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US9464223B2 (en) 2013-03-14 2016-10-11 Flotek Chemistry, Llc Methods and compositions for use in oil and/or gas wells
US10941106B2 (en) 2013-03-14 2021-03-09 Flotek Chemistry, Llc Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells
US9670399B2 (en) 2013-03-15 2017-06-06 Halliburton Energy Services, Inc. Methods for acidizing a subterranean formation using a stabilized microemulsion carrier fluid
US9796914B2 (en) 2013-05-07 2017-10-24 Baker Hughes Incorporated Hydraulic fracturing composition, method for making and use of same
US9828844B2 (en) 2013-05-07 2017-11-28 BAKER HUGHTES, a GE company, LLC Hydraulic fracturing composition, method for making and use of same
US9809742B2 (en) 2013-05-07 2017-11-07 Baker Hughes, A Ge Company, Llc Hydraulic fracturing composition, method for making and use of same
WO2014193494A1 (en) * 2013-05-28 2014-12-04 Halliburton Energy Services, Inc. An amphoteric polymer suspending agent for use in calcium aluminate cement compositions
US9695350B2 (en) * 2013-05-31 2017-07-04 Halliburton Energy Services, Inc. Ampholyte polymeric compounds in subterranean applications
CN104213885A (zh) * 2013-06-05 2014-12-17 中国石油天然气股份有限公司 酸化调剖一体化方法
US9512349B2 (en) 2013-07-11 2016-12-06 Halliburton Energy Services, Inc. Solid-supported crosslinker for treatment of a subterranean formation
GB201318681D0 (en) * 2013-10-22 2013-12-04 Bp Exploration Operating Compositions and methods for recovering hydrocarbon fluids from a subterranean formation
US9315713B2 (en) 2013-11-21 2016-04-19 Halliburton Energy Services, Inc. Amphoteric polymer suspending agent for use in calcium aluminate cement compositions
CN103773342B (zh) * 2013-12-12 2017-02-22 中国石油化工股份有限公司 一种大孔道复合封堵体系及其制备方法
CN103626917B (zh) * 2013-12-16 2015-10-14 中国石油大学(华东) 一种稠油热采封堵汽窜用体膨颗粒的制备方法
US9890625B2 (en) 2014-02-28 2018-02-13 Eclipse Ior Services, Llc Systems and methods for the treatment of oil and/or gas wells with an obstruction material
US9890624B2 (en) 2014-02-28 2018-02-13 Eclipse Ior Services, Llc Systems and methods for the treatment of oil and/or gas wells with a polymeric material
CA2938279C (en) * 2014-03-11 2019-08-20 Halliburton Energy Services, Inc. Ampholyte polymers and methods of treating subterranean formations with the same
CA2891278C (en) 2014-05-14 2018-11-06 Cesi Chemical, Inc. Methods and compositions for use in oil and / or gas wells
CN105221125A (zh) * 2014-06-04 2016-01-06 天津立坤石油技术服务有限公司 一种电机上置式调酸一体化系统可移动缸体
CN105298436A (zh) * 2014-06-05 2016-02-03 天津立坤石油技术服务有限公司 一种改进型油田调酸一体化技术
CA3042567C (en) 2014-07-28 2021-12-14 Flotek Chemistry, Llc Methods and compositions related to gelled layers in oil and/or gas wells
US10442980B2 (en) 2014-07-29 2019-10-15 Ecolab Usa Inc. Polymer emulsions for use in crude oil recovery
CN104312567A (zh) * 2014-09-12 2015-01-28 大连东方创新科技有限公司 一种适用于中低渗透油藏的无碱复合驱组合物及其应用
CN104312566B (zh) * 2014-09-12 2018-01-12 大连东方创新科技有限公司 一种功能性聚合物表面活性剂强化甜菜碱复合驱体系及其应用
WO2016081049A1 (en) 2014-11-19 2016-05-26 Conocophillips Company Delayed gelation of polymers
CN104531115B (zh) * 2014-12-30 2017-07-28 中国石油天然气股份有限公司 一种水平井控水用暂堵剂、制备方法及其应用
US10450500B2 (en) 2015-01-12 2019-10-22 Ecolab Usa Inc. Thermally stable polymers for enhanced oil recovery
BR112017015866A2 (pt) * 2015-03-03 2018-03-27 Halliburton Energy Services Inc método, fluido de perfuração e sistema
AU2016307432B2 (en) 2015-08-07 2020-07-09 Championx Usa Inc. Phosphorus functional inversion agents for water-in-oil latices and methods of use
MX2018001619A (es) 2015-08-07 2018-05-22 Ecolab Usa Inc Agentes de inversion funcionales de carbonilo para latex de agua en aceite y metodos de uso.
MX2018001621A (es) 2015-08-07 2018-05-28 Ecolab Usa Inc Agentes de inversion no ionicos para latex de agua en aceite y metodos de uso.
AR106771A1 (es) 2015-11-23 2018-02-14 Ecolab Usa Inc Sistema de gel débil para recuperación de petróleo mejorada química
EP3420047B1 (en) 2016-02-23 2023-01-11 Ecolab USA Inc. Hydrazide crosslinked polymer emulsions for use in crude oil recovery
US11268009B2 (en) 2016-06-02 2022-03-08 The Curators Of The University Of Missouri Fiber assisted re-crosslinkable polymer gel and preformed particle gels for fluid loss and conformance control
US11549048B2 (en) 2016-06-02 2023-01-10 The Curators Of The University Of Missouri Re-assembling polymer particle package for conformance control and fluid loss control
US11214729B2 (en) 2018-08-31 2022-01-04 The Curators Of The University Of Missouri Re-crosslinking particle gel for CO2 conformance control and CO2 leakage blocking
WO2017210486A1 (en) 2016-06-02 2017-12-07 The Curators Of The University Of Missouri Re-assembling polymer particle package for conformance control and fluid loss control
WO2018031655A1 (en) * 2016-08-09 2018-02-15 Board Of Regents, The University Of Texas System Stimuli-responsive polymer particles and methods of using thereof
WO2018114801A1 (en) 2016-12-19 2018-06-28 Shell Internationale Research Maatschappij B.V. Enhanced oil recovery
GB2574519B (en) 2017-03-16 2022-04-13 Halliburton Energy Services Inc Swellable packers and methods for activating swellable packers in a downhole environment
WO2018183111A1 (en) * 2017-03-28 2018-10-04 Malsam Jeffrey J Refined beta-glucans and methods of making the same
CA3061408A1 (en) 2017-04-27 2018-11-01 Bp Exploration Operating Company Limited Microparticles and method for modifying the permeability of a reservoir zone
GB201712475D0 (en) * 2017-08-03 2017-09-20 Bp Exploration Operating Process
US10934472B2 (en) 2017-08-18 2021-03-02 Flotek Chemistry, Llc Compositions comprising non-halogenated solvents for use in oil and/or gas wells and related methods
US11053433B2 (en) 2017-12-01 2021-07-06 Flotek Chemistry, Llc Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
RU2681009C1 (ru) * 2018-04-24 2019-03-01 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Гидрогельмагниевый буровой раствор
CN111119873B (zh) * 2018-10-31 2023-09-26 中国石油化工股份有限公司 缝洞型岩层高压模拟实验装置和方法
IT201900004191A1 (it) * 2019-03-22 2020-09-22 Eni Spa Metodo per inibire la permeazione di acqua in un pozzo di estrazione di un fluido idrocarburico da un giacimento sotterraneo.
US10647908B2 (en) * 2019-07-26 2020-05-12 S.P.C.M. Sa Composition for oil and gas recovery
US11104843B2 (en) 2019-10-10 2021-08-31 Flotek Chemistry, Llc Well treatment compositions and methods comprising certain microemulsions and certain clay control additives exhibiting synergistic effect of enhancing clay swelling protection and persistency
EA038656B1 (ru) * 2019-12-19 2021-09-29 Научно-Исследовательский И Проектный Институт Нефти И Газа (Нипинг) Способ выравнивания профиля приемистости нагнетательной скважины
RU2743157C1 (ru) * 2020-03-23 2021-02-15 Павел Владимирович Химченко Способ повышения нефтеотдачи
CN113881000A (zh) * 2020-07-01 2022-01-04 中国石油化工股份有限公司 一种聚合物微球及其制备方法和应用
US11512243B2 (en) 2020-10-23 2022-11-29 Flotek Chemistry, Llc Microemulsions comprising an alkyl propoxylated sulfate surfactant, and related methods

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302717A (en) * 1961-12-26 1967-02-07 Dow Chemical Co Selective plugging of subterranean formations to inhibit intrusion of water
US3252904A (en) * 1962-07-09 1966-05-24 Dow Chemical Co Acidizing and hydraulic fracturing of wells
US4172066A (en) * 1974-06-21 1979-10-23 The Dow Chemical Company Cross-linked, water-swellable polymer microgels
US4059552A (en) * 1974-06-21 1977-11-22 The Dow Chemical Company Cross-linked water-swellable polymer particles
US4417992A (en) * 1981-07-30 1983-11-29 Nalco Chemical Company Dust control
US4742086A (en) * 1985-11-02 1988-05-03 Lion Corporation Process for manufacturing porous polymer
GB8606805D0 (en) * 1986-03-19 1986-04-23 Allied Colloids Ltd Water-absorbing polymers
US4968435A (en) 1988-12-19 1990-11-06 American Cyanamid Company Cross-linked cationic polymeric microparticles
US5152903A (en) 1988-12-19 1992-10-06 American Cyanamid Company Cross-linked cationic polymeric microparticles
US4956400A (en) 1988-12-19 1990-09-11 American Cyanamid Company Microemulsified functionalized polymers
GB8909095D0 (en) * 1989-04-21 1989-06-07 Allied Colloids Ltd Thickened aqueous compositions
DE3940316A1 (de) * 1989-12-06 1991-06-13 Bollig & Kemper Waessrige dispersionen von vernetzten polymermikroteilchen
US5171808A (en) 1990-06-11 1992-12-15 American Cyanamid Company Cross-linked anionic and amphoteric polymeric microparticles
US5106929A (en) 1990-10-01 1992-04-21 Phillips Petroleum Company Superabsorbent crosslinked ampholytic ion pair copolymers
DE69328378T2 (de) * 1993-03-29 2000-12-07 Dow Chemical Co Absorbentpolymer mit niedrigen Staubformungstendenzen
US5465792A (en) * 1994-07-20 1995-11-14 Bj Services Company Method of controlling production of excess water in oil and gas wells
JP3485654B2 (ja) * 1994-11-28 2004-01-13 三洋電機株式会社 表示装置の調整方法
GB9424402D0 (en) * 1994-12-02 1995-01-18 Allied Colloids Ltd Dowhole fluid control processes
US5849862A (en) * 1995-06-07 1998-12-15 Cytec Technology Corp. Processes of spray drying polymer-containing dispersions, water-in-oil emulsions and water-in-oil microemulsions
US6090875A (en) * 1996-02-16 2000-07-18 The Dow Chemical Company Dust control of absorbent polymers
US5728742A (en) * 1996-04-04 1998-03-17 The Dow Chemical Company Absorbent polymers having a reduced caking tendency
US5735349A (en) 1996-08-16 1998-04-07 Bj Services Company Compositions and methods for modifying the permeability of subterranean formations
US6169058B1 (en) * 1997-06-05 2001-01-02 Bj Services Company Compositions and methods for hydraulic fracturing
US6835783B1 (en) * 1999-02-24 2004-12-28 Dow Global Technologies Inc. Manufacture of superabsorbents in high internal phase emulsions
GB9906149D0 (en) * 1999-03-18 1999-05-12 Ciba Spec Chem Water Treat Ltd Polymer composition
US6454003B1 (en) * 2000-06-14 2002-09-24 Ondeo Nalco Energy Services, L.P. Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
JP4574145B2 (ja) * 2002-09-13 2010-11-04 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. エアギャップ形成
US7244775B2 (en) * 2002-09-30 2007-07-17 Rohm And Haas Company Damage resistant coatings, films and articles of manufacture containing crosslinked nanoparticles

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835956A (zh) * 2007-03-23 2010-09-15 德克萨斯州立大学董事会 用于处理水堵井的组合物和方法
CN101835956B (zh) * 2007-03-23 2015-07-01 德克萨斯州立大学董事会 用于处理水堵井的组合物和方法
CN102177217B (zh) * 2008-08-08 2014-01-29 哈利伯顿能源服务公司 改进的降滤失组合物和用于地下作业的使用方法
CN105384869A (zh) * 2009-06-10 2016-03-09 科诺科菲利浦公司 具有阴离子部位的可溶胀聚合物
CN102459364A (zh) * 2009-06-10 2012-05-16 科诺科菲利浦公司 具有阴离子部位的可溶胀聚合物
CN102031097B (zh) * 2009-09-29 2014-08-06 中国石油集团西部钻探工程有限公司克拉玛依钻井工艺研究院 一种增强油井水泥浆的方法
CN102031097A (zh) * 2009-09-29 2011-04-27 中国石油集团西部钻探工程有限公司克拉玛依钻井工艺研究院 一种增强油井水泥浆的方法
CN102134478A (zh) * 2010-01-25 2011-07-27 中国石油化工集团 一种石油钻井用可控膨胀堵漏剂及其生产工艺
CN102392627A (zh) * 2011-11-16 2012-03-28 中国石油天然气股份有限公司 一种提高油田采收率的方法
CN102392627B (zh) * 2011-11-16 2014-07-23 中国石油天然气股份有限公司 一种提高油田采收率的方法
CN106221689A (zh) * 2012-01-27 2016-12-14 纳尔科公司 从地下储层开采烃流体的组合物和方法
US10214679B2 (en) 2012-01-27 2019-02-26 Ecolab Usa Inc. Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
CN104053743A (zh) * 2012-01-27 2014-09-17 纳尔科公司 从地下储层开采烃流体的组合物和方法
US10889749B2 (en) 2012-01-27 2021-01-12 Championx Usa Inc. Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
CN106221689B (zh) * 2012-01-27 2019-03-01 纳尔科公司 从地下储层开采烃流体的组合物和方法
CN104053743B (zh) * 2012-01-27 2017-08-08 纳尔科公司 从地下储层开采烃流体的组合物和方法
CN102587876A (zh) * 2012-02-24 2012-07-18 中国石油天然气股份有限公司 利用爆破型预胶联凝胶颗粒提高油田采收率方法
CN102587876B (zh) * 2012-02-24 2014-11-05 中国石油天然气股份有限公司 利用爆破型预胶联凝胶颗粒提高油田采收率方法
CN110872506A (zh) * 2013-01-18 2020-03-10 科诺科菲利浦公司 用于延缓胶凝化的纳米凝胶
CN110872506B (zh) * 2013-01-18 2023-03-28 科诺科菲利浦公司 用于延缓胶凝化的纳米凝胶
CN105441041A (zh) * 2015-11-29 2016-03-30 辽宁石油化工大学 一种钻井液用阳离子型封堵剂及其制备方法
CN109642147A (zh) * 2016-07-21 2019-04-16 Bp探索操作有限公司 方法
CN110099982A (zh) * 2017-01-19 2019-08-06 S.P.C.M.股份公司 通过注入含微凝胶的水性聚合物组合物强化采油的方法
CN107066680A (zh) * 2017-02-04 2017-08-18 中国石油大学(北京) 一种微观窜流分析方法及装置

Also Published As

Publication number Publication date
MXPA02011661A (es) 2004-05-17
US6984705B2 (en) 2006-01-10
WO2001096707A8 (en) 2002-04-04
OA12332A (en) 2006-05-15
US6729402B2 (en) 2004-05-04
US20030149212A1 (en) 2003-08-07
US7300973B2 (en) 2007-11-27
EP1290310A1 (en) 2003-03-12
AU6660001A (en) 2001-12-24
NZ522534A (en) 2005-06-24
US20030116317A1 (en) 2003-06-26
BR0111613B1 (pt) 2012-12-11
US20030155122A1 (en) 2003-08-21
US6454003B1 (en) 2002-09-24
AU2001266600B2 (en) 2006-10-05
BR0111613A (pt) 2003-07-01
NO20025581L (no) 2003-02-10
DK1290310T3 (da) 2007-07-02
RU2256071C2 (ru) 2005-07-10
ECSP024391A (es) 2003-05-26
CA2408312C (en) 2009-08-18
WO2001096707A1 (en) 2001-12-20
NO330481B1 (no) 2011-04-26
CA2408312A1 (en) 2001-12-20
EP1290310B1 (en) 2007-03-21
EP1290310A4 (en) 2005-06-15
NO20025581D0 (no) 2002-11-21

Similar Documents

Publication Publication Date Title
CN1434893A (zh) 从地下储藏田开采液态烃的组合物及方法
US7947630B2 (en) Compositions comprising at least two different polymeric microparticles and methods for recovering hydrocarbon fluids from a subterranean reservoir
EP2807228B1 (en) Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
RU2500711C2 (ru) Композиция и способ извлечения углеводородных флюидов из подземного месторождения
RU2499021C2 (ru) Композиция и способ извлечения углеводородных флюидов из подземного месторождения
RU2501830C2 (ru) Композиция и способ извлечения углеводородных флюидов из подземного месторождения
AU2001266600A1 (en) Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
US7989401B2 (en) Block copolymers for recovering hydrocarbon fluids from a subterranean reservoir
US11149186B2 (en) Method for enhanced oil recovery by injecting an aqueous polymeric composition containing microgels
CN109867746A (zh) 一种抗盐减阻剂、其制备方法及用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication