CN1473201A - 扩增和任选表征核酸的方法 - Google Patents

扩增和任选表征核酸的方法 Download PDF

Info

Publication number
CN1473201A
CN1473201A CNA018184235A CN01818423A CN1473201A CN 1473201 A CN1473201 A CN 1473201A CN A018184235 A CNA018184235 A CN A018184235A CN 01818423 A CN01818423 A CN 01818423A CN 1473201 A CN1473201 A CN 1473201A
Authority
CN
China
Prior art keywords
dna
nucleic acid
template
primer
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA018184235A
Other languages
English (en)
Inventor
托马斯·瓦伦丁·麦卡锡
鲁艾里·科林斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University College Cork
Original Assignee
University College Cork
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University College Cork filed Critical University College Cork
Publication of CN1473201A publication Critical patent/CN1473201A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification

Abstract

一种扩增模板核酸的方法,其包括以下几个同时进行的步骤:将核酸引物与所述模板核酸、普通DNA前体核苷酸、至少一种修饰的DNA前体核苷酸和DNA聚合酶反应以获得延伸的核酸引物,所述核酸引物仍保留与所述模板结合;切割含有修饰碱基的延伸的核酸引物以产生可被所述DNA聚合酶延伸的游离的3’-羟基末端;在由此产生的DNA片段上重复前两个步骤。修饰的前体核苷酸可以是DNA糖基化酶的底物,或被3’-内切核酸酶识别,从而决定了DNA的切割及相应的切割位点。与现有技术相比,本方法具有显著的优点,可以更加通用、更加灵活地提供单一高通量的方法,能容易地改造成多种不同的形式应用于DNA的检测、定量和表征领域。

Description

扩增和任选表征核酸的方法
技术领域
本发明涉及一种扩增和表征核酸的新方法。
背景技术
核酸引物在靶核酸模板上的延伸对多种应用包括核酸检测、诊断及定量来说,是一个极其重要的过程。具体而言,引物在模板上延伸,i)直接证明该引物已经与模板退火,ii)证实在模板上存在与引物互补的序列,因而iii)确认模板或靶核酸的存在。使用仅有单个碱基差异的紧密相关的引物,通常有可能鉴别序列上仅有单个碱基差异的核酸。使用引物在模板酸模上延伸作为核酸检测、诊断和定量的方法,其主要限制在于,在一个典型的延伸反应中,引物与模板退火(杂交)后仅延伸一次。因此,样品中模板的量决定了延伸的引物量。对于大多数在核酸检测、诊断和定量领域中的应用来说,模板的量通常太少,以致于如果延伸反应不以某种方式重复或循环,延伸的引物就无法直接检测。
为了克服这一关键限制,必需采取扩增的方法。现已描述了多种这样的方法,主要包括以下几类:a)使用周期性的解离条件,通过加热使延伸引物从模板上解离,从而使新引物可以退火并继续延伸;b)通过使用限制性酶在半修饰的DNA识别位点的未修饰链上产生缺刻,从而在DNA上重复生成引物,5’-3’外切核酸酶缺乏的DNA聚合酶能够从缺刻处延伸3’DNA末端并置换下游DNA链;c)模板核酸被循环使用以便引物延伸连续进行;和/或d)通过转录方法产生模板的拷贝,以在后续的引物延伸反应中充当模板。
将核酸扩增(产生多拷贝)到能够检测和操作的水平具有非常高的应用价值。这样的扩增方法能够产生足够量的特异的靶核酸,一般来说是表征核酸所需的第一个关键步骤。从样品中直接扩增特异的核酸序列,可以诊断该样品中是否存在所述核酸,因而在DNA/基因诊断中具有非常高的应用价值。从样品中直接扩增核酸及随后的表征可应用于多种不同目的,包括诊断在一段特异核酸中是否存在DNA的变化如突变和多态性。在许多情况下,扩增过程能够被设计成在进行扩增的同时对扩增的靶进行完全或部分表征。
当今已知的扩增和表征核酸的方法各有其不同的限制,特别是这些方法需要引物解离、引物生成、特异性、通用性、单链DNA生成和倍增的方便性以及高通量基因型鉴定,尤其单核苷酸多态性(SNP)的基因型鉴定。具体描述见下文。引物延伸
引物在模板上的延伸过程本身在文献中已有完备的记录。引物延伸的获得方法是将引物与其在模板或靶核酸上的互补序列退火,然后在存在DNA前体,一般为dATP、dGTP、dCTP和dTTP的情况下与DNA聚合酶温育,这导致引物在模板链上以5’到3’的方向(相对于引物)从引物的3’-OH(羟基)末端延伸,产生一条与原模板互补的新合成DNA链。只有当引物具有游离的3’-OH末端时,引物延伸才能进行。使用引物延伸法从模板扩增互补链要求:a)对于每个退火的引物分子,引物延伸发生一次以上;b)新的引物能够重复地与模板退火并延伸;和/或c)互补链在随后第二个引物的延伸时作为模板。聚合酶链式反应(PCR)
核酸模板的扩增可以通过聚合酶链式反应(PCR)得以实现(Saiki,R.K.et al.,Science.239:487-491(1988))。
通常,通过PCR扩增核酸模板上的靶区段,需要使用适当的合成寡核苷酸引物、热稳定的DNA聚合酶和DNA前体。变性、退火和引物延伸的多次循环导致成指数倍地扩增靶区段。因此检测产物表明在特异基因座上存在某一序列。扩增产物的长度决定于引物结合部分的长度及它们在模板上3’末端之间的距离等。
PCR绝对需要热稳定的DNA聚合酶。同时它还包括热循环过程,因此该技术的自动化需要专用设备。一个典型的反应通常需要两条引物来起始,因而给反应增加了额外的复杂性,特别是当人们考虑倍增几个不同的扩增反应(即在一个管中)时。这导致反应体系中引物数增加,因而增加了错误和非特异扩增的可能性。此外,这也增加了设计和最优化PCR反应的复杂性,因为退火温度必须适合反应中所用的两条引物。在倍增不同的扩增反应时这会更为不利,因为必须使单一的退火温度适合于所有被倍增的扩增反应。
此外还存在潜在的扩增子污染的可能性,因为在反应中产生了多拷贝的模板核酸,它们在其后的反应中作为模板。基于转录的扩增方法
基于转录的扩增方法(Kwoh,D.Y.等,(1989)Proc.Natl.Acad.Sci.USA,86:1173-1177;Guatelli,J.C.等,(1990)Proc.Natl.Acad.Sci.USA,87:1874-1878;Compton,J.(1991)Nature 350:91-92)其基础在于通过引物在靶核酸上的延伸从而在欲扩增的靶区域上游创建一个RNA聚合酶启动子。实际上,将位于靶序列两侧的一对引物与模板核酸温育。其中一条引物在与模板互补和退火的序列上游(5’端)含有一个RNA聚合酶启动子序列,而另一条引物则与互补模板链的区段互补。使用核酸聚合酶如反转录酶和DNA前体将带有RNA聚合酶启动子的引物在模板链上延伸。在杂交核酸(含有模板链和新合成的互补链)热变性或酶法降解掉模板链之后,将第二条引物与新合成的互补链退火并延伸。这样就产生了双链产物,并具有一个附着于靶序列的RNA聚合酶启动子。将该产物与RNA聚合酶和RNA前体温育,就产生出大量靶序列的RNA转录本。每一个RNA转录本反过来又作为模板生产互补的DNA链。这一过程在恒温条件下可以自动维持的循环方式持续下去,直到反应体系中的成分耗尽或失活。这样就对靶核酸序列进行了大量扩增。
这类技术的一个主要缺点是对RNA的绝对依赖性,而RNA与DNA相比,从本质上说更不稳定,更容易被降解。因而反应对污染的核糖核酸酶极为敏感。通常,该方法需要RNA作为模板,以DNA为模板并不适合或不是最适合。
这种方法还需要至少两条引物以起始反应,其中一条引物还必须特殊设计以掺入RNA聚合酶的转录起始位点。
此外还存在潜在的扩增子污染的可能性,因为在反应中产生了多拷贝的模板核酸,它们在其后的反应中作为模板。
在不附加其它步骤的情况下,这些技术不适用于突变或多态性检测。链置换扩增(SDA)
SDA这种扩增方法基于两点:一是限制性酶能够在半修饰的双链DNA的未修饰链的特异识别位点产生缺刻,二是5’-3’外切核酸酶缺乏的DNA聚合酶能够从产生的缺刻处使3’DNA末端延伸,并因此置换下游的DNA链(Walker,G.T.等,PNAS 89:392-396(1992))。从模板链的反应中被置换下来的链可以作为互补链反应中的靶,反之亦然,通过这样的模板偶联反应,靶DNA可以得到指数级的扩增。实际上,DNA样品热变性后产生两个单链DNA片段(T1和T2)。两个DNA扩增引物(P1和P2)则过量。P1的3’末端与T1的3’末端结合,形成一个5’突出端的双链体。同样,P2与T2结合。P1和P2的5’突出端含有一种限制性酶如HincII的识别序列。利用5’-3’外切核酸酶缺乏的大肠杆菌(E.coli)DNA聚合酶、DNA前体dGTP、dCTP、dTTP和修饰前体脱氧腺苷5’-[α硫代]三磷酸,将双链体的3’末端延伸,在P1T1和P2T2上产生半硫代磷酸酯识别位点。HincII在半硫代磷酸酯识别位点的未保护引物链上产生缺刻,而被修饰的互补链则保留完整。DNA聚合酶从P1T1的缺刻处使3’末端延伸并将下游链置换,被置换的链在功能上与T2等同。同样,P2T2的缺刻处的3’末端延伸导致下游链置换,所置换的链在功能上与T1等同。缺刻和聚合/置换的步骤在P1T1和P2T2上持续地循环,因为在缺刻处的延伸重新生成了一个可缺刻的HincII识别位点。靶扩增是指数级的,因为从P1T1置换下来的链可作为P2的靶,而从P2T2置换下来的链又可作为P1的靶。
SDA的一个主要缺点在于人们必须使用特殊设计的引物,以掺入一个特异的限制性酶切位点。通常,为了使反应得以进行,每个扩增子需要两个或更多个序列特异的引物。另外,采用单一引物,在反应中产生的扩增片段很难具有限定的3’末端。这也是SDA的一个主要缺点,因为只有在被置换片段具有限定的3’末端时,人们才能够使用同样的片段起始后续的反应。
WO 97/03210公开了一种方法,能够快速检测在靶核酸样品中的侯选基因座上是否存在特殊的核酸序列,它包括以下步骤:1)在所述侯选基因座的一个或多个预选位点引入修饰碱基,这种修饰碱基可作为DNA糖基化酶的底物;2)用所述DNA糖基化酶切除修饰碱基从而产生无碱基位点;3)在步骤2中产生的无碱基位点处切开磷酸酯连接;和4)分析步骤3中的切割产物以鉴定在所述侯选基因座的所述靶核酸序列中是否存在所述特殊核酸序列。这种方法在检测DNA样品中的特异突变,包括检测DNA中的多种已知突变方面有特殊的应用。
WO 99/54501公开了一种表征核酸分子的方法,其包括以下步骤:1)在DNA分子中引入一种修饰碱基,如尿嘧啶,它是DNA糖基化酶的底物;2)用所述DNA糖基化酶切除修饰的碱基从而产生无碱基位点;3)在无碱基位点处切开DNA,以产生能够被延伸的上游DNA片段;和4)将这个可延伸的上游片段与能够进行延伸反应的酶,如聚合酶或连接酶,以及模板核酸一起温育,并分析所得的片段。然而,在WO 99/54501描述的方法中,最关键的是DNA在碱基被切除的位点切开。
在如WO 99/54501所举例的方法中,对带有被扩增的靶核酸的反应混合物,使用外切核酸酶I处理以消化在扩增中没有延伸的引物,并使用碱性磷酸酶消化在扩增步骤过程中没有掺入的dNTP。因此,模板核酸没有发生进一步的扩增,此方法仅限于单一循环。
因此,开发一种更好的扩增和表征核酸的方法是非常重要的,这种方法是更加通用、更加特异,能够提供较高通量,对倍增反应方便,并且可以产生单链DNA。
在此,本发明提供了一种扩增模板核酸的方法,其包括同时实施以下步骤:
1)将核酸引物与所述模板核酸、普通DNA前体核苷酸、至少一种修饰的DNA前体核苷酸和DNA聚合酶反应以获得延伸的核酸引物,所述核酸引物仍保留与所述模板的结合;
2)切割含有修饰碱基的延伸的核酸引物以产生可由所述DNA聚合酶延伸的游离3’-OH末端;以及
3)在由此产生的DNA片段上重复步骤1)和2)。
在一种实施方案中,使用3’-核酸外切核酸酶切割含有修饰碱基的延伸的核酸引物。
在这个实施方案中,优选地,3’-核酸外切核酸酶是大肠杆菌的核酸外切核酸酶V或其它生物中发现的其同源蛋白。
在另一种实施方案中,该方法包括以下步骤:
1)    将核酸引物与所述模板核酸、普通DNA前体核苷酸、至少一种DNA糖基化酶的底物的修饰的DNA前体核苷酸和DNA聚合酶反应以获得一条延伸的核酸引物,所述核酸引物仍保留与所述模板结合;
2)    利用DNA糖基化酶从延伸的核酸引物上切除被修饰的DNA前体核苷酸上的修饰碱基,从而产生一个无碱基位点;
3)    在无碱基位点切开被延伸的核酸引物,以产生可由所述DNA聚合酶延伸的游离的3’-OH末端;以及
4)    在由此产生的DNA片段上重复步骤1-步骤3。
本发明的方法有许多特别的优点,如后文所阐述。然而,从更普遍的意义上来说,本发明的方法与现有技术相比有很大优势,可以更加通用、更加灵活地提供单一高通量的方法,能够容易地改造成多种不同的形式应用于DNA检测、定量和表征的领域中。
本发明参照使用DNA糖基化酶的实施方案将在下文进行主要描述。我们为本发明的方法建立了术语糖基化酶介导的扩增(GMA)。无论如何,本发明的所有实施方案在此都共同使用GMA这一缩写。
在本发明的方法中,修饰的DNA前体核苷酸可以是一种糖基化酶的底物,或被在此所述的3’-内切核酸酶识别。
通常,核酸模板链可以是自然存在或人工合成的核酸的任何链。
优选地,模板核酸是DNA。
本发明的方法由核酸引物起始。为方便计,负责起始反应的引物在此称为起始引物(IP)。
IP可以是具有游离3’OH末端的任何核酸,其可由DNA聚合酶延伸。IP可以是人工合成的如合成寡聚核苷酸,也可以是直接或间接从自然存在的核酸衍生而来。
在一个实施方案中,核酸引物是DNA引物。
普通DNA前体核苷酸是脱氧核苷三磷酸dATP、dCTP、dGTP和dTTP。在某些限定情况下,双脱氧核苷三磷酸也可以被使用和包括在反应中。因此,可能的普通前体还包括ddATP、ddCTP、ddGTP和ddTTP。
优选地,DNA前体核苷酸选自dATP、dCTP、dGTP和dTTP。
在GMA中可以使用几种核酸聚合酶中的任何一种。以DNA为模板时使用DNA聚合酶,以RNA为模板时需要使用能够利用RNA模板的DNA聚合酶,典型的例子是反转录酶。通常,有两类DNA聚合酶可用,对它们的选择依赖于延伸引物的下游核酸是否需要置换或消化。当需要链置换以产生置换片段时,选用不具5’-3’核酸外切核酸酶活性的DNA聚合酶。相反,当选用具5’-3’核酸外切核酸酶活性的DNA聚合酶时,下游DNA在GMA反应的每一循环中被降解。这也产生了可检测的产物,如下文进一步所讨论。
有几种已知的修饰前体核苷酸,当它们掺入到DNA中时,如果合适,成为DNA糖基化酶的底物和/或由3’-核酸内切酶所识别。在后一种情况下,修饰的前体核苷酸指导3’-核酸内切酶在其掺入位点3’端切开磷酸二酯键。
在每一种情况下,切割依赖于DNA上修饰碱基的存在,正是这决定了DNA的切割和切割的位置。切割有两种方式,即1)用糖基化酶切除修饰碱基,然后随后切割无碱基位点;或2)用3’-核酸内切酶在修饰碱基掺入位点的3’端第二个磷酸二酯键处切开延伸的核酸引物。在一个实施方案中,修饰核酸前体是dUTP。
修饰前体核苷酸dUTP是一种磷酸碱基糖,含有碱基尿嘧啶和磷酸糖基团。使用前体核苷酸dATP、dCTP、dGTP以及dUTP代替dTTP进行引物在模板上的延伸,导致新合成的与模板互补的DNA,其中胸腺嘧啶完全被尿嘧啶所代替。
然而,对于那些本领域专业技术人员来说,可以意识到其它修饰核苷酸前体也可使用,如dITP和8-羟基dGTP。
修饰前体核苷酸dITP是一种磷酸碱基糖,含有碱基次黄嘌呤和磷酸糖基团。修饰前体核苷酸8-羟基dGTP是一种磷酸碱基糖,含有碱基8-羟基鸟嘌呤和磷酸糖基团。
糖基化酶底物前体dUTP、dITP和8-羟基dGTP当掺入DNA时,生成糖基化酶底物,分别为碱基尿嘧啶、次黄嘌呤和8-羟基鸟嘌呤。
在一个实施方案中,DNA糖基化酶是尿嘧啶DNA糖基化酶(UDG)。
DNA中的尿嘧啶被UDG特异性识别并从DNA中释放出来。UDG还识别DNA中存在的其它尿嘧啶相关的碱基。
已经描述了许多DNA糖基化酶。这些酶切开连接糖基化酶底物碱基与DNA骨架的N-糖苷键。这使碱基从DNA上释放,并产生了无碱基位点。
其它适用的DNA糖基化酶包括烷基嘌呤DNA糖基化酶(ADG)或甲酰胺基嘧啶DNA糖基化酶(FPG)。
次黄嘌呤能被烷基嘌呤DNA糖基化酶(ADG)特异性识别并从DNA上释放。该酶还识别和释放存在于DNA中的N3甲基腺嘌呤、N3甲基鸟嘌呤、O2甲基胞嘧啶和O2甲基胸腺嘧啶。8-羟基鸟嘌呤能被FPGDNA糖基化酶特异性识别并从DNA上释放。该酶还识别和释放存在于DNA中的开环嘌呤。
已知有几种试剂能够在无碱基位点处切开核酸中的磷酸二酯键。键的切割可以在无碱基位点的5’端,也可以在3’端。5’端切割可以发生在磷酸基团的近端或远端,产生的上游片段的3’末端分别带有游离的3’羟基或3’磷酸基团。3’羟基末端可在模板上由DNA聚合酶延伸,而3’磷酸末端则不可延伸。这样的3’磷酸末端一般可以通过磷酸酶处理而获得可延伸性,如使用具有3’磷酸酶活性的T4多核苷酸激酶。能够在磷酸基团5’端切割并产生游离3’羟基末端的试剂是具有AP内切核酸酶活性的酶,如来自大肠杆菌的AP核酸内切酶IV。能够在磷酸基团3’端切割并产生3’磷酸基团末端的试剂是碱、热和某些DNA修复酶如FPG以及碱性蛋白和肽。能够在无碱基位点3’端切割的试剂包括热以及具有AP裂合酶活性的DNA修复酶,如来自大肠杆菌的核酸内切酶III。这样的3’-脱氧核糖磷酸(dRp)末端一般可以通过AP核酸内切酶处理而获得可延伸性。FPG-DNA糖基化酶在无碱基位点的5’和3’端都可以切割。
优选地,采用在核酸无碱基位点进行切割的酶在无碱基位点切割延伸的核酸。
进一步,优选地,酶是AP核酸内切酶,特别是能在无碱基位点5’端切割并产生游离3’羟基末端的AP核酸内切酶IV。
在用3’核酸内切酶切割延伸的引物时,该种酶对延伸引物的切割依赖于延伸引物上存在的修饰碱基,并且切割发生在修饰碱基掺入位点3’区(即下游)的磷酸二酯键处。与糖基化酶作用和AP位点切割的情况相反,用3’-核酸内切酶切割延伸的引物不包含切除修饰碱基和不涉及创建无碱基位点。3’-核酸内切酶切割依赖于延伸引物上存在的修饰碱基以及该酶对所述修饰碱基的识别。通常切割发生在修饰碱基/核苷酸3’区上第二个磷酸二酯键处。该切割事件在DNA链上产生了一个缺刻,其带有一个3’羟基和一个5’磷酸基团。然后反应中存在的DNA聚合酶可以从游离的3’羟基开始延伸。如上文所述,3’核酸内切酶可以是来自大肠杆菌的核酸内切酶V。核酸内切酶V识别若干DNA中的修饰碱基,包括尿嘧啶、次黄嘌呤(肌苷)和尿素残基。除了切割带有修饰碱基的DNA外,核酸内切酶V还能够切割含有无碱基位点的DNA。因此,在某些情况下,核酸内切酶V可以与能在DNA上产生无碱基位点的DNA糖基化酶共同作用以切割延伸引物。
在一个实施方案中,修饰前体核苷酸部分代替其中一种普通前体核苷酸。
例如,除了修饰前体核苷酸dUTP以外,还使用前体核苷酸dATP、dCTP、dGTP和dTTP在模板上进行引物延伸,产生新合成的DNA,其与其中胸腺嘧啶被尿嘧啶随机取代的模板互补。在DNA合成过程中,尿嘧啶在与模板DNA链中的腺嘌呤残基互补的位置上掺入到新合成的DNA链上。因此,下游被置换片段的大小是由新合成DNA上dUMP随机掺入的位置所限定的。以dUTP代替dTTP掺入到互补链上与模板核酸链中腺苷残基相对的位点,由此产生各种大小的被置换片段。
采取相似的方式用dITP取代dGTP或用8-羟基dGTP取代dGTP,导致与模板互补的新合成DNA中的dGTP被全部或部分取代,即在与模板DNA链中胞嘧啶残基互补的位置上分别为次黄嘌呤或8-羟基鸟嘌呤所取代。在需要时,使用一种或多种双脱氧终止核苷酸(一种核苷酸,一旦掺入就可抑制引物在模板上进一步延伸)全部或部分取代一种或多种常见DNA前体,可用来终止DNA聚合酶催化的引物延伸。使用一种或多种双脱氧终止核苷酸部分取代一种或多种常见DNA前体可在模板链上的多种不同位置终止引物延伸,并产生多种不同长度的被终止的引物。使用一种或多种双脱氧终止核苷酸全部取代一种或多种常见DNA前体可以在模板链的特定位置终止引物延伸,并产生特定长度的被终止的引物。在GMA中可以使用一种以上的修饰前体核苷酸和一种或多种DNA糖基化酶。可以使用两种糖基化酶,其中一种从引物上释放修饰碱基,而另一种则释放曾经掺入到新合成DNA中的修饰碱基。
本发明方法的步骤1和2或步骤1到3,在适当情况下可以循环方式连续进行,直到试剂之一被耗尽。
本发明的方法可以在恒温条件下进行。
因此,当在恒温条件下进行时,不需要热循环。
本发明的方法是仅有的恒温扩增反应,使用单一引物,就能够在引物延伸反应中扩增多个、新合成以及分立的DNA区段。
人们会意识到,本发明的方法能够积累被置换的单链下游核酸片段,其大小由互补核酸链中修饰碱基的位置确定。
因此,本发明方法提供了一种手段,其产生多拷贝的位于IP下游的分立的单链引物。对于检测目的,这提供了异常的特异性,因为只有当靶模板核酸存在时,分立的下游引物才能产生。因此,对DNA诊断来说,在特异性方面,GMA对前述的任何扩增方法都是显著的改进。
从单个单链模板样品中扩增多个DNA区段是高度合意的,也是当前扩增技术的一个限制。这一限制主要起于现有技术使用指数式扩增和/或比较烦琐并产生双链产物或大的单链产物的事实。
本发明的方法与现有方法相比在DNA片段的倍增扩增方面有显著优势。
本发明的方法能够用来产生多拷贝的位于起始核酸引物下游的分立的单链引物。
被置换的下游片段可以在次级反应中延伸。
另外,被置换的下游片段可以在次级模板核酸上延伸。
多个次级模板也可以固定在DNA芯片上。
本发明的这些方面将在下文进一步描述。
本发明的方法可以用于检测诊断。比如可用于检测病原体的方法中。
本发明的方法也可用于检测是否存在突变及用于多态性检测。
人们会意识到,本发明的方法可用于对样品中的核酸水平进行定量。
本发明中的GMA方法能以几种方式进行定性和定量测定。因此,通过IP在此模板上起始GMA反应的能力可评估IP和/或其在模板核酸上的互补退火位点的性质和数量。本发明所达到的分辨率,如果需要,可高达确定IP和/或模板或靶核酸之间单个碱基的差别,这都基于成功起动GMA反应。由于IP可以是直接或间接地从天然存在的核酸衍生而来,并且GMA可以定性和定量表征IP,因此GMA可以用于定性和定量表征核酸。这在核酸的检测、诊断和定量领域有很大用途。这包括例如,对病原微生物如某些细菌和病毒进行检测和定量、检测其中的变体、检测引起突变的人类疾病、检测单核苷酸多态性以及确定特异mRNA物种在组织样品中的量/滴度。
本发明的方法与现有技术相比在定量方面有显著优势。因为GMA的动力学是线性的,与使用指数动力学的现有技术相比,GMA反应更容易检测和测定/定量。
本发明的方法与现有技术相比在污染控制方面也有显著优势。其原因是与现有技术不同,基本形式的GMA并不合成新的模板用于继续用作IP,该方法的动力学是线性的。
本发明的方法还能用于对任何能作为引物或模板的核酸进行信号放大。
本发明的方法与现有技术相比具有显著的优势,表现在它使用单个线性模板从IP中进行信号放大。GMA未将IP掺入到扩增的被置换下游片段中。其提供的优点在于被置换的下游片段不含有总是IP的5’尾巴。进一步,这意味着当被置换的下游片段在第次级反应中延伸时,产生的被置换的下游片段的互补片段缺少与IP互补的序列。
本发明方法的独特性在于它可以在单一反应容器中进行,由此IP在模板上的延伸产生并扩增了与该IP截然不同的新引物,随后其可在它衍生的相同模板或不同模板上充当IP。
附图简述
图1是在实施例1中所述的本发明方法的一个实施方案的流程图;以及
图2是在实施例4中所述的本发明方法的另一个实施方案的流程图。
参照图1,本发明的一个实施方案说明如下:
事件一:引物与模板上的互补序列结合;
事件二:一旦结合后,引物的游离3’羟基末端被DNA聚合酶延伸。这是通过前体核苷酸与引物的3’羟基末端进行聚合反应而实现的。根据模板的序列,将前体核苷酸(dATP、dCTP、dGTP和/或dTTP)以及修饰的前体核苷酸掺入到延伸的引物中。修饰的前体核苷酸通常全部或部分取代其中一种普通前体核苷酸。新合成的DNA链与起始模板互补,在这里称为互补模板链;
事件三:一旦修饰的前体核苷酸掺入到新合成的DNA中,该DNA就含有了一个修饰碱基,成为特异DNA糖基化酶的底物。结果,每当在新合成DNA中出现一个修饰碱基,它就通过在DNA上切开连接该碱基与脱氧核糖基团的N-糖基化酶键而从DNA上释放出来。这样就产生了一个无碱基位点,其实质上是一个脱氧核糖基团通过位于近侧和远侧(即带有距源引物最近的5’键的脱氧核糖基团的5’端和3’端)的磷酸二酯键连接到侧翼的DNA上;以及
事件四:无碱基位点是例如AP核酸内切酶(APE)的底物。因此,每当一个无碱基位点出现,它就被APE切开。该酶切开脱氧核糖基团5’端的磷酸二酯键,在上游DNA区段上产生一个游离的3’羟基末端,以及在下游区段的5’末端连有一个脱氧核糖基团。
事件五:每当创建一个上游片段,反应物中的DNA聚合酶就从它创建的上游片段的3’羟基末端开始合成新的DNA,并在此过程中以单链形式置换出聚合的下游DNA。这导致在新合成的互补模板链中掺入了新的前体核苷酸,包括修饰的前体核苷酸,从而在新合成的链中,每个与模板核酸互补碱基相对的位置出现了新的修饰碱基。
因此,本实施方案中的反应步骤1到3可以连续地循环,直到其中一种试剂耗尽。
在反应循环中创建的每一个游离3’羟基末端,在后续反应的每一个循环中都被延伸一次,并伴有下游DNA区段的置换。由于反应是连续的,净的结果是从创建的每一个3’羟基末端重复合成新的DNA,以及被置换的下游DNA以大小不一的分立的单链片段形式积累,在此称为被置换的下游片段或被置换片段,其大小由互补链上修饰碱基的位置和/或由于聚合酶催化的DNA合成终止而导致的3’末端的位置所限定。
通过掺入核苷酸包括修饰的前体核苷酸,聚合酶能够将延伸并切开后的引物立即重新延伸。因为普通前体核苷酸、修饰的前体核苷酸、聚合酶、糖基化酶和切割试剂都同时存在于同一反应体系中,延伸和切割的连续循环导致扩增出多拷贝的被置换下游片段。
当修饰的前体核苷酸是dUTP时,修饰碱基是尿嘧啶,这时所用的特异DNA糖基化酶是尿嘧啶DNA糖基化酶。因此被置换下游片段的大小由互补链上尿嘧啶的位置来划界或限定,也就是模板核酸上腺嘌呤碱基的位置,因为尿嘧啶与腺嘌呤形成正常的沃森一克里克碱基对。
所以,简而言之,引物与模板结合并由DNA聚合酶延伸。脱氧dATP、dCTP、dGTP和dUTP掺入到延伸的引物中。然后尿嘧啶DNA糖基化酶切除新合成链上的尿嘧啶碱基,由此产生的无碱基位点被AP核酸内切酶切开。
或者,3’-核酸内切酶识别新合成链上的尿嘧啶,并在尿嘧啶基团3’端的第二个磷酸二酯键处将链切开。
每当创建一个3’羟基末端,DNA聚合酶就从新生成的3’羟基末端开始合成新的DNA,并随着聚合反应进行,置换3’末端或下游DNA。这又导致了更多的尿嘧啶被掺入到新合成的DNA中,其随后被切除和/或识别,DNA被切开,聚合反应从新的3’末端起始。
GMA可以在中温或高温下进行。在中温时(通常是在25℃到42℃之间,典型为37℃),可以使用例如外切核酸酶缺乏的大肠杆菌DNA聚合酶Klenow片段;而在高温时(典型是在50℃到80℃之间,尽管也可以更高),可以使用热稳定的DNA聚合酶,如来自于水栖嗜热菌(Thermus aquaticus)的链置换DNA聚合酶(Stoffel片段)。两类聚合酶可以同时或相继加入到反应中。当需要高的持续合成能力(processivity),以便在聚合酶从DNA上解离之前引物能够延伸至相当长度,可以使用具有高持续合成能力的聚合酶。相反,当需要低的持续合成能力,以便在聚合酶从DNA上解离之前引物能够延伸至较短长度,可以使用具有低持续合成能力的聚合酶。当以RNA为模板时,在GMA反应中可以使用具有链置换活性的反转录酶。
最简单的情况是提供人工或合成的引物作为IP,以在给定的模板或靶核酸上起始GMA反应。选择适当的IP以使其与模板上特异靶核酸杂交。在IP杂交后,GMA起始,被延伸的IP在循环反应中重复延伸,导致被置换下游DNA片段的扩增。这些被置换片段可以通过多种不同方法按照已公布的程序进行定性或定量表征。
通过多种方法可以对被置换片段进行直接检测,例如可以对它们进行适当标记。
对被置换片段的标记可以采用多种方法,包括在合成过程中或合成后向片段中加入有放射性、荧光或可检测的配体。在任何一个延伸反应中使用标记的前体核苷酸有助于检测这些片段。在基于电泳将片段按照大小分开后,直接DNA染色方法如银染或溴化乙锭染色促进其检测。将互补或测试核酸与这些片段杂交,可以用来对它们进行鉴定,这些互补或测试核酸可以固定化并直接与被置换片段杂交。就此而论,DNA巨阵列、DNA微阵列和DNA芯片非常适合。或者,被置换片段可以担当桥连杂交分子,所以将一个可被固定化的测试核酸与被置换片段的一部分杂交,并且将第二个测试或报道核酸与被置换片段的剩余部分杂交。就此而论,DNA巨阵列和DNA微阵列也非常适合。
互补或测试核酸可以用任何一种直接或间接的标记方法进行适当地标记,比如报道剂一猝灭剂荧光染料方法。由于被置换片段是单链的,与互补分子杂交会产生双链核酸,其可以用双链特异探针如SYBR绿来进行检测。除了特异性结合双链DNA的SYBR绿试剂以外,还包括与被置换片段互补的DNA,这种方法也可在本发明的GMA反应中实现。
被置换片段的序列,特别是其3’端序列,可以通过它们作为后续或同一GMA反应中的IP起作用的能力加以确定。从本质上说,这种确定是基于这些片段特别是它们的3’端在选定条件下与模板上选择的互补序列杂交的能力,以及它们在次级GMA反应中作为IP起作用的能力。人们会意识到,模板分子本身和模板上对互补序列的选择存在多种可能性。然而,被置换片段在GMA反应中以其自有方式发挥IP功能的能力,是对它与所选择的靶序列杂交的度量或缺乏,因而也成为对部分或全部被置换片段序列本质进行确定的基础。
从特异性角度来说,检测被置换片段是高度有利的,因为它的生成依赖于a)IP与靶模板的成功杂交以及b)GMA反应在正确的模板上起始。因此,检测到预期的被置换片段是IP已与正确模板的正确区域杂交的证据。
被置换片段的同一性或序列可以采用多种方法进行确定,包括杂交、质量测定及其与核酸直接连接的能力或其充当对连接一个或多个核酸分子所必需的互补链的能力。例如,通过评估它担当桥连杂交分子用于线性测试DNA的5’和3’端连接成环的能力,可以对其进行检测和表征。杂交后的被置换片段,或者附加的引物,然后可以充当IP用于在新的环状模板上进行GMA反应,导致以滚环复制(RCR)的机制扩增DNA。
还应该注意到,除了充当IP以外,被置换下游片段还能够在后续的GMA反应中充当模板。
有许多能够产生IP的方法。不论在何种情况下,提供或产生的IP必须带有游离的3’羟基末端以便它能够起始随后的DNA聚合步骤。
IP的人工合成给IP的合成、设计和修饰提供了众多的可能性。前已描述了多种不同的对人工合成引物进行修饰的方法。这些方法包括对碱基、糖和磷酸二酯键的修饰,也包括将糖基化酶底物碱基如尿嘧啶、次黄嘌呤和8-羟基鸟嘌呤掺入到引物中。
通常,将标准或修饰的IP合成以特异性匹配全部或部分其在模板核酸上的互补序列。潜在的可延伸引物的3’端碱基和模板之间的互补程度,是确定该IP是否会在此模板上延伸的一个关键参数,这一点已充分确立了。与模板的一部分完全互补的IP能够被DNA聚合酶延伸,但是除了在其3’末端处的碱基以外,与模板的一部分完全互补的IP,在严紧条件下则不能延伸。因此,人们会意识到,IP在模板上的延伸可以用来区分那些少到仅有单个碱基差别的密切相关的IP。同样,人们会意识到,IP在模板上的延伸还可以用来区分那些少到仅有一个碱基差别的密切相关的模板。由于可用来检测突变和多态性,比如单核苷酸多态性(SNP),这种方法在人类遗传学领域特别重要。
充分确立的是,对IP与模板间杂交条件的严紧性可以发生相当大的变化。低严紧性条件可以使DNA分子间的特异性杂交降低。因而在低严紧性条件下,部分互补的DNA分子可以彼此杂交。所以,在这种条件下,部分互补的IP能够与模板杂交。在这种条件下,单个IP能在一个或多个模板核酸上部分互补的位点处杂交并延伸。当严紧性条件低到能够在多位点起始时,该过程称为随机起始(尽管起始并不是完全随机的,因为通常仍需要在IP最靠近3’端的5个碱基与模板之间显著匹配)。当严紧性增加时,杂交的特异性也增加;可以容易地找到一些杂交条件,其仅允许完全互补的引物杂交,而排除部分互补的引物杂交,即使仅有一个碱基不同。在杂交过程中,有多种参数可用于改变杂交的严紧性,比如温度。当温度升高时,杂交的严紧性增加。因此在依赖DNA分子间杂交的酶促反应过程中,在较高温度可获得较高的特异性。然而,在较高温度下进行的酶促反应过程,通常需要热稳定的酶。
在切割人工合成的引物或天然核酸以产生一个新的游离3’羟基末端之后,可以生成IP。切割可以是单链或双链依赖的,依赖于单链或双链上修饰碱基的存在,可以是序列依赖的,依赖于错配的存在,或依赖于特定结构的存在。因此,对于一个带有修饰碱基的探针,可以通过识别单链或双链上修饰碱基的特异糖基化酶介导的切割而产生引物。对于一个比如当与模板核酸退火时形成错配碱基的探针,也可以通过识别双链上错配碱基的特异核酸内切酶或糖基化酶切割而产生引物。达到该目的的方法是将引物设计成在引物与模板间杂交区段的一个或多个位点处创建一个碱基错配,然后与一种或多种已知能在双链核酸上特异性切割错配碱基的核酸内切酶或DNA糖基化酶温育。这些酶包括T7核酸内切酶I、MutY DNA糖基化酶、胸腺嘧啶错配DNA糖基化酶和核酸内切酶V。
IP还可以通过使用结构特异酶,如切割酶,切开由重叠寡聚核苷酸探针杂交所形成的复合物而产生。
引物可以被合成为带有封闭的3’末端,以致除非通过引物切割释放出封闭基团,否则引物不可能延伸。这样的引物在此称为3’端封闭引物。封闭引物的3’末端有几种方法,包括3’磷酸化、在3’末端掺入双脱氧核苷酸、合成具有3’胺基或3’巯基的引物、合成在3’末端带有一个或多个反向核苷酸的引物,或者用DNA裂解酶切割无碱基位点。
因此,在本发明的一个实施方案中,引物可以被合成为带有非互补的3’末端(即在其3’末端不与模板互补),以致除非通过引物切割释放出这个3’末端,否则引物不可能延伸。
引物可以被合成为带有非互补的5’末端,以致切割导致引物从模板核酸上解离。解离的引物可以在另一种模板的GMA反应中担当IP。
根据引物与模板核酸是完全还是部分杂交,可进行引物切割,从而将3’端封闭的引物去封闭,使非互补的3’末端或非互补的5’末端释放出来,这样在切割后就创建了带有新的游离3’羟基末端的IP,允许IP在该模板或其它模板上延伸。在这种情况下,切割杂交引物使其能够在模板上延伸,要求在此引物的杂交区段中的一个或多个位置进行引物切割。这可以通过设计含有修饰碱基次黄嘌呤的引物得以实现,次黄嘌呤是3-烷基嘌呤DNA糖基化酶(如AlkA)的底物。
在本发明的另一个实施方案中,使用了热稳定的切割试剂,能够在一个修饰或错配碱基处切开杂交引物,以致一旦探针被切开,两个或更多的片段变得热不稳定而从靶核酸上脱落,从而使另一个全长引物得以杂交。这种振荡过程放大了信号(增加了被切割引物的产生)。然后这种带有3’羟基末端的切割产物可以在其后或偶联的GMA反应中担当IP。
IP还可以通过在修饰碱基处切割引物而得到,其中这样的切割依赖于引物在模板上的延伸。这样可以产生比原始引物短的IP,并可以采用多种方法进行表征。例如,大肠杆菌尿嘧啶DNA糖基化酶不会释放引物中最靠近3’端两个位置上的尿嘧啶。但是,如果将此引物在模板上延伸,原来位于引物中最靠近3’端两个位置上的尿嘧啶现在就远离了新延伸核酸的3’端,因而可以被释放。这样可以产生比原始引物短一个或两个碱基并带有游离3’羟基末端的引物,并可作为后续GMA反应的IP。
用DNA或RNA切割试剂,将自然发生或扩增的核酸完全或部分酶法或化学法切开,也可以产生IP,这样的切割试剂包括DNA酶、RNA酶、限制性内切核酸酶、在将普通的DNA碱基转化为糖基化酶底物碱基或在扩增过程中掺入这样的碱基之后采用的DNA糖基化酶、在将DNA部分或完全脱嘌呤或脱嘧啶之后采用的AP核酸内切酶、切割RNA∶DNA杂合体中的RNA或DNA的酶如核糖核酸酶H,以及切割错配DNA的酶,这种错配是在将核酸杂交分子如RNA∶DNA杂合体和DNA∶DNA杂合体变性并重新退火后形成的。酶法或化学法切割DNA或RNA后,可产生不能被DNA聚合酶延伸的3’末端。这样的3’末端通常可以用一种或多种酶处理以赋予其可延伸性,所述酶包括AP核酸内切酶IV或具有3’磷酸酶活性的T4多核苷酸激酶。已经充分确立切割试剂可以是双链、单链或序列特异的。在GMA反应之前,先用一种或多种切割试剂,可以将双链或单链核酸分别切割成较小的双链或单链片段。这提供了一种限制被置换片段大小的方法。
将双链体分子的一条链切开或缺刻可以产生一段带有游离3’羟基末端的核酸,其在GMA反应中可直接作为其所杂交的模板或其它模板的IP。使用某些切割试剂可以将双链体分子的一条链切开或缺刻。使用低浓度的核酸酶如DNA酶可以非特异性缺刻核酸,导致从核酸模板的多个位置产生多个不同的被置换下游片段。
核酸可以被特异性更高的试剂缺刻,如限制性酶N.BstNB I,它在识别序列GAGTC的3’区下游4个碱基处缺刻DNA。或者,还可以用例如HincII或BsoBI这样的限制性酶缺刻核酸,这些酶能在特定识别位点缺刻半修饰的双链DNA的未修饰链,从而产生一个游离3’羟基末端。RNA可以用某些RNA酶非特异性切割,也可以用序列或结构特异的RNA酶如核酶更特异性切割。RNA酶H可以切割RNA:DNA杂合体中的RNA。因此在用反转录酶在RNA模板上合成cDNA后,可以用RNA酶H切割RNA。在将寡聚核苷酸DNA分子与RNA的一个或多个序列退火后,使用RNA酶H可以更特异性切割RNA。
具体而言,加入寡聚/多聚dT提供了一种方法,使mRNA物种的3’polyA尾变为双链。加入RNA酶H消化polyA尾后为每个mRNA物种提供了独一无二的3’末端。这种方法提供了一种手段,使样品中的每个mRNA物种具有了在GMA中作为IP的潜力。
可以切开双链核酸以暴露其游离的3’羟基末端,使切开的DNA在GMA中起到IP的作用。例如,可以将双链DNA进行热变性。或者,还可以用T7基因6核酸外切核酸酶处理,所述酶从5’末端以逐步、非前进式反应水解双链体DNA。该酶对单链DNA无活性,因此当双链体区不再存在时反应停止。
重要的是,在错配处特异性切割双链体分子的一条链,产生具有3’羟基末端的核酸片段,其能够直接作为其所杂交的模板或其它模板的IP。这提供了一种在核酸中鉴定突变和多态性的方法。
在这方面,本发明使人们能够研究在核酸的一个特定位置(侯选位点)是否存在突变或多态性,方法如下:将3’端封闭的引物与靶核酸退火以在侯选位点产生错配。通常,错配位于引物的内部,即与模板上的侯选位点碱基创建错配的碱基不是引物5’或3’末端核苷酸的碱基残基。用错配特异的糖基化酶和无碱基位点切割试剂在错配位置切开引物后,引物被切开的5’段带有3’羟基末端,因而可以作为IP在同一模板或其它模板上起始GMA反应。因此,所得GMA为是否存在突变的指征,这依赖于引物与模板结合是否形成错配,反之亦然。
此外,重新退火的核酸杂交分子可以用错配特异的酶,如T7内切核酸酶I、MutY DNA糖基化酶、胸腺嘧啶错配DNA糖基化酶或核酸内切酶V处理。使用PCR方法扩增基因后重新退火,再结合用错配特异的修复酶在错配处切开DNA,产生游离的3’羟基末端,在将其从互补链上解离下来后,可以作为IP在其它模板上进行随后的GMA反应。
或者,从在错配位点所产生的3’羟基末端开始,使用链置换DNA聚合酶在标准的“一次关闭”(once off)链置换反应或GMA反应中进行延伸,可以产生被置换片段,其可在后续的GMA反应中作为IP。因为IP的产生依赖于错配的存在,GMA反应的起始是错配的指征。当进行全基因组扩增时,采用本方法,用多个探针和/或多个模板来检测被置换片段,可以检测许多扩增产物中的错配。使用选择的探针和/或选择的模板,有可能对错配定位。使用探针阵列,本方法可以用于基因组范围的搜索,或对多扩增核酸同时进行搜索。
在GMA反应中使用简并IP提供了一种在模板的多个位点起始GMA的方法。IP的简并性可能很高,从而可在模板上实现随机起始。在这种情况下,对于如基因组DNA的模板,一般使用如随机六聚体或带有随机六聚体的更长引物作为其3’端序列的IP。使用简并性较低的IP可以实现特异性更高的多重起始。
本发明方法可以用作一种由GMA提供的新型信号放大方法。在GMA中创建的延伸IP和被置换片段带有游离的3’羟基末端,并可以作为引物进行延伸。使用链置换DNA聚合酶,在GMA过程中从一条模板产生的被置换片段,在次级GMA反应中,如果有合适的模板,随意可以用作IP。作为一种信号放大的方法,可以在同一反应或非偶联反应中提供模板。这种用于信号放大的模板此处称为信号放大模板或加强模板(booster template)。当起始模板的量很低时,这样做尤其重要,这在起始GMA中把基因组DNA用作模板或靶核酸是经常的情形。合成的加强模板中含有一段固有序列,它与任何目的IP互补,在此称为“IP结合位点”。通常,该序列与GMA反应中所产生的延伸的IP或被置换片段互补。一般而言,IP结合位点位于加强模板的3’端(由聚合酶以3’到5’的方向读取加强模板,所述聚合酶以5’到3’的方向聚合和延伸IP)。在加强模板IP结合位点上游(5’方向),有一个或多个与GMA反应中所用的修饰碱基互补的碱基。通常,该碱基是腺嘌呤残基。这导致在GMA反应过程中在此位置将修饰碱基,通常是尿嘧啶掺入到延伸的IP中。这个位置之后(上游)的序列,在此称为加强序列(booster sequence),不含与起始GMA反应中所用的修饰碱基互补的碱基。加强序列长短不定,一般在18个核苷酸以上。通常,加强序列在3’端有修饰,如反向核苷酸,以防止假的自我起始。在加强模板上与IP互补的区域中还可以含有DNA合成封闭物,以防止假的自我起始。当IP在加强模板上起始GMA时,产生了与加强序列的互补序列,在此称为互补的加强序列。因为加强模板一般不是限制因素,同时每个产生的IP都具有在GMA反应中起始任何未被起始的加强模板的潜力,这个过程的净结果是互补加强序列被拷贝/扩增到很高的水平。出于检测的目的,互补加强序列可以用作普通的报道序列。
为了获得非常高水平的信号放大,在加强序列(即BS#1)后可以有一个或几个与GMA反应中的修饰碱基互补的碱基。这个增强序列之后依次跟着第二个加强序列(BS#2),BS#2通常与BS#1相同。当IP在加强模板上起始GMA反应时,产生了BS#1和BS#2的互补序列,在此称为互补加强序列#1(cBS#1)和互补加强序列#2(cBS#2)。cBS#1和cBS#2是相同的,并作为IP从BS#1起始加强模板。它们也结合于BS#2,但是在GMA反应的每一循环被置换。因为加强模板一般不是限制因素,同时每个cBS#1和cBS#2都潜在地担当用于GMA反应中任何未被起始的加强模板的IP,这个过程的净结果是cBS#2被扩增到很高的水平。
加强模板的设计有许多可能性。如果在初级GMA反应中产生了cBS#1,那么就需要一个仅带有BS#1和BS#2序列、其间被一个与修饰碱基互补的碱基隔开的加强模板,因为cBS#1作为IP。加强模板还可以设计成带有几个不同的IP结合位点,即允许许多不同序列的IP结合并起始,并在其后是同样或不同的加强序列单元。
用于检测或监测起始的GMA反应进程的另一种可能性是监测DNA聚合酶活性。由于GMA引起DNA片段在模板上连续反复的延伸(即聚合),因此在新合成的DNA中连续地掺入dNMP,并且每掺入一个核苷酸单磷酸就释放出一个焦磷酸基团(PPi)。所以,一种焦磷酸检测方法(Nyren,P.(1987)Analytical Biochemistry,167,235-238)可用于间接检测或监测GMA活性。
在一个GMA反应中,除了修饰前体核苷酸如dUTP外,还使用前体核苷酸dATP、dCTP、dGTP和dTTP,产生的被置换片段大小不一,这是由于dUTP代替dTTP掺入到新合成的互补链中与模板链中腺苷残基相对的位点。在这种情况下,加强模板上适当的IP结合位点,是与IP起始引发处5’端(相应于模板)的一段起始模板IP相同的序列。在DNA序列中,预计平均每四个碱基中就会掺入一个dUTP或dTTP,因为在模板上任何指定位点腺苷残基出现的概率是0.25。因此在GMA反应中,当用dUTP代替dTTP时,被置换片段的预期长度平均为三个核苷酸。但是,当把dUTP与dTTP的比例调整到DNA聚合酶插入这两种dNTP其中任一种的概率都为0.5时,产生的被置换片段的大小范围将从最小三个核苷酸到更长,其中随着被置换片段大小的增加,其产生的频率降低。但是,被置换片段越大,在作为IP与IP结合位点的被置换片段之间可以杂交的严紧性就越高。因此,人们希望加强模板上的IP结合位点,与原始模板核酸上的IP结合位点的5’端序列相同。例如,如果选择了一个被置换片段,那么在40个核苷酸区段中,其具有10个位点能够掺入dUTP或dTTP,加强模板上的IP结合位点与该被置换DNA的40个核苷酸互补是合适的。
为了检测SNP或突变,引发模板核酸的IP可被安置在所选SNP位点相应于模板链的3’端,以便产生的被置换片段带有由SNP位点所限定的3’末端。在这种情况下,在模板核酸上存在SNP导致产生带有独特的3’羟基末端的被置换片段,如果不存在SNP位点,这样的片段则不会产生。可以选择该IP,以使在GMA反应中,使用普通和修饰的前体如dTTP和dUTP的混合物,可以产生适当大小的被置换片段,从而使其在严格条件下与加强模板上的IP结合位点杂交。另外,可以设计加强模板上的IP结合位点,以使其仅能被带有独特的3’羟基末端的被置换片段所起始,正如由SNP位点及其状态所限定。要实现这一点,可以设计加强模板,以使支持GMA的关键腺嘌呤残基的位置离加强模板的5’端足够近,从而产生的被置换片段的3’端带有3’羟基末端,该3’羟基末端是由原始模板上SNP位点下游第一个dUTP插入位点所限定的,这个掺入点与加强模板上5’端的关键腺嘌呤残基位置相对。在严格杂交条件下,其3’羟基末端是从SNP位点上游的位点(对应于充当模板的那条链的互补序列)产生的被置换片段,将不能引发加强模板,因为它们不与IP结合位点杂交。
根据本发明的另一个实施方案,IP结合位点可以是简并的,以便它可以作为许多不同IP的结合位点。在GMA反应中可以包括两个或更多个加强模板,从而从第一个加强模板所产生的cBS可以作为第二个加强模板的IP。这种方法还有其它优点,对于多种不同的GMA反应,第二个加强模板可以是同样的,因而可以作为通用的加强序列。使用单一的终点加强模板,这使得单一的流水线过程进行检测和信号放大更加便利。通常,可以对这个终点加强模板进行设计和合成,以使其可直接或间接作为GMA的报道分子。
在GMA反应中,IP可以置换下游被延伸的的引物,它在后续的GMA反应中担当IP。这对于检测SNP和突变有重要用途。引物可以放在离SNP位点足够近的位置,以使第一个被掺入的修饰前体位于或远离SNP位点。因此,依赖于在该位点是否存在SNP,引物可以被延伸到不同长度。通过其中任一种方法,包括其在后续GMA中在加强模板上起IP作用的能力,生成多拷贝的不同的被延伸引物用于随后表征是理想的。可以通过如聚合酶链式反应那样的热循环过程,来获得多拷贝的不同的被延伸引物。或者,还可以通过从这些引物的5’端(即模板链上3’远端)起始GMA反应来重复置换不同的被延伸引物。实现这一目的的方法是使用IP,它与位于SNP位点近端的引物的5’端杂交并起始GMA反应。在同样的反应中,下游引物在每一循环中会被延伸,但同时也被置换掉。一旦被置换,新的引物就能够杂交并被延伸。
产生自模板核酸的被置换片段和产生自加强模板的互补加强序列可以通过5’核酸酶分析进行检测。5’核酸酶分析是一种利用DNA聚合酶通过担当模板上DNA合成的IP能力检测特异核酸的分析,所述DNA聚合酶带有5’-3’外切核酸酶活性,其导致在模板下游位置上退火的探针降解。典型的探针是寡聚核苷酸,其在紧邻位置上带有报道荧光染料和猝灭染料。当探针降解造成报道染料和猝灭染料彼此分离时,荧光强度增加。因此,荧光强度增加表明探针已与模板杂交,并且随着DNA聚合酶在模板核酸上延伸该IP,探针已被DNA聚合酶的5’-3’外切核酸酶活性所降解。
这种分析变化采用一种方法,由此探针是模板的一部分,但与模板的一段互补。这导致探针与模板的部分通过与其模板核酸上的互补序列进行碱基配对而形成茎,有效地产生双链的茎,带有一个游离的5’端和一个环状端。
或者,还可以使用一个自身互补的探针,在其一端带有报道染料,另一端带有猝灭染料。在这种情况下,探针通过碱基配对形成茎和环,并使报道染料和猝灭染料接近从而使荧光猝灭。在存在完全或部分互补的被置换片段或cBS的情况下将茎环结构变性,可以使探针与被置换片段或cBS之间杂交。这样使探针形成双链,并增加了报道染料和猝灭染料之间的距离,导致荧光强度增加。
为了能够使用报道染料和猝灭染料相连接的方法,对GMA进行了改造,提供了一种独特的加强模板,其允许同时进行IP检测和信号放大。实际上,设计的加强模板带有IP结合位点,其后是自身互补序列,它通过形成双链茎环结构将连接的报道染料和猝灭染料带到紧邻的位置。IP结合位点和形成茎环结构的序列缺乏与GMA反应中的修饰碱基互补的碱基。IP结合位点位于茎环结构序列的3’端,并可能含有与IP互补的序列和/或与cBS互补的序列。在茎环结构的5’端存在一个或多个与GMA反应中的修饰碱基互补的碱基,其后跟有另一个与cBS互补的序列。当在报道染料和猝灭染料的加强模板上延伸IP时,净结果是加强模板上的IP结合位点和茎环区被线性化,并在GMA过程中通过链置换而变成双链并保持双链。通过在加强模板的5’端合成其他cBS,它们在GMA反应中又作为任何未引发的加强模板的IP,从而使信号放大。当茎环结构线性化并变为双链时,荧光强度增加,对荧光的测量可以用来衡量反应中IP的水平。
根据本发明,另一种信号检测的方法包括设计加强模板,以使部分或全部被置换片段在其内部或与其它拷贝之间是自身互补的,并能形成双链DNA。然后可以通过结合双链特异探针如SYBR绿可容易地检测该双链DNA。
加强模板可以是环状的。这样的环状加强模板提供手段,使延伸的DNA聚合酶以一种滚环复制的方式连续进行。对环状加强模板的使用可有多种变化。以其最简单的形式,环状加强模板可以作为滚环扩增的模板,其中IP可以担当DNA在环上复制的起始子。在这种情况下,DNA被连续不断地合成,直到聚合酶或DNA前体耗尽。在GMA反应中包括这样的加强模板要求将加强模板设计成不含有任何与GMA反应中的修饰前体核苷酸互补的残基。
或者,加强模板还可以设计成带有一个或多个IP结合位点,其后跟有一个残基,该残基支持在GMA进程中在延伸的IP上掺入修饰前体。在其后还可跟有一个或多个加强序列。该加强序列的前后可以带有一个或多个与GMA反应中的修饰碱基互补的碱基。加强序列的互补序列一旦产生,就可作为任何未被引发的加强序列的IP。后续加强模板的引发为其他未引发加强模板提供额外的IP,反应将持续直到所有的加强模板都被引发,复制将持续直到其中一种试剂耗尽。这个方法的净结果是在每一循环中产生一个线性拷贝的全部或部分加强模板。包含第二个互补加强模板,带有自我引发的加强序列,提供产生多线性拷贝的加强模板的手段。然后两个加强模板的线性拷贝将彼此杂交产生双链DNA,这可用几种方法检测,包括双链特异DNA结合试剂如SYBR绿。
单个加强模板也可以设计成产生彼此间碱基配对的cBS,从而产生双链DNA。加强模板特别适合于这种用途,因为在环状DNA中,自身互补的区域不需变性,就可以通过IP与不位于自身互补区的IP结合位点杂交而引发。与之相反,对于完全的双链线性互补DNA,为了使IP接近IP结合位点,变性是必需的。
在本发明的另一个实施方案中,加强或次级模板可以被固定在固相支持物上,例如微阵列或巨阵列或DNA芯片上。多种不同的加强或次级模板可以被固定在DNA芯片上,然后以高通量的方式用于表征多种不同核酸和多种不同GMA反应。在优选的实施方案中,次级模板通过它们的3’末端连在一起。这使本来具有活性的3’羟基基团变得不可接近,因而使它不能被聚合酶延伸而只能作为模板,从而减少了任何非特异延伸的背景。
本发明的另一个实施方案提供GMA在DNA计算中的应用。现在,人们正逐渐认识到,DNA,由于其内在的物理和化学性质,可以为数学难题的计算解决提供一种方法。人们将会认识到,通过将IP、模板和/或加强模板设计成为单独或组合信息,不管问题和/或答案,数学难题的解答可利用GMA反应来计算。优选地,这些IP和模板可以人工合成。人们还将会认识到,在DNA计算中使用GMA,使运算和并行搜索同时进行成为可能,并产生一套完整的潜在答案。
因此,本发明提供利用如上文在DNA计算中所述的方法和/或用作DNA计算的一种工具,在此统称为DNA计算。
本发明将通过下面的实施例进一步阐述。发明实施方式
在下面的实施例中使用了多种多样的酶。其中有些酶已商业化,而其它酶通过在大肠杆菌菌株中过表达后纯化而得,如下文所述。海栖热袍菌(Thermotoga maritime)UDG(TmaUDG)
从海栖热袍菌基因组DNA上通过PCR扩增了TmaUDG蛋白的可读框。将PCR产物按照生产商(In Vitrogen公司)的说明插入到过表达载体pBAD-TOPO中。然后按照生产商的说明用该构建体通过热休克转化大肠杆菌(E.coli)TOP-10感受态细胞(In Vitrogen公司)。含有pBAD-TOPO/TmaUDG构建体的细胞生长至OD600为0.6(在1000mL培养液中)时,加入阿拉伯糖至终浓度为0.2%来诱导过表达。37℃培养4小时后将细胞裂解,并按照生产商的说明使用ProBond树脂(In Vitrogen公司)通过固定化的金属亲和层析方法纯化融合蛋白。通过SDS-聚丙烯酰胺凝胶电泳的鉴定,收集含有洗脱蛋白的15mL级分,然后使用Mono-S树脂通过离子交换层析方法将该级分进一步纯化,0.5mL浓度最高的洗脱蛋白级分被收集,加入甘油到50%浓度,储存于-20℃备用。海栖热袍菌(Thermotoga maritime)核酸内切酶IV(TmaEndoIV)
从海栖热袍菌基因组DNA上通过PCR扩增了TmaEndoIV蛋白的可读框。将PCR产物按照生产商(In Vitrogen公司)的说明插入到过表达载体pBAD-TOPO中。然后按照生产商的说明用该构建体通过热休克转化大肠杆菌TOP-10感受态细胞(In Vitrogen公司)。含有pBAD-TOPO/TmaEndoIV构建体的细胞生长至OD600为0.6(在1000mL培养液中)时,加入阿拉伯糖至终浓度为0.2%来诱导过表达。37℃培养4小时后将细胞裂解,按照生产商的说明使用ProBond树脂(In Vitrogen公司)通过固定化的金属亲和层析方法纯化融合蛋白。通过SDS-聚丙烯酰胺凝胶电泳的鉴定,收集含有洗脱蛋白的15mL的级分。然后使用Mono-S树脂通过离子交换层析方法将该级分进一步纯化,0.5mL浓度最高的洗脱蛋白级分被收集,加入甘油到50%浓度,储存于-20℃备用。海栖热袍菌(Thermotoga maritime)核酸内切酶V(TmaEndoV)
从海栖热袍菌基因组DNA上通过PCR扩增了TmaEndoV蛋白的可读框。将PCR产物按照生产商(In Vitrogen公司)的说明插入到过表达载体pBAD-TOPO中。然后按照生产商的说明用该构建体通过热休克转化大肠杆菌TOP-10感受态细胞(In Vitrogen公司)。含有pBAD-TOPO/TmaEndoV构建体的细胞生长至OD600为0.5(在1000mL培养液中)时,加入阿拉伯糖至终浓度为0.2%来诱导过表达。37℃培养8小时后将细胞裂解,按照生产商的说明使用ProBond树脂(In Vitrogen公司)通过固定化的金属亲和层析方法纯化融合蛋白。通过SDS-聚丙烯酰胺凝胶电泳的鉴定,15个含有洗脱蛋白的1mL的级分被收集并合并。然后使用Mono-S树脂通过离子交换层析方法将该合并的级分进一步纯化,0.5mL浓度最高的洗脱蛋白级分被收集,加入甘油到50%浓度,储存于-20℃备用。大肠杆菌核酸内切酶IV(EcoEndoIV)
从大肠杆菌基因组DNA上通过PCR扩增了EcoEndoIV蛋白的可读框。将PCR产物按照生产商(In Vitrogen公司)的说明插入到过表达载体pBAD-TOPO中。然后按照生产商的说明用该构建体通过热休克转化大肠杆菌TOP-10感受态细胞(In Vitrogen公司)。含有pBAD-TOPO/EcoEndoIV构建体的细胞生长至OD600为0.6(在1000mL培养液中)时,加入阿拉伯糖至终浓度为0.2%来诱导过表达。
37℃培养4小时后将细胞裂解,按照生产商的说明使用ProBond树脂(In Vitrogen公司)通过固定化的金属亲和层析方法纯化融合蛋白。通过SDS-聚丙烯酰胺凝胶电泳的鉴定,收集含有洗脱蛋白的15mL的级分。然后使用Mono-S树脂通过离子交换层析方法将该合并的级分进一步纯化,0.5mL浓度最高的洗脱蛋白级分被收集,加入甘油到50%浓度,储存于-20℃备用。Archaeoglobus fulgidus UDP-硫氧还蛋白(AfUDG-Thio)
从A.fulgidus基因组DNA上通过PCR扩增了AfUDG蛋白的可读框。将PCR产物按照生产商(In Vitrogen公司)的说明插入到过表达载体pBAD-TOPO ThioFusion中。然后按照生产商的说明用该构建体通过热休克转化大肠杆菌TOP-10感受态细胞(In Vitrogen公司)。含有pBAD-TOPO-ThioFusion/AfUDG构建体的细胞生长至OD600为0.6(在2000mL培养液中)时,加入阿拉伯糖至终浓度为0.2%来诱导过表达。37℃培养4小时后将细胞裂解,按照生产商的说明使用ProBond树脂(In Vitrogen公司)通过固定化的金属亲和层析方法纯化融合蛋白。通过SDS-聚丙烯酰胺凝胶电泳的鉴定,收集含有洗脱蛋白的15mL的级分,并储存于4℃备用。
实施例1
本发明的方法被用来循环延伸25聚体的寡聚核苷酸(起始引物-IP),它与用作聚合反应模板的80聚体的寡聚核苷酸(模板核酸)区域互补。互补区位于离这个80聚体3’端10到35个碱基的位置。在该80聚体5’端与此IP互补区(IP结合位点)之间的区域,设计许多腺苷残基,这样在GMA反应后25聚体的循环延伸将产生大小不一的DNA片段。这个80聚体也被设计成在每个腺苷残基间放置特定数量的鸟苷残基。这样就可以通过掺入α32P-dCTP对反应过程中产生的被置换下游DNA片段进行标记。本方法的流程图示于图1。两种寡聚核苷酸都是人工合成的,并在电泳后从聚丙烯酰胺凝胶上切下并纯化。本方法的目的是确定这个25聚体是否与80聚体退火并可被本发明的方法循环/重复地延伸,从而产生多拷贝的标记的单链DNA片段(被置换片段)。
在加入酶之前,反应液中含有100fmole各种寡聚核苷酸,10mMTris-HCl(pH7.5),5mM MgCl2,7mM二硫苏糖醇,dATP、dGTP和dUTP各0.2mM,0.02mM dCTP和0.2μL α32P-dCTP(10mCi/mL,~800Ci/mmol),总体积17μL。反应混合物用矿物油封上,加热至95℃,历时2分钟。然后将反应温度降到37℃并维持。然后按顺序加入5单位Klenow片段(3’→5’外切核酸酶活性缺失)、1单位大肠杆菌尿嘧啶DNA糖基化酶以及2单位大肠杆菌核酸内切酶IV或2μL海栖热袍菌核酸内切酶IV,使反应终体积达到20μL。在不含核酸内切酶IV的对照反应以及既不含核酸内切酶IV也不含尿嘧啶DNA糖基化酶的对照反应中,加入水至终体积20μL。在加入核酸内切酶IV后,每隔30分钟从反应液中取出5μL样品。向样品中加入NaOH至终浓度50mM,  然后加热至95℃,历时15分钟。然后加入等体积甲酰胺载样染料(含98%甲酰胺、0.025%溴酚兰和0.025%二甲苯腈蓝)。在20%的变性(7M尿素)聚丙烯酰胺凝胶上上样电泳,以分析DNA片段的大小。电泳后,凝胶暴露于磷屏,所成图像用Storm(商标名)860扫描。
对图像的分析表明,加入了核酸内切酶IV的反应中含有许多短于70个碱基的大小不一的标记DNA片段,其数量随时间而增加,但是在不含核酸内切酶IV或既不含核酸内切酶IV也不含尿嘧啶DNA糖基化酶的对照反应中,这种现象没有出现。
值得注意的是,海栖热袍菌核酸内切酶IV制备液含有固有和/或污染的3’到5’核酸外切核酸酶活性。这造成GMA反应过程中非特异背景扩增。为了消除这种活性和非特异扩增,在用于GMA反应之前,核酸内切酶IV先经过热处理。将核酸内切酶IV母液加热至90℃,历时10分钟,在冰上放置5分钟以上,然后离心5分钟以上。大肠杆菌核酸内切酶IV制备液中也发现了这种活性,在使用前也需要将外切核酸酶活性灭活。
实施例2
本发明的方法被用来循环延伸41聚体寡核苷酸(起始引物-IP),它的3’端能够自身互补,即具有回文结构,因而可以在GMA反应中作为自身的模板。互补区位于离这个41聚体的3’端20个碱基,这段寡聚核苷酸实际上作为IP。在该41聚体的5’端与此IP互补区(IP结合位点)之间的区域,在IP结合位点之后设计了一个腺苷残基,这样在GMA反应后41聚体的循环延伸将产生20个核苷酸长的分立的DNA片段。这个41聚体也被设计成含有许多鸟苷残基。这样就可以通过掺入α32P-dCTP对反应过程中产生的被置换下游DNA片段(20聚体)进行标记。这种寡聚核苷酸是人工合成的,并在电泳后从聚丙烯酰胺凝胶上切下并纯化。本方法的目的是确定这个41聚体是否自身退火并被本发明的方法循环/重复地延伸,从而产生多拷贝的标记的单链20聚体DNA片段(被置换片段)。
在加入酶之前,反应液中含有100fmole 41聚体寡核苷酸,10mMTris-HCl(pH7.5),5mM MgCl2,7mM二硫苏糖醇,dATP、dGTP和dUTP各0.2mM,0.02mM dCTP和0.2μL α32P-dCTP(10mCi/mL,~800Ci/mmol),总体积17μL。反应混合物用矿物油封上,加热至95℃,历时2分钟。然后将反应温度降到37℃并维持。接着加入5单位Klenow片段(3’→5’外切核酸酶活性缺失)、1单位大肠杆菌尿嘧啶DNA糖基化酶以及2单位大肠杆菌核酸内切酶IV或2μL海栖热袍菌核酸内切酶IV,使反应终体积达到20μL。在不含核酸内切酶IV的对照反应以及既不含核酸内切酶IV也不含尿嘧啶DNA糖基化酶的对照反应中,加入水至终体积20μL。反应进行30分钟或以上。加入EDTA至终浓度10mM以终止反应。然后加入等体积甲酰胺载样染料(含98%甲酰胺、0.025%溴酚兰和0.025%二甲苯腈蓝)。在20%的变性(7M尿素)聚丙烯酰胺凝胶上装样电泳,以分析DNA片段的大小。电泳后,凝胶暴露于磷屏,所成图像随后用Storm 860(Storm是个商标名)扫描。
对图像的分析表明,在每个测试反应中都产生了可检测量的被标记和扩增的20聚体寡核苷酸,但是在对照反应中没有产生。
实施例3
参照实施例2中的描述执行本发明的方法,做了如下修改:
在加入酶之前,反应液中含有100fmole 41聚体的回文寡聚核苷酸,10mM Tris-HCl(pH8.3),10mM KCl,3mM MgCl2,dATP、dGTP和dUTP各0.2mM,0.02mM dCTP和α32P-dCTP,总体积20μL。反应混合物用矿物油封上,加热至95℃,历时2分钟。然后将反应温度降到60℃并维持。接着按顺序加入10单位AmpliTaq(商标名)DNA聚合酶Stoffel片段、2单位海栖热袍菌UDG和4单位大肠杆菌核酸内切酶IV(或者在不含核酸内切酶IV的对照反应中用水代替),使反应终体积达到25μL。在加入核酸内切酶IV后,每隔30分钟从反应液中取出5μL样品。在样品中加入EDTA至终浓度10mM。然后加入等体积甲酰胺载样染料(含98%甲酰胺、0.025%溴酚兰和0.025%二甲苯腈蓝)。DNA样品的大小分析参照实施例1进行。
对图像的分析表明,加入了核酸内切酶IV的反应中含有大量标记DNA,但是在不含核酸内切酶IV的对照反应中没有。在测试反应中DNA的量随时间增加,在加入核酸内切酶IV后90分钟时达到峰值。实施例4
参照实施例2中的描述执行本发明的方法,做了如下修改:
在加入酶之前,反应液中含有100fmole 41聚体寡核苷酸,10mMTris-HCl(pH8.3),10mM KCl,3mM MgCl2,dATP、dGTP和dUTP各0.2mM,0.02mM dCTP和0.2μL α32P-dCTP(10mCi/mL,~800Ci/mmol),总体积20μL。反应混合物用矿物油封上,加热至95℃,历时2分钟。然后将反应温度降到70℃并维持。接着按顺序加入10单位AmpliTaq DNA聚合酶Stoffel片段、2μL AfUDG-Thio和2μL EcoEndoIV(或者在不含核酸内切酶IV的对照反应中用水代替),使反应终体积达到25μL。反应进行60分钟后,加入EDTA至终浓度10mM以终止反应。然后加入等体积甲酰胺载样染料(含98%甲酰胺、0.025%溴酚兰和0.025%二甲苯腈蓝)。DNA样品的大小分析参照实施例1。电泳后,凝胶暴露于磷屏,用Storm(商标名)860成像仪检测图像。
对图像的分析表明,加入了核酸内切酶IV的反应中含有大量预期的被标记的20聚体,以及少量的较小片段,但是在不加核酸内切酶IV的对照反应中没有。
实施例5
本发明的方法用于检测渺摩尔(attomole)量的41聚体回文寡聚核苷酸上的引物延伸。使用聚合酶催化这个41聚体以自身为模板延伸,然后将产物用尿嘧啶DNA糖基化酶消化,接着用核酸内切酶IV消化,得到其中一种20聚体的单链寡聚核苷酸产物(即被置换片段,可在以后用作IP)。这个寡聚核苷酸产物可作为次级引物。在本实施例中,本发明的方法可以通过反馈环状反应来检测这个20聚体寡核苷酸的循环延伸。参照图2所示设计了42聚体寡核苷酸(加强模板)。在这个42聚体上,20聚体的次级引物/被置换片段重复了两次。重复序列之间被AT序列(从5’到3’方向阅读)分开。这个寡核苷酸采用与41聚体回文寡聚核苷酸同样的方法合成和纯化。反应中42聚体大大过量。20聚体的次级引物一旦如上所述已经产生,它就能与这个42聚体寡核苷酸退火,并通过本发明的方法,靠自身的循环延伸,结果产生多拷贝的自身。这些新产生的20聚体的次级引物,本身又与其它拷贝的42聚体寡核苷酸退火,引发新一轮的循环延伸,依此类推。本方法的目的是检测41聚体的回文寡聚核苷酸的量,它在使用实施例2中描述的方法时因为量太少而无法检测,但是在应用本发明上述的反馈环状方法时,由于产生了可检测量的20聚体次级引物而使这一目的得以实现。
反应参照实施例2中的描述进行,一式三份,并进行了下述修改:在每个反应中所含的上述42聚体终浓度为40ng/反应。在不同组的对照反应(反应中不含核酸内切酶IV)和测试反应(反应中含有核酸内切酶IV)中,41聚体的回文寡聚核苷酸的浓度分别为每个反应1.0fmol、10-2fmole或10-4fmole。反应进行两个小时,然后加入NaOH至终浓度50mM。通过对相当于5μL的原始反应液(在加入NaOH和甲酰胺载样染料之前的反应液)样品进行分析,来分析反应中被标记的DNA片段的含量,如实施例1中所述。
对图像的分析表明,在每个测试反应中都产生了可检测量的标记的20聚体寡核苷酸,但在对照反应中没有产生。
当使用热稳定酶、DNA Stoffel片段、海栖热袍菌UDG和海栖热袍菌核酸内切酶IV重复上述实验时也观察到相似的结果。为了避免任何由于加强模板自身引发所造成的非特异扩增,通常在加强模板的3’端含有封闭基团以防止它被DNA聚合酶延伸。在上述的42聚体的加强模板中所用的封闭基团是双脱氧胞嘧啶核苷酸。
实施例6
本发明的方法被用于循环延伸自身退火的41聚体。该反应产生了20聚体,可以作为具有被封闭了3’末端(所用的封闭物是反向插入的胞嘧啶核苷酸)的42聚体(加强模板)上的IP。加强模板的设计使得在次级反应中通过循环延伸也将产生同样的20聚体(参见图2)。然后,这些20聚体能够在其它加强分子上起始进一步的延伸,放大了在41聚体上的原始反应的引号。这个41聚体和42聚体的加强模板被设计成可以掺入放射性标记的α32P-dCTP。反应在补充有3mM MgCl2、0.2mM dATP、0.2mM dGTP、0.2mM dUTP、0.02mM dCTP和0.2μL α32P-dCTP(10mCi/mL,~800Ci/mmol)的Taq Stoffel片段缓冲液(10mM Tris-HCl、10mM KCl、pH8.3)中含有(1)100fmole41聚体、(2)1fmole 41聚体、(3)100fmole加强模板或(4)1fmole 41聚体和100fmole加强模板。反应混合物用矿物油封上,并在95℃温育2分钟,然后将反应温度降到70℃并维持。接着按顺序加入10单位Taq Stoffel片段、2μL AfUDG-Thio和2μL EcoEndoIV,使反应终体积达到25μL。反应在70℃温育60分钟后,加入EDTA至终浓度10mM以终止反应。然后加入等体积的98%甲酰胺(含0.025%溴酚兰和0.025%二甲苯腈蓝),样品用20%的变性聚丙烯酰胺凝胶电泳分析。电泳后,凝胶暴露于磷屏,用Storm(商标名)860成像仪检测图像。
对图像的分析表明,在反应(1)中产生了20聚体的标记DNA产物,和较少量的约60聚体以及许多小于20聚体的产物。同样的产物在反应(2)中也生成了,但数量更少。在反应(3)中没有标记的反应产物生成,但在反应(4)中产生了比反应(2)中更多的被标记的20聚体,以及更少量的短于20聚体的标记产物。同时还发现,使用反向插入的核苷酸作为3’末端封闭物,比使用双脱氧核苷酸作为末端封闭物更为有效。
实施例7
本发明的方法被用来循环延伸41聚体寡核苷酸(起始引物-IP),它的3’端能够自身互补,即具有回文结构,因而可以在GMA反应中作为自身的模板。互补区位于离这个41聚体的3’端20个碱基,这一段寡聚核苷酸实际上作为IP。在该41聚体的5’端与此IP互补区(IP结合位点)之间的区域,在IP结合位点之后设计了一个腺苷残基,这样在GMA反应后41聚体的循环延伸将产生20个核苷酸的分立的DNA片段。这个41聚体也被设计成其含有许多鸟苷残基。这样就可以通过掺入α32P-dCTP对反应过程中所产生的被置换下游DNA片段(20聚体)进行标记。这种寡聚核苷酸是人工合成的,并在电泳后从聚丙烯酰胺凝胶上切下并纯化。本方法的目的是为了确定,在用大肠杆菌核酸外切核酸酶III代替大肠杆菌核酸内切酶IV后,这个41聚体是否能够自身退火并被本发明的方法循环/重复地延伸,从而产生多拷贝的标记的单链20聚体DNA片段(被置换片段)。在加入酶之前,反应液中含有100fmole 41聚体寡核苷酸,10mM Tris-HCl(pH7.5),5mMMgCl2,7mM二硫苏糖醇,dATP、dGTP和dUTP各0.2mM,0.02mM dCTP和0.2μL α32P-dCTP(10mCi/mL,~800Ci/mmol),总体积22μL。反应混合物用矿物油封上,并加热至95℃,历时2分钟。然后将反应温度降到37℃并维持。接着加入5单位Klenow片段(3’→5’外切核酸酶活性缺失)、10单位大肠杆菌尿嘧啶DNA糖基化酶以及0.1单位大肠杆菌核酸外切核酸酶III,使反应终体积达到25μL。在不含核酸外切核酸酶III的对照反应中,加入水至终体积25μL。反应进行30分钟或以上。加入EDTA至终浓度10mM以终止反应。然后加入等体积甲酰胺载样染料(含98%甲酰胺、0.025%溴酚兰和0.025%二甲苯腈蓝)。在20%的变性(7M尿素)聚丙烯酰胺凝胶上载样电泳,以分析DNA片段的大小。电泳后,凝胶暴露于磷屏,用Storm(商标名)860成像仪检测图像。
对图像的分析表明,在每个测试反应中都产生了可检测量的被标记的20聚体寡核苷酸,但是在对照反应中没有产生。
实施例8
本发明的方法被用来循环延伸21聚体寡核苷酸(起始引物-IP),它与用作聚合反应模板的40聚体(模板核酸)的一段区域互补。互补区从这个40聚体的3’端开始延伸。在该40聚体的5’端与此IP互补区(IP结合位点)间的区域,设计成含有许多胞苷残基,这样在GMA反应后21聚体的循环延伸将产生大小不一的DNA片段。这个40聚体也被设计成在每个腺苷残基间放置许多鸟苷残基。这样就可以通过掺入α32P-dCTP对反应过程中产生的被置换下游DNA片段进行标记。两种寡聚核苷酸都是人工合成的,并在电泳后从聚丙烯酰胺凝胶上切下并纯化。本方法的目的是确定这个21聚体是否与40聚体退火并被本发明的方法循环/重复地延伸,从而产生多拷贝的标记的单链DNA片段(被置换片段)。在加入酶之前,反应液中含有100fmole各种寡聚核苷酸,10mM Tris-HCl(pH7.5),6mM MgCl2,10mM KCl,dATP、dITP和dTTP各0.2mM,0.02mM dCTP和0.2μL α32P-dCTP(10mCi/mL,~800Ci/mmol),总体积22μL。反应混合物用矿物油封上,加热至95℃,历时2分钟。然后将反应温度降到70℃并维持。接着按顺序加入10单位Taq DNA聚合酶Stoffel片段和800pgTmaEndoV,使反应终体积达到25μL。在不含核酸内切酶V的对照反应中,加入水至终体积25μL。加入EDTA至终浓度10mM以终止反应。然后加入一半体积的甲酰胺载样染料(含98%甲酰胺、0.025%溴酚兰和0.025%二甲苯腈蓝),加热至95℃,历时5分钟以变性样品。然后,在20%的变性(7M尿素)聚丙烯酰胺凝胶上载样电泳,以分析DNA片段的大小。电泳后,凝胶暴露于磷屏,用Storm(商标名)860成像仪检测图像。
对图像的分析表明,加入了核酸内切酶V的反应中含有许多大小不一的标记DNA片段,这是由在延伸中掺入dITP的相关位点所决定的,这些标记片段数量随时间而增加,但是在不含核酸内切酶V的对照反应中,这种现象没有出现。

Claims (29)

1.一种用于扩增模板核酸的方法,其包括下列同时进行的步骤:
1)将核酸引物与所述模板核酸、普通DNA前体核苷酸、至少一种修饰的DNA前体核苷酸和DNA聚合酶反应以获得延伸的核酸引物,所述核酸引物仍保留与所述模板结合;
2)切割含有修饰碱基的延伸的核酸引物以产生可被所述DNA聚合酶延伸的游离的3’-羟基末端;以及
3)在由此产生的DNA片段上重复步骤1)和步骤2)。
2.根据权利要求1所述的方法,其中含有修饰碱基的延伸的核酸引物被3’核酸内切酶切割。
3.根据权利要求2所述的方法,其中3’核酸内切酶是大肠杆菌核酸内切酶V。
4.根据权利要求1所述的方法,其包括下列步骤:
1)将核酸引物与所述模板核酸、普通DNA前体核苷酸、至少一种DNA糖基化酶的底物的修饰的DNA前体核苷酸和DNA聚合酶反应以获得延伸的核酸引物,所述核酸引物仍保留与所述模板结合;
2)利用DNA糖基化酶从延伸的核酸引物上切除被修饰的DNA前体核苷酸上的修饰碱基,从而产生无碱基位点;
3)在无碱基位点切开被延伸的核酸引物,以产生可被所述DNA聚合酶延伸的游离的3’-羟基末端;以及
4)在由此产生的DNA片段上重复步骤1-步骤3。
5.根据前述权利要求任一项所述的方法,其中模板核酸是DNA。
6.根据前述权利要求任一项所述的方法,其中核酸引物是DNA引物。
7.根据权利要求1-6任一项所述的方法,其中DNA前体核苷酸选自dATP、dCTP、dGTP和dTTP。
8.根据前述权利要求任一项所述的方法,其中DNA聚合酶具有链置换活性。
9.根据前述权利要求任一项所述的方法,其中修饰核酸前体是dUTP。
10.根据权利要求4-9任一项所述的方法,其中DNA糖基化酶是尿嘧啶DNA糖基化酶(UDG)。
11.根据权利要求4-10任一项所述的方法,其中使用在核酸无碱基位点处切割的酶在无碱基位点处切开延伸的核酸。
12.根据权利要求11所述的方法,其中酶是AP核酸内切酶。
13.根据前述权利要求任一项所述的方法,其中修饰的前体核苷酸部分取代普通前体核苷酸之一。
14.根据权利要求1-3、5-9和13任一项所述的方法,其中步骤1)和步骤2)以循环的方式连续进行,直到试剂之一耗尽。
15.根据权利要求4-13任一项所述的方法,其中步骤1)步骤3)以循环的方式连续进行,直到试剂之一耗尽。
16.根据前述权利要求任一项所述的方法,其在恒温条件下进行。
17.根据前述权利要求任一项所述的方法,其导致被置换的单链下游核酸片段积累,该片段由在互补核酸链上的修饰碱基的位置所决定。
18.根据前述权利要求任一项所述方法,其用于产生多拷贝的分立的单链引物,它们位于起始核酸引物的下游。
19.根据权利要求17或18所述的方法,其中被置换的下游片段在次级反应中被延伸。
20.根据权利要求17-19任一项所述的方法,其中被置换的下游片段在次级模板核酸上被延伸。
21.根据权利要求17-20任一项所述的方法,其中多个次级模板被固定在DNA芯片上。
22.根据前述权利要求任一项所述的方法,其用于检测诊断。
23.根据权利要求22所述的方法,其用于病原体检测。
24.根据权利要求22所述的方法,其用于检测是否存在突变。
25.根据权利要求22所述的方法,其用于检测多态性。
26.根据前述权利要求任一项所述的方法,其用于定量测定样品中的核酸水平。
27.根据前述权利要求任一项所述的方法,其用于从任何可以作为引物或模板的核酸中放大信号。
28.根据前述权利要求任一项所述的方法,其用于DNA计算。
29.根据权利要求1所述的方法,其基本上如前文所描述和例证。
CNA018184235A 2000-11-03 2001-11-01 扩增和任选表征核酸的方法 Pending CN1473201A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IE20000887 2000-11-03
IE20000887A IE20000887A1 (en) 2000-11-03 2000-11-03 Method for the amplification and optional characterisation of nucleic acids

Publications (1)

Publication Number Publication Date
CN1473201A true CN1473201A (zh) 2004-02-04

Family

ID=11042688

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA018184235A Pending CN1473201A (zh) 2000-11-03 2001-11-01 扩增和任选表征核酸的方法

Country Status (13)

Country Link
US (1) US20040067559A1 (zh)
EP (1) EP1330546B1 (zh)
JP (1) JP2004512843A (zh)
CN (1) CN1473201A (zh)
AT (1) ATE315666T1 (zh)
AU (2) AU1086202A (zh)
CA (1) CA2427474A1 (zh)
DE (1) DE60116651T2 (zh)
DK (1) DK1330546T3 (zh)
ES (1) ES2254505T3 (zh)
IE (1) IE20000887A1 (zh)
RU (1) RU2284357C2 (zh)
WO (1) WO2002036821A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296116A (zh) * 2011-09-02 2011-12-28 北京大学 对dna目标序列进行信号放大和检测的方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110151438A9 (en) 2001-11-19 2011-06-23 Affymetrix, Inc. Methods of Analysis of Methylation
US7510829B2 (en) 2001-11-19 2009-03-31 Affymetrix, Inc. Multiplex PCR
US7399590B2 (en) 2002-02-21 2008-07-15 Asm Scientific, Inc. Recombinase polymerase amplification
US8030000B2 (en) 2002-02-21 2011-10-04 Alere San Diego, Inc. Recombinase polymerase amplification
JP4340543B2 (ja) 2002-02-21 2009-10-07 エーエスエム サイエンティフィック, インコーポレイテッド リコンビナーゼポリメラーゼ増幅
IE20020544A1 (en) * 2002-06-28 2003-12-31 Univ College Cork Nat Univ Ie Method for the characterisation of nucleic acid molecules
WO2004018626A2 (en) * 2002-08-21 2004-03-04 Epoch Biosciences, Inc. Abasic site endonuclease assay
EP1647592B1 (en) * 2003-06-30 2009-03-11 Panasonic Corporation Method of modifying nucleotide chain
JP4714148B2 (ja) 2003-09-04 2011-06-29 ヒューマン ジェネティック シグネチャーズ ピーティーワイ リミテッド 核酸検出アッセイ
US20050136417A1 (en) * 2003-12-19 2005-06-23 Affymetrix, Inc. Amplification of nucleic acids
EP1711591A4 (en) 2003-12-29 2010-04-28 Nugen Technologies Inc METHODS FOR ANALYZING THE STATE OF METHYLATION OF NUCLEIC ACIDS AND METHODS FOR FRAGMENTING, MARKING AND IMMOBILIZING NUCLEIC ACIDS
US7700283B2 (en) * 2004-10-21 2010-04-20 New England Biolabs, Inc. Repair of nucleic acids for improved amplification
US8158388B2 (en) * 2004-10-21 2012-04-17 New England Biolabs, Inc. Repair of nucleic acids for improved amplification
EP1828411B1 (en) * 2004-12-03 2012-11-07 Human Genetic Signatures PTY Ltd Methods for simplifying microbial nucleic acids by chemical modification of cytosines
WO2006087574A2 (en) 2005-02-19 2006-08-24 Geneform Technologies Limited Isothermal nucleic acid amplification
AU2006251866B2 (en) * 2005-05-26 2007-11-29 Human Genetic Signatures Pty Ltd Isothermal strand displacement amplification using primers containing a non-regular base
ES2420831T3 (es) * 2005-07-25 2013-08-27 Alere San Diego, Inc. Procedimientos para multiplexar la ampliación de la recombinasa polimerasa
US8343738B2 (en) 2005-09-14 2013-01-01 Human Genetic Signatures Pty. Ltd. Assay for screening for potential cervical cancer
JP4822801B2 (ja) 2005-10-24 2011-11-24 西川ゴム工業株式会社 変異型エンドヌクレアーゼ
US20070218478A1 (en) * 2005-12-16 2007-09-20 Affymetrix, Inc. Methods for fragmentation and analysis of nucleic acid
US20100173364A1 (en) * 2006-04-11 2010-07-08 New England Biolabs, Inc. Repair of Nucleic Acids for Improved Amplification
WO2008035205A2 (en) 2006-05-04 2008-03-27 Asm Scientific, Inc. Recombinase polymerase amplification
US20080050738A1 (en) * 2006-05-31 2008-02-28 Human Genetic Signatures Pty Ltd. Detection of target nucleic acid
JP4918409B2 (ja) * 2006-07-26 2012-04-18 西川ゴム工業株式会社 核酸配列の増幅方法
US8202972B2 (en) * 2007-01-10 2012-06-19 General Electric Company Isothermal DNA amplification
US9279150B2 (en) 2007-01-10 2016-03-08 General Electric Company Mutant endonuclease V enzymes and applications thereof
US20130323795A1 (en) * 2007-01-10 2013-12-05 General Electric Company Endonuclase-assisted isothermal amplification using contamination-free reagents
AU2008229628A1 (en) * 2007-03-16 2008-09-25 Human Genetic Signatures Pty Ltd Assay for gene expression
US9388457B2 (en) * 2007-09-14 2016-07-12 Affymetrix, Inc. Locus specific amplification using array probes
WO2009067743A1 (en) 2007-11-27 2009-06-04 Human Genetic Signatures Pty Ltd Enzymes for amplification and copying bisulphite modified nucleic acids
US20110003700A1 (en) * 2007-12-20 2011-01-06 Human Genetic Signatures Pty Ltd. Elimination of contaminants associated with nucleic acid amplification
WO2010135310A1 (en) 2009-05-20 2010-11-25 Biosite Incorporated Dna glycosylase/lyase and ap endonuclease substrates
MX350658B (es) 2011-09-07 2017-09-13 Human Genetic Signatures Pty Ltd Ensayo de detección molecular.
SG10201510189WA (en) 2011-10-19 2016-01-28 Nugen Technologies Inc Compositions And Methods For Directional Nucleic Acid Amplification And Sequencing
SG10201504490QA (en) 2012-01-26 2015-07-30 Nugen Technologies Inc Compositions And Methods For Targeted Nucleic Acid Sequence Enrichment And High Efficiency Library Generation
SG11201408478QA (en) 2012-06-18 2015-02-27 Nugen Technologies Inc Compositions and methods for negative selection of non-desired nucleic acid sequences
US9777319B2 (en) 2012-06-29 2017-10-03 General Electric Company Method for isothermal DNA amplification starting from an RNA template
US20150011396A1 (en) 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
US9523121B2 (en) * 2013-01-13 2016-12-20 Uni Taq Bio Methods and compositions for PCR using blocked and universal primers
US9068218B2 (en) * 2013-01-18 2015-06-30 Emerald Therapeutics, Inc. Rotationally sequestered translators
WO2014144092A1 (en) 2013-03-15 2014-09-18 Nugen Technologies, Inc. Sequential sequencing
WO2015073711A1 (en) 2013-11-13 2015-05-21 Nugen Technologies, Inc. Compositions and methods for identification of a duplicate sequencing read
WO2015131107A1 (en) 2014-02-28 2015-09-03 Nugen Technologies, Inc. Reduced representation bisulfite sequencing with diversity adaptors
JP6803327B2 (ja) 2014-08-06 2020-12-23 ニューゲン テクノロジーズ, インコーポレイテッド 標的化されたシークエンシングからのデジタル測定値
EP3277833B1 (en) 2015-03-30 2019-01-09 H. Hoffnabb-La Roche Ag Methods to amplify highly uniform and less error prone nucleic acid libraries
US10160987B2 (en) 2016-04-07 2018-12-25 Rebecca F. McClure Composition and method for processing DNA
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system
AU2019315179B2 (en) * 2018-07-30 2023-02-02 OriCiro Genomics, Inc. Method for editing dna in cell-free system
WO2023041931A1 (en) * 2021-09-17 2023-03-23 The University Of Manchester Synthesis of oligonucleotides
CN113897414A (zh) * 2021-10-11 2022-01-07 湖南大地同年生物科技有限公司 一种痕量核酸文库构建方法
CN114369649A (zh) * 2022-02-08 2022-04-19 山东见微生物科技有限公司 一种特异的选择扩增及多重pcr方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683896A (en) * 1989-06-01 1997-11-04 Life Technologies, Inc. Process for controlling contamination of nucleic acid amplification reactions
US5455166A (en) * 1991-01-31 1995-10-03 Becton, Dickinson And Company Strand displacement amplification
ATE220725T1 (de) * 1995-07-11 2002-08-15 Forfas Trading As Biores Irela Glycosylase verwendende detektion von bestimmten nukleinsäuresequenzen
US6190865B1 (en) * 1995-09-27 2001-02-20 Epicentre Technologies Corporation Method for characterizing nucleic acid molecules
US6117634A (en) * 1997-03-05 2000-09-12 The Reagents Of The University Of Michigan Nucleic acid sequencing and mapping
EP1071811B8 (en) * 1998-04-22 2003-01-02 Enterprise Ireland (trading as Bioresearch Ireland) A method for the characterisation of nucleic acid molecules involving generation of extendible upstream dna fragments resulting from the cleavage of nucleic acid at an abasic site
US6399309B1 (en) * 2000-12-07 2002-06-04 Becton, Dickinson And Company Amplification and detection of mycoplasma pneumoniae targeting the ORF9 region of the hmw gene cluster

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296116A (zh) * 2011-09-02 2011-12-28 北京大学 对dna目标序列进行信号放大和检测的方法

Also Published As

Publication number Publication date
US20040067559A1 (en) 2004-04-08
EP1330546B1 (en) 2006-01-11
JP2004512843A (ja) 2004-04-30
DK1330546T3 (da) 2006-05-15
CA2427474A1 (en) 2002-05-10
ATE315666T1 (de) 2006-02-15
RU2284357C2 (ru) 2006-09-27
ES2254505T3 (es) 2006-06-16
WO2002036821A3 (en) 2003-03-27
AU1086202A (en) 2002-05-15
IE20000887A1 (en) 2002-12-11
AU2002210862B2 (en) 2006-06-08
DE60116651T2 (de) 2006-09-14
DE60116651D1 (de) 2006-04-06
WO2002036821A2 (en) 2002-05-10
EP1330546A2 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
CN1473201A (zh) 扩增和任选表征核酸的方法
US10337063B1 (en) Methods for analyzing nucleic acids from single cells
CN107109401B (zh) 使用crispr-cas系统的多核苷酸富集
CN1167811C (zh) 酶原性核酸的检测方法,以及相关分子和试剂盒
US8673567B2 (en) Method and kit for nucleic acid sequence detection
US9249459B2 (en) Single cell nucleic acid analysis
US20230295701A1 (en) Polynucleotide enrichment and amplification using crispr-cas or argonaute systems
US20120245041A1 (en) Base-by-base mutation screening
CN1489632A (zh) 固相支持物上的核酸等温扩增
CN1697882A (zh) 多重pcr
JP6767870B2 (ja) エラーのないdnaシークエンシング
US20230374574A1 (en) Compositions and methods for highly sensitive detection of target sequences in multiplex reactions
US20180051330A1 (en) Methods of amplifying nucleic acids and compositions and kits for practicing the same
WO2022121754A1 (zh) 一种检测一种或多种聚合酶活性的方法
van Pelt-Verkuil et al. Principles of PCR
CN1309827C (zh) 一种利用微波照射的简单、有效且加速的酶催化体外核酸修饰及合成方法
WO2023107453A1 (en) Method for combined genome methylation and variation analyses
Åsman Optimization of the selector technique for parallel sequencing applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication