CN1462305A - 荧光体粉末及其制造方法、显示板及平面型显示装置 - Google Patents

荧光体粉末及其制造方法、显示板及平面型显示装置 Download PDF

Info

Publication number
CN1462305A
CN1462305A CN02801671A CN02801671A CN1462305A CN 1462305 A CN1462305 A CN 1462305A CN 02801671 A CN02801671 A CN 02801671A CN 02801671 A CN02801671 A CN 02801671A CN 1462305 A CN1462305 A CN 1462305A
Authority
CN
China
Prior art keywords
fluorophor powder
constitutes
activator
coactivator
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02801671A
Other languages
English (en)
Other versions
CN100445346C (zh
Inventor
梶原和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1462305A publication Critical patent/CN1462305A/zh
Application granted granted Critical
Publication of CN100445346C publication Critical patent/CN100445346C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/54Screens on or from which an image or pattern is formed, picked-up, converted, or stored; Luminescent coatings on vessels
    • H01J1/62Luminescent screens; Selection of materials for luminescent coatings on vessels
    • H01J1/63Luminescent screens; Selection of materials for luminescent coatings on vessels characterised by the luminescent material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/642Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Abstract

该荧光体粉末是由II-VI族元素构成的芯材、激活剂和共激活剂组成的,当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。

Description

荧光体粉末及其制造方法、显示板及平面型显示装置
技术领域
本发明涉及一种荧光体粉末(荧光体结晶粒子)及其制造方法,由这种荧光体粉末构成的显示板和由这种显示装置制作的平面型显示装置。
背景技术
目前,正在研究种种的平面型的显示装置,作为代替主流的阴极射线管(CRT)的图像显示装置。这种平面型显示装置可以液晶显示装置(LCD)、电致发光显示装置(ELD)、等离子显示装置(PDP)为例。另外还有,不必用热激励的由固体就能向真空发射电子的冷阴极电场电子发射显示装置,所谓的场致发射显示器(FED),从图像的亮度及低耗电的观点出发引人注目。
冷阴极电场电子发射显示装置的代表性结构例如图4所示。在这个冷阴极电场电子发射显示装置中,显示板20与背面板10是相对配置的。两个板10、20通过分别在边缘部分未图示的框体而互相连接,两板之间的封闭空间为真空空间。背面板10装有作为电子发射体的冷阴极电场电子发射元件(以下称为电场发射元件)。在图4中作为电场发射元件的一例,可示出有圆锥形电子发射部分的16、所谓Spindt型电场发射元件。Spindt型电场发射元件由在基板11上形成的条状阴电极12、阴电极12及基板11上形成的绝缘层13、绝缘层13上形成的条状栅电极14、栅电极14及绝缘层13上所设的开口部15内形成的圆锥形电子发射部16构成。电子发射部16设置在位于开口部15底部的阴电极12上。通常,多数电子发射部16是与后面将叙述的发光层22之一对应安装。由阴电极驱动电路31经过阴电极12,对电子发射部16,相对来说施加了负电压(视频信号),由栅电极驱动电路32,对栅电极14,相对来说施加了正电压(扫描信号)。根据由这些附加电压产生的电场,电子由于量子隧道效应从电子发射部16的尖端射出。另外,电场发射元件并不限于上述那样的Spindt型电场发射元件,也有应用所谓的扁平型或棱型、平面型、冠型等其它类型的电场发射元件。还有与上述相反,扫描信号输入阴电极12,视频信号输入栅电极14的情形。
另一方面,显示板20有在玻璃等构成的支持体21上形成的点状或条状的多个发光层22以及由发光层22及支持体21上形成的导电性反射膜构成的阳电极24。在阳电极24上附加由加速电源(阳电极驱动电路)33施加的比栅电极14附加的正电压还高的正电压,所起的作用是把从电子发射部16发射到真空空间的电子诱导到发光层22。另外,阳电极24有保护构成发光层22的荧光体粉末(荧光体粒子)不被离子等粒子溅射的功能;有使电子激励产生的发光层22发出的光向支持体一侧反射,提高从支持体外侧观察的显示图像亮度的功能;还有防止过剩带电,使显示板20的电位稳定的功能。也就是说阳电极24,不仅起到了阳电极本身的作用,还兼有作为阴极射线管(CRT)范围熟知的构件的金属敷层膜所起的作用。阳电极24通常是由铝薄膜构成。发光层22和发光层22之间形成黑色矩阵23。
图5的(A)表示发光层22R、22G、22B形成的点状的显示板的平面模式图,图5的(B)表示沿着图5(A)的线X-X的一部分断面模式图。发光层22R、22G、22B排列的领域是冷阴极电场电子发射显示装置发挥实用机能的有效领域,阳电极的形成领域与这个有效领域几乎是一致的。为了更明确,图5的(A)中阳电极形成的领域画了斜线。有效领域的周围是容纳外部电路或机械支持显示图像等支援有效领域机能的无效领域。
冷阴极电场电子发射显示装置中,阳电极不一定必须是上述那样的由导电性反射膜构成的阳电极24构成,也可以象与沿着图5的(A)线X-X同样的模式的一部分断面图5的(C)所示的那样,由在支持体21上形成的透明导电膜构成的阳电极25构成。在支持体21上阳电极24、25的形成领域几乎涉及全部有效领域。
图6的(A)表示发光层22R、22G、22B形成的条状显示板的平面模式图,图6的(B)和(C)表示沿图6的线X-X的一部分断面模式图。图6的参照符号和图5是共同的,共同部分的详细说明省略。图6的(B)表示阳电极24由导电性反射膜构成的例子,图6的(C)表示阳电极25由透明导电膜构成的例子。阳电极24、25的形成领域几乎涉及显示板全部有效领域。
但是,在平面型显示装置冷阴极电场电子发射显示装置中,电子的飞行距离比在阴极射线管中短得多,电子的加速电压不能象阴极射线管那么高。冷阴极电场电子发射显示装置,电子的加速电压过高极易导致在背面板的栅电极或电子发射部分与设置在显示板上的阳电极之间发生火花放电,有明显损坏显示质量的危险。因此,加速电压要控制在10千伏以下。
这样,必须选择低的电子加速电压的冷阴极电场电子发射显示装置就产生了其它阴极射线管中不存在的特有的问题。在进行高电压加速的阴极射线管中,由于电子侵入发光层的深层,电子的能量被收容在发光层内较广的领域,存在于这广泛领域的相对多数的荧光粉末被一齐激励,可达到高亮度。加速电压为31.5千伏,发光层由ZnS构成时射入发光层的电子能损失与电子侵入发光层深度的关系,按照下面的式(1)中所示的贝特(Bethe)式(参照“Practical ScanningElectron Micrlscopy”,J.I.Goldstein and H.Yakowitz,pp50,Plenum Press,New York(1975))进行蒙特卡罗模拟得到的结果如图20所示。从图20中可以判断,加速电压为31.5千伏时,电子能量的损失峰是离发光层表面约1μm的位置。而且电子达到了离发光层表面约5μm深度。在模拟中电子第1次散射其能量约平均损失43eV(平均自由行程约4.8nm),接受平均150次的弹性散射后停止。-(dEm/dX)=2πe4N0(Z/A)(ρ/Em)ln(1.166Em/J)(1)
但是冷阴极电场电子发射显示装置,加速电压必须是10千伏以下,例如6千伏左右。加速电压为6千伏,发光层由ZnS构成时,射入发光层的电子能量损失和电子侵入发光层的深度的关系,根据上述的贝特式进行蒙特卡罗模拟的结果如图21和图22所示。图21中发光层的表面是由厚0.045μm的铝薄膜形成的,图22中发光层的表面是由厚0.07μm的铝薄膜形成的。从图21和图22也可以证实电子能量损失的峰位于发光层最表面附近。而且,电子只能到达距发光层表面约0.2~0.3μm的深度。这样,在加速电压比阴极射线管还低的冷阴极电场电子发射显示装置中,电子侵入发光层的深度浅,电子能量只能收容在发光层狭窄的领域(特别是发光层的表面附近)。
而且,在发光层具有的电子能量,只有约10%有助于发光,其余的约90%的能量被转换成了热。也就是说,发光层表面附近发热量大。其结果是,比如发光层是由硫化物系荧光体粉末构成的情况下,其构成元素硫就会以单体或一氧化硫(SO)、二氧化硫的形式脱离,造成硫化物系荧光体粉末的成分变化或者发光中心的消失。加速电压为6千伏,发光层由ZnS构成时,把射入发光层的电子能量损失与电子侵入发光层的深度的关系,按照上述贝特式进行的蒙特卡罗模拟的结果如图23所示。在图23中发光层的表面由厚度为0.07μm的铝薄膜形成,假定在距发光层表面约0.03μm深的地方硫(S)从ZnS脱离得到Zn。如图23也能证实的那样,可断定电子能量损失的峰位于硫(S)从ZnS脱离生成Zn的发光层的范围。而且,电子只能到达距发光层表面约0.2μm的深度。
而冷阴极电场电子发射显示装置,与阴极射线管的情形不同,从某个电场发射元件发射出的电子碰撞的发光层(更具体来说是荧光体粉末)的位置大致是一定的。因此,通常电子碰撞的荧光体粉末的劣化比其它荧光体粉末显著,荧光体粉末的劣化进程比阴极射线管还快。
而且,荧光体粉末的最表面,在荧光体粉末制造工序中或显示板的制造工序中受到种种应变,容易发生晶格缺陷。而为了得到所希望的亮度,冷阴极电场电子发射显示装置有必要用比阴极射线管还高的高电流密度(发射电子密度)驱动。例如,阴极射线管的电流密度为0.1~1μA/cm2,冷阴极电场电子发射显示装置的电流密度就需要5~10μA/cm2。因此,荧光体粉末的最表面或其附近要求在高激励条件下工作,但冷阴极电场电子发射显示装置的工作中,荧光体粉末容易产生新的结晶缺陷、增殖,估计亮度劣化进行快就是这个原因。
以上说明的发光层或荧光体粉末的劣化,会影响到发光色或发光效率的改变、冷阴极电场电子发射显示装置内部构成部件的污染,进而,会影响到冷阴极电场电子发射显示装置的可靠性或降低寿命。所以,为了提高冷阴极电场电子发射显示装置的可靠性或延长寿命,迫切需要劣化少的、也就是说结晶缺陷少的发光层或荧光体粉末。
为了力图显示的精细化,要求阴极射线管中碰撞发光层的电子射线束的束径小。也就是说,有必要增加碰撞发光层的电子射线束的电流密度。然而,采用这种方法,特别容易发生对发绿色光的荧光体粉末的损伤,一旦发生这种现象,就会发生洋红圈。在这里所谓的洋红圈是指,对发红色和蓝色光的荧光体粉末不易发生损伤,在阴极射线管中观察到绿色的互补色红色呈现环状的现象。在以往的阴极射线管中碰撞发光层的电子射线束的电流密度与阴极射线管的寿命有一种反比例关系。因此,为了即使碰撞发光层的电子束的电流密度提高也不会缩短阴极射线管的寿命,迫切需要劣化少的、即,结晶缺陷少的发光层或荧光体粉末。
本发明的目的是提供一种结晶缺陷少,长时间使用仍然劣化少的,即亮度降低少的荧光体粉末、该荧光体粉末构成的显示板以及由该显示板制作的平面型显示装置。
发明内容
为实现上述目的,本发明的第1种形态荧光体粉末是由II-VI族元素构成的芯材、激活剂及共激活剂构成的荧光体粉末,
其特征为,芯材为1重量份时,激活剂的比例是1×10-4重量份乃至1×10-3重量份,且具有共激活剂的摩尔浓度和激活剂的摩尔浓度相等。
为了实现上述目的的本发明的第1种形态的显示板是由支持体、通过从真空空间飞来的电子的照射而发光的荧光体粉末构成的发光层及电极构成的显示板,
其特征为,该荧光体粉末是由II-VI族元素构成的芯材、激活剂及共激活剂构成的,
芯材为1重量份时,激活剂的比例是1×10-4重量份乃至1×10-3重量份,且具有共激活剂的摩尔浓度和激活剂的摩尔浓度相等。
为了实现上述目的的本发明的第1种形态的平面型显示装置是由显示板与有多个电子发射领域的背面板夹着真空空间地相对配置而成的平面型显示装置,
其特征为,显示板是由支持体、通过从电子发射领域飞来的电子的照射而发光的荧光体粉末构成的发光层及电极构成的,
该荧光体粉末是由II-VI族元素构成的芯材、激活剂及共激活剂构成的,
芯材为1重量份时,激活剂的比例是1×10-4重量份乃至1×10-3重量份,且具有共激活剂的摩尔浓度和激活剂的摩尔浓度相等。
为了方便,下面有时把本发明的第1形态荧光体粉末、显示板和平面型显示装置总称为本发明的第1形态。
在本发明的第1形态中,由于规定了激活剂(相当于半导体技术领域中的受体)的比例,发光中心的数量充足,所以能得到有效的发光,而且可以避免增加对发光不利的不纯物,能够避免发生降低效率的浓度消光问题。并且,由于共激活剂(相当于半导体技术领域中的给体)的摩尔浓度和激活剂的摩尔浓度相等,可以获得极高的发光效率。再加上由于规定了激活剂的比例,使共激活剂的摩尔浓度和激活剂的摩尔浓度相等,可以提高获得的荧光体粉末的结晶性,长时间使用也很少劣化,也就是说,可以获得亮度很少降低的荧光体粉末。
还有,激活剂或共激活剂的比例可以用化学分析,例如原子吸光分析法测定。
有利于达到上述目的的本发明的第2种形态的荧光体粉末,以从其表面除去表面结晶缺陷层或表面应变层为特征。
有利于达到上述目的的本发明的第2种形态的显示板是由支持体、通过从真空空间飞来的电子的照射而发光的荧光体粉末构成的发光层及电极构成的,
其特征为,该荧光体粉末,以从其表面除去表面结晶缺陷层或表面应变层。
有利于达到上述目的的本发明的第2种形态的平面显示装置是由显示板与有多个电子发射领域的背面板夹着真空空间地相对配置而成的平面型显示装置,
其特征为,显示板是由支持体、通过从电子发射领域飞来的电子的照射而发光的荧光体粉末构成的发光层及电极构成的,
该荧光体粉末,从其表面除去表面结晶缺陷层或表面应变层。
为了方便,下面有时把本发明的第2形态荧光体粉末、显示板和平面型显示装置总称为本发明的第2形态。
在本发明的第2形态中,因为荧光体粉末表面除去了结晶缺陷层或表面应变层,提高了获得荧光体粉末的结晶性能,长时间使用也很少劣化,即,能获得亮度降低很少的荧光体粉末。
荧光体粉末表面是否除去了表面结晶缺陷层或表面应变层,还可以通过制作荧光体粉末断面薄片试样,用透过型电子显微镜观察明视野图像和点阵图像作检查。
有利于达到上述目的的本发明的第3种形态的荧光体粉末,其特征为用含磷酸的化合物层被覆表面。
有利于达到上述目的的本发明的第3种形态的显示板是由支持体、通过从真空空间飞来的电子的照射而发光的荧光体粉末构成的发光层及电极构成的,
其特征为,该荧光体粉末用含磷酸的化合物层被覆表面。
有利于达到上述目的的本发明的第3种形态的平面显示装置是显示板与有多个电子发射领域的背面板夹着真空空间地相对配置而成的平面型显示装置,
其特征为,显示板是由支持体、通过从电子发射领域飞来的电子的照射而发光的荧光体粉末构成的发光层及电极构成的,
该荧光体粉末用含磷酸的化合物层被覆表面。
为了方便,下面有时把本发明的第3形态荧光体粉末、显示板和平面型显示装置总称为本发明的第3形态。
在本发明的第3形态中,化合物层的平均厚度优选1nm至5nm。化合物层的平均厚度如果过厚,从荧光体粉末射出的光就有被化合物层吸收的危险。化合物层尽可能优选具有均一的膜厚。化合物层的形成可以在后面将叙述的荧光体粉末制造工程中的表面处理工序中进行。化合物层可以优选由磷酸锌或磷酸钙构成。
以往荧光体粉末的表面处理是采用溶胶-凝胶法使二氧化硅附着在荧光体粉末表面的方法、使粉末二氧化硅附着在荧光体粉末表面的方法。经过本发明者的研究,发现当能源线照射到荧光体粉末时,这些二氧化硅就分解,同时,附着有二氧化硅荧光体粉末的表面的结晶就产生缺陷。而当含有磷酸的化合物层在荧光体粉末上形成时,认为该化合物层在荧光体粉末表面是一种外延生长,在形成化合物层时,荧光体粉末表面很难发生结晶缺陷,从而使荧光体粉末的结晶性提高,而且由能源线的照射也很难对化合物层造成损伤,所以能获得即使长时间使用劣化也很少,即亮度降低少的荧光体粉末。
荧光体粉末表面是否形成了化合物层,还可以通过制作荧光体粉末断面薄片试样,用透过型电子显微镜观察明视野图像和点阵图像作检查,膜厚也可以用同样的方法测定。
有利于达到上述目的的本发明的第4种形态的荧光体粉末,特征是在亮度对温度特性方面,达到25℃下亮度的1/2亮度的温度T50为200℃以上。
有利于达到上述目的的本发明的第4种形态的显示板是由支持体、通过从真空空间飞来的电子的照射而发光的荧光体粉末构成的发光层及电极构成的,
其特征为该荧光体粉末,在亮度对温度特性方面,达到25℃条件下亮度的1/2亮度的温度T50为200℃以上。
有利于达到上述目的的本发明的第4形态的平面型显示装置是显示板与有多个电子发射领域的背面板夹着真空空间地相对配置而成的平面型显示装置,
其特征为,显示板是由支持体、通过从电子发射领域飞来的电子的照射而发光的荧光体粉末构成的发光层及电极构成的,
该荧光体粉末,在亮度对温度特性方面,达到25℃条件下亮度的1/2亮度的温度T50为200℃以上。
为了方便,下面有时把本发明的第4形态荧光体粉末、显示板和平面型显示装置总称为本发明的第4形态。
在本发明的第4形态中,温度T50为200℃以上,优选250℃以上,进一步优选350℃以上,更进一步优选400℃以上。
在本发明的第4形态中,由于规定了温度T50,可以获得结晶性高的荧光体粉末,可以获得长时间使用劣化也很少的,即,亮度降低很少的荧光体粉末。
这样的荧光体粉末的亮度对温度的特性,称为温度消光特性,测定了25℃条件下的亮度(亮度初期值)后,边加热荧光体粉末,边测定亮度,可以由亮度对温度的测定结果求出T50。实际上,在长期使用荧光体粉末之前,通常,温度一返回到25℃,就返回到测定前的亮度初期值。
本发明的第1形态~第4形态的荧光体粉末根据不同情况,包含将在这些形态中的荧光体粉末分散在分散介质中构成的荧光体粉末组合物。
本发明的第2形态~第4形态的优选形态的荧光体粉末或者后面将叙述的第1形态~第3形态的荧光体粉末的制造方法中的荧光体粉末是由II-VI族元素构成的芯材、激活剂及共激活剂构成,芯材为1重量份时,激活剂的比例是1×10-4重量份(100ppm)至1×10-3重量份(1000ppm),而且,优选共激活剂的摩尔浓度与激活剂的摩尔浓度相等的。这种场合,或者还有本发明的第1形态中,芯材为1重量份时,激活剂的比例优选3×10-4重量份(300ppm)至8×10-4重量份(800ppm),进一步优选5×10-4重量份(500ppm)至6×10-4重量份(600ppm)。激活剂的比例不到1×10-4重量份时,发光中心过于少,很难发光。另一方面,激活剂的比例超过1×10-3重量份时,不利于发光的不纯物就会增加,就会产生降低活性效率的浓度消光。共激活剂的摩尔浓度与激活剂的摩尔浓度相等,也就是说,共激活剂的原子数(原子%)与激活剂的原子数(原子%)相等,意味着激活剂的摩尔浓度为1.00时,共激活剂的摩尔浓度为0.95~1.05,优选的是0.98~1.02,进一步优选近似1.00。
在本发明的第2~第4形态优选的荧光体粉末中,还有后面将叙述的本发明的第1形态~第3形态涉及的荧光体粉末的制造方法中,芯材由II-VI族元素构成时,或者还有本发明的第1形态中,可以构成芯材的元素是锌(Zn)及硫(S);构成激活剂的元素是银(Ag);构成共激活剂的元素是铝(Al)。这种荧光体粉末发蓝光。或者还可以是构成芯材的元素为锌(Zn)及硫(S);构成激活剂的元素为铜(Cu);构成共激活剂的元素是铝(Al)。这种荧光体粉末发绿光。
构成芯材的II族元素除了锌(Zn)以外,还可举出镉(Cd);VI族元素除了硫(S)以外,还可举出硒(Se)、碲(Te)。也就是说,构成芯材的II/VI元素的组合可举出:(Zn/S)、(Zn/Se)、(Zn/Te)、(Zn/S,Se)、(Zn/S,Te)、(Zn/Se,Te)、(Zn/S,Se,Te)、(Cd/S)、(Cd/Se)、(Cd/Te)、(Cd/S,Se)、(Cd/S,Te)、(Cd/Se,Te)、(Cd/S,Se,Te)、(Zn,Cd/S)、(Zn,Cd/Se)、(Zn,Cd/Te)、(Zn,Cd/S,Se)、(Zn,Cd/S,Te)、(Zn,Cd/Se,Te)、(Zn,Cd/S,Se,Te)。
激活剂除了银(Ag)、铜(Cu)以外,还可举出金(Au),这种情况下,荧光体粉末发绿色光。再者,共激活剂除了铝(Al)以外,还可举出镓(Ga)、铟(In)。
作为本发明的第1形态中的荧光体粉末的具体例子,或者还有,本发明的第2形态~第4形态优选的荧光体粉末的例子,进而还有后面将叙述的用本发明的第1形态~第3形态涉及的荧光体粉末的制造方法制造的荧光体粉末的具体例子,发蓝色光的荧光体粉末可以举出[ZnS:Ag,Al]、[ZnS:Ag,Ga]。发绿色光的荧光体粉末可以举出[ZnS:Cu,Al]、[ZnS:Cu,Au,Al]、[(Zn,Cd)S:Cu,Al]、[(Zn,Cd)S:Ag,Al]、[Zn(S,Se):Ag,Al]。
本发明的第2形态~第4形态涉及的荧光体粉末,还有后面将叙述的由本发明的第1形态~第3形态涉及的荧光体粉末的制造方法制造的荧光体粉末的具体例子,除上述以外,具体来说,发蓝色光的荧光体粉末可举出[ZnS:Ag]。发绿色光的荧光体粉末可举出[Zn2SiO4:Mn2+]、[(Zn,Cd)S:Ag]、[(Zn,Cd)S:Cu]。发红色光的荧光体粉末可举出[Zn3(PO4)2:Mn2+]、[(Zn,Cd)S:Ag]、[YVO4:Eu3+]、[Y2O2S:Eu3+]、[Y2O3:Eu3+]。可举出发红橙色光的荧光体粉末有[Y2O2S:Eu3+];发紫蓝色光的荧光体粉末有[ZnS:Ag]。
在本发明的第1形态~第4形态中,荧光体粉末所含的氯系化合物(例如NaCl)的氯浓度优选为20ppm以下,或者还有在测定仪器测出界限以下的。这里,为了在后面将要叙述的荧光体粉末制造工序中降低烧成工序的烧成温度,将氯系化合物添加于把芯材与激活剂和共激活剂混合的工序中。因为当荧光体粉末所含的氯系化合物的氯浓度高时,荧光体粉末的结晶性就会降低,所以氯浓度优选在上述值以下。
本发明的第3形态可以和本发明的第2形态相配合。也就是说,其构成可以是从紧挨着化合物层的荧光体粉末表面除去了表面结晶缺陷层或表面应变层的结构。或者,还可以把本发明的第4形态和本发明的第2形态相配合。也就是说,其构成可以是从荧光体粉末表面除去了表面结晶缺陷层或表面应变层的结构。也可以把本发明的第4形态和本发明的第3形态相配合。也就是说,其构成可以是在荧光体粉末表面被覆含磷酸的化合物层的结构。
有助于达到上述目的的关于本发明的第1形态的荧光体粉末制造方法(以下,有时称为关于本发明的第1形态的制造方法)是:
在经过溶液的调制工序及反应工序制造出芯材以后,把该芯材和激活剂及共激活剂混合,接着,经烧成工序、表面处理工序,制造荧光体粉末的方法,
其特征是在烧成工序和表面处理工序中间,有除去烧成品表面形成的表面结晶缺陷层或表面应变层的工序。
在关于本发明的第1形态的制造方法中,因为从荧光体粉末表面除去表面结晶缺陷层或表面应变层,能够获得荧光体粉末结晶性提高,长时间使用也很少劣化的,即,亮度降低很少的荧光体粉末。
在关于本发明的第1形态的制造方法中,除去工序可以由退火处理或腐蚀处理构成。这里,退火处理的温度优选比烧成工序中的烧成温度低。而且,把退火气氛作成还元性气氛或非活性气体气氛,从防止荧光体粉末氧化的观点来看是优选的。或者还有,在腐蚀处理中优选使用把在磷酸(例如60℃的热磷酸)中添加了CrO3的过饱和溶液和浓盐酸以1∶2混合的混合溶液作为腐蚀液。
在关于本发明的第1形态的制造方法中,烧成工序和除去工序之间有洗涤工序,优选把烧成品洗涤干净,使荧光体粉末中所含的氯系化合物(例如NaCl)的氯浓度为20ppm以下,或者,在测定仪器检测出的界限以下。这样,可以提高荧光体粉末的结晶性。另外,在表面处理工序中,在荧光体粉末表面优选被覆含有磷酸的化合物层。而且,化合物层的平均厚度优选1nm至5nm。化合物层优选由磷酸锌或磷酸钙构成。这样也能提高荧光体粉末的结晶性。为了在荧光体粉末表面被覆含有磷酸的化合物层,例如也可以调制含有磷酸的化合物溶液,把荧光体粉末在该溶液中浸渍后,再使荧光体粉末干燥。在以下关于本发明的第2形态或第3形态的荧光体粉末的制造方法中也是同样的。
有助于达到上述目的的关于本发明的第2形态的荧光体粉末制造方法(以下,有时称为关于本发明的第2形态的制造方法)是:
在经过溶液的调制工序及反应工序制造出芯材以后,把该芯材和激活剂及共激活剂混合,接着,经烧成工序、表面处理工序,制造荧光体粉末的方法,
其特征是在烧成工序之后有洗涤工序,把烧成品洗涤干净,使荧光体粉末所含的氯系化合物的氯浓度在20ppm以下。
在本发明的第2形态的制造方法中,在表面处理工序中,在荧光体粉末表面优选被覆含有磷酸的化合物层。
有助于达到上述目的的关于本发明的第3形态的荧光体粉末制造方法(以下,有时称为关于本发明的第3形态的制造方法)是:
在经过溶液的调制工序及反应工序制造出芯材以后,把该芯材和激活剂及共激活剂混合,接着,经烧成工序、表面处理工序,制造荧光体粉末的方法,
其特征是在表面处理工序中,在荧光体粉末表面被覆含有磷酸的化合物层。
在本发明的荧光体粉末基础上可以构成,例如冷阴极电场电子发射显示装置或者它的前面板(阳极板)、家用或工业用(如计算机显示用)、数字广播用或者投影型阴极射线管或者它的荧光屏、等离子显示装置或者它的背面板。AC驱动型和DC驱动型的等离子显示装置的背面板例如可以由支持体、支持体上形成的间壁(リブ)、间壁与间壁之间的支持体上形成的各种电极(如数据电极)和间壁与间壁之间形成的荧光体粉末组成的发光层构成。关于冷阴极电场电子发射显示装置的前面板(阳极板)、阴极射线管的荧光屏将在后面叙述。
本发明的显示板可以家用、工业用(如计算机显示用)、数字广播用或投影型阴极射线管的所谓的荧光屏、或者,还有冷阴极电场电子发射显示装置的前面板(阳极板)为例。阴极射线管的荧光屏一般由玻璃板(相当于本发明的显示板上的支持体)和荧光体粉末构成,玻璃板的内面由形成条状或点状的发光层、发光层与发光层之间的玻璃板内面形成的黑色矩阵和发光层及黑色矩阵上形成的金属敷层膜(相当于本发明中显示板上的电极)构成。而冷阴极电场电子发射显示装置的前面板(阳极板)由支持体、荧光体粉末组成的条状或点状构成的发光层(彩色显示的场合,与形成条状或点状图案的红(R)、绿(G)、蓝(B)三原色相对应的发光层交叠配置)和阳电极(相当于本发明的显示板中的电极)构成。发光层与发光层之间也可以形成黑色矩阵。
本发明的平面型显示装置的显示板可以把构成上述的冷阴极电场电子发射显示装置的前面板(阳极板)作为示例。关于冷阴极电场电子发射显示装置的详细情况将在后面叙述。
本发明的显示板或平面型显示装置的显示板,可以用网目印刷法或淤浆法形成发光层。采用网目印刷法时,可以把荧光体粉末组合物印刷到支持体(不同场合下是电极和支持体)上,经干燥、烧成形成发光层。另外,用淤浆法时,可以把含感光性聚合物的淤浆状荧光体粉末组合物涂敷于支持体(不同场合下是电极和支持体)上,形成涂膜,通过曝光因感光性聚合物对显影液不溶化而形成发光层。显示(R,G,B)三原色的情况下,可以依次用3种荧光体粉末组合物或3种淤浆,用网目印刷法或淤浆法形成发各色光的发光层。
这里,作为荧光体粉末组合物中的分散介质,可以举纯水为例。组合物的其它成分,还可举出如作为分散剂、保持剂的聚乙烯醇。还可举出作为感光性聚合物的重铬酸铵。以提高荧光体粉末表面的分散性、粘合性为目的,在制造时也可以进行表面处理。
使本发明的荧光体粉末发光的能源线可以电子束为例。这种场合,照射荧光体粉末的电子束的能量优选0.5keV至35keV。这种结构,具体可以由荧光体粉末构成冷阴极电场电子发射显示装置或它的前面板(阳极板)、家用、工业用(例如计算机显示用)、数字播放用或者投影型阴极射线管或它的荧光屏。或者,还可以是照射荧光体粉末的电子束的能量为0.5keV至10keV、从荧光体粉末表面侵入的电子束的深度为例如0.5μm以下的结构。这种结构,具体可以由荧光体粉末构成冷阴极电场电子发射显示装置或它的前面板(阳极板)。本发明的荧光体粉末,或者,还可以紫外线作为能源线。这种场合,照射荧光体粉末的紫外线的波长优选100nm至400nm。这种结构,具体可以由荧光体粉末构成等离子显示装置或者它的背面板。
本发明的平面型显示装置由冷阴极电场电子发射显示装置构成的时候,相当于电极的阳极构成材料,可以根据冷阴极电场电子发射显示装置的结构适当选择。也就是说,冷阴极电场电子发射显示装置是透过型(显示板相当于显示面)的,而且,当阳极和发光层在支持体上按这个顺序层叠的情况下,不用说支持体,就连阳电极本身也有必要是透明的,用ITO(铟锡氧化物)等透明导电材料。另一方面,冷阴极电场电子发射显示装置是反射型(背面板相当于显示板)的时候,以及虽然是透过型但发光层和阳电极在支持体上是按这种顺序层叠的情况下,除ITO以外,还可以适当选择后面将叙述的有关阴电极和栅电极的材料。由铝(Al)或铬(Cr)构成阳极时,具体来说,例如阳电极的厚度可以是3×10-8m(30nm)至1.5×10-7m(150nm),优选5×10-8m(50nm)至1×10-7m(100nm)。阳极可以用蒸镀法或喷溅法形成。阳电极也可以是由1片片状的导电材料被覆有效领域的形式的阳极,还可以是由与1个或多个电子发射部分或者1个或多个象素对应的阳电极组集合在一起的形式的阳电极。阳电极的结构是前者时,可以把该阳电极连接在阳极驱动电路,阳电极的结构是后者时,可以把各阳电极组连接在阳电极驱动电路。阳电极和发光层的构成例可举出(1)在支持体上形成阳电极,在阳电极上形成发光层的结构;(2)在支持体上形成发光层,在发光层上形成阳电极的结构。在(1)的结构中,也可以在发光层上形成与阳电极接通的所谓金属敷层膜。还可以在(2)的结构中,在阳电极上形成金属敷层膜。
本发明的平面型显示装置是冷阴极电场电子发射显示装置时,或者,还有本发明的显示板作为冷阴极电场电子发射显示装置的前面板(阳极板)时,为了防止与发光层碰撞的电子反向散射、再碰撞邻接的发光层、使发光层发光的所谓光学性串扰,可以在支持体上形成间壁。当发生光学性串扰时,本来应该发光的色中就会混合不需要的色,因而会降低色度。随着电子的加速电压升高,电子的反向散射就加剧。因此,最好不仅考虑应该形成的发光层的厚度也要考虑电子的反向散射从而来决定间壁的高度。构成间壁的材料可以用以往所熟悉的绝缘材料,例如金属氧化物或低融点玻璃、在低融点玻璃中混合有氧化铝等金属氧化物的材料。
间壁形成方法可以网目印刷法、喷砂形成法、干膜法、感光法为示例。网目印刷法是在与应该形成间壁的部分对应的网目部分形成开口部,使网目上的间壁形成用材料用滑动辊通过开口部,在支持体上形成间壁形成材料层后,再烧成该间壁形成材料层的方法。喷砂形成法是用网目印刷或滚涂器、刮刀、喷嘴吐出式涂敷器等在支持体上形成间壁形成材料层,干燥后,把应该形成间壁的间壁形成材料层的部分覆盖上遮蔽层,接着把露出的间壁形成材料层部分用喷砂法除去的方法。干膜法是把感光性薄膜层叠在支持体上,通过曝光及显影除去应该形成档板部位的感光性薄膜,用绝缘层材料填埋因除去而产生的开口部分,然后烧成的方法。感光性薄膜通过烧成燃烧、除去,在开口部分留下填埋的形成档板用的绝缘层材料,成为间壁。感光法是在支持体上形成有感光性的间壁形成用绝缘层材料,经曝光及显影,把这个绝缘层材料制作成布线图案后,进行烧成的方法。构成该间壁的材料还可以使用以往熟悉的导电性材料,在这种场合,可以采用根据导电性材料施行的电镀法形成间壁。还可以形成间壁后,把间壁磨光,使间壁顶面平坦。在冷阴极电场电子发射显示装置中,前面板(阳极板)和背面板(阴极板)所夹的空间是高真空的,所以在前面板(阳极板)和背面板(阴极板)之间如果不配置间距,大气压就会使冷阴极电场电子发射显示装置受到损伤。在不同场合,间壁就起到保持间距的间距保持部分的作用。
间壁的平面形状可举出方格形(井字形),即相当于1个象素,如将平面形状为近似矩形(点阵状)的发光层四周包围的形状,或者是近似矩形或条状的发光层的相对的两边平行延长的带状形或条状形。间壁为方格形时,可以是连续包围1个发光层范围的四周的形状,也可以是不连续包围的形状。间壁是带状或条状时,可以是连续的形状,也可以是不连续的形状。
从提高显示图像的对比度的观点出发,优选使吸收发光层产生光的黑色矩阵在发光层与发光层之间、间壁和支持体之间形成。构成黑色矩阵的材料优选吸收发光层产生光99%以上的材料。这样的材料可以举出以下例子:碳、金属薄膜(铬、镍、铝、钼等,或它们的合金)、金属氧化物(氧化铬)、金属氮化物(氮化铬)、耐热性有机树脂、玻璃糊、黑色颜料或银等含导电性粒子的玻璃糊等,具体可以把感光性聚酰亚胺树脂、氧化铬、氧化铬/铬叠层膜作为示例。而且在氧化铬/铬叠层膜上,铬膜与支持体相接。
本发明的平面型显示装置中,构成背面板的基板或构成显示板的支持体,至少其表面可以由绝缘性材料构成,例如有称为无碱玻璃基板、低碱玻璃基板、石英玻璃基板的各种玻璃基板、表面形成绝缘膜的各种玻璃基板、石英基板、在表面形成绝缘膜的石英基板、在表面形成绝缘膜的半导体基板,从降低制造成本的观点出发优选玻璃基板或表面形成绝缘膜的玻璃基板。
本发明的平面型显示装置中,连接背面板和显示板的边缘部分时,可以用粘接层粘接,或者也可以玻璃和陶瓷等绝缘刚性材料构成的框体和粘接层并用。框体和粘接层并用的时候,通过适当选择框体的高度,可以比只使用粘接层时,把背面板和显示板之间的对向距离设定得更长。粘接层的构成材料一般是熔结玻璃,可以用融点为120~400℃的所谓低融点金属材料。低融点金属材料可以把In(铟:融点157℃);铟-金类低融点合金;Sn80Ag20(融点220~370℃)、Sn95Cu5(融点227~370℃)等的锡(Sn)类高温焊料;Pb97.5Ag2.5(融点304℃)、Pb94.5Ag5.5(融点304~365℃)、Pb97.5Ag1.5Sn1.0(融点309℃)等的铅(Pb)类高温焊料;Zn95Al5(融点380℃)等的锌(Zn)类高温焊料;Sn5Pb95(融点300~314℃)、Sn2Pb98(融点316~322℃)等的锡-铅类标准焊料;Au88Ga12(融点381℃)等的焊料(以上下标全都表示原子%)作为示例。
本发明的平面型显示装置,接合背面板、显示板和框体三者时,可以三者同时接合,或者也可以,第1阶段背面板或显示板中任意一方与框体接合,第2阶段背面板和显示板中另外一方与框体接合。三者同时接合和第2阶段的接合若在高真空气氛中进行时,背面板、显示板和框体与粘接层包围成的空间,在接合的同时成为真空。或者也可以,三者接合完了之后,排除背面板、显示板和框体与粘接层所包围的空间中的气体,使其成为真空。接合后进行排气时,接合时的气氛压力是常压/减压都可以。而且构成气氛的气体无论是大气、氮气或含有属于周期表0族类的气体(例如Ar气)的非活性气体都可以。
接合后,进行排气时,可以通过预先接在背面板及/或显示板上的接管进行排气。典型的接管是由玻璃管构成的,是在背面板及/或显示板的无效领域设置的贯通部分周围用熔结玻璃或上述的低融点金属材料接合,当空间达到所定的真空度后,通过熔接达到密封。因为在密封之前,整个平面型显示装置一旦加热后再降温时,可以放出残留在空间的气体,可以通过排气把残留气体排放到空间之外,所以是适宜的。
附图说明
图1为概要说明实施例1的荧光体粉末制造方法的流程图。
图2为概要说明实施例2的荧光体粉末制造方法的流程图。
图3为概要说明实施例3的荧光体粉末制造方法的流程图。
图4为实施例1中的平面型显示装置冷阴极电场电子发射显示装置的一部分模式化的端面图。
图5的(A)是发光层配置为矩阵状的显示板的平面模式图;图5的(B)和(C)为一部分断面的模式图。
图6的(A)是发光层配置为条状的显示板的平面模式图;图6的(B)和(C)是一部分断面的模式图。
图7的(A)~(D)是说明显示板制造之一例的支持体等的一部分端面模式图。
图8的(A)及(B)是说明由Spindt型电场发射元件构成的实施例1的电场发射元件的制造方法的基板等的一部分端面模式图。
图9的(A)及(B)是接续图8(B)说明由Spindt型电场发射元件构成的实施例1的电场发射元件的制造方法的基板等的一部分端面模式图。
图10的(A)和(B)是说明扁平型冷阴极电场电子发射元件(之1)的制造方法的基板的一部分断面模式图。
图11的(A)和(B)是接续图10的(B)说明扁平型冷阴极电场电子发射元件(之1)的制造方法的基板等的一部分断面模式图。
图12的(A)和(B)分别是扁平型冷阴极电场电子发射元件(之2)的一部分断面模式图,及平面型冷阴极电场电子发射元件的一部分断面模式图。
图13是彩色显象管玻璃球管的一部分缺口的模式图。
图14是荫栅型的色彩选择机构的斜视模式图。
图15的(A)~(C)说明彩色显象管玻璃球管制造工序的荧光屏等的一部分端面模式图。
图16的(A)和(B)是接续图15的(C)说明彩色显象管玻璃球管制造工序的荧光屏等的一部分端面模式图。
图17是等离子显示装置的概念化的分解斜视图。
图18是有聚焦电极的Spindt型冷阴极电场电子发射元件的一部分端面模式图。
图19是所谓两电极型的冷阴极电场电子发射显示装置的一部分断面模式图。
图20是加速电压是31.5千伏、发光层由ZnS构成时,按照贝特式进行蒙特卡罗模拟获得的入射到发光层的电子能量损失与电子侵入发光层的深度的关系的说明图。
图21是加速电压是6千伏、发光层由ZnS构成时,按照贝特式进行蒙特卡罗模拟获得的入射到发光层的电子能量损失与电子侵入发光层的深度的关系的说明图。
图22是加速电压是6千伏、发光层由ZnS构成时,按照贝特式进行蒙特卡罗模拟获得的入射到发光层的电子能量损失与电子侵入发光层的深度的关系的说明图。
图23是加速电压是6千伏、发光层由Zn和ZnS构成时,按照贝特式进行蒙特卡罗模拟获得的入射到发光层的电子能量损失与电子侵入发光层的深度的关系的说明图。
具体实施方式
下面参照图,根据实施例对本发明加以说明。
(实施例1)
实施例1是涉及本发明的第1和第4形态而且关于本发明的第2形态涉及的荧光体粉末的制造方法。
实施例1中,制造了由II-VI族元素构成的芯材是ZnS,激活剂为Ag,共激活剂为Al的发蓝色光的荧光体粉末-1。为了作比较,还制造了荧光体粉末-A。这些荧光体粉末的成分、特性值如下面的表1所示。在表1中,激活剂的重量份数是以芯材为1重量份时的值,单位是10-4重量份。而且,共激活剂的比例是指激活剂的摩尔浓度为1.00时的共激活剂的摩尔浓度的比例。氯浓度的单位是ppm,亮度对温度特性方面,达到25℃条件下亮度的1/2的亮度的温度T50的单位是℃。
[表1]
        荧光体粉末
    1     A
芯材            ZnS
激活剂            Ag
重量份数     5.80     1.80
共激活剂            Al
比例     1.03     0.22
发光色            蓝色
氯浓度     20以下     70
温度T50     230     160
下面参照图1的流程图概要说明实施例1中的荧光体粉末的制造方法。
首先,调制溶液。具体是把ZnS粉末溶解于H2SO4溶液中,得到ZnSO4溶液。然后精制ZnSO4溶液,除去ZnSO4溶液中的不纯物,特别是除去重金属。
再实行反应工序。具体是使ZnSO4溶液和H2S气体反应,得到ZnS粒子。接着进行洗涤、干燥,得到芯材ZnS荧光体粉末(ZnS荧光体粒子)。
接着,把芯材ZnS粉末、激活剂、共激活剂和氯系化合物(具体是NaCl)混合,干燥后,实行烧成工序。氯系化合物是为了在烧成工序中降低烧成温度而添加的。具体是在非活性气体气氛中,在温度为800℃~1000℃条件下进行烧成,得到烧成品。然后,在洗涤工序中,充分洗涤烧成品,使荧光体粉末中所含的氯系化合物(具体是NaCl)的氯浓度在20ppm以下(具体是测定仪器的检测限以下)。然后,把烧成品分散在溶媒中进行湿式筛分,根据需要提高分散性、粘接性,经过表面处理后,进行干燥、筛分,得到荧光体粉末。
在实施例1中,把配备了Spindt型的冷阴极电场电子发射元件(以下称电场发射元件)的冷阴极电场电子发射显示装置作为平面型显示装置进行了试作。实施例1的平面型显示装置的模式化的一部分断面图与图4所示的同样。这个平面型显示装置是显示板20和有多个电子发射领域的背面板10夹着真空空间地相对配置而成的。各个电子发射领域是由多个Spindt型电场发射元件构成的。Spindt型电场发射元件如图9的(B)中模式化的一部分端面图所示的那样,由基板11、基板11上设置的条状阴电极12、基板11和阴电极12上形成的绝缘层13、绝缘层13上设置的条状栅电极14、贯通栅电极14和绝缘层13的开口部15、位于开口部15底部的阴电极12的部分上设置的圆锥形的电子发射部16组成。在图9的(B)中,为了简便,只用图表示了1个Spindt型电场发射元件。条状的阴电极12的投影像和条状的栅极14的投影像是向不同的方向(比如正交方向)延伸的。而且,电子发射领域位于条状的栅电极14的投影像和条状的阴电极12的投影像的重复领域。电子发射部16设置在位于开口部分15底部的阴电极12部分的上面。多个电子发射部16与发光层22中的1个对应设置。电子发射部16中,从阴电极驱动电路31通过阴电极12加上了相对负电压(视频信号);在栅电极14中从栅电极驱动电路32相对加上了正电压(扫描信号)。对应施加了这些电压而产生的电场,电子因量子隧道效应从开口部15底部露出的电子发射部16的尖端射出。与上述相反,也有扫描信号输入阴电极12,视频信号输入栅电极14的情况。
显示板20是由玻璃等构成的支持体21、在支持体21上形成矩阵状或点阵状的多个发光层(荧光体层)22、发光层22间埋着的黑色矩阵23、发光层22和黑色矩阵23上全面形成的电极(阳电极24)构成的。发光层(荧光体层)22由因电子发射领域飞来的电子的照射而发光的上述各种荧光体粉末构成。在阳电极24中,从阳电极驱动电路33被施加了比栅电极14上加的正电压还高的正电压,阳电极24起的作用是把电子发射部16向真空空间发射的电子诱导到发光层22。阳电极24的另一个功能是在保护构成发光层22的荧光体粉末,不受离子等粒子的溅射,同时,把电子激励产生的发光层22发出的光向支持体侧反射,增强从支持体21的外侧观察到的显示图像的亮度。阳电极24例如由铝(Al)薄膜或铬(Cr)薄膜构成。发光层22和阳电极24的配置与图5的(A)、(B)、(C)或图6的(A)、(B)、(C)所示的同样。下面参照图7的(A)~(D),说明图5的(A)和(B)中所示的显示板的制造方法之一例。首先,调制荧光体粉末组合物。为此,把分散剂分散于纯水中,再用高速搅拌器以3000rpm搅拌1分钟。接着,把前面说明的荧光体粉末投入用分散了分散剂的纯水中,用高速搅拌器以5000rpm搅拌5分钟。然后,添加聚乙烯醇和重铬酸铵,充分搅拌后,过滤。
在制造显示板20(阳极板)时,在玻璃构成的支持体21上的整个面形成(涂布)感光性涂敷膜40。而且,从曝光光源(没有图示)射出,通过设置在掩膜(マスク)43上的孔部44的曝光光,使支持体21上形成的感光性涂敷膜40曝光,形成感光领域41(参照图7的(A))。然后,使感光性涂敷膜40显影,有选择地除去,使感光性涂敷膜的残余部分(曝光、显影后的感光性涂敷膜)42留在支持体21上(参照图7的(B))。接着,整个面涂敷碳剂(碳糊),再干燥、烧成,用分离法除去感光性涂敷膜的残余部分42及其上面的碳剂,使露出的支持体21上形成由碳剂构成的黑色矩阵23,同时,除去感光性涂敷膜的残余部分42(参照图7的(C))。此后,在露出的支持体21上形成红、绿、蓝各发光层22(参照图7的(D))。具体是可以使用和上述同样方法制造的使用各种荧光体粉末(荧光体粒子)调制的荧光体粉末组合物,例如蓝色的感光性荧光体粉末组合物(荧光体糊)涂敷于整个面,再曝光、显影,接着,整个面再涂敷绿色感光性荧光体粉末组合物(荧光体糊),再曝光、显影,再接着整个面再涂敷红色感光性荧光体粉末组合物(荧光体糊),再曝光、显影。在这之后,在发光层22及黑色矩阵23上用溅射法形成厚度约为0.07μm的例如铝薄膜构成的阳电极24。还可以用网目印刷法等形成各发光层22。
下面,说明Spindt型电场发射元件的制造方法。Spindt型电场发射元件的制造方法,基本上是通过金属材料的垂直蒸镀形成圆锥形的电子发射部分16的方法。也就是,对开口部15垂直射入蒸镀粒子,利用开口部15附近形成的突出状的堆积物的遮蔽效果,使到达开口部15底部的蒸镀粒子的量逐渐减少,使圆锥形堆积物电子发射部16自对准形成。下面,参照基板等的一部分端面图图8的(A)、(B)及图9的(A)、(B)说明,基于便于除去不要的突出状的堆积物而预先在绝缘层13和栅电极14上形成剥离层17的方法的、配备Spindt型电场发射元件的冷阴极电场电子发射显示装置构成的平面型显示装置的制造方法的概要。说明电场发射元件或其制造方法的图中,只图示了1个电子发射部分。
[工序-100]
首先,在玻璃构成的基板11上形成由铌(Nb)构成的条状的阴电极12后,形成整个由SiO2构成的绝缘层13,再在绝缘层13上形成条状的栅电极14。条状的栅电极14可以根据例如溅射法、刻蚀技术和干腐蚀技术进行。接着,用RIE(反应性离子·腐蚀)法在栅电极14和绝缘层13形成开口部15,使开口部15底部露出阴电极12(参照图8的(A))。阴电极12可以是单一的材料层,也可以是多数材料层层叠构成。如果为了覆盖后面工序形成的各电子发射部电子发射特性的离差,阴电极12表层部分可以用比其余部分电阻率高的材料构成。条状的阴电极12在图纸上是左右方向延伸,条状的栅电极14在图纸上是向垂直方向延伸。栅电极14可以用真空蒸镀法等PVD法、CVD法、电镀法或无电解电镀法的电镀法、网目印刷法、激光烧蚀法、溶胶-凝胶法、剥离法等公知的薄膜形成技术和根据需要配合腐蚀法形成。用网目印刷法和电镀法可以直接形成例如条状的栅电极。
[工序-110]
接着,在开口部15的底部露出的阴电极12上形成电子发射部16。具体是通过边旋转基板11,边用铝斜着蒸镀,整个面形成剥离层17。这时,由于对基板11的法线的蒸镀粒子的入射角尽可能选择得大,(例如入射角是65度~85度),铝可以几乎没有堆积在开口部15的底部,在栅电极14和绝缘层13上形成剥离层17。这个剥离层17从开口部15的开口端部伸出呈檐状,因此开口部15实质上被减径(参照图8的(B))。
[工序-120]
再接着,用钼(Mo)垂直蒸镀整个面。这时,如图9的(A)所示,伴随着在剥离层17上有突出状的钼构成的导电体层18的生长,由于开口部15的直径实际上在逐渐缩小,在开口部15的底部有助于堆积的蒸镀粒子逐渐被限制为通过开口部15中央附近的粒子。其结果是,在开口部15的底部形成圆锥形堆积物,这个圆锥形的由钼构成的堆积物就成为电子发射部16。
然后,经过电化学过程和湿式过程把剥离层17从绝缘层13和栅电极14的表面剥离,有选择地除去绝缘层13和栅电极14上方的导电体层18。其结果是如图9的(B)所示在位于开口部15的底部的阴电极12上可以保留圆锥形的电子发射部16。
[工序-130]
把该形成多个电场发射元件的背面板(阴极板)10和显示板(阳极板)20配合起来,可以得到图4所示的平面型显示装置。具体是预备高约1mm的陶瓷或玻璃制作的框体(未图示),把框体、背面板10、显示板20用例如熔结玻璃粘在一起,熔结玻璃干燥后,可在约为450℃的条件下烧成10~30分钟。之后,排除平面型显示装置内部的空气,使其内部真空度达到10-4Pa左右,用适当方法密封。或者,还可以在高真空气氛中进行框体、背面板10和显示板20的粘合。或者,也可以根据平面型显示装置的构造,进行无框体的背面板10和显示板20的粘合。
对按上述制作的平面型显示装置冷阴极电场电子发射显示装置和基于以往的荧光体粉末制作的平面型显示装置冷阴极电场电子发射显示装置的亮度作了时效调查。结果证明荧光体粉末-1的亮度初期值与荧光体粉末-A的初期值比较增加15%。而且,当把亮度到达亮度初期值的1/2的时间作为荧光体粉末寿命时,荧光体粉末-1的荧光体粉末寿命与荧光体粉末-A比较,约为其2倍。
(实施例2)
实施例2是关于本发明的第2形态和本发明的第1形态涉及的荧光体粉末的制造方法。在实施例2中,从荧光体粉末的表面除去表面结晶缺陷层或表面应变层。实施例2的荧光体粉末的制造方法的概要如图2的流程图所示。
实施例2中的发蓝色光的荧光体粉末-2的成分与表1所示的荧光体粉末-1的成分同样。
实施例2的荧光体粉末是通过,实施例1中说明的荧光体粉末的制造方法中,在烧成工序和表面处理工序之间,除去烧成品表面形成的表面结晶缺陷层或表面应变层的除去工序制造的。在这里,除去工序由退火处理构成,这个退火处理的温度比烧成工序中的烧成温度还低。具体是,在还原性气氛(更具体的是H2/N2气体气氛)、温度为500℃~600℃条件下进行退火处理。
然后,与实施例1同样,试作由配备电场发射元件的冷阴极电场电子发射显示装置构成的平面型显示装置,测定电子束累积照射量(达到初期的亮度1/2的亮度的电子束的累积照射量)和亮度的关系。其结果是当荧光体粉末-A的电子束累积照射量为1时,荧光体粉末-2的电子束累积照射量约为4。
除去工序采取腐蚀处理,把在磷酸(温度为60℃的热磷酸)中添加了CrO3的过饱和溶液和浓盐酸按1∶2的比例混合的溶液作为浸蚀液,所获得的荧光体粉末也得到同样的结果。
(实施例3)
实施例3是关于本发明的第3形态和本发明的第3形态涉及的荧光体粉末的制造方法。实施例3的荧光体粉末的制造方法的概要如图3的流程图所示。
在实施例3中,荧光体粉末的表面涂敷了含有平均厚度为2nm~3nm的磷酸化合物层(具体是磷酸锌)。
实施例3中发蓝色光的荧光体粉末-3的成分和表1中所示的荧光体粉末-1的成分同样。
实施例3中的荧光体粉末为,在实施例1说明的荧光体粉末的制造方法的表面处理工序中,荧光体粉末的表面被覆了含有磷酸的化合物层。具体是:调制含有磷酸的化合物溶液(磷酸锌溶液),把荧光体粉末在该溶液中浸渍以后,使荧光体粉末干燥。
为了比较,在荧光体粉末-A方面,作为表面处理工序,采用以溶胶-凝胶法把二氧化硅附着在荧光体粉末表面的方法制造了荧光体粉末-A’,同时,采用把粉末二氧化硅混合在荧光体粉末表面,再附着的方法制造了荧光体粉末-A”。
和实施例1同样,试作了由配备电场发射元件的冷阴极电场电子发射显示装置构成的平面型显示装置,测定了电子束累积照射量(达到初期的亮度1/2的亮度的电子束的累积照射量)和亮度的关系。其结果是当荧光体粉末-A’的电子束累积照射量为1时,荧光体粉末-A”的电子束累积照射量约为1.3,而荧光体粉末-3的电子束累积照射量约为3。
当含有磷酸的化合物层为磷酸钙时,也能获得同样的结果。而且,与实施例2同样,经过除去烧成品表面形成的表面结晶缺陷层或表面应变层的除去工序的荧光体粉末的电子束累积照射量约为5。
(各种电场发射元件)
下面,就各种电场发射元件及其制造方法加以说明。使用这些电场发射元件的平面型显示装置(冷阴极电场电子发射显示装置)的组成,可以是实施例1中说明的平面型显示装置(冷阴极电场电子发射显示装置)。
构成所谓3电极型的冷阴极电场电子发射显示装置(下面,在没有预先特别说明的情况下,简称为显示装置)的电场发射元件,根据电子发射部的构造,具体可以分为以下两个范畴。即:第1构造的电场发射元件由
(1)设置在基板上向第1方向延伸的条状的阴电极、
(2)基板及阴电极上形成的绝缘层、
(3)设置在绝缘层上向与第1方向不同的第2方向延伸的条状的栅电极、
(4)设置在栅电极的第1开口部和设置在绝缘层与第1开口部连通的第2开口部以及
(5)设置在位于第2开口部底部的阴电极上的电子发射部构成,具有从露出第2开口部底部的电子发射部发射电子的构造。
具有这样的第1构造的电场发射元件可以举出:上述的Spindt型(圆锥形的电子发射部设置在位于第2开口部底部的阴电极上的电场发射元件)、扁平型(近似平面状的电子发射部设置在位于第2开口部底部的阴电极上的电场发射元件)。
第2构造的电场发射元件由
(1)设置在基板上的向第1方向延伸的条状的阴电极、
(2)在基板和阴电极上形成的绝缘层、
(3)设置在绝缘层上的向与第1方向不同的第2方向延伸的条状栅电极以及
(4)设置在栅电极的第1开口部及设置在绝缘层的与第1开口部连通的第2开口部构成,露出第2开口部底部的阴电极部分相当于电子发射部,具有从该露出第2开口部底部的阴电极部分发射电子的构造。
具有这种第2构造的电场发射元件,可以举出从平坦的阴电极表面发射电子的平面型电场发射元件。
对于Spindt型电场发射元件,构成电子发射部的材料可以举出选自钨、钨合金、钼、钼合金、钛、钛合金、铌、铌合金、钽、钽合金、铬、铬合金以及由含不纯物的硅(多晶硅和非晶硅)中的至少1种材料。Spindt型电场发射元件的电子发射部可以通过例如真空蒸镀法、溅射法、CVD法形成。
对于扁平型电场发射元件,构成电子发射部的材料优选由比构成阴电极的材料工作函数Φ还小的材料构成,选择什么样的材料可以根据构成阴电极的材料的工作函数、栅电极和阴电极之间的电位差、所要求的发射电子电流密度的大小等决定。构成电场发射元件的阴电极的具有代表性材料的例子有:钨(Φ=4.55eV)、铌(Φ=4.02~4.87eV)、钼(Φ=4.53~4.95eV)、铝(Φ=4.28eV)、铜(Φ=4.6eV)、钽(Φ=4.3eV)、铬(Φ=4.5eV)、硅(Φ=4.9eV)。电子发射部优选有比这些材料还小的工作函数Φ,其值优选大致为3eV以下的。这样的材料以如下为例:碳(Φ<1eV)、铯(Φ=2.14eV)、LaB6(Φ=2.66~2.76eV)、BaO(Φ=1.6~2.7eV)、SrO(Φ=1.25~1.6eV)、Y2O3(Φ=2.0eV)、CaO(Φ=1.6~1.86eV)、BaS(Φ=2.05eV)、TiN(Φ=2.92eV)、ZrN(Φ=2.92eV)。进一步优选由工作函数为2eV以下的材料构成电子发射部。构成电子发射部的材料不一定要具备导电性。
或者还有,扁平型电场发射元件中,构成电子发射部的材料可以从该材料的二次电子增益δ比构成阴电极的导电性材料的二次电子增益δ还大的材料中适当选择。也就是说可以从银(Ag)、铝(Al)、金(Au)、钴(Co)、铜(Cu)、钼(Mo)、铌(Nb)、镍(Ni)、铂(Pt)、钽(Ta)、钨(W)、锆(Zr)等金属;硅(Si)、锗(Ge)等半导体;碳及金刚石等无机单体;氧化铝(Al2O3)、氧化钡(BaO)、氧化铍(BeO)、氧化钙(CaO)、氧化镁(MgO)、氧化锡(SnO2)、氟化钡(BaF2)、氟化钙(CaF2)等化合物中适当选择。构成电子发射部的材料不一定要具备导电性。
扁平型电场发射元件特别优选的电子发射部的构成材料是碳,更具体可举出金刚石和石墨、碳纳米管构造体。电子发射部由这些构成时,电场强度在5×107V/m以下,可以获得显示装置必要的发射电子电流密度。而且,因为金刚石是电阻体,可以使从各个电子发射部获得的发射电子电流均一化,所以能够抑制纳入显示装置时的亮度离差。由于这些材料对显示装置内残留气体的离子造成的溅射作用有极高的耐受性,可以延长电场发射元件的寿命。
碳纳米管构造体具体可举出:碳纳米管及/或碳纳米光纤。更具体来说,可以由碳纳米管构成电子发射部,也可以由碳纳米光纤构成电子发射部,还可以由碳纳米管和碳纳米光纤的混合物构成电子发射部。碳纳米管和碳纳米光纤宏观上是粉末状也行,是薄膜状也行,根据情况,碳纳米管构造体也可以有圆锥形的形状。碳纳米管和碳纳米光纤可以用熟悉的电弧放电法和激光烧蚀法之类的PVD法、等离子CVD法和激光CVD法、热CVD法、汽相合成法、汽相生长法之类的各种CVD法制造、形成。
扁平型电场发射元件可以通过下列方法得到,即,把碳纳米管构造体分散在粘接材料中后所得的碳纳米管构造体涂敷到阴电极所希望的领域之后,对粘接材料进行烧成或硬化的方法(更具体的是把碳纳米管构造体分散在环氧树脂或丙烯酸系树脂等有机系粘接材料或水玻璃等无机系粘接材料中,再涂敷于阴电极所希望的领域后,进行除去溶剂、烧成·硬化粘接材料的方法)。把这种方法称为碳纳米管构造体的第1形成方法。涂敷方法可以网目印刷法为示例。
或者,还可以通过把分散着碳纳米管构造体的金属化合物溶液涂敷于阴电极上之后再烧成金属化合物的方法制造扁平型电场发射元件,这样,碳纳米管构造体由含有构成金属化合物的金属原子的矩阵固定在阴电极表面。这样的方法称为碳纳米管构造体的第2形成方法。矩阵优选由有导电性的金属氧化物构成,更具体的是优选由氧化锡、氧化铟、氧化铟-锡、氧化锌、氧化锑、或氧化锑-锡构成。烧成后,可以获得各碳纳米管构造体的一部分嵌入矩阵的形态,也可以获得各碳纳米管构造体的全部嵌入矩阵的形态。矩阵的体积电阻系数优选1×10-9Ω·m至5×10-6Ω·m。
构成金属化合物溶液的金属化合物可把有机金属化合物、有机酸金属化合物、或金属盐(如:氯化物、硝酸盐、醋酸盐)作为示例。有机酸金属化合物溶液可以下述为例:把有机锡化合物、有机铟化合物、有机锌化合物、有机锑化合物溶解于酸(例如:盐酸、硝酸、或硫酸)再用有机溶剂(如:甲苯、醋酸丁酯、异丙醇)稀释而成的溶液。另外,有机金属化合物溶液可以下述为例:把有机锡化合物、有机铟化合物、有机锌化合物、有机锑化合物溶解于有机剂(如:甲苯、醋酸丁酯、异丙醇)而成的溶液。溶液为100重量份时,优选含碳纳米管构造体为0.001~20重量份、金属化合物0.1~10重量份的成分。溶液中也可以含有分散剂和表面活性剂。从增加矩阵厚度的观点考虑在金属化合物溶液中也可以添加比如碳炭黑等添加物。还可以根据情况,用水代替有机溶剂作为溶剂。
把分散着碳纳米管构造体的金属化合物溶液涂敷于阴电极的方法可把喷射法、旋转镀膜法、浸渍法、ダィクォ-タ-法、网目印刷法作为示例,从便于涂敷的观点考虑,其中,优选采用喷射法。
把分散着碳纳米管构造体的金属化合物溶液涂敷于阴电极上以后使金属化合物溶液干燥,形成金属化合物层,接着,可以除去阴电极上的金属化合物层的不要部分之后,把金属化合物烧成,也可以在金属化合物烧成后,把阴电极上不要的部分除去,还可以把金属化合物溶液只涂敷于阴电极的所希望的领域。
金属化合物的烧成温度,可以是,例如,把金属盐氧化成为有导电性的金属氧化物的温度,或者,还可以是能分解有机金属化合物和有机酸金属化合物,形成含构成有机金属化合物和有机酸金属化合物的金属原子的矩阵(如:有导电性的金属氧化物)的温度,比如优选300℃以上。烧成温度的上限可以是不对电场发射元件或阴极板构成要素产生热损伤等的温度。
碳纳米管构造体的第1形成方法或第2形成方法中,从提高电子发射部分的电子发射效率的观点出发,形成电子发射部分以后,优选进行电子发射部分表面的一种活性化处理(洗涤处理)。这样的处理可把在氢气、氨气、氦气、氩气、氖气、甲烷气、乙烯气、乙炔气、氮气等气体气氛中的等离子处理作为示例。
碳纳米管构造体的第1形成方法或第2形成方法中,电子发射部分可以在位于第2开口部底部的阴电极部分的表面形成,也可从位于第2开口部底部的阴电极部分延长到第2开口部底部以外的阴电极部分的表面形成。而且,电子发射部可以在位于第2开口部底部的阴电极部分表面的整个面形成,也可以部分形成。
构成各种电场发射元件的阴电极的材料可把钨(W)、铌(Nb)、钽(Ta)、钛(Ti)、钼(Mo)、铬(Cr)、铝(Al)、铜(Cu)、金(Au)、银(Ag)等金属;含有这些金属元素的合金或化合物(如:TiN等氮化物和WSi2、MoSi2、TiSi2、TaSi2等硅化物);硅(Si)等半导体;金刚石等碳薄膜;ITO(铟-锡氧化物)作为示例。阴电极的厚度大约是0.05~0.5μm,优选0.1~0.3μm,但并不限定于这个范围。
在各种电场发射元件中,构成栅电极的导电性材料可把选自钨(W)、铌(Nb)、钽(Ta)、钛(Ti)、钼(Mo)、铬(Cr)、铝(Al)、铜(Cu)、金(Au)、银(Ag)、镍(Ni)、钴(Co)、锆(Zr)、铁(Fe)、铂(Pt)及锌(Zn)中的至少1种金属;含有这些金属元素的合金或化合物(例如TiN等氮化物和WSi2、MoSi2、TiSi2、TaSi2等硅化物);或者硅(Si)等半导体;ITO(铟-锡氧化物)、氧化铟、氧化锌等导电性金属氧化物作为示例。
阴电极和栅电极的形成方法,可举出以下例子:称为电子束蒸镀法和热灯丝蒸镀法的蒸镀法、溅射法、CVD法和离子镀敷法与浸蚀法的配合方法、网目印刷法、电镀法、剥离法等。用网目印刷法和电镀法可以直接形成条状的阴电极。
在具有第1构造或第2构造的电场发射元件中,根据电场发射元件的构造,在栅电极和绝缘层设置的1个第1开口部和第2开口部内可以存在1个电子发射部,在栅电极和绝缘层设置的1个第1开口部和第2开口部内也可以存在多个电子发射部,还可以在栅电极设置多个第1开口部,把与这个第1开口部连通的1个第2开口部设置在绝缘层,在设置于绝缘层的1个第2开口部内存在1个或多个电子发射部分。
第1开口部或第2开口部的平面形状(在与基板表面平行的假想平面切断开口部时的形状)可以是圆形、椭圆形、矩形、多角形、带圆弧的矩形、带圆弧的多角形等任意的形状。第1开口部的形成可以施行各向同性腐蚀、各向异性腐蚀和各向同性腐蚀配合施行,或者,还可以按照栅电极的形成方法,直接形成第1开口部。第2开口部的形成也可以通过例如各向同性腐蚀、各向异性腐蚀和各向同性腐蚀配合进行。
在具有第1构造的电场发射元件中,阴电极和电子发射部之间也可以设置电阻层。或者,还可以在阴电极的表面相当于电子发射部的情况下(即,在具有第2构造的电场发射元件中),把阴电极作成导电材料层、电阻层、相当于电子发射部的电子发射层的3层构成。设置电阻层可以使电场发射元件的工作稳定、电子发射特性均匀。构成电阻层的材料可以下述为例:碳化硅、(SiC)及SiCN的所谓碳系材料、SiN、非晶硅等半导体材料、氧化钌(RuO2)、氧化钽、氮化钽等高融点金属氧化物。电阻层的形成可以喷射法和CVD法、网目印刷法为示例。电阻值大约为1×105~1×107Ω,优选数MΩ。
绝缘层的构成材料可以单独或适当配合使用SiO2、BPSG、PSG、BSG、AsSG、PbSG、SiN、SiON、SOG(spin on glass)、低融点玻璃、玻璃糊的SiO2系材料、SiN、聚酰亚胺等绝缘性树脂。绝缘层的形成可以利用CVD法、涂敷法、喷射法、网目印刷法等熟悉的方法。
[Spindt型电场发射元件]
Spindt型电场发射元件的构造及制造方法,如前面实施例1说明的那样。
[扁平型电场发射元件(之1)]
扁平型电场发射元件由
(1)设置在基板11上的向第1方向延伸的阴电极12
(2)在基板11及阴电极12上形成的绝缘层13
(3)设置在绝缘层13上向与第1方向不同的第2方向延伸的栅电极14
(4)设置在栅电极14上的第1开口部15A和设置在绝缘层13上与第1开口部15A连通的第2开口部15B
(5)设置在位于第2开口部15B底部的阴电极12上的扁平状电子发射部16A构成,
具有从露出于第2开口部15B底部的电子发射部16A发射电子的构造。
电子发射部16A由矩阵50及嵌埋在矩阵50中的尖端突出形态的碳纳米管构造体(具体是碳纳米管51)构成。矩阵50由有导电性的金属氧化物(具体是铟-锡氧化物、ITO)构成。
下面参照图10的(A)、(B)及图11的(A)、(B)说明电场发射元件的制造方法。
[工序-200]
首先,比如在由玻璃基板构成的基板11上,形成由采用喷射法和腐蚀技术形成的厚度约0.2μm的铬(Cr)层构成的条状的阴电极12。
[工序-210]
接着,把分散着碳纳米管构造体的有机酸金属化合物构成的金属化合物溶液,例如用喷射法涂敷于阴电极12上。具体用下面表2所示的金属化合物溶液。而且,在金属化合物溶液中,有机锡化合物及有机铟化合物是溶解在酸(例如盐酸、硝酸、或硫酸)中的形态。碳纳米管是用电弧放电法制造的,平均直径为30nm,平均长度为1μm。涂敷时,预先把基板加热到70~150℃。涂敷气氛为大气气氛。涂敷后,把基板加热5~30分钟,使醋酸丁酯充分蒸发。由于象这样,涂敷时把基板加热,对着阴电极表面,碳纳米管在接近水平方向自动校平之前,涂敷溶液开始干燥,结果能够使碳纳米管在不成水平的形态下配置在阴电极表面。即碳纳米管的顶端部分向着阳电极的方向的形态,换句话说,就是可以把碳纳米管定向为接近基板的法线方向。还可以预先把表2所示成分的金属化合物溶液调制好,也可以把没有添加碳纳米管的金属化合物溶液调制好,涂敷之前,把碳纳米管和金属化合物溶液混合起来。而且,为了增强碳纳米管的分散性能,也可以在调制金属化合物溶液时,照射超声波。
[表2]
有机锡化合物及有机铟化合物:0.1~10重量份
分散剂(十二烷基硫酸钠):    0.1~5重量份
碳纳米管                  :0.1~20重量份
醋酸丁酯                  :其余
作为有机酸金属化合物溶液,用有机锡化合物溶解于酸时,作为矩阵获得氧化锡;用有机铟化合物溶解于酸时,作为矩阵获得氧化铟;用有机锌化合物溶解于酸时,作为矩阵获得氧化锌;用有机锑化合物溶解于酸时,作为矩阵获得氧化锑;用有机锑化合物及有机锡化合物溶解于酸时,作为矩阵获得氧化锑-锡;另外,有机金属化合物溶液,用有机锡化合物时,作为矩阵获得氧化锡;用有机铟化合物时,作为矩阵获得氧化铟;用有机锌化合物时,作为矩阵获得氧化锌;用有机锑化合物时,作为矩阵获得氧化锑;用有机锑化合物及有机锡化合物时,作为矩阵获得氧化锑-锡。或者,还可以用金属的氯化物溶液(例如:氯化锡、氯化铟)。
由于不同情况,在金属化合物溶液干燥以后,金属化合物的表面有时会形成明显的凹凸。这种情况下,最好不加热金属化合物层上的基板、再度涂敷金属化合物溶液。
[工序-220]
然后,通过烧成由有机酸金属化合物构成的金属化合物,由含有由有机酸金属化合物构成的金属原子(具体是In及Sn)的矩阵(具体是金属氧化物,更具体是ITO)50,获得碳纳米管51被固定在阴电极12表面的电子发射部16A。烧成是在大气气氛中、350℃、20分钟条件下进行。这样获得的矩阵50的体积电阻系数是5×10-7Ω·m。由于把有机酸金属化合物作为初始物质利用,即使烧成温度为350℃的低温也可以由ITO构成矩阵50。也可以用有机金属化合物溶液代替有机酸金属化合物溶液,使用金属氯化物溶液(例如:氯化锡、氯化铟)时,经烧成氯化锡、氯化铟被继续氧化形成由ITO构成的矩阵50。
[工序-230]
接着,整个面形成保护层,在阴电极12所希望的范围的上方留下直径为10μm的圆形保护层。然后,用10~60℃的盐酸把矩阵50腐蚀1~30分钟,除去电子发射部的不要部分。再在所希望的范围之外存在碳纳米管的情况下,按照下面的表3所示条件下的氧等离子腐蚀处理,进行碳纳米管腐蚀。而且,偏置功率可为0W,即,直流也可以,优选施加偏置功率。还可以将基板加热到80℃左右。
[表3]
         使用装置      :RIE装置
         导入气体      :含氧的气体
         等离子激励功率:500W
         偏置功率      :0~150W
         处理时间      :10秒以上
或者,还可以按照表4所示条件的湿式腐蚀处理,进行碳纳米管腐蚀。
[表4]
         使用溶液      :KMnO4
         温度          :20~120℃
         处理时间      :10秒~20分钟
然后,除去保护层,就得到图10(A)所示的构造。并不限定于留下直径10μm的圆形电子发射部。比如,还可以把电子发射部留在阴电极12上。
还可以按[工序-210]、[工序-230]、[工序-220]的顺序实行。
[工序-240]
接着,在电子发射部16A、基板11和阴电极12上形成绝缘层13。具体是,比如:以TEOS(四乙氧基硅烷)为原料气体,用CVD法整个面形成厚度约1μm的绝缘层13。
[工序-250]
然后,在绝缘层13上形成条状的栅电极14,进而,在绝缘层13及栅电极14上设置掩蔽层19之后,在栅电极14上形成第1开口部15A,再在绝缘层13形成连通栅电极14上形成的第1开口部15A的第2开口部15B(参照图10的(B))。当矩阵50由金属氧化物,比如由ITO构成的情况下,进行绝缘层13腐蚀时,矩阵50不被腐蚀。也就是说,绝缘层13和矩阵50的腐蚀选择比几乎是无限大。因此,由于绝缘层13的腐蚀,不会对碳纳米管51造成损伤。
[工序-260]
接着,用下面的表5所示的条件除去矩阵50的一部分,优选得到顶端为突出于矩阵50形态的碳纳米管51。这样,就可以得到图11的(A)所示构造的电子发射部16A。
[表5]
     腐蚀溶液:    盐酸
     腐蚀时间:    10秒~30秒
     腐蚀温度:    10~60℃
由于矩阵50的腐蚀,一部分或者全部碳纳米管51的表面形态发生了变化(例如,其表面吸附了氧原子、氧分子、氟原子),会出现电场发射钝化的情形。因此,此后优选对电子发射部16A在氢气气氛中进行等离子处理。这样可以激活电子发射部16A,使电子发射部16A的电子发射效率更高。等离子处理的条件如下面的表6所示。
[表6]
     使用气体    :H2=100sccm
     电源功率    :1000W
     基板外加功率:50V
     反应压力    :0.1Pa
     基板温度    :300℃
然后,为了使碳纳米管51放出气体,也可以进行加热处理和各种等离子处理,为了使碳纳米管51表面能够吸附打算吸附的吸附物,也可以把碳纳米管51暴露在含有想要吸附的物质的气体中。而且,为了达到精制碳纳米管51的目的,还可以进行氧等离子处理和氟等离子处理。
[工序-270]
然后,从让栅电极14的开口端部露出的观点出发,优选通过把设在绝缘层13上的第2开口部15B的侧壁面进行各向同性的腐蚀工序,使其后退。各向同性腐蚀,可以采取象化学干法蚀刻那样的以自由基为主要腐蚀种的干法蚀刻,或者进行利用腐蚀液的湿法腐蚀。腐蚀液可以用49%的氟酸水溶液和纯水的1∶100(容积比)混合液。接着除去掩蔽层19。这样,就可以完成图11的(B)所示的电场发射元件。
还可以按[工序-250]、[工序-270]、[工序-260]的顺序实行。
[扁平型电场发射元件(之2)]
扁平型电场发射元件的一部分断面模式图如图12的(A)所示。这个扁平型电场发射元件,由在玻璃基板11上形成的阴电极12、在基板11和阴电极12上形成的绝缘层13、在绝缘层上形成的栅电极14、连通栅电极14和绝缘层13的开口部15(设置于栅电极14上的第1开口部和设置在绝缘层13、连通第1开口部的第2开口部)、设置于位于开口部15底部的阴电极12的部分上的扁平电子发射部(电子发射层16B)构成。在这里,电子发射层16B,是形成在向与图纸垂直方向延伸的条状的阴电极12上。而栅电极14是向图纸的左右方向延伸。阴电极12及栅电极14是由铬构成的。电子发射层16B,具体来说,是由石墨粉末构成的薄层构成的。图12的(A)中所示的扁平型电场发射元件中,电子发射层16B形成在整个阴电极12的表面。并不限定于这种构造,重要的是,可以至少把电子发射层16B设置在开口部15的底部。
[平面型电场发射元件]
平面型电场发射元件的一部分断面模式图如图12的(B)所示。这个平面型电场发射元件由在玻璃基板11上形成的条状的阴电极12、在基板11和阴电极上形成的绝缘层13、在绝缘层上形成的条状的栅电极14、连通栅电极14和绝缘层13的开口部15(第1开口部和第2开口部)构成。阴电极12露出于开口部15底部。阴电极12是向与图纸垂直方向延伸,栅电极14是向图纸的左右方向延伸。阴电极12及栅电极14是由铬(Cr)构成,绝缘层13是由SiO2构成的。在这里,露出于开口部底部的阴电极12的部分相当于电子发射部16C。
(阴极射线管)
下面说明本发明的荧光体粉末应用于阴极射线管的例子。显示板是阴极射线管的荧光屏。彩色显象管玻璃球管的缺口模式图如图13所示,荧光屏100是用玻璃粘合剂把玻璃板101和球锥102粘合而成的。在玻锥102近旁的玻璃板101上卷着张紧带107,能增强彩色显象管玻璃球管的强度。如图14的斜视模式图所示,色彩选择机构103中设有缝隙104。荫栅型的色彩选择机构103是在缝隙104的延伸方向施加张力的形态下,用电阻焊接法或激光焊接法安装在框架构件105上的。框架构件105是用弹簧构成的固定件106装卸自如地安装在玻璃板101上的。在玻璃板101的内面101A上形成了发光层114。这里,发光层114是由和实施例1、实施例2或实施例3中说明的方法同样的方法制造的荧光体粉末构成的。在发光层114上形成了金属敷层膜。金属敷层膜的图示省略。
参照玻璃板等的一部分端面模式图图15的(A)~(C)及图16的(A)、(B)说明荧光屏的制造方法概要,特别是发光层114的形成方法。这里,条型的彩色发光层的形成是使用玻璃板101进行的,在玻璃板上安装着荫栅型的色彩选择机构103,在这个荫栅型的彩色选择机构103上设有与玻璃板101垂直方向平行延伸的条状的缝隙104。只在图15的(B)中表示了色彩选择机构103。
首先,在玻璃板101的内面101A上涂敷感光性被膜110,使其干燥以后(参照图15的(A)),从曝光源(未图示)射出,利用通过色彩选择机构103上设置的条状缝隙104的紫外线,在感光性被膜110上形成条状的曝光领域111(参照图15的(B))。为了分别形成红、绿、蓝发光层,在曝光处理时,可以错开曝光光源的位置,分3次进行。接着,使感光性被膜110显影,有选择性地除去,把感光性被膜的剩余部分(曝光、显影后的感光性被膜)112留在玻璃板101的内面101A上(参照图15的(C))。然后,整个涂上碳剂,用剥离法把感光性被膜的剩余部分112及其上面的碳剂除去,这样就形成了由碳剂构成的条状黑色矩阵113(参照图16的(A))。然后,在露出的玻璃板101的内面(黑色矩阵113之间露出的荧光屏100内面的部分101B)形成红、绿、蓝各个条状发光层114(参照图16的(B))。具体可以使用与实施例1、实施例2或实施例3说明的方法同样的方法制造的各种荧光体粉末(荧光体粒子)调制的荧光体粉末组合物,比如将红色的感光性荧光体粉末组合物(荧光体糊)涂敷于整个面上,曝光,显影;接着,使用绿色的感光性荧光体粉末组合物(荧光体糊)涂敷整个面,曝光,显影;再使用蓝色的感光性荧光体粉末组合物(荧光体膏)涂敷整个面,曝光,显影。
色彩选择机构可以是点式阴罩型的或缝隙阴罩型的。
(等离子显示装置)
下面说明本发明的荧光体粉末应用于等离子显示装置(PDP)的例子。AC型等离子显示装置的典型构造如图17所示。这个AC型等离子显示装置属于所谓的3电极型的,主要在一对放电维持电极213之间产生放电。图17所示的AC型等离子显示装置是把前面板210和背面板220用边缘部分粘合而成的。背面板220上的发光层224的发光可以通过前面板210观察。
前面板210是由透明的第1基板211、在第1基板211上设置的条状的由透明导电材料构成的成对的放电维持电极213、为了降低放电维持电极213的阻抗而设置的由比放电维持电极213电阻率还低的材料构成的总线电极212、包含总线电极212及放电维持电极213之上的第1基板211上形成的起介电膜作用的保护层214构成。
另一方面,背面板220是由第2基板(支持体)221、第2基板221上设置为条状的地址电极(也称为数据电极)222、包括地址电极222之上的第2基板221上形成的介电膜223、在介电膜223上邻接地址电极222之间的领域和地址电极222平行延伸的绝缘性间壁225、从介电膜223上到间壁225的侧壁面上设置的发光层224构成。发光层224由红色发光层224R、绿色发光层224G和蓝色发光层224B构成,这些各种颜色的发光层224R、224G、224B是按规定的顺序设置的。这里,发光层224R、224G、224B是用与实施例1、实施例2或实施例3中说明的方法同样的方法制造的荧光体粉末构成的。发光层的形成方法可举出:使用与实施例1、实施例2或实施例3中说明的方法同样的方法制造的荧光体粉末(荧光体粒子)调制的荧光体粉末组合物,采取厚膜印刷法、喷射荧光体粒子法,在预定形成发光层的部位预先设置粘着性物质把荧光体粒子粘上的方法,使用感光性的荧光体糊,利用曝光和显影使发光层形成图案的方法,整个面形成发光层后,用喷砂法除去不要的部分的方法。
图17是分解斜视图,实际上背面板的间壁225的顶部正好接在前面板的保护层214上。一对放电维持电极213和位于两个间壁225之间的地址电极222重复的领域相当于放电单元。而且,相邻的间壁225和发光层224和保护层214包围的空间中封有稀有气体。
放电维持电极213延伸的方向和地址电极222延伸的方向成90度角,一对放电维持电极213和发3原色光的发光层224R、224G、224B的1组形成的重复的领域相当1个象素。因为辉光放电是产生于一对放电维持电极213之间,所以这种类型的等离子显示装置称为“面放电型”。在放电单元中,基于稀有气体中的辉光放电产生的紫外线照射而激励起来的发光层,按照荧光体材料的种类呈现出特有的发光色。还根据封入的稀有气体的种类产生相应波长的真空紫外线。稀有气体有:He(共振线的波长=58.4nm)、Ne(共振线的波长=74.4nm)、Ar(共振线的波长=107nm)、Kr(共振线的波长=124nm)、Xe(共振线的波长=147nm),可以单独使用,或者混合使用。由于彭宁效应可以使放电开始电压低的混合气体是特别有用的。这样的混合气体可举出Ne-Ar混合气体、He-Xe混合气体、Ne-Xe混合气体。而且,这些稀有气体中有最长的共振线波长的Xe,其发射波长为172nm的强真空紫外线,所以是适宜的稀有气体。
上面,根据优选的实施例对本发明作了说明。但是本发明并不限定于这些。实施例中说明的平面型显示装置和阴极射线管、等离子显示装置、冷阴极电场电子发射显示装置、冷阴极电场电子发射元件的结构、构成、荧光体粉末组合物的成分及其调制方法是示例,可以适当变更;平面型显示装置和冷阴极电场电子发射元件、阴极射线管的制造方法也是示例,也可以适当变更。
而且,制造冷阴极电场电子发射元件时使用的各种材料也是示例,可以适宜变更。在冷阴极电场电子发射元件中,专门说明了一个开口部对应一个电子发射部的形态,但根据冷阴极电场电子发射元件的构造,也可以是一个开口部对应多个电子发射部的形态或是多个开口部对应一个电子发射部的形态。或者,还可以在栅电极设置多个第1开口部,在绝缘层设置连通这个多个第1开口部的一个第2开口部,设置一个或多个电子发射部。根据情况,还可以在支持体上形成阳电极,在阳电极上形成条状或点状的发光层。
在冷阴极电场电子发射显示装置中,栅电极可以是用1枚片状的导电材料(有开口部)覆盖有效领域的形式的栅电极。这种情况下栅电极加有正电压。而且,构成各象素的阴电极和阴电极驱动电路之间设置比如由TFT构成的开关元件,由该开关元件的工作,控制对各象素构成的电子发射部的外加形态,控制象素的发光形态。
在冷阴极电场电子发射显示装置中,阴电极或者还可以是用1枚片状的导电材料覆盖有效领域的形式的阴电极。这种情况下,这个阴电极加有电压。而且,构成各象素的栅电极和栅电极驱动电路之间设置比如由TFT构成的开关元件,由该开关元件的工作,控制对各象素构成的电子发射部的外加形态,控制象素的发光形态。
在电场发射元件中,可以在栅电极14和绝缘层13上再设置第2绝缘层63,在第2绝缘层63上设置聚焦电极64。具有这种构造的电场发射元件的一部分端面模式图如图18所示。在聚焦电极64和第2绝缘层63上设置有连通开口部15的第3开口部65。聚焦电极64的形成,可以如[工序-100]中,在绝缘层13上形成条状的栅电极14后,形成第2绝缘层63,接着,在第2绝缘层63上形成布线图案的聚焦电极64后,在聚焦电极64、第2绝缘层63上设置第3开口部65,再在栅电极14和绝缘层13上设置开口部15。还可以随着聚焦电极布线图案的确定,把1个或多个电子发射部或者1个或多个象素对应的聚焦电极组作为集合形式的聚焦电极,或者,还可以作成用1枚片状的导电材料覆盖有效领域的形式的聚焦电极。图18所示是Spindt型电场发射元件,当然其它电场发射元件也可以。
聚焦电极并不限于用这种方法形成,比如也可以在厚数十μm的42%的Ni-Fe合金构成的金属板两面形成比如SiO2构成的绝缘膜后,在各象素对应的领域利用冲孔或腐蚀形成开口部制作聚焦电极。然后,把阴极板、金属板、阳极板层叠起来,在两板外围配置框体,通过实施加热处理,使金属板一方表面形成的绝缘膜和绝缘层13粘合,把金属板另外一方表面形成的绝缘膜和阳极板粘合,使这些构件成为一体,之后真空密封,完成冷阴极电场电子发射显示装置。或者,还可以把阴电极板和金属板层叠,通过实施加热处理把它们粘合,接着,组装阴电极板和阳电极板,完成冷阴极电场电子发射显示装置。
冷阴极电场电子发射显示装置并不限于由阴电极、栅电极、阳电极构成的所谓3电极型,也有由阴电极和阳电极构成的所谓2电极型的。这种构造的冷阴极电场电子发射显示装置的一部分断面模式图如图19所示。在图19中省略了黑色矩阵的图例。这个冷阴极电场电子发射显示装置的电场发射元件是由基板上设置的阴电极12、阴电极12上形成的碳纳米管51组成的电子发射部16A构成的。构成显示板(阳极板)20的阳电极24A是条状的。而且,电子发射部的构造也并不限于碳纳米管构造体。条状的阴电极12的投影像和条状的阳电极24A的投影像是正交的。具体的是阴电极12是向图纸的垂直方向延伸的,阳电极24A是向图纸的左右方向延伸的。这个冷阴极电场电子发射显示装置的背面板(阳极板)10上,象上述那样多个电场发射元件构成的电子发射领域在有效领域形成了多个二维矩阵状。显示板(阳极板)20和背面板(阴极板)10,在边缘部分通过框体26互相粘合在一起。
在这个冷阴极电场电子发射显示装置,基于由阳电极24A形成的电场,由于量子隧道效应从电子发射部16A发射出电子,这些电子被阳电极24A吸引,碰撞发光层22。也就是说:通过位于阳电极24A的投影像和阴电极12的投影像重复的领域(阳电极/阴电极重复领域)的电子发射部16A发射电子的所谓单纯矩阵方式驱动冷阴极电场电子发射显示装置。具体是由阴极电极驱动电路31向阴电极12施加相对负电压,由加速电源(阳电极驱动电路)33向阳电极24A施加相对正电压。其结果是,电子从碳纳米管51有选择性地向真空空间发射,该碳纳米管为构成位于被列选择的阴电极12和被行选择的阳电极24A(或者,被行选择的阴电极12和被列选择的阳电极24A)的阳电极/阴电极的电极重复领域的电子发射部16A的碳纳米管,这些电子被阳电极24A吸引,向构成显示板(阳极板)20的发光层22碰撞,激励发光层22,使它发光。
还可以由通称表面传导型电子发射元件的元件构成电子发射领域。这种表面传导型电子发射元件,其结构是:在比如玻璃构成的基板上,由氧化锡(SnO2)、金(Au)、氧化铟(In2O3)/氧化锡(SnO2)、碳、氧化钯(PdO)等导电材料构成且有微小面积、开有一定缝隙地配置的一对电极形成矩阵状。各个电极上形成了碳薄膜。而且有如下结构:一对电极内的一个电极接有行方向的配线,一对电极内的另一电极上接有列方向的配线。由于一对电极加了电压,夹着缝隙地相对的碳薄膜就加上了电场,电子就从碳薄膜发射出来。由于使这些电子碰撞显示板(阳极板)上的发光层(荧光体层),发光层(荧光体层)被激励而发光,可以得到所希望的图像。
由于本发明能提高荧光体粉末的结晶性能,所以不仅能提高荧光体粉末的发光效率,还可以防止荧光体粉末的劣化。其结果,在实际应用上,比如在平面型显示装置中,可以把亮度经时劣化降低到不成为问题的程度。

Claims (50)

1.一种由II-VI族元素构成的芯材、激活剂和共激活剂组成的荧光体粉末,其特征在于:
当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
2.根据权利要求1所述的荧光体粉末,其特征在于:所述的构成芯材的元素是锌和硫、构成激活剂的元素是银、构成共激活剂的元素是铝。
3.根据权利要求1所述的荧光体粉末,其特征在于:所述的构成芯材的元素是锌和硫、构成激活剂的元素是铜、构成共激活剂的元素是铝。
4.根据权利要求1所述的荧光体粉末,其特征在于:所述的荧光体粉末中所含的氯系化合物的氯浓度为20ppm以下。
5.一种荧光体粉末,其特征在于:所述的荧光体粉末从其表面除去了表面结晶缺陷层或表面应变层。
6.根据权利要求5所述的荧光体粉末,其特征在于:所述的荧光体粉末由II-VI族元素构成的芯材、激活剂和共激活剂组成,
当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
7.根据权利要求6所述的荧光体粉末,其特征在于:所述的构成芯材的元素是锌和硫、构成激活剂的元素是银、构成共激活剂的元素是铝。
8.根据权利要求6所述的荧光体粉末,其特征在于:所述的构成芯材的元素是锌和硫、构成激活剂的元素是铜、构成共激活剂的元素是铝。
9.根据权利要求5所述的荧光体粉末,其特征在于:所述的荧光体粉末中所含的氯系化合物的氯浓度为20ppm以下。
10.一种荧光体粉末,其特征在于:所述的荧光体粉末表面被覆了含磷酸的化合物层。
11.根据权利要求10所述的荧光体粉末,其特征在于:所述的化合物层的平均厚度为1nm至5nm。
12.根据权利要求10所述的荧光体粉末,其特征在于:所述的化合物层是由磷酸锌或磷酸钙构成的。
13.根据权利要求10所述的荧光体粉末,其特征在于:所述的荧光体粉末是由II-VI族元素构成的芯材、激活剂和共激活剂组成的,当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
14.根据权利要求13所述的荧光体粉末,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是银,构成共激活剂的元素是铝。
15.根据权利要求13所述的荧光体粉末,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是铜,构成共激活剂的元素是铝。
16.根据权利要求10所述的荧光体粉末,其特征在于:所述的荧光体粉末中所含的氯系化合物的氯浓度为20ppm以下。
17.根据权利要求10所述的荧光体粉末,其特征在于:从所述的化合物层的紧下面的荧光体粉末表面除去了表面结晶缺陷层或表面应变层。
18.一种荧光体粉末,其特征在于:对于亮度对温度特性,到达25℃条件下亮度的1/2的亮度的温度T50为200℃以上。
19.根据权利要求18所述的荧光体粉末,其特征在于:所述的荧光体粉末由II-VI族元素构成的芯材、激活剂和共激活剂组成,
当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
20.根据权利要求19所述的荧光体粉末,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是银,构成共激活剂的元素是铝。
21.根据权利要求19所述的荧光体粉末,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是铜,构成共激活剂的元素是铝。
22.根据权利要求18所述的荧光体粉末,其特征在于:所述的荧光体粉末中所含的氯系化合物的氯浓度为20ppm以下。
23.根据权利要求18所述的荧光体粉末,其特征在于:所述的荧光体粉末从其表面除去了表面结晶缺陷层或表面应变层。
24.根据权利要求18所述的荧光体粉末,其特征在于:所述的荧光体粉末表面被覆了含有磷酸的化合物层。
25.一种由支持体、因从真空空间飞来的电子照射而发光的荧光体粉末组成的发光层和电极构成的显示板,其特征在于:
该荧光体粉末是由II-VI族元素构成的芯材、激活剂和共激活剂组成,
当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
26.一种由支持体、因从真空空间飞来的电子照射而发光的荧光体粉末组成的发光层和电极构成的显示板,其特征在于:
该荧光体粉末是从其表面除去了表面结晶缺陷层或表面应变层。
27.一种由支持体、因从真空空间飞来的电子照射而发光的荧光体粉末组成的发光层和电极构成的显示板,其特征在于:
该荧光体粉末是表面被覆了含有磷酸的化合物层的。
28.一种由支持体、因从真空空间飞来的电子照射而发光的荧光体粉末组成的发光层和电极构成的显示板,其特征在于:
该荧光体粉末的亮度对温度特性是:到达25℃条件下的亮度的1/2的亮度的温度T50为200℃以上。
29.一种平面型显示装置,其由显示板和有多个电子发射领域的背面板夹着真空空间地相对配置而构成,其特征在于:
显示板是由支持体、因从电子发射领域飞来的电子照射而发光的荧光体粉末组成的发光层和电极构成的,
该荧光体粉末是由II-VI族元素构成的芯材、激活剂和共激活剂组成的,
当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
30.一种平面型显示装置,其由显示板和有多个电子发射领域的背面板夹着真空空间地相对配置而构成,其特征在于:
显示板是由支持体、因从电子发射领域飞来的电子照射而发光的荧光体粉末组成的发光层和电极构成的,
该荧光体粉末是从其表面除去了表面结晶缺陷层或表面应变层的。
31.一种平面型显示装置,其由显示板和有多个电子发射领域的背面板夹着真空空间地相对配置而构成,其特征在于:
显示板是由支持体、因从电子发射领域飞来的电子照射而发光的荧光体粉末组成的发光层和电极构成的,
该荧光体粉末是表面被覆了含有磷酸的化合物层的。
32.一种平面型显示装置,其由显示板和有多个电子发射领域的背面板夹着真空空间相相对配置而构成,其特征在于:
显示板是由支持体、因从电子发射领域飞来的电子照射而发光的荧光体粉末组成的发光层和电极构成的,
该荧光体粉末的亮度对温度特性是:到达25℃条件的亮度的1/2的亮度的温度T50为200℃以上。
33.一种荧光体粉末制造方法,其为经溶液的调制工序和反应工序制造了芯材后,把该芯材与激活剂和共激活剂混合,接着,经烧成工序、表面处理工序制造荧光体粉末的方法,其特征在于:
在烧成工序和表面处理工序之间有消除烧成品表面形成的表面结晶缺陷层或表面应变层的除去工序。
34.根据权利要求33所述的荧光体粉末制造方法,其特征在于:所述的除去工序是由退火处理和腐蚀处理构成的。
35.根据权利要求34所述的荧光体粉末制造方法,其特征在于:所述的退火处理的温度比烧成工序中的烧成温度更低。
36.根据权利要求34所述的荧光体粉末制造方法,其特征在于:所述的腐蚀处理中,是把磷酸中添加了CrO3的过饱和溶液和浓盐酸以1∶2混合的溶液作为腐蚀液。
37.根据权利要求33所述的荧光体粉末制造方法,其特征在于:该荧光体粉末是由II-VI族元素构成的芯材、激活剂和共激活剂组成的,
当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
38.根据权利要求37所述的荧光体粉末制造方法,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是银,构成共激活剂的元素是铝。
39.根据权利要求37所述的荧光体粉末制造方法,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是铜,构成共激活剂的元素是铝。
40.根据权利要求33所述的荧光体粉末制造方法,其特征在于:烧成工序和除去工序之间有洗涤工序,把烧成品洗涤干净,使荧光体粉末中含的氯系化合物的氯浓度为20ppm以下。
41.根据权利要求33或40所述的荧光体粉末制造方法,其特征在于:在表面处理工序中,在荧光体粉末表面被覆含有磷酸的化合物层。
42.一种荧光体粉末制造方法,其为经溶液的调制工序和反应工序制造了芯材后,把该芯材与激活剂和共激活剂混合,接着,经烧成工序、表面处理工序制造荧光体粉末的方法,其特征在于:
烧成工序之后有洗涤工序,把烧成品洗涤干净,使荧光体粉末中含的氯系化合物的氯浓度为20ppm以下。
43.根据权利要求42所述的荧光体粉末制造方法,其特征在于:荧光体粉末是由II-VI族元素构成的芯材、激活剂和共激活剂组成的,
当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
44.根据权利要求44所述的荧光体粉末制造方法,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是银,构成共激活剂的元素是铝。
45.根据权利要求44所述的荧光体粉末制造方法,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是铜,构成共激活剂的元素是铝。
46.根据权利要求42所述的荧光体粉末制造方法,其特征在于:在表面处理工序中,在荧光体粉末表面被覆含有磷酸的化合物层。
47.一种荧光体粉末制造方法,其为经溶液的调制工序和反应工序制造了芯材后,把该芯材与激活剂和共激活剂混合,接着,经烧成工序、表面处理工序制造荧光体粉末的方法,其特征在于:
在表面处理工序中,在荧光体粉末表面被覆含有磷酸的化合物层。
48.根据权利要求47所述的荧光体粉末制造方法,其特征在于:所述的荧光体粉末是由II-VI族元素构成的芯材、激活剂和共激活剂组成的,
当芯材为1重量份时,激活剂的比例是1×10-4重量份至1×10-3重量份,而且,共激活剂的摩尔浓度与激活剂的摩尔浓度相等。
49.根据权利要求48所述的荧光体粉末制造方法,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是银,构成共激活剂的元素是铝。
50.根据权利要求48所述的荧光体粉末制造方法,其特征在于:构成芯材的元素是锌和硫,构成激活剂的元素是铜,构成共激活剂的元素是铝。
CNB028016718A 2001-03-15 2002-03-07 荧光体粉末及其制造方法、显示板及平面型显示装置 Expired - Fee Related CN100445346C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001074173A JP2002265942A (ja) 2001-03-15 2001-03-15 蛍光体粉末及びその製造方法、表示用パネル、並びに、平面型表示装置
JP74173/01 2001-03-15
JP074173/2001 2001-03-15

Publications (2)

Publication Number Publication Date
CN1462305A true CN1462305A (zh) 2003-12-17
CN100445346C CN100445346C (zh) 2008-12-24

Family

ID=18931484

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028016718A Expired - Fee Related CN100445346C (zh) 2001-03-15 2002-03-07 荧光体粉末及其制造方法、显示板及平面型显示装置

Country Status (7)

Country Link
US (1) US6833086B2 (zh)
EP (1) EP1371710A4 (zh)
JP (1) JP2002265942A (zh)
KR (1) KR100888671B1 (zh)
CN (1) CN100445346C (zh)
TW (1) TWI225267B (zh)
WO (1) WO2002074879A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294852A (ja) * 2000-04-14 2001-10-23 Tdk Corp 蛍光体とその製造方法、薄膜の製造装置、およびel素子
JP2003303540A (ja) * 2002-04-11 2003-10-24 Sony Corp 電界電子放出膜、電界電子放出電極および電界電子放出表示装置
US20030222268A1 (en) * 2002-05-31 2003-12-04 Yocom Perry Niel Light sources having a continuous broad emission wavelength and phosphor compositions useful therefor
US6967154B2 (en) * 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US6677586B1 (en) * 2002-08-27 2004-01-13 Kla -Tencor Technologies Corporation Methods and apparatus for electron beam inspection of samples
US6939015B2 (en) * 2002-09-20 2005-09-06 Eastman Kodak Company Chromium black light shield
CN1233046C (zh) * 2002-09-29 2005-12-21 光宝科技股份有限公司 一种制作白光发光二极管光源的方法
US20040180244A1 (en) * 2003-01-24 2004-09-16 Tour James Mitchell Process and apparatus for microwave desorption of elements or species from carbon nanotubes
US7521851B2 (en) * 2003-03-24 2009-04-21 Zhidan L Tolt Electron emitting composite based on regulated nano-structures and a cold electron source using the composite
ES2283674T3 (es) * 2003-04-30 2007-11-01 Centrum Fur Angewandte Nanotechnologie (Can) Gmbh Nanoparticulas de cucleos/recubrimientos luminiscentes.
ATE346898T1 (de) * 2003-04-30 2006-12-15 Nanosolutions Gmbh Kern-mantel nanoteilchen für (f) ret- testverfahren
JP2005048158A (ja) * 2003-07-15 2005-02-24 Hitachi Ltd 画像表示装置
KR20050014430A (ko) * 2003-07-31 2005-02-07 삼성에스디아이 주식회사 평판 표시소자의 전자 방출원 형성용 조성물 및 이로부터제조되는 전자 방출원
KR20050036619A (ko) * 2003-10-16 2005-04-20 삼성에스디아이 주식회사 플라즈마 디스플레이 패널용 형광체 및 이를 이용한플라즈마 디스플레이 패널
EP1691391A4 (en) * 2003-10-30 2009-04-01 Panasonic Corp PLASMA SCREEN
US7459839B2 (en) * 2003-12-05 2008-12-02 Zhidan Li Tolt Low voltage electron source with self aligned gate apertures, and luminous display using the electron source
JP5136877B2 (ja) * 2004-07-16 2013-02-06 独立行政法人産業技術総合研究所 蛍光体、及びその製造方法
JP4321395B2 (ja) * 2004-07-22 2009-08-26 コニカミノルタエムジー株式会社 放射線画像変換パネル及びその製造方法
JP2006073516A (ja) * 2004-08-30 2006-03-16 Samsung Sdi Co Ltd 電子放出素子及びその製造方法
JP2006202585A (ja) * 2005-01-20 2006-08-03 Hitachi Displays Ltd 画像表示装置
TWI254747B (en) * 2005-03-01 2006-05-11 Ritdisplay Corp Alloy target for conductive film or its protection layer and manufacturing method thereof
KR20060104652A (ko) * 2005-03-31 2006-10-09 삼성에스디아이 주식회사 전자 방출 소자
KR20060104657A (ko) 2005-03-31 2006-10-09 삼성에스디아이 주식회사 전자 방출 소자
US8586468B2 (en) * 2005-08-24 2013-11-19 Sony Corporation Integrated circuit chip stack employing carbon nanotube interconnects
TW200710200A (en) * 2005-09-15 2007-03-16 Giftstar Trade Mark Design Inc Luminance powder and its producing method
JP5121167B2 (ja) 2006-05-19 2013-01-16 キヤノン株式会社 青色蛍光体及びその用途
CN101473397A (zh) * 2006-06-23 2009-07-01 汤姆森许可贸易公司 用于碳纳米管(cnt)/场发射器件(fed)显示器的发光材料
JP2008081625A (ja) 2006-09-28 2008-04-10 Canon Inc 電子線励起青色蛍光体
US8361566B2 (en) * 2008-04-08 2013-01-29 Los Alamos National Security, Llc Method of fabrication of fibers, textiles and composite materials
TW200949896A (en) * 2008-05-27 2009-12-01 Tatung Co A device with electron beam excitation for making white light source
KR101310866B1 (ko) * 2011-05-12 2013-09-25 한국과학기술연구원 탄소나노튜브 양을 조절하는 방법 및 이를 이용한 탄소나노튜브 소자 제조방법
KR101286211B1 (ko) * 2012-02-16 2013-07-15 고려대학교 산학협력단 발광 소자 제조 방법 및 이를 이용하여 제조된 발광 소자
DE102013114496A1 (de) * 2013-12-19 2015-06-25 Bundesdruckerei Gmbh Zinksulfidischer Leuchtstoff mit Photo- und Elektrolumineszenzverhalten, Verfahren zu dessen Herstellung sowie Sicherheitsdokument, Sicherheitsmerkmal und Verfahren zu dessen Detektion
CN103756673B (zh) * 2014-02-05 2015-05-13 上海洞舟实业有限公司 一种用于红外激光探测的蓝色发光材料及制备
JP2022039095A (ja) 2020-08-27 2022-03-10 セイコーエプソン株式会社 蛍光体粒子、波長変換素子、光源装置、蛍光体粒子の製造方法、波長変換素子の製造方法、及びプロジェクター

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607371A (en) * 1969-10-30 1971-09-21 Sylvania Electric Prod Phosphate-coated rare-earth oxide compositions and a process for producing same
US4181627A (en) * 1972-09-21 1980-01-01 Minnesota Mining And Manufacturing Company High fluorescent efficiency zinc oxide crystals and method of making same
JPS50146579A (zh) 1974-05-16 1975-11-25
JPS51105984A (en) 1975-03-14 1976-09-20 Tokyo Shibaura Electric Co cu ag fukatsuryukaaenkeikotai oyobi sonoseizohoho
JPS5311179A (en) * 1976-07-19 1978-02-01 Hitachi Ltd Fluorescent substance
JPS597746B2 (ja) 1976-08-02 1984-02-20 株式会社日立製作所 けい光体の処理方法
US4181753A (en) * 1976-08-19 1980-01-01 Brown, Boveri & Cie Aktiengesellschaft Process for the production of electroluminescent powders for display panels and coating the powders with zinc phosphate
JPS56112050A (en) * 1980-02-07 1981-09-04 Kasei Optonix Co Ltd Cathode ray tube
JP2721254B2 (ja) 1989-12-19 1998-03-04 株式会社東芝 電場発光蛍光体の製造方法
JPH03295194A (ja) 1990-04-11 1991-12-26 Stanley Electric Co Ltd El蛍光体の製造方法
JP3190991B2 (ja) 1991-12-13 2001-07-23 日清紡績株式会社 車輪ブレーキの圧力制御装置
JPH05171141A (ja) 1991-12-18 1993-07-09 Sony Corp 青色蛍光体
JPH05255665A (ja) 1992-03-13 1993-10-05 Nec Kansai Ltd 蛍光体の製造方法
JP3295194B2 (ja) 1993-10-19 2002-06-24 能美防災株式会社 火災報知設備
EP0714967B1 (de) * 1994-12-01 1999-03-03 Philips Patentverwaltung GmbH Lumineszierender Schirm mit einer Leuchtstoffzusammensetzung
JPH08183954A (ja) 1994-12-28 1996-07-16 Mitsubishi Materials Corp El蛍光体粉末
JPH08283711A (ja) 1995-04-07 1996-10-29 Mitsubishi Materials Corp El蛍光体の製造方法
JP3515234B2 (ja) 1995-06-28 2004-04-05 株式会社東芝 硫化亜鉛蛍光体
US5762773A (en) * 1996-01-19 1998-06-09 Micron Display Technology, Inc. Method and system for manufacture of field emission display
JPH09217058A (ja) 1996-02-09 1997-08-19 Toshiba Corp 青色発光蛍光体および陰極線管
JPH09217508A (ja) * 1996-02-14 1997-08-19 Toto Ltd シャワーユニット
US5844361A (en) * 1996-12-13 1998-12-01 Motorola, Inc. Field emission display having a stabilized phosphor
TW467949B (en) * 1998-08-26 2001-12-11 Toshiba Corp Electroluminescent phosphor and electroluminescent element using the same
JP2000096045A (ja) 1998-09-18 2000-04-04 Kasei Optonix Co Ltd 電界放出型ディスプレイ用蛍光膜及びこれを用いた電界 放出型ディスプレイ装置

Also Published As

Publication number Publication date
EP1371710A1 (en) 2003-12-17
WO2002074879A1 (fr) 2002-09-26
US20030102797A1 (en) 2003-06-05
KR20030001508A (ko) 2003-01-06
CN100445346C (zh) 2008-12-24
TWI225267B (en) 2004-12-11
JP2002265942A (ja) 2002-09-18
KR100888671B1 (ko) 2009-03-13
EP1371710A4 (en) 2007-10-10
US6833086B2 (en) 2004-12-21

Similar Documents

Publication Publication Date Title
CN1462305A (zh) 荧光体粉末及其制造方法、显示板及平面型显示装置
CN1312572A (zh) 发光晶粒、发光晶粒组合物显示板和平面显示器
CN1230857C (zh) 等离子体显示面板及其制造方法
CN1205489C (zh) 光学元件的制造方法
CN1533579A (zh) 电子发射体及其制造方法、冷阴极场致电子发射部件及其制造方法和冷阴极场致电子发射显示装置及其制造方法
US7429340B2 (en) Phosphor paste composition and method of manufacturing flat display device using the same
CN1309407A (zh) 电子发射器件、冷阴极场发射器件和显示器及其制造方法
CN1287409C (zh) 电子源和成像装置以及它们保持激活状态的方法
CN1471721A (zh) 气体放电屏
CN1334590A (zh) 场致发射型显示器用的前板
CN1585069A (zh) 等离子体显示板及其制造方法以及薄膜
CN1246418C (zh) 荧光体及使用荧光体的成像器件
CN1664980A (zh) 显示板和显示装置
JPH09274103A (ja) カラーフィルター組成物、カラー表示装置およびその製造方法
CN1123037C (zh) 电子源、采用它的成象器及其制造方法
CN1187781C (zh) 电子源的制备方法和成像装置的制备方法
CN1147900C (zh) 电子发射器件和电子源及图像形成装置的制造方法
CN1496575A (zh) 等离子体显示屏及其制造方法
CN1462464A (zh) 平面型显示装置的平整处理方法及平面型显示装置用基板的平整处理方法
CN1161815C (zh) 气体放电板及包括该气体放电板的显示装置
CN1126137C (zh) 电子发射器件及其制造方法
CN1654534A (zh) 含无机粉末的树脂组合物、转印薄膜及显示屏用部件的制造方法
CN1875449A (zh) 等离子体显示面板
CN1685032A (zh) 显示装置用荧光体及其制造方法、以及使用该荧光体的彩色显示装置
CN1832098A (zh) 电子束装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081224

Termination date: 20100307