CN1437456A - 双向机械电换能器 - Google Patents

双向机械电换能器 Download PDF

Info

Publication number
CN1437456A
CN1437456A CN01811578A CN01811578A CN1437456A CN 1437456 A CN1437456 A CN 1437456A CN 01811578 A CN01811578 A CN 01811578A CN 01811578 A CN01811578 A CN 01811578A CN 1437456 A CN1437456 A CN 1437456A
Authority
CN
China
Prior art keywords
sector
transducer
signal
central object
suspended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01811578A
Other languages
English (en)
Other versions
CN1278651C (zh
Inventor
比格尔·奥腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A play off, Limited by Share Ltd
Original Assignee
Meditron AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meditron AS filed Critical Meditron AS
Publication of CN1437456A publication Critical patent/CN1437456A/zh
Application granted granted Critical
Publication of CN1278651C publication Critical patent/CN1278651C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/24Methods or devices for transmitting, conducting or directing sound for conducting sound through solid bodies, e.g. wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/22Methods or devices for transmitting, conducting or directing sound for conducting sound through hollow pipes, e.g. speaking tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0204Acoustic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Networks Using Active Elements (AREA)
  • Amplifiers (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

在一种用于发射和拾取机械振动的换能器中,中心物体(4)悬挂在外围框架(2)上的压电弹性悬挂结构(3)上。该悬挂结构(3)被分隔成扇区,并且具有用于每个对应扇区(5)的独立的信号导线,从而可以由不同的扇区(5)同时传输和接收振动。此外,中心物体(4)可以配备有其自身的压电元件。

Description

双向机械电换能器
本发明涉及施加并检测声学或机械振动,以及提供和传送对应于振动状态参数的电信号。更特别地,本发明涉及一种机械电换能器,用于施加并检测振动,以及提供和传送对应于所施加和检测的振动参数的电信号。
机械能和电能(振动、力、加速度)之间的换能器具有许多用途,并存在于许多具体装置中。通常,例如采用两个或三个独立的换能器通过使悬挂在弹簧系统上的重物相对于基准框架移动来检测三个正交方向的加速度。
从GB2.055.01 8和EP118.329可知现有的换能器,具有悬挂在压电弹性“薄层”或压电细丝中心的重物,用于地震和声学探测。
也可以在GB2.166.022发现相关技术,该公开文本示出一种扬声器形式的换能器,即从电信号转换为声信号,并且使用一个悬挂在压电薄扬声器振膜中心的重物,该振膜可以利用径向切割线分成多个薄层状区域。由于众所周知扬声器还可以用作麦克风,因此最后所述的公开文本要视为论述一种双向换能器。但是,该公开文本的中心意思在于通过增加中心物体可以降低扬声器的有用频率范围。
本发明目的在于提供一种双向换能器,优于在先已知的方案,能够产生方向效应并且提供改进的发射和检测,特别是和生物组织中的回波测量结合起来。
因此,根据本发明,提供一种如权利要求1限定的双向机械电换能器。本发明的优选实施例体现在所附的从属权利要求中。
在下文中,通过示例性的实施例并参照附图进一步说明本发明,其中:
图1示出本发明的换能器的第一实施例,其中在悬挂扇区具有传送和接收行为;
图2示出具有活性中心物体实施例;
图3a和3b示出具有中心物体拉紧结构的第一实施例;
图4a和4b示出第二个这种实施例;以及
图5示意地示出具有信号定相的实施例。
图1中显示本发明的换能器1的第一实施例。在环形框架2内,中心物体4悬挂在扁平悬挂结构3内,该悬挂结构3的形式为多个扇区形式的的弹性片5,在该例中是八个这种扇区5。
在图1所示的实施例中,框架2还通过弹性带7形式的外部弹性悬挂结构悬挂在外部框架6上,但是这种具有外部悬挂结构的外部框架6对于本发明来说不是必须的。
信号导线8引向并引自扇区5,并且可能引向并引自中心物体4,并且接头9布置在外部框架6上。在框架2之内没有进一步详细地示出导线8,但是引向并引自每个对应的扇区5,并且可能引向并引自中心物体4。
每个扇区片5的外边可以连接在环2的两部分之间,并且在内“点”连接在和中心物体4连续的两个半球形之间。扇区片5例如由PVDF(聚偏氟乙稀)制成,该材料具有压电特性,并且能够将电输入信号转化为振动,该可以传播到换能器前面(上面)的介质,例如生物组织,并且冲击振动波冲击扇区(或多个扇区),转换为电输出信号。每个扇区5独立地可对独立的导线8寻址。
在该第一实施例中,中心物体4只是一个重物,当换能器装配成例如手持式检查装置的前部时,该重物例如和病人的皮肤结合,从而换能器的中心部分被向后推压。这导致扇区5相对于未装配位置成一定角度,这样,获得聚焦效应,例如图1所示。另外,应当注意,当具有弹性外部悬挂结构7时,如图1所示,在这里也发生向下弯曲。在没有该结构的实施例中,扇区的偏角将更加倾斜。
利用所示类型的换能器,可以利用一个或多个扇区传送振动,并且同时,另一个或其他一些扇区可以接收所反射的振动,即回波。
另一个优点是,通过后处理来自不同扇区的接收信号而可能剔除不希望的信号,即噪波。也可能将相对相位的噪波信号耦合到例如一个特定扇区的信号导线,以便去除该扇区的接收信号的噪波部分。将被耦合的噪波信号可以来自例如外部悬挂结构7上的压电元件,该元件也将接收输入噪波信号,或者来自独立布置的传感器。
在图2所示的实施例中,中心物体4也是“活性的”,即该中心物体本身包含压电元件10和11,在该实施例中,压电元件10用于传输振动,压电元件11用于接收被反射的振动。至于其他,换能器和图1所示构造相同。引向中心物体压电元件的信号导线没有表示在图2中,但是它们沿扇区5上的通道连接于中心物体4。
在所示的实施例中,压电元件10和11由压电材料镶铸为“半月形”。这里所说明的实施例的使用方式例如是中心物体压电元件10传输高频振动,优选地在5-10MHz的范围内(但是不限于该范围),以便进行回波多普勒探查。元件11拾取被反射的振动。
当利用中心物体4进行回波多普勒探查的同时,扇区5或者其中一些可以用于普通的听诊,即仅仅从人体监听声学振动。
图3a和3b示出本发明的换能器的一个实施例,其中可以改变和控制扇区的倾斜度(相比于如上所述通过按压中心物体表面而得到的倾斜度)。这可以通过将中心物体4设计为具有延伸后部14而实现,其中延伸后部14被套筒15夹持,其方式为套筒可以围绕后部14上的下部球或膨大部分(未示出)旋转,从而当套筒15旋转向下移动时后部(并进而中心物体)可以被向下拉动。这种旋转向下移动由旋转头2引起,从而由多个撑条12夹持的内螺纹部分16和螺栓17上的螺纹合作引起竖直移动。因此,以此方式可以调整扇区5的角度和张紧。
如图3a、3b所示,撑条12连接于环2,从而张紧将只影响到具有扇区5的换能器的主体部分。但是,图4a和4b示出一种变形,其中撑条12连接于外环6。这意味着外部悬挂结构也将由调整系统12-17张紧和倾斜。
撑条12的弯曲形状是合适的,但是不是必须的。
而且,如图3和4所示的换能器变形与如图1和2所示的实施例工作原理相同。
图5示意地示出一个实施例,其中可能提供有对施加于独立的压电扇区5的信号的详细控制,以及对将被传输的机械振动波的定向控制。它采用天线技术例如移动电话领域中所公知的原理,其中包含多个天线元件的天线按照相互间很小的延时或相移被“激发”,从而在从整个天线出来的方向上获得相长干涉。(这种原理也应用于接收/监听,即在相连接的接收器电子装置上按照“定相序列”开有“监听窗”,并且部分信号按照以特定方向有效地进行监听的方式加入。)
这样,通过使控制单元21经由多线电缆20和复式接头19和9以及导线8向扇区5,以及向每个对应的扇区上的触点18传输相移的(并且可能调整强度的)信号,进行机械振动波的定向和定相传输,从而对应的扇区接收被相位控制的信号。(通过另外的活性压电扇区区域的径向分隔以及向其提供独立的信号,也可以获得进一步的详细控制。)在其他方面,信号导线8和触点18只是示意性示出,例如不是所有的导线8表示为连接于接头9,但是当然这是目的。图5中,为了简化,换能器表示为没有外部框架的实施例,但是这种如其他附图所示的外部框架6当然也可以用在这种“定相”实施例中。
根据同样的定相原理当然也可以进行接收/监听。控制单元21中的计算机/计算单元根据编程算法处理传输和接收中的信号相位。

Claims (12)

1.双向机械电换能器,用于发射和拾取机械振动,所述换能器包括悬挂在至少一个压电弹性悬挂结构(3)上的中心物体(4),该压电弹性悬挂结构(3)依次安装在外围框架(2)上,以及连接于悬挂结构的信号导线(8),其特征在于,所述悬挂结构(3)和所述中心物体(4)利用所述悬挂结构(3)的扇区分区基本上同时地传输机械振动并接收该振动,所述悬挂结构(3)具有用于每个扇区(5)的独立信号导线。
2.如权利要求1所述的换能器,其特征在于,悬挂结构(3)的至少一个扇区(5)用于传输,同时至少另外一个扇区(5)基于该传输接收回波信号。
3.如权利要求2所述的换能器,其特征在于,它可以以如下方式使用,当检查时所述中心物体(4)可以被迫压向组织表面,从而张力施加于所述扇区(5)上,同时扇区倾斜,这样将更加定向地传输和接收信号。
4.如权利要求1所述的换能器,其特征在于,中心物体(4)配备有至少一个压电元件(10、11),用于传输和可能地接收机械振动。
5.如权利要求1或4所述的换能器,其特征在于,具有接收功能的不同扇区(5),还可能是中心物体(4)上的接收压电元件(11),连接用于电结合特定的不希望的频率、噪波消除。
6.如权利要求1或4所述的换能器,其特征在于,外围框架(2)进一步利用外部弹性悬挂结构(7)悬挂在外部框架(6)上,该外部弹性悬挂结构(7)也配备有压电元件以提供接收信号用于通过和来自接收扇区(5)以及可能来自中心物体(14)上的接收压电元件(11)的接收信号结合来消除噪波。
7.如权利要求1或4所述的换能器,其特征在于,具有接收功能的扇区(5)还用于从特定的外部传感器接收电信号,用以消除含有不希望的噪波的特定信号。
8.如权利要求1所述的换能器,其特征在于,通过连接用于定相引向和引自扇区(5)的信号的装置来实现定向传输和接收。
9.如权利要求4所述的换能器,其特征在于,中心物体(4)具有独立的压电元件(10)用于传输频率范围在5-10MHz的超声信号,以及独立的压电元件(11)用于接收这些信号的反射,以进行可能与所述悬挂结构的至少一个扇区(5)的声学应用同步的回波多普勒探查。
10.如权利要求1所述的换能器,其特征在于,中心物体(4)张紧地连接于布置在所述悬挂结构(3)的后侧的张紧结构(12、13、15、16、17),从而所述中心物体(4)能够被拉向后侧以为所述扇区(5)提供张力和倾斜位置。
11.如权利要求10所述的换能器,其特征在于,所述张紧结构(12、13、15、16、17)刚性地连接于外围框架(2)。
12.如权利要求10所述的换能器,其特征在于,所述张紧结构(12、13、15、16、17)刚性地连接于外部框架(6),其中外围框架(2)利用外部弹性悬挂结构(7)悬挂,从而当中心物体(4)张紧时,悬挂结构的扇区(5)以及外部弹性悬挂结构(7)被提供有张力和倾斜位置。
CNB018115780A 2000-06-23 2001-02-21 双向机械电换能器 Expired - Fee Related CN1278651C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21347700P 2000-06-23 2000-06-23
US60/213,477 2000-06-23

Publications (2)

Publication Number Publication Date
CN1437456A true CN1437456A (zh) 2003-08-20
CN1278651C CN1278651C (zh) 2006-10-11

Family

ID=22795268

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018115780A Expired - Fee Related CN1278651C (zh) 2000-06-23 2001-02-21 双向机械电换能器

Country Status (14)

Country Link
US (2) US6619126B2 (zh)
EP (1) EP1292228B1 (zh)
JP (1) JP2004500951A (zh)
KR (1) KR20030011925A (zh)
CN (1) CN1278651C (zh)
AT (1) ATE302566T1 (zh)
AU (1) AU2001242885A1 (zh)
BR (1) BR0112278A (zh)
CA (1) CA2413410A1 (zh)
DE (1) DE60112934T2 (zh)
EA (1) EA200300053A1 (zh)
NZ (1) NZ523691A (zh)
PL (1) PL359370A1 (zh)
WO (1) WO2002000117A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118496A (zh) * 2015-09-11 2015-12-02 黄礼范 声学超材料基本结构单元及其复合结构和装配方法
CN111405441A (zh) * 2020-04-16 2020-07-10 瑞声声学科技(深圳)有限公司 一种压电式mems麦克风
CN111678626A (zh) * 2020-08-11 2020-09-18 潍坊研翔仪器仪表科技有限公司 一种包含交织挠性敏感元件的压电传感器及其检测方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1436801A (en) * 1999-10-22 2001-05-08 Government of the United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA), The Membrane tension control
NL1024722C2 (nl) * 2002-11-07 2005-12-23 Corning Inc Laag uitgassend rubberachtig polymeermateriaal dat hardbaar is door een licht- of elektronenbundel, alsmede de bereiding en het gebruik daarvan.
NO20034247L (no) * 2003-09-23 2005-03-29 Meditron Asa Diagnostisk apparat
US7057330B2 (en) * 2003-12-18 2006-06-06 Palo Alto Research Center Incorporated Broad frequency band energy scavenger
EP1713134A1 (de) * 2005-04-14 2006-10-18 Delphi Technologies, Inc. Vibrationssensor und Verfahren zu dessen Herstellung
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
US8638956B2 (en) * 2009-08-06 2014-01-28 Ken K. Deng Acoustic velocity microphone using a buoyant object
DE102010029278B4 (de) 2010-05-25 2019-05-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sensor und Aktuator für mehrere Rotationsfreiheitsgrade
RU2611735C1 (ru) * 2016-04-04 2017-02-28 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Комбинированный приемник для регистрации дыхательных звуков на поверхности грудной клетки
US10507009B2 (en) 2017-10-05 2019-12-17 EchoNous, Inc. System and method for fusing ultrasound with additional signals
US11422273B2 (en) 2018-09-05 2022-08-23 Pgs Geophysical As Sensor housing and spacer carrier assembly
JP2022508629A (ja) 2018-10-08 2022-01-19 エコーノース インコーポレーテッド 超音波センサ、聴診センサ、及び周囲ノイズセンサを含む装置
JP7467317B2 (ja) 2020-11-12 2024-04-15 株式会社東芝 音響検査装置及び音響検査方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880333A (en) 1954-11-17 1959-03-31 Gulton Ind Inc Accelerometer
US2842685A (en) * 1955-12-23 1958-07-08 Gulton Ind Inc Bender tuned array
US2963911A (en) * 1959-02-18 1960-12-13 Bell Telephone Labor Inc Piezoresistive accelerometer
US3147391A (en) * 1961-03-27 1964-09-01 Darrel Bernard Angular accelerometer
US3069573A (en) * 1961-06-26 1962-12-18 Eugene Van Liew Connector assembly for annular piezoelectric transducers
US4051395A (en) 1975-08-08 1977-09-27 Minnesota Mining And Manufacturing Weight actuated piezoelectric polymeric transducer
GB2055018B (en) 1979-07-11 1983-11-16 Kureha Chemical Ind Co Ltd Vibration detector
US4349183A (en) * 1980-08-04 1982-09-14 Litton Systems Inc. Spring for a ring laser gyro dither mechanism
US4398116A (en) * 1981-04-30 1983-08-09 Siemens Gammasonics, Inc. Transducer for electronic focal scanning in an ultrasound imaging device
FR2540325A1 (fr) * 1983-01-28 1984-08-03 Thomson Csf Hydrophone de vitesse
US4685767A (en) * 1984-02-27 1987-08-11 Matsushita Electric Industrial Co., Ltd. Fine adjustment apparatus for optical system lens
GB2166022A (en) * 1984-09-05 1986-04-23 Sawafuji Dynameca Co Ltd Piezoelectric vibrator
GB8519026D0 (en) 1985-07-27 1985-09-04 Laing J Piezo electrical inertia sensitive device
US4779985A (en) * 1986-12-22 1988-10-25 Litton Systems, Inc. Dither suspension for ring laser gyroscope and method
US4727279A (en) * 1987-04-29 1988-02-23 General Motors Corporation Piezoelectric knock sensor
FR2615682B1 (fr) 1987-05-19 1989-07-13 Thomson Csf Geophone comportant un element sensible en polymere piezoelectrique
DE4012829C2 (de) * 1990-04-23 1995-11-23 Walter Rieger Vorrichtung zur mehrdimensionalen Kraftmessung und daraus abgeleiteten Größen durch Meßwertaufnahme mittels elektrischer Sensoren, z. B. Dehnungsmeßstreifen
US5461916A (en) * 1992-08-21 1995-10-31 Nippondenso Co., Ltd. Mechanical force sensing semiconductor device
US5428995A (en) * 1993-03-08 1995-07-04 Litton Systems, Inc. Counterbalanced vibratory triaxial angular rate sensor with open loop output
US5581013A (en) * 1993-06-16 1996-12-03 Frederick Engineering Company Method and system for obtaining useful foundation information
JP3256346B2 (ja) * 1993-07-29 2002-02-12 和廣 岡田 圧電素子を用いた力・加速度・磁気のセンサ
JPH07143765A (ja) * 1993-11-12 1995-06-02 Seiko Instr Inc 超音波モータ及び超音波モータ付き電子機器
JP3585980B2 (ja) * 1995-02-21 2004-11-10 株式会社ワコー 角速度センサ
US6359370B1 (en) * 1995-02-28 2002-03-19 New Jersey Institute Of Technology Piezoelectric multiple degree of freedom actuator
US5531115A (en) * 1995-06-29 1996-07-02 Erdley; Harold F. Self-calibrating three axis angular rate sensor
US5677487A (en) * 1995-10-13 1997-10-14 A/S Bruel & Kjaer Method and apparatus for measuring acceleration or mechanical forces
WO1998008102A2 (en) * 1996-08-23 1998-02-26 Bang & Olufsen Technology A/S An accelerometer
US5983718A (en) * 1997-07-14 1999-11-16 Litton Systems, Inc. Signal processing system for inertial sensor
US6038924A (en) * 1997-12-22 2000-03-21 Research Foundation Of State Of New York Low frequency seismic accelerometer
US6196067B1 (en) * 1998-05-05 2001-03-06 California Institute Of Technology Silicon micromachined accelerometer/seismometer and method of making the same
FR2784752B1 (fr) * 1998-10-20 2000-11-17 Onera (Off Nat Aerospatiale) Accelerometre miniature monolithique
FR2786957B1 (fr) * 1998-12-07 2001-02-23 Sfim Ind Actionneur piezo-electrique ou electrostrictif
US6279395B1 (en) * 1999-02-05 2001-08-28 Kistler Instrument Corporation Annual shear element with radial preload
JP3939048B2 (ja) * 1999-05-17 2007-06-27 セイコーインスツル株式会社 圧電アクチュエータ
US6397677B1 (en) * 2000-06-06 2002-06-04 Kistler Instrument Corporation Piezoelectric rotational accelerometer
US6357295B1 (en) * 2000-07-28 2002-03-19 Litton Systems, Inc. Counterbalanced rotation rate sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118496A (zh) * 2015-09-11 2015-12-02 黄礼范 声学超材料基本结构单元及其复合结构和装配方法
CN111405441A (zh) * 2020-04-16 2020-07-10 瑞声声学科技(深圳)有限公司 一种压电式mems麦克风
CN111405441B (zh) * 2020-04-16 2021-06-15 瑞声声学科技(深圳)有限公司 一种压电式mems麦克风
CN111678626A (zh) * 2020-08-11 2020-09-18 潍坊研翔仪器仪表科技有限公司 一种包含交织挠性敏感元件的压电传感器及其检测方法
CN111678626B (zh) * 2020-08-11 2020-12-08 山东道永盛信息科技有限公司 一种包含交织挠性敏感元件的压电传感器及其检测方法

Also Published As

Publication number Publication date
EP1292228A1 (en) 2003-03-19
US20020030421A1 (en) 2002-03-14
DE60112934D1 (de) 2005-09-29
ATE302566T1 (de) 2005-09-15
NZ523691A (en) 2004-05-28
EP1292228B1 (en) 2005-08-24
CA2413410A1 (en) 2002-01-03
AU2001242885A1 (en) 2002-01-08
EA200300053A1 (ru) 2003-06-26
BR0112278A (pt) 2003-06-10
US6624551B2 (en) 2003-09-23
US6619126B2 (en) 2003-09-16
US20020043110A1 (en) 2002-04-18
DE60112934T2 (de) 2006-06-14
KR20030011925A (ko) 2003-02-11
WO2002000117A1 (en) 2002-01-03
PL359370A1 (en) 2004-08-23
JP2004500951A (ja) 2004-01-15
CN1278651C (zh) 2006-10-11

Similar Documents

Publication Publication Date Title
CN1278651C (zh) 双向机械电换能器
CN102577436B (zh) 超声波探头及超声波摄像装置
US10969270B2 (en) Imaging devices having piezoelectric transceivers
US8760974B2 (en) Ultrasonic probe and ultrasonic imaging apparatus
JP5802886B1 (ja) 球状超音波トランスデューサ、水中計測装置
US6106474A (en) Aerogel backed ultrasound transducer
EP2540227A1 (en) Ultrasonic probe and ultrasonic image pickup device using same
CN1172632C (zh) 拾音传感器
CN109348386A (zh) 驱动装置和电子组件
US4131874A (en) Inertial balanced dipole hydrophone
JP2019165846A (ja) 振動検出センサーユニット及びピックアップ
CN212540713U (zh) 一种用于测距的mems麦克风系统
CN210609695U (zh) 电子设备
CN114152443A (zh) 一种嵌入式声学智能轴承及其监测诊断方法
CN210300996U (zh) 用于生物体振动检测的振动传感器及胎心监测装置
CN106937227B (zh) 一种新型无振膜主动式传声器
CN211296931U (zh) 定向指向性拾音器
CN1628485A (zh) 装配测距仪的麦克风
CN115663731B (zh) 一种基于微风振动取能的智能防振装置
JP3906338B2 (ja) 光受波部一体型水中用送受波器
KR20080073516A (ko) 마이크로폰 어레이를 이용하여 음성을 인식하는 음성인식장치 및 그 마이크로폰 어레이 구동 방법
CN107847980B (zh) 具有偏离声方向的路程相加的电声转换器
CN117135551A (zh) 压电振动模组、屏幕发声组件及电子设备
RU2032276C1 (ru) Электроакустический конденсаторный преобразователь
JP2023084335A5 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: MEDITRON ASA

Free format text: FORMER OWNER: MEDITRON AS

Effective date: 20050318

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20050318

Address after: Norway Vetri

Applicant after: Meditron ASA

Address before: Norway Vetri

Applicant before: Meditron AS

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: AJIA SAISI CO., LTD.

Free format text: FORMER OWNER: MEDITRON ASA

Effective date: 20111008

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20111008

Address after: Norway Drammen

Patentee after: A play off, Limited by Share Ltd

Address before: Norway Vetri

Patentee before: Meditron ASA

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061011

Termination date: 20140221