CN1515598A - 聚合物和用该聚合物非共价官能化纳米管的方法 - Google Patents

聚合物和用该聚合物非共价官能化纳米管的方法 Download PDF

Info

Publication number
CN1515598A
CN1515598A CNA031367860A CN03136786A CN1515598A CN 1515598 A CN1515598 A CN 1515598A CN A031367860 A CNA031367860 A CN A031367860A CN 03136786 A CN03136786 A CN 03136786A CN 1515598 A CN1515598 A CN 1515598A
Authority
CN
China
Prior art keywords
nanotube
polymkeric substance
carbon nanotube
skeleton
functionalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031367860A
Other languages
English (en)
Other versions
CN1257197C (zh
Inventor
陈健
刘海鹰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saiwei High Performance Materials
University of Pittsburgh
Original Assignee
Zyvex Corp
University of Pittsburgh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zyvex Corp, University of Pittsburgh filed Critical Zyvex Corp
Publication of CN1515598A publication Critical patent/CN1515598A/zh
Application granted granted Critical
Publication of CN1257197C publication Critical patent/CN1257197C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/735Carbon buckyball
    • Y10S977/737Carbon buckyball having a modified surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/847Surface modifications, e.g. functionalization, coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Abstract

提供了一种在有机和无机溶剂中官能化诸如碳纳米管的纳米管的新的非包裹方法。根据某些实施方案,碳纳米管表面通过包含官能团的官能共轭聚合物以非包裹方式官能化。各种实施方案提供了以非包裹方式与碳纳米管非共价结合的聚合物。例如,提供了包含相对刚性的骨架的聚合物的各种实施方案,所述骨架适于与碳纳米管基本上沿纳米管的长度方向、而不是直经方向非共价结合。在优选的聚合物中,聚合物骨架与纳米管表面间的主要相互作用是平行的π-堆积。在某些实施中,所述聚合物还包含来自骨架的用于官能化碳纳米管的任何各种想要的官能团的至少一个官能延伸。

Description

聚合物和用该聚合物非 共价官能化纳米管的方法
                      相关申请交叉引用
本申请要求2002年5月2日提出的临时专利申请序列号为60/377920、标题为“SYSTEM AND METHOD FOR FUNCTIONALIZATION OF NANOTUBE SURFACES”的优先权,其内容在此引入以为参考。
                          技术领域
本发明步及纳米管的官能化,更具体的涉及能非共价结合到纳米管侧壁上以官能化纳米管的聚合物。
                          发明背景
可将碳纳米管想象为卷成无缝管并连接的六边形方格纸片。方格纸的每条边代表碳-碳键,每个交点代表碳原子。
碳纳米管通常为周边一般仅有几个原子的延伸的管体。碳纳米管为空心的并具有直链的富勒烯结构。碳纳米管的长度有可能达到其分子尺度直径的几百万倍。单壁碳纳米管(SWNTs)以及多壁碳纳米管(MWNTs)都已得到认可。
目前,碳纳米管已被广泛提出用于许多应用,因为它们具有非常理想和独特的涉及例如强度和重量的物理性能的组合。碳纳米管还显示出导电性。见Yakobson,B.I.等人的American Scientist,85,(1997),324-337;和Dresselhaus,M.S.等人的Science of Fullerenes and CarbonNanotubes,1996,San Diego:Academic Press,902-905页。例如,碳纳米管比铜或金的导热和导电性好,且抗拉强度为钢的100倍,而重量仅为钢的1/6。碳纳米管可制成非常小的尺寸。例如,碳纳米管可制成近似DNA双螺旋结构的尺寸(或近似为人的头发直径的1/50000)。
考虑到碳纳米管的优异性能,它们非常适合于各种用途,从计算机电路的建造到复合材料增强,甚至到药物的释放。作为其性能的结果,碳纳米管可用于例如微电子器件领域,该应用往往要求导热率高、尺寸小和重量轻。已认可的碳纳米管的一个潜在应用是它们在采用电子场发射技术的平板显示中的用途(因为碳纳米管可以是良好的导体和电子发射体)。已认可的其他潜在应用包括电磁屏蔽,例如用于移动电话和膝上型计算机的电磁屏蔽、隐形飞机的雷达吸收、纳米电子学(包括新一代计算机中的存储器),以及用作高强度轻型复合材料。此外,碳纳米管还是电化学能量储存体系(如锂离子电池)和气体储存体系领域中的潜在候选材料。
已开发了制备碳纳米管的各种技术。作为实例,形成碳纳米管的方法描述在美国专利5753088和5482601中,其内容在此引入以为参考。制备碳纳米管的三种最常用的技术是:1)激光蒸发技术,2)电弧技术,和3)气相技术(如HiPcoTM方法),以下进一步讨论这些技术。
“激光蒸发”技术通常利用脉冲激光蒸发石墨以制备碳纳米管。激光蒸发技术还由A.G.Rinzler等人在Appl.Phys.A,1998,67,29中描述,其内容在此引入以为参考。激光蒸发技术通常制备直径约1.1-1.3纳米(nm)的碳纳米管。这种激光蒸发技术的产率一般非常低,制备很少数量的碳纳米管要求较长时间。例如,1小时激光蒸发加工一般产生约100mg的碳纳米管。
制备碳纳米管的另一种技术是利用电弧放电合成碳纳米管的“电弧”技术。作为实例,可在氦气氛下用填充了金属催化剂和石墨粉的混合物(Ni∶Y∶C)的石墨阳极,通过电弧放电合成单壁纳米管(SWNTs),C.Journet等人在Nature(London),388(1997),756中进行了全面描述。通常这种SWNT被制成直径为5-20nm的紧密堆积的束(或“绳索”)。SWNTs通常在通过范德瓦尔斯作用力连接的二维周期性三角晶格中很好地排列。制备碳纳米管的电弧技术还由C.Journet和P.Bernier在Appl.Phys.A,67,1中描述,其内容在此引入以为参考。利用这种电弧技术,平均碳纳米管直径一般为约1.3-1.5nm,三角晶格参数为约1.7nm。与激光蒸发技术一样,电弧制备技术的产率一般非常低,要求较长时间来制备少量的碳纳米管。例如,1小时的电弧加工一般得到约100mg的碳纳米管。
最近,Richard Smalley和他在Rice University的同事已发现了另一种方法,即“气相”技术,该方法能制备比激光蒸发和电弧制备技术大得多数量的碳纳米管。气相技术,称为HiPcoTM方法,利用气相催化反应制备碳纳米管。HiPco方法使用普通工业气体(一氧化碳),在现代工厂中常用的温度和压力条件下,产生较大数量的高纯度碳纳米管,且基本没有副产品。HiPco方法由P.Nikolaev等人在Chem.Phys.Lett,1999,313,91中进一步详细描述,其内容在此引入以为参考。
而用上述激光蒸发和电弧技术制备的碳纳米管的日产量为约1g/天,HiPco方法的碳纳米管日产量可达1磅或更多。HiPco技术通常制备比激光蒸发或电弧技术中通常制备的直径小得多的碳纳米管。例如,HiPco技术制备的纳米管通常具有约0.7-0.8nm的直径。
单壁碳纳米管(SWNTs)的分子工程(如切割、加溶、化学官能化、色谱提纯、控制和组装)期望在开发和发展碳纳米管的应用中扮演关键角色。近来尤其对碳纳米管的非共价官能化越来越产生兴趣,因为它提供了向碳纳米管表面(侧壁)加入大量的官能度,而仍然保持碳纳米管的几乎所有固有性能的潜力。例如,SWNTs可通过聚合物包裹而加溶于有机溶剂和水中(参见例如(a)Dalton,A.B.等人的J.Phys.Chem.B2000,104,10012-10016;(b)Star,A.等人的Angew.Chem.Int.Ed.2001,40,1721-1725;(c)O’C onnell,M.J.等人的Chem.Phys Lett.2001,342,265-271;和Richard E.Smalley等人的公开的美国专利申请2002/0046872、2002/0048632和2002/0068170,标题均为“POLYMER-WRAPPED SINGLE WALL CARBON NANOTUBES”),且纳米管表面可通过小分子的粘附而非共价地官能化以用于蛋白质固定化(见Chen,R.J.等人的J.Am.Chem.Soc.2001,123,3838-3839)。
全长度(未截短的)碳纳米管由于其长径比高、直径小、重量轻、强度高、导电率和导热率高而被认为是用于纳米结构材料的基本碳纤维。见Calvert,P.Nature,1999,399,210和Andrews,R.等人的Appl.Phys.Lett.1999,75,1329,其内容在此引入以为参考。然而碳纳米管材料不溶于普通有机溶剂中。见Ebbesen,T.W.Acc.Chem.Res.1998,31,558-556,其内容在此引入以为参考。
碳纳米管的共价侧壁官能化可导致碳纳米管溶解在有机溶剂中。应该注意,本文的术语“溶解”和“加溶”可交换地使用。见Boul,P.J.等人的Chem.Phys.Lett.1999,310,367和Georgakilas,V.等人的J.Am.Chem.Soc.2002,124,760-761,其内容在此引入以为参考。该方法的缺点是碳纳米管的固有性能由于共价侧壁官能化而明显改变。
碳纳米管也可通过聚合物包裹而加溶于有机溶剂和水中。参见Dalton,A.B.等人的J.Phys.Chem.B2000,104,10012-10016;Star,A.等人的Angew.Chem.Int.Ed.2001,40,1721-1725;O’Connell,M.J.等人的Chem.Phys Lett.2001,342,265-271;和Richard E.Smalley等人的已公布的美国专利申请2002/0046872、2002/0048632和2002/0068170,标题均为“POLYMER-WRAPPEDSINGLE WALL CARBON NANOTUBES”,其内容在此引入以为参考。图1A-1C表示这种碳纳米管的聚合物包裹的实例。在聚合物包裹中,聚合物“缠绕”在碳纳米管的直径周围。例如,图1表示聚合物102A和102B缠绕在单壁碳纳米管(SWNT)101周围的实例。图1B表示聚合物103A和103B缠绕在SWNT 101周围的实例。图1C表示聚合物104A和104B缠绕在SWNT 101周围的实例。应该注意,图1A-1C的每个实例中的聚合物都相同,且这些附图表明发生的聚合物包裹类型是随机的(如相同的聚合物以不同的方式缠绕着图1A-1C中的每个碳纳米管)。
该方法的一个缺点是聚合物在包裹通过HiPco方法制备的小直径单壁碳纳米管中的效率非常低,因为要求聚合物有高的应变形态。例如,这种聚合物包裹方法仅能以约0.1mg/ml的量将SWNTsHiPco(即由HiPco方法制备的SWNTs)加溶在有机溶剂中。SWNTsHiPco是目前能以高纯度大规模制造的唯一SWNT材料。此外,聚合物包裹不能控制可沿聚合物排列的官能团的间隔。就是说,如图1A-1C的实例所表示的,聚合物可以随机的方式缠绕在纳米管周围,可包含在聚合物上的官能团的间隔不能得到控制。
                           发明概述
本发明涉及官能化纳米管的方法、用于官能化纳米管的聚合物,以及所得的当聚合物与纳米管非共价结合时形成的物质的组合物。本发明的实施方案提供官能化诸如碳纳米管的纳米管的新方法。根据本发明的某些实施方案,碳纳米管表面通过官能共轭聚合物以非包裹方式官能化。本文所用的“非包裹”指不包围纳米管的直径。这样,聚合物与纳米管以“非包裹方式”的结合包括了其中聚合物不完全包围纳米管直径的聚合物与纳米管的任何结合。当描述本发明的某些实施方案时,非包裹方式可被进一步定义和/或限定。例如,在本发明优选实施方案中,聚合物可与纳米管结合(如通过与其的π-堆积相互作用),其中聚合物的骨架基本上沿纳米管长度方向延伸,关于聚合物骨架的任何其他部分,骨架的任何部分的延伸都不超过纳米管直径的一半以上。
各种实施方案提供以非包裹方式与碳纳米管结合的聚合物。更具体的,提供了包含较刚性骨架的聚合物的各种实施方案,所述骨架适合于基本上沿纳米管长度方向而不是沿其直径与碳纳米管结合。在优选的聚合物中,聚合物骨架与纳米管表面的主要相互作用是平行的π-堆积。这种相互作用可导致聚合物与纳米管非共价结合(或另外的结合)。可用于本发明实施方案中的刚性官能共轭聚合物的实例包括但不限于聚亚芳基亚乙炔基(poly(arylene ethynylene))和聚3-癸基噻吩。根据本发明的某些实施方案,该聚合物还包含至少一个来自所述骨架的官能延伸以官能化碳纳米管。
在本发明的一个实施方案中公开了官能化纳米管的聚合物。该聚合物包含以非包裹方式与纳米管非共价结合的骨架部分。在某些实施中,聚合物还包含官能化纳米管的至少一个功能部分。
在本发明的另一个实施方案中,公开了官能化纳米管的方法。该方法包括将聚合物与纳米管混合,且该聚合物与纳米管以非包裹方式非共价结合,其中聚合物包含至少一个官能化纳米管的官能部分。本文所用的“混合”往往包括将至少一种聚合物提供给至少一种纳米管的“加入”、“结合”,以及类似术语。
在另一个实施方案中,提供了加溶碳纳米管的方法。该方法包括将至少一种聚合物与至少一种碳纳米管在溶剂中混合。在某些实施方案中,溶剂可包括有机溶剂,而在其他实施方案中,溶剂可包括水性溶剂(aqueous solvent)。该方法还包括通过π-堆积至少一种聚合物与至少一种碳纳米管的表面的相互作用。在某些实施方案中,至少一种聚合物官能化至少一种碳纳米管。
仍在另一个实施方案中,提供了一种组合物。该组合物包含与纳米管结合的聚合物,其中聚合物包含以非包裹方式与纳米管结合的骨架部分。优选的是,聚合物骨架部分通过以非包裹方式与纳米管非共价结合而与纳米管结合。例如,聚合物骨架可通过π-堆积相互作用与纳米管表面结合。
上文已较广泛地概述了本发明的特征和技术优点,以便更好地理解以下对本发明的详细描述。以下将描述本发明的其他特征和优点,其形成本发明权利要求的主题。本领域普通技术人员应该理解到,很容易利用公开的概念和具体实施方案作为基础来修改或设计其他结构以实现本发明相同的目的。本领域普通技术人员还应该意识到,这种等价的构造不脱离附属权利要求中提出的本发明的精神和范围。认为是本发明特征的新特点(对于其结构和操作方法而言)与其他目的和优点一起,当与附图结合考虑时,可从以下描述中更好地理解。然而应该清楚地认识到,每个附图仅用于描述和解释的目的而提供,并不限制本发明。
                           附图简述
为了更全面地理解本发明,以下参考附图进行描述,其中:
图1A-1C表示现有技术的碳纳米管的聚合物包裹的实例;
图2A-2B表示根据本发明实施方案以非包裹方式与碳纳米管结合的聚合物分子模型的实例;
图3A-3C表示本发明实施方案的聚合物结构的实例;
图4表示根据本发明实施方案可实施的以非包裹方式与碳纳米管结合的聚合物结构的另一个实例;
图5表示实例聚合物(1a)(示于下部)和由该实例聚合物与单壁碳纳米管结合得到的配合物(1a-SWNTsHiPco配合物)(示于上部)的1H NMR光谱(300MHz,CDCl3);
图6A表示SWNTsHiPco(没有与此结合的聚合物)的薄膜可见光和近红外(IR)光谱图;
图6B表示通过本发明实施方案的实例聚合物官能化的SWNTsHiPco的薄膜可见光和近IR光谱图;
图7A表示实例聚合物(1a)和由该实例聚合物与单壁碳纳米管结合得到的配合物(1a-SWNTsHiPco配合物)的室温溶液相(CHCl3)荧光光谱(激发波长:400nm);
图7B表示实例聚合物(1a)和由该实例聚合物与单壁碳纳米管结合得到的配合物(1a-SWNTsHiPco配合物)的室温溶液相UV-可见光光谱。
                          发明详述
现在参考以上附图描述本发明的各种实施方案。本发明的实施方案提供了官能化纳米管的新方法。该方法基于一个发现,即碳纳米管表面能用官能共轭聚合物以非包裹方式官能化。有益的是,本发明的某些实施方案能在有机溶剂中官能化纳米管,而某些实施方案能在水性溶剂中官能化纳米管。
例如,以非包裹方式与碳纳米管结合(如非共价结合)的聚合物的实例分子模型示于图2A-2B。图2B是按图2A中所指获取的图2A的剖面图。如该实例中所示,碳纳米管(在该实例中更具体的是单壁碳纳米管)201有与之以非包裹方式结合的聚合物202。
聚合物202包含基本上沿这种碳纳米管201的长度方向,而不是直径周围,与碳纳米管201结合的相对刚性的骨架203。这样,聚合物202与碳纳米管201以非包裹方式结合,其因许多理由而有利,某些理由将在这里更全面描述。在该实例中,骨架203与纳米管201结合(如通过与其π-堆积相互作用),其中这种骨架203基本上沿纳米管201的长度方向延伸,而关于骨架203的任何其他部分,骨架203的任何部分的延伸都不超过纳米管201直径方向的一半。例如,骨架203有足够的刚性,相对于至少部分骨架203与纳米管201结合的纳米管201的位置206而言,该骨架任何部分的弯曲程度都不会使该部分超过纳米管201的半直径(或“赤道线”)205。可根据本发明实施方案实现的各种骨架203的比刚度可以不同(例如某些实施可使骨架203的一部分弯曲超过半直径205,而这种骨架的另一部分排列在纳米管201的位置206上),但这种骨架203优选有足够的刚性,使它们不包裹(即完全包围其直径)纳米管201。当然,如图2A-2B的实例所示,聚合物202的部分(如官能延伸204A和204B)可延伸到纳米管201的全部或部分直径,但聚合物202的骨架203优选有足够刚性,使其不包裹在纳米管201的直径周围。
聚合物202还包含来自骨架203的各种官能延伸,如官能延伸204A和204B,它们可含有任何用于官能化碳纳米管201的各种想要的官能团。正如本文所进一步描述的,本发明实施方案包括适于以任何各种要求的方式官能化碳纳米管201的聚合物中的官能团,所述方式包括但不限于加溶碳纳米管201,官能化碳纳米管201以用作传感器(如生物传感器),和/或在碳纳米管201上实施“化学处理”。
与制备聚合物包裹的碳纳米管(图1A-1C的)比较,本发明实施方案的非包裹方法可通过精确改变1的骨架(或其他选择的骨架)与侧链的长度和组成,更好地控制碳纳米管表面上的官能团之间的距离。这一策略开了通向碳纳米管表面的(半)位置控制的非共价官能化的大门。这种官能化可向碳纳米管表面引入大量中性和离子官能团。它可提供用于碳纳米管的控制和组装的“化学处理”,使其在诸如化学和生物传感的各种领域中的应用成为可能。
这样,聚合物202以非包裹方式与碳纳米管201结合(如通过π-堆积相互作用)的一个优点是,它能使诸如官能延伸204A和204B的官能团以想要的方式沿骨架203排列,以精确控制这种官能团的间隔。在以包裹方式与碳纳米管结合的聚合物中,控制排列在聚合物上的官能团的相对间隔要困难的多,因为其间隔依赖于聚合物的包裹。通过控制这种官能团沿骨架203的间隔,可对官能团之间、官能团与碳纳米管201之间,和/或官能团与可能暴露在官能团下的其他元素之间是否/怎样相互作用提供进一步的控制。
碳纳米管的这种非共价官能化的另一个优点是,它能给碳纳米管表面(侧壁)提供大量的官能度,而仍然保持纳米管的几乎所有固有性能。就是说,如上所述,碳纳米管具有与例如强度、重量、导电性等相关的物理性能的非常理想和独特的结合。具有官能化碳纳米管同时保持碳纳米管的几乎所有性能的能力提供了许多优点。例如,在某些应用中,碳纳米管可被加溶,并用于形成具有至少部分由纳米管提供的理想性能的要求的物质(“或材料”)的组合物。就是说,在本发明某些实施方案中,聚合物可包含加溶纳米管的合适的官能团。
作为官能化碳纳米管的技术的实例,我们用刚性官能共轭聚合物进行了研究,所述聚合物为聚亚芳基亚乙炔基(本文也称为“1”、“3”、“4”)。见Bunz,U.H.F.的Chem.Rev.2000,100,1605-1644和McQuade,D.T.等人的J.Am.Chem.Soc.2000,122,12389-12390,其内容在此引入以为参考,以及聚3-癸基噻吩(本文也称为“2”)。图3A-3C表示本发明实施方案的聚合物结构实例。更具体的,图3A表示可用于以非包裹方式与碳纳米管非共价结合的聚亚芳基亚乙炔基(标记“1”)聚合物结构实例。图3A中所示的实例聚合物结构包含官能延伸R1、R2、R3和R4,它们在作为选择的实施实例中,可作为以下所示的1a、1b、1c或1d:
(1a)R1=R4=H,R2=R3=OC10H21
(1b)R1=R2=R3=R4=F
Figure A0313678600151
图3B表示可用于以非包裹方式与碳纳米管非共价结合的聚亚芳基亚乙炔基(标记“3”且本文称为“3”)聚合物结构的另一个实例。此外,图3C表示可用于以非包裹方式与碳纳米管非共价结合的聚亚芳基亚乙炔基(标记“4”且本文称为“4”)聚合物结构的另一个实例。尽管图3A-3C所示的聚合物结构1、3和4的实例是聚亚芳基亚乙炔基结构,但应该明白也可以根据本发明实施方案采用其他聚亚芳基亚乙炔基型结构。
图3A-3C的实例聚合物结构可实施用于以非包裹方式与碳纳米管非共价结合,如同图2A-2B所示实例一样。事实上,图2A-2B的分子模型实例说明了图3A的聚合物的上述实施1a的实例,更具体的表示实施1an=1.5-SWNT(6,6)配合物(即扶手椅SWNT)的实例,其中n为重复数。应该理解,本发明并不仅限于以上所示用于官能化碳纳米管的1a、1b、1c和1d的官能团(或聚合物结构3和4的官能团)的实例,而是可根据本发明的实施方案采用现已公知的或以后将开发的用于官能化碳纳米管的任何此类官能团。优选的是,聚合物中包含的官能团基本不改变碳纳米管的固有性能。此外,还应该明白,尽管官能团实例1a-1d加溶碳纳米管,但可包含各种其他类型的官能团用于以任何其他方式官能化纳米管,以便例如实施化学处理、实现生物传感等。
图4表示可实现以非包裹方式与碳纳米管非共价结合的聚合物结构的另一个实例。更具体的,图4表示可在本发明某些实施方案中实施的高规律区(highlyregioregular)头至尾的聚3-癸基噻吩(标记“2”)的结构实例。
与以前的工作对照,见Dalton,Star和O’Connell,M.J.等,上述骨架1、2、3和4为刚性的,不能围绕SWNTs包裹,且聚合物骨架与纳米管表面间的主要相互作用为平行的π-堆积。而且,以下描述的骨架实例5-18也是刚性的,使它们不包围纳米管,且这种聚合物骨架与纳米管表面间的主要相互作用为平行的π-堆积。平行的π-堆积是非共价结合的一种类型。见Chen,R.J.等人的J.Am.Chem.Soc.,2001,123,3838-3839,其内容在此引入以为参考。本文公开的某些技术利用这种聚合物,使其能在有机溶剂(如CHCl3、氯苯等)中官能化各种类型的碳纳米管。
根据公知的方法合成和表征了新的聚合物(1a-1,n平均=19.5;1a-2,n平均=13;1b,n平均=19;1c,n平均=19;1d)。见Bunz,U.H.F.的Chem.Rev.2000,100,1605-1644,其内容在此引入以为参考。该研究中采用了三种SWNTs:1)纯HiPco-SWNTs(“SWNTsHiPco”,来自Carbon Nanotechnologies,Inc.);2)激光生长的纯SWNTs(“SWNTs激光”);和3)电弧生长的纯SWNTs(“SWNTs电弧”)。作为1a-SWNTsHiPco配合物的制备方法实例:将14.7mg的SWNTsHiPco在29.4ml CHCl3中声波振荡30分钟(“min”),得到可看见不溶性固体的不稳定悬浮液。然后加入14.7mg 1a,简单地通过剧烈摇动,绝大部分可见的不溶性固体变得可溶解。将所得溶液进一步声波振荡10-30min,得到10天后都检测不到固体沉淀的黑色稳定溶液。这样得到的黑色的和不饱和的碳纳米管溶液用肉眼观察无散射且长时间搁置(如超过10天)不产生沉淀。该产物通过PTFE膜过滤(0.2-0.8μm孔径)收集,用CHCl3冲洗,并在室温下真空干燥,得到20.6mg自立的黑色固体膜(bucky纸)。
本人研究中对于2-SWNTsHiPco、1c-SWNTsHiPco、1b-SWNTsHiPco、1d-SWNTsHiPco、3-SWNTsHiPco、1a-SWNTs激光和1a-SWNTs电弧的方法与上述对于1a-SWNTsHiPco的方法类似。这样制备的SWNTsHiPco和CVD生长的多壁碳纳米管(MWNTs)也可以通过类似的方法官能化(如加溶)在CHCl3中。然而,这样制备的SWNTs电弧用类似方法形成了不稳定的悬浮液,也许是因为非晶态碳涂覆在纳米管上阻碍了1与纳米管表面之间有效的π-π相互作用。
PTFE膜过滤和CHCl3清洗步骤用于除去游离的1a。根据重量增加,最终产物中的重量比(WR最终)1a:SWNTsHiPco估计为约0.38-0.40,与WR初始无关。例如,在三个1a:SWNTsHiPco反应中的WR数据如下:1)WR初始=1.00,WR最终=0.40;2)WR初始=0.40,WR最终=0.38;3)WR初始=0.40,WR最终=0.39。尽管这种估计仍显粗略,但它有力地说明,1与碳纳米管在CHCl3中能形成稳定和不可逆地结合的配合物,而不是简单的混合物。
图2A-2B中所示的1a-SWNT(6,6)的实例分子结构可通过模型化获得。1an=1.5-SWNT(6,6)配合物的结构用UFF经验电势完全优化。根据该模型并考虑位阻效应,最有可能的是一个聚合物在每一聚合物长度上配合一个SWNTsHiPco(0.7-0.8nm直径)。基于该假设计算出的1a:SWNTsHiPco的WR为约0.5-0.6,比试验值WR最终(0.38-0.40)略高。这种差别是由于SWNTsHiPco中纳米管绳和诸如金属催化剂的杂质的存在。在SWNTs激光(1.1-1.3nm直径)和SWNTs电弧(1.3-1.5nm直径)的情况下,有可能是两个聚合物在每一聚合物长度上配合一个SWNT。与SWNTsHiPco比较,SWNTs激光和SWNTs电弧的纯度低。
如图5所示,与游离的1a(δ4.05)比较,1a-SWNTsHiPco1H NMR谱表现出紧靠芳族基和纳米管表面的CH2基(C1)的明显高磁场偏移(δ3.51)。即图5示出了表明游离1a的1H NMR谱(300MHz,CDCl3)的第一曲线501,和表明1a-SWNTsHiPco1H NMR谱(300MHz,CDCl3)的第二曲线502。现有理论证实碳纳米管中存在大的抗磁环电流。由于存在痕量的水,我们不确定C2基的化学偏移。对于其他CH2基团未观察到明显的变化,表明尽管聚合物骨架通过π-堆积紧密结合到纳米管表面,但1a的侧链(C3-C10)在溶液中是相对自由的。与纳米管表面紧密结合的亚苯基的信号太宽而检测不到。1a-SWNTs激光1H NMR谱得到了类似结果。
本发明优选的实施方案提供了用于官能化碳纳米管同时保持了纳米管的几乎所有固有性能的聚合物。例如,图6A示出了说明SWNTsHiPco(没有与之结合的聚合物)的薄膜可见光和近红外(IR)光谱的曲线图。图6B示出了说明1a-SWNTsHiPco的薄膜可见光和近IR光谱的曲线图。根据薄膜可见光和近IR光谱学,1a-SWNTsHiPco(图6B的)的带结构与原来的SWNTsHiPco(图6A的)的带结构非常相似,表明SWNTHiPco的电子学结构在聚合物配合物时基本原封不动。基于吸收光谱和拉曼光谱,可认为1a-SWNTsHiPco中的电荷转移不明显。应该注意,在1a-SWNTsHiPco(图6B的)光谱中有很宽的信号覆盖3.5-2eV间的SWNTsHiPco(图6A的)信号,可能是由纳米管配合物中1a的最低能量吸收产生的。
与由纯SWNTsHiPco制成的bucky纸(抗拉强度=9.74MPa;杨氏模量=0.26GPa)比较,由1-SWNTsHiPco配合物制成的bucky纸(抗拉强度=28.3MPa;杨氏模量=4.5GPa)表现出明显改善的机械性能。这两种bucky纸都通过相同室温下的膜过滤方法(没有任何高温退火)制备以便于更好地比较。这表明1能通过更有效的π-π相互作用提高纳米管间的粘结性。因此,得到的bucky纸以更低的浓度更慢地溶解在CHCl3中(1a-SWNTsHiPco在CHCl3中约为0.1-0.2mg/ml)。对于要求高纳米管浓度的应用(例如聚合物复合材料),推荐使用就地制备而不过滤的1-SWNTs(W=0.4)的CHCl3溶液。
根据作为选择的本发明实施方案,具有π-共轭的骨架结构的各种其他官能聚合物也可用于在有机溶剂中官能化碳纳米管。某些这种聚合物骨架结构表示如下(R代表任何有机官能团;Ar代表任何π-共轭的结构),如结构5-18:
在以上骨架5-18中,n优选的大于或等于2,R代表任何有机官能团,如R=OC10H21、R=C10H21,或其他想要的官能团。应该认识到,实例骨架5-15为聚亚芳基亚乙炔基,骨架16为聚亚苯基,骨架17为聚吡咯,而骨架18为聚噻吩。
优选实施方案的1-SWNTsHiPco溶液可与诸如聚碳酸酯和聚苯乙烯的其他聚合物溶液均匀混合。可通过除去有机溶剂制备均匀的纳米管-聚碳酸酯和纳米管-聚苯乙烯复合材料。
作为实例,将0.6ml聚双酚A碳酸酯的氯仿溶液(125mg/ml)与2.89ml1a-SWNTHiPco的氯仿溶液(1.3mg/ml的SWNTsHiPco)均匀混合。除去氯仿溶剂后形成均匀的SWNTs/聚双酚A碳酸酯复合材料(5wt%的SWNTsHiPco)。通过改变比值1a-SWNTsHiPco:聚双酚A碳酸酯,很容易制成SWNTs填充量不同的一系列SWNTs/聚双酚A碳酸酯复合材料。
可溶性1a-SWNTsHiPco配合物显著改善了商品聚合物的机械性能。例如,纯聚双酚A碳酸酯的抗拉强度和断裂应变分别为26MPa和1.23%;3.8wt%的SWNTsHiPco填充导致聚双酚A碳酸酯(平均Mw约为64000)的抗拉强度(43.7MPa)和断裂应变(19.1%)分别提高了68%和1800%。
作为聚合物骨架与纳米管表面间的π-π相互作用的结果,1a的主吸收带在1a-SWNTsHiPco配合物中显著加宽,如图7A-7B所示。更具体的,图7A表示1a和1a-SWNTsHiPco配合物的室温溶液相(CHCl3)荧光光谱(激发波长:400nm),图7B表示1a和1a-SWNTsHiPco配合物的紫外线(UV)-可见光光谱。1a的强荧光在1a-SWNTsHiPco配合物中被纳米管表面有效猝灭,这可通过荧光显微技术进一步证实。分子间以及对于金属表面的分子的能量转化猝灭是公知的。
从以上观点可认识到,本发明的实施方案提供了能以非包裹方式与纳米管(如碳纳米管)非共价结合的分子结构。而且该分子结构可包含用于官能化与该分子结构结合的纳米管的一个或多个官能团。优选的是该分子结构与纳米管形成非共价键;然而在某些实施例中,该分子结构也可以是以非包裹方式与纳米管形成共价键的那些。
根据本发明实施方案,通过采用非包裹聚合物官能化纳米管可提供许多优点。例如,纳米管的加溶作用使其可用于增强包括例如塑料的物质的各种组合物的性能。不可溶的纳米管不能均匀分散在商用塑料和粘合剂中;因此通过加入不溶性纳米管制成的聚合物复合材料对塑料机械性能的改进很小(Ajayan,P.M.等人的Adv.Mater.2000,12,750;Schadler,L.S.等人的Appl.Phys.Lett.1998,73,3842)。相反,可溶性纳米管能显著改善例如塑料的机械性能。例如,纯聚双酚A碳酸酯的抗拉强度和断裂应变分别为26MPa和1.23%;3.8wt%的SWNTsHiPco填充导致聚双酚A碳酸酯(平均Mw约为64000)的抗拉强度(43.7MPa)和断裂应变(19.1%)分别提高了68%和1800%。
虽然以上各种实例都描述了官能化碳纳米管,更具体的是单壁碳纳米管,但本发明的实施方案并不仅限于在碳纳米管中的应用。纳米管可由诸如碳、氮化硼,以及它们的复合材料的各种材料形成。纳米管可为单壁纳米管或多壁纳米管。这样,虽然以上描述的实例是用于官能化碳纳米管,但本发明的某些实施方案可用于官能化各种其他类型的纳米管,包括但不限于多壁碳纳米管(MWNTs)、氮化硼纳米管,以及它们的复合材料。因此,本文所用的术语“纳米管”不仅限于碳纳米管。相反,术语“纳米管”在本文广泛使用,除非另有定义,往往包括现已公知的或以后将开发的任何类型纳米管。
尽管本发明及其优点已详细描述,但应该认识到可作不脱离由附属权利要求定义的本发明的精神和范围的各种变化、替代和改变。而且本发明的范围不限于说明书中描述的方法、机械、制造、物质组合物、手段、方法和步骤的具体实施方案。本领域普通技术人员很容易从本发明内容中理解到,现已存在或以后将开发的、完成与本文描述的对应的实施方案基本相同的功能或实现基本相同的结果的工艺、机械、制造、物质组成、手段、方法或步骤,都可根据本发明被利用。因此附属权利要求意在将这种工艺、机械、制造、物质组合物、手段、方法或步骤包括在其范围内。

Claims (29)

1、一种聚合物,包含:
能以非包裹方式与纳米管非共价结合的骨架部分。
2、权利要求1的聚合物,其中所述骨架部分包含选自以下的部分:
Figure A0313678600021
Figure A0313678600031
其中M选自Ni、Pd和Pt
其中以上列举的骨架部分a)-q)中的每个R1-R8代表官能团。
3、权利要求1的聚合物,还包含至少四个官能部分(R1、R2、R3和R4),其中所述官能部分包括选自以下的官能部分:
a)R1=R4=H和R2=R3=OC10H21
b)R1=R2=R3=R4=F,
c)R1=R4=H和R2=R3
d)R1=R4=H和R2=R3
Figure A0313678600035
4、权利要求1的聚合物,包括选自以下之一:
聚亚芳基亚乙炔基;
聚亚苯基亚乙炔基;和
聚3-癸基噻吩。
5、权利要求1的聚合物,其中所述纳米管为碳纳米管。
6、权利要求1的聚合物,其中所述骨架部分能通过π-堆积与所述纳米管表面相互作用。
7、权利要求1的聚合物,进一步包含用于官能化所述纳米管的至少一个官能部分。
8、权利要求7的聚合物,其中所述至少一个官能部分包含选自以下的至少一种:
H、OC10H21、F、
Figure A0313678600041
Figure A0313678600042
9、一种官能化纳米管的方法,所述方法包括:
将所述聚合物提供给纳米管;和
所述聚合物与所述纳米管以非包裹方式非共价结合,其中所述聚合物包含官能化所述纳米管的至少一个官能部分。
10、权利要求9的方法,其中所述提供包括:
在溶剂中混合所述聚合物和所述纳米管。
11、权利要求10的方法,其中所述溶剂包括有机溶剂。
12、权利要求10的方法,其中所述溶剂包括水性溶剂。
13、权利要求10的方法,其中所述溶剂包括选自以下之一:
CHCl3、氯苯、水、乙酸、丙酮、乙腈、苯胺、苯、苄腈、苄醇、溴苯、溴仿、1-丁醇、2-丁醇、二硫化碳、四氯化碳、氯苯、氯仿、环己烷、环己醇、萘烷、二溴甲烷、二甘醇、二甘醇醚、二乙醚、二甘醇二甲醚、二甲氧基甲烷、N,N-二甲基甲酰胺、乙醇、乙胺、乙苯、乙二醇醚、乙二醇、环氧乙烷、甲醛、甲酸、甘油、庚烷、己烷、碘苯、1,3,5-三甲基苯、甲醇、甲氧基苯、甲胺、二溴甲烷、二氯甲烷、甲基吡啶、吗啉、奈、硝基苯、硝基甲烷、辛烷、戊烷、戊醇、酚、1-丙醇、2-丙醇、吡啶、吡咯、吡咯烷、喹啉、1,1,2,2-四氯乙烷、四氯乙烯、四氢呋喃、四氢吡喃、1,2,3,4-四氢化萘、四甲基乙二胺、噻吩、甲苯、1,2,4-三氯苯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、三乙胺、三甘醇二甲醚、1,3,5-三甲苯、间二甲苯、邻二甲苯、对二甲苯、1,2-二氯苯、1,3-二氯苯和1,4-二氯苯。
14、权利要求9的方法,其中所述聚合物包含以非包裹方式通过π-堆积与所述纳米管非共价结合的骨架部分。
15、权利要求9的方法,其中所述纳米管为碳纳米管。
16、由权利要求9的方法得到的产物。
17、权利要求9的方法,其中所述官能化包括选自以下之一:
在所述纳米管上进行一种处理;和
在所述纳米管上实施传感器。
18、官能化碳纳米管的方法,所述方法包括:
将至少一种聚合物与至少一种碳纳米管在溶剂中混合;和
所述至少一种聚合物与所述至少一种碳纳米管表面通过π-堆积相互作用。
19、权利要求18的方法,进一步包括:
所述至少一种聚合物官能化所述至少一种碳纳米管。
20、权利要求18的方法,其中所述至少一种聚合物与所述至少一种碳纳米管以非包裹方式非共价结合。
21、由权利要求18的方法得到的产物。
22、一种组合物,包含:
与纳米管结合的聚合物,其中所述聚合物包含以非包裹方式与所述纳米管结合的骨架部分。
23、权利要求22的组合物,其中所述骨架部分通过以所述非包裹方式与纳米管非共价结合而与纳米管结合。
24、权利要求22的组合物,其中所述骨架部分包含选自以下的部分:
其中M选自Ni、Pd和Pt
Figure A0313678600072
其中以上列举的骨架部分a)-q)中的每个R1-R8代表官能团。
25、权利要求22的组合物,其中所述聚合物包含选自以下之一:
聚亚芳基亚乙炔基;
聚亚苯基亚乙炔基;和
聚3-癸基噻吩。
26、权利要求25的组合物,其中所述聚合物还包含至少四个官能部分(R1、R2、R3和R4),其中所述官能部分包含选自以下的官能部分:
a)R1=R4=H和R2=R3=OC10H21
b)R1=R2=R3=R4=F,
c)R1=R4=H和R2=R3
d)R1=R4=H和R2=R3
27、权利要求22的组合物,其中所述纳米管为碳纳米管。
28、权利要求22的组合物,其中所述骨架部分通过与它的π-堆积相互作用与所述纳米管表面结合。
29、权利要求22的组合物,其中所述聚合物还包含用于官能化所述纳米管的至少一个官能部分。
CNB031367860A 2002-05-02 2003-04-29 聚合物和用该聚合物非共价官能化纳米管的方法 Expired - Fee Related CN1257197C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US37792002P 2002-05-02 2002-05-02
US60/377,920 2002-05-02
US06/377,920 2002-05-02
US10/318,730 2002-12-13
US10/318,730 US6905667B1 (en) 2002-05-02 2002-12-13 Polymer and method for using the polymer for noncovalently functionalizing nanotubes

Publications (2)

Publication Number Publication Date
CN1515598A true CN1515598A (zh) 2004-07-28
CN1257197C CN1257197C (zh) 2006-05-24

Family

ID=29218719

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031367860A Expired - Fee Related CN1257197C (zh) 2002-05-02 2003-04-29 聚合物和用该聚合物非共价官能化纳米管的方法

Country Status (7)

Country Link
US (3) US6905667B1 (zh)
EP (1) EP1359169B1 (zh)
JP (1) JP4406676B2 (zh)
KR (1) KR100650233B1 (zh)
CN (1) CN1257197C (zh)
AT (1) ATE434634T1 (zh)
DE (1) DE60328067D1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608623A (zh) * 2018-12-24 2019-04-12 山东省科学院新材料研究所 一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905667B1 (en) * 2002-05-02 2005-06-14 Zyvex Corporation Polymer and method for using the polymer for noncovalently functionalizing nanotubes
US20040034177A1 (en) * 2002-05-02 2004-02-19 Jian Chen Polymer and method for using the polymer for solubilizing nanotubes
US7153903B1 (en) * 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
KR100484317B1 (ko) * 2002-07-29 2005-04-20 학교법인고려중앙학원 π-공액 고분자 나노튜브, 나노와이어 및 이들의 제조방법
GB2421506B (en) * 2003-05-22 2008-07-09 Zyvex Corp Nanocomposites and methods thereto
US7759413B2 (en) * 2003-10-30 2010-07-20 The Trustees Of The University Of Pennsylvania Dispersion method
DE102004010455A1 (de) * 2004-03-01 2005-09-22 Basf Ag Thermoplastische Polyurethane enthaltend Kohlenstoffnanoröhren
US7534486B2 (en) * 2004-03-20 2009-05-19 Teijin Aramid B.V. Composite materials comprising PPTA and nanotubes
US20060054866A1 (en) * 2004-04-13 2006-03-16 Zyvex Corporation. Methods for the synthesis of modular poly(phenyleneethynlenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials
US20060293434A1 (en) * 2004-07-07 2006-12-28 The Trustees Of The University Of Pennsylvania Single wall nanotube composites
GB2416428A (en) * 2004-07-19 2006-01-25 Seiko Epson Corp Method for fabricating a semiconductor element from a dispersion of semiconductor particles
US7247670B2 (en) * 2004-08-24 2007-07-24 General Electric Company Nanotubes and methods of dispersing and separating nanotubes
US20070116627A1 (en) * 2005-01-25 2007-05-24 California Institute Of Technology Carbon nanotube compositions and devices and methods of making thereof
JP5215672B2 (ja) * 2005-03-04 2013-06-19 ノースウェスタン ユニバーシティ 密度勾配によるカーボンナノチューブの分離
FR2883879B1 (fr) * 2005-04-04 2007-05-25 Arkema Sa Materiaux polymeres contenant des nanotubes de carbone a dispersion amelioree leur procede de preparation
US7718224B2 (en) * 2005-08-04 2010-05-18 The Regents Of The University Of California Synthesis of single-walled carbon nanotubes
US7645482B2 (en) * 2005-08-04 2010-01-12 The Regents Of The University Of California Method to make and use long single-walled carbon nanotubes as electrical conductors
US7435476B2 (en) * 2005-10-13 2008-10-14 Honda Motor Co., Ltd. Functionalized nanotube material for supercapacitor electrodes
JP2007112473A (ja) * 2005-10-19 2007-05-10 Dt Japan Inc ディスクパッケージ、書籍、ノベルティ及びディスクパッケージの製造方法
JP2007137720A (ja) * 2005-11-18 2007-06-07 Teijin Ltd 窒化ホウ素ナノチューブ含有ポリマー分散液
JP2007138037A (ja) * 2005-11-18 2007-06-07 Teijin Ltd 芳香族ポリアミド成形体およびその製造方法
JP2007145677A (ja) * 2005-11-30 2007-06-14 Teijin Ltd 芳香族ポリアミドにより被覆された窒化ホウ素ナノチューブ
FR2893947A1 (fr) * 2005-11-30 2007-06-01 Arkema Sa Composition pulverulente de nanotubes de carbone, ses procedes d'obtention et ses utilisations, notamment dans des materiaux polymeres.
JP4670100B2 (ja) * 2006-03-01 2011-04-13 独立行政法人物質・材料研究機構 窒化ホウ素ナノチューブの精製方法
EP1845124A1 (en) * 2006-04-14 2007-10-17 Arkema France Conductive carbon nanotube-polymer composite
JP2007290929A (ja) * 2006-04-27 2007-11-08 National Institute For Materials Science ナノ構造体及びその製造方法
US8030376B2 (en) 2006-07-12 2011-10-04 Minusnine Technologies, Inc. Processes for dispersing substances and preparing composite materials
US20100137528A1 (en) * 2006-08-29 2010-06-03 Sample Jennifer L Method for Functionalizing Nanotubes and Improved Polymer-Nanotube Composites Formed Using Same
CN104163413B (zh) * 2006-08-30 2016-08-24 西北大学 单分散单壁碳纳米管群体及其制造方法
KR101390529B1 (ko) * 2006-10-11 2014-04-30 유니버시티 오브 플로리다 리서치 파운데이션, 인크. 펜던트 pi―상호작용/결합 치환기들을 함유하는 전기 활성 중합체,그의 탄소 나노튜브 복합물 및 이를 형성하는 방법
US20080227168A1 (en) * 2007-02-16 2008-09-18 Board Of Regents, The University Of Texas System Methods and materials for extra and intracellular delivery of carbon nanotubes
JP4971836B2 (ja) * 2007-03-05 2012-07-11 帝人株式会社 窒化ホウ素ナノチューブ分散液、及びそれより得られる不織布
FR2916364B1 (fr) 2007-05-22 2009-10-23 Arkema France Procede de preparation de pre-composites a base de nanotubes notamment de carbone
US20090038832A1 (en) * 2007-08-10 2009-02-12 Sterling Chaffins Device and method of forming electrical path with carbon nanotubes
KR20100063091A (ko) * 2007-08-29 2010-06-10 노쓰웨스턴유니버시티 분급된 탄소 나노튜브로부터 제조된 투명 전기 전도체 및 그의 제조 방법
WO2009033015A1 (en) * 2007-09-07 2009-03-12 Inorganic Specialists, Inc. Silicon modified nanofiber paper as an anode material for a lithium secondary battery
US20100196246A1 (en) * 2007-10-09 2010-08-05 Headwaters Technology Innovation, Llc Methods for mitigating agglomeration of carbon nanospheres using a crystallizing dispersant
US8859667B2 (en) 2007-12-20 2014-10-14 Xerox Corporation Carbon nanotube filled polycarbonate anti-curl back coating with improved electrical and mechanical properties
EP2242795B1 (en) * 2008-02-11 2016-07-06 Director General, Defence Research & Development Organisation Electrically conducting syntactic foam and a process for preparing the same
US8308930B2 (en) * 2008-03-04 2012-11-13 Snu R&Db Foundation Manufacturing carbon nanotube ropes
US8673258B2 (en) * 2008-08-14 2014-03-18 Snu R&Db Foundation Enhanced carbon nanotube
US8357346B2 (en) * 2008-08-20 2013-01-22 Snu R&Db Foundation Enhanced carbon nanotube wire
US8021640B2 (en) * 2008-08-26 2011-09-20 Snu R&Db Foundation Manufacturing carbon nanotube paper
US7959842B2 (en) 2008-08-26 2011-06-14 Snu & R&Db Foundation Carbon nanotube structure
US8692716B2 (en) * 2008-10-20 2014-04-08 Board Of Trustees Of The University Of Arkansas Nano and micro based antennas and sensors and methods of making same
US20110290484A1 (en) * 2009-01-16 2011-12-01 Jemei Chang Systems and methods for producing oil and/or gas
JP5439823B2 (ja) * 2009-01-19 2014-03-12 日産化学工業株式会社 カーボンナノチューブ分散・可溶化剤
WO2010144161A2 (en) * 2009-02-17 2010-12-16 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
US20100240900A1 (en) * 2009-03-23 2010-09-23 Headwaters Technology Innovation, Llc Dispersible carbon nanospheres and methods for making same
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
BRPI1016244A2 (pt) 2009-04-24 2016-04-26 Applied Nanostructured Sols compósito de proteção contra emi infundido com cnt e revestimento.
KR101696207B1 (ko) 2009-04-27 2017-01-13 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 복합 구조물 제빙을 위한 cnt계 저항 가열
US7976935B2 (en) * 2009-08-31 2011-07-12 Xerox Corporation Carbon nanotube containing intermediate transfer members
US20110124253A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in carbon-carbon composites
JP2013511429A (ja) * 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Cntを適合された宇宙ベース複合材料構造体
US20110123735A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in thermoset matrices
US8541072B2 (en) * 2009-11-24 2013-09-24 Xerox Corporation UV cured heterogeneous intermediate transfer belts (ITB)
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
BR112012018244A2 (pt) * 2010-02-02 2016-05-03 Applied Nanostructured Sols materiais de fibra infundidos com nanotubo de carbono contendo nanotubos de carbono alinhados em paralelo, métodos para produção dos mesmos e materiais compósitos derivados dos mesmos
DE102010002447A1 (de) * 2010-02-26 2011-09-01 Tutech Innovation Gmbh Klebstoff mit anisotroper elektrischer Leitfähigkeit sowie Verfahren zu dessen Herstellung und Verwendung
US8787001B2 (en) 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
BR112012021968A2 (pt) 2010-03-02 2016-06-07 Applied Nanostructured Sols dispositivos elétricos enrolados em espiral que contêm materiais de eletrodo infundidos por nanotubo de carbono e métodos e aparelhos para a produção dos mesmos
CN101792515B (zh) * 2010-04-02 2011-11-09 上海理工大学 一种马来酸酐接枝于等离子体活化的碳纳米管的制备方法
US8943641B2 (en) * 2010-06-03 2015-02-03 Linden Photonics, Inc. Method and apparatus for cleaning a fiber optic connector end face
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CN103443870A (zh) 2010-09-23 2013-12-11 应用纳米结构方案公司 作为自屏蔽线材用于增强的电力传输线的cnt并入的纤维
US8778226B2 (en) 2010-09-30 2014-07-15 Ut-Battelle, Llc Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface
TWI422429B (zh) 2010-12-22 2014-01-11 Ind Tech Res Inst 奈米碳材承載型觸媒及碳酸酯的製造方法
GB2497795B (en) 2011-12-21 2020-04-08 Schlumberger Holdings Derivatization of carbon
GB201122296D0 (en) 2011-12-23 2012-02-01 Cytec Tech Corp Composite materials
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
KR101820099B1 (ko) 2013-01-18 2018-01-18 에스프린팅솔루션 주식회사 저항 발열체, 이를 채용한 가열 부재, 및 정착 장치
WO2014143140A1 (en) * 2013-03-15 2014-09-18 Apv Nano Fusing, Llc Rubber products including carbon nanotubes and method of making same
US9828473B2 (en) 2013-05-10 2017-11-28 Zyvex Performance Materials, Inc. Nanoparticulates and a linear polymer delivery system
EP3026014A4 (en) * 2013-07-25 2017-03-29 Toray Industries, Inc. Carbon nanotube composite, semiconductor device, and sensor using same
KR101624389B1 (ko) * 2013-12-24 2016-05-25 주식회사 포스코 비공유결합 개질된 탄소구조체 및 이를 포함하는 탄소구조체/고분자 복합체
JP6312441B2 (ja) * 2014-01-09 2018-04-18 国立大学法人信州大学 単層カーボンナノチューブ、それを含む電極シート、それの製造方法、および、それの分散体の製造方法
KR102418666B1 (ko) 2014-05-29 2022-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 촬상 소자, 전자 기기, 촬상 소자의 구동 방법, 및 전자 기기의 구동 방법
US10029020B2 (en) * 2015-04-23 2018-07-24 Universiteit Gent Fullerene compositions
US10549996B2 (en) 2015-12-29 2020-02-04 Georgia Tech Research Corporation Polymer coated multiwall carbon nanotubes
RU181978U1 (ru) * 2017-12-01 2018-07-31 МСД Текнолоджис С.а.р.л. Бумага из углеродных нанотрубок с электрическими выводами

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5707916A (en) 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US5611964A (en) 1984-12-06 1997-03-18 Hyperion Catalysis International Fibril filled molding compositions
US5165909A (en) 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US6464908B1 (en) 1988-01-28 2002-10-15 Hyperion Catalysis International, Inc. Method of molding composites containing carbon fibrils
KR940000623B1 (ko) 1989-05-15 1994-01-26 히페리온 카탈리시스 인터내셔날 마이크로 탄소섬유 산화처리방법
US5098771A (en) 1989-07-27 1992-03-24 Hyperion Catalysis International Conductive coatings and inks
US5204038A (en) 1990-12-27 1993-04-20 The Regents Of The University Of California Process for forming polymers
JP2500277B2 (ja) * 1990-11-27 1996-05-29 三井東圧化学株式会社 フェノ―ル系樹脂パイプの押出成型方法および装置
US5281406A (en) 1992-04-22 1994-01-25 Analytical Bio-Chemistry Laboratories, Inc. Recovery of C60 and C70 buckminsterfullerenes from carbon soot by supercritical fluid extraction and their separation by adsorption chromatography
JPH0822733B2 (ja) 1993-08-04 1996-03-06 工業技術院長 カーボンナノチューブの分離精製方法
JP2526408B2 (ja) 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
US6203814B1 (en) 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
US5866434A (en) 1994-12-08 1999-02-02 Meso Scale Technology Graphitic nanotubes in luminescence assays
CN1192097C (zh) 1995-03-10 2005-03-09 梅索磅秤技术有限公司 多阵列、多特异性的电化学发光检验
US6140045A (en) 1995-03-10 2000-10-31 Meso Scale Technologies Multi-array, multi-specific electrochemiluminescence testing
US5627140A (en) 1995-05-19 1997-05-06 Nec Research Institute, Inc. Enhanced flux pinning in superconductors by embedding carbon nanotubes with BSCCO materials
US5824470A (en) 1995-05-30 1998-10-20 California Institute Of Technology Method of preparing probes for sensing and manipulating microscopic environments and structures
US6017390A (en) 1996-07-24 2000-01-25 The Regents Of The University Of California Growth of oriented crystals at polymerized membranes
EP0927331B1 (en) 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
US6180114B1 (en) 1996-11-21 2001-01-30 University Of Washington Therapeutic delivery using compounds self-assembled into high axial ratio microstructures
US5753088A (en) 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6770583B2 (en) 1997-03-14 2004-08-03 The United States Of America As Represented By The Secretary Of The Navy Transistion metal containing ceramic with metal nanoparticles
US6205016B1 (en) 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
US5968650A (en) 1997-11-03 1999-10-19 Hyperion Catalysis International, Inc. Three dimensional interpenetrating networks of macroscopic assemblages of randomly oriented carbon fibrils and organic polymers
US6113819A (en) 1997-11-03 2000-09-05 Hyperion Catalysis International, Inc. Three dimensional interpenetrating networks of macroscopic assemblages of oriented carbon fibrils and organic polymers
US6276214B1 (en) 1997-12-26 2001-08-21 Toyoaki Kimura Strain sensor functioned with conductive particle-polymer composites
ATE240906T1 (de) 1998-04-09 2003-06-15 Horcom Ltd Zusammensetzung enthaltend nanoröhren und eine organische verbindung
ATE261483T1 (de) 1998-05-05 2004-03-15 Massachusetts Inst Technology Lichtemittierende polymere und vorrichtungen, die diese enthalten
US6287765B1 (en) 1998-05-20 2001-09-11 Molecular Machines, Inc. Methods for detecting and identifying single molecules
US6426134B1 (en) 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
US6835366B1 (en) 1998-09-18 2004-12-28 William Marsh Rice University Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof, and use of derivatized nanotubes
KR100775878B1 (ko) 1998-09-18 2007-11-13 윌리엄 마쉬 라이스 유니버시티 단일벽 탄소 나노튜브의 용매화를 용이하게 하기 위한 단일벽 탄소 나노튜브의 화학적 유도체화 및 그 유도체화된 나노튜브의 사용 방법
US6630772B1 (en) 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
JP4409003B2 (ja) 1998-09-24 2010-02-03 三星エスディアイ株式会社 フィールドエミッションディスプレイ用エレクトロンエミッタ組成物及びこれを利用したエレクトロンエミッタの製造方法
US6597090B1 (en) 1998-09-28 2003-07-22 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of MEMS devices
US6146227A (en) 1998-09-28 2000-11-14 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of MEMS devices
US6641793B2 (en) 1998-10-02 2003-11-04 University Of Kentucky Research Foundation Method of solubilizing single-walled carbon nanotubes in organic solutions
US6187823B1 (en) 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
US6331262B1 (en) 1998-10-02 2001-12-18 University Of Kentucky Research Foundation Method of solubilizing shortened single-walled carbon nanotubes in organic solutions
US6368569B1 (en) 1998-10-02 2002-04-09 University Of Kentucky Research Foundation Method of solubilizing unshortened carbon nanotubes in organic solutions
US6531513B2 (en) 1998-10-02 2003-03-11 University Of Kentucky Research Foundation Method of solubilizing carbon nanotubes in organic solutions
US6284832B1 (en) 1998-10-23 2001-09-04 Pirelli Cables And Systems, Llc Crosslinked conducting polymer composite materials and method of making same
US6432320B1 (en) 1998-11-02 2002-08-13 Patrick Bonsignore Refrigerant and heat transfer fluid additive
WO2000044094A1 (en) 1999-01-21 2000-07-27 University Of South Carolina Molecular computer
US6555945B1 (en) 1999-02-25 2003-04-29 Alliedsignal Inc. Actuators using double-layer charging of high surface area materials
US6280697B1 (en) 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
US6315956B1 (en) 1999-03-16 2001-11-13 Pirelli Cables And Systems Llc Electrochemical sensors made from conductive polymer composite materials and methods of making same
US6299812B1 (en) 1999-08-16 2001-10-09 The Board Of Regents Of The University Of Oklahoma Method for forming a fibers/composite material having an anisotropic structure
US20010016283A1 (en) 1999-09-09 2001-08-23 Masashi Shiraishi Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same
US6741019B1 (en) 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
CA2368043A1 (en) 1999-10-27 2001-05-03 William Marsh Rice University Macroscopic ordered assembly of carbon nanotubes
US6352782B2 (en) 1999-12-01 2002-03-05 General Electric Company Poly(phenylene ether)-polyvinyl thermosetting resin
US6599961B1 (en) 2000-02-01 2003-07-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
EP1261862A2 (en) 2000-02-22 2002-12-04 California Institute of Technology Development of a gel-free molecular sieve based on self-assembled nano-arrays
CN100506293C (zh) 2000-03-15 2009-07-01 祥丰医疗有限公司 促进内皮细胞粘附的涂层
US6610351B2 (en) * 2000-04-12 2003-08-26 Quantag Systems, Inc. Raman-active taggants and their recognition
US6524466B1 (en) 2000-07-18 2003-02-25 Applied Semiconductor, Inc. Method and system of preventing fouling and corrosion of biomedical devices and structures
US6709566B2 (en) 2000-07-25 2004-03-23 The Regents Of The University Of California Method for shaping a nanotube and a nanotube shaped thereby
US20020102617A1 (en) 2000-08-03 2002-08-01 Macbeath Gavin Protein microarrays
US6749712B2 (en) 2000-08-23 2004-06-15 Nano Dynamics, Inc. Method of utilizing sol-gel processing in the production of a macroscopic two or three dimensionally ordered array of single wall nonotubes (SWNTs)
US7008563B2 (en) 2000-08-24 2006-03-07 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
US6861481B2 (en) 2000-09-29 2005-03-01 Solvay Engineered Polymers, Inc. Ionomeric nanocomposites and articles therefrom
KR100395902B1 (ko) 2000-11-01 2003-08-25 학교법인 서강대학교 제올라이트 또는 유사분자체의 패턴화된 단층 또는 다층복합체의 제조 방법 및 이에 의해 제조된 복합체
US6682677B2 (en) 2000-11-03 2004-01-27 Honeywell International Inc. Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns
AU2904602A (en) 2000-12-11 2002-06-24 Harvard College Nanosensors
US6783746B1 (en) 2000-12-12 2004-08-31 Ashland, Inc. Preparation of stable nanotube dispersions in liquids
US6634321B2 (en) 2000-12-14 2003-10-21 Quantum Fuel Systems Technologies Worldwide, Inc. Systems and method for storing hydrogen
WO2002093738A2 (en) 2001-01-19 2002-11-21 California Institute Of Technology Carbon nanobimorph actuator and sensor
WO2003004944A2 (en) 2001-01-30 2003-01-16 Materials And Electrochemical Research (Mer) Corporation Nano carbon materials for enhancing thermal transfer in fluids
US6782154B2 (en) 2001-02-12 2004-08-24 Rensselaer Polytechnic Institute Ultrafast all-optical switch using carbon nanotube polymer composites
JP3991602B2 (ja) 2001-03-02 2007-10-17 富士ゼロックス株式会社 カーボンナノチューブ構造体の製造方法、配線部材の製造方法および配線部材
IL142254A0 (en) 2001-03-26 2002-03-10 Univ Ben Gurion Method for the preparation of stable suspensions of single carbon nanotubes
US8029734B2 (en) 2001-03-29 2011-10-04 The Board Of Trustees Of The Leland Stanford Junior University Noncovalent sidewall functionalization of carbon nanotubes
US6737939B2 (en) 2001-03-30 2004-05-18 California Institute Of Technology Carbon nanotube array RF filter
US6803840B2 (en) 2001-03-30 2004-10-12 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
WO2002088025A1 (en) 2001-04-26 2002-11-07 New York University Method for dissolving carbon nanotubes
US6723299B1 (en) 2001-05-17 2004-04-20 Zyvex Corporation System and method for manipulating nanotubes
CA2450014A1 (en) 2001-06-08 2002-12-19 Eikos, Inc. Nanocomposite dielectrics
US6824974B2 (en) 2001-06-11 2004-11-30 Genorx, Inc. Electronic detection of biological molecules using thin layers
US6783702B2 (en) 2001-07-11 2004-08-31 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
US6670179B1 (en) 2001-08-01 2003-12-30 University Of Kentucky Research Foundation Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth
US6669918B2 (en) 2001-08-07 2003-12-30 The Mitre Corporation Method for bulk separation of single-walled tubular fullerenes based on chirality
US6680016B2 (en) 2001-08-17 2004-01-20 University Of Dayton Method of forming conductive polymeric nanocomposite materials
US6900264B2 (en) * 2001-08-29 2005-05-31 Georgia Tech Research Corporation Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same
JP2003073591A (ja) 2001-09-03 2003-03-12 Fuji Photo Film Co Ltd インク組成物およびインクジェット記録方法
JP5061414B2 (ja) 2001-09-27 2012-10-31 東レ株式会社 薄膜トランジスタ素子
US6758891B2 (en) 2001-10-09 2004-07-06 Degussa Ag Carbon-containing material
JP3654236B2 (ja) 2001-11-07 2005-06-02 株式会社日立製作所 電極デバイスの製造方法
JP2003292801A (ja) 2002-02-04 2003-10-15 Toray Ind Inc 重合体コンポジット
JP3922039B2 (ja) 2002-02-15 2007-05-30 株式会社日立製作所 電磁波吸収材料及びそれを用いた各種製品
US7390452B2 (en) * 2002-03-08 2008-06-24 Board Of Regents, The University Of Texas System Electrospinning of polymer and mesoporous composite fibers
US6805801B1 (en) 2002-03-13 2004-10-19 Novellus Systems, Inc. Method and apparatus to remove additives and contaminants from a supercritical processing solution
US6774333B2 (en) 2002-03-26 2004-08-10 Intel Corporation Method and system for optically sorting and/or manipulating carbon nanotubes
US20040034177A1 (en) * 2002-05-02 2004-02-19 Jian Chen Polymer and method for using the polymer for solubilizing nanotubes
US6905667B1 (en) * 2002-05-02 2005-06-14 Zyvex Corporation Polymer and method for using the polymer for noncovalently functionalizing nanotubes
US6852410B2 (en) 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
JP4120315B2 (ja) 2002-08-22 2008-07-16 富士ゼロックス株式会社 光スイッチングシステム
US6843850B2 (en) 2002-08-23 2005-01-18 International Business Machines Corporation Catalyst-free growth of single-wall carbon nanotubes
US6798127B2 (en) 2002-10-09 2004-09-28 Nano-Proprietary, Inc. Enhanced field emission from carbon nanotubes mixed with particles
US6805642B2 (en) 2002-11-12 2004-10-19 Acushnet Company Hybrid golf club shaft
US6790790B1 (en) 2002-11-22 2004-09-14 Advanced Micro Devices, Inc. High modulus filler for low k materials
US6746971B1 (en) 2002-12-05 2004-06-08 Advanced Micro Devices, Inc. Method of forming copper sulfide for memory cell
US6773954B1 (en) 2002-12-05 2004-08-10 Advanced Micro Devices, Inc. Methods of forming passive layers in organic memory cells
US6770905B1 (en) 2002-12-05 2004-08-03 Advanced Micro Devices, Inc. Implantation for the formation of CuX layer in an organic memory device
US6656763B1 (en) 2003-03-10 2003-12-02 Advanced Micro Devices, Inc. Spin on polymers for organic memory devices
US6825060B1 (en) 2003-04-02 2004-11-30 Advanced Micro Devices, Inc. Photosensitive polymeric memory elements
US6842328B2 (en) 2003-05-30 2005-01-11 Joachim Hossick Schott Capacitor and method for producing a capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608623A (zh) * 2018-12-24 2019-04-12 山东省科学院新材料研究所 一种用于碳纳米管分散的间苯乙炔基高分子聚合物及其制备方法

Also Published As

Publication number Publication date
JP4406676B2 (ja) 2010-02-03
JP2004002849A (ja) 2004-01-08
KR20030086443A (ko) 2003-11-10
US6905667B1 (en) 2005-06-14
US7547472B2 (en) 2009-06-16
ATE434634T1 (de) 2009-07-15
EP1359169A2 (en) 2003-11-05
US20080187482A1 (en) 2008-08-07
CN1257197C (zh) 2006-05-24
DE60328067D1 (de) 2009-08-06
KR100650233B1 (ko) 2006-11-27
EP1359169B1 (en) 2009-06-24
US7241496B2 (en) 2007-07-10
US20060002841A1 (en) 2006-01-05
EP1359169A3 (en) 2003-11-19

Similar Documents

Publication Publication Date Title
CN1257197C (zh) 聚合物和用该聚合物非共价官能化纳米管的方法
Banerjee et al. Covalent surface chemistry of single‐walled carbon nanotubes
KR100582330B1 (ko) 폴리머 및 나노튜브를 용해시키기 위한 이 폴리머의 이용방법
Punetha et al. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene
Tasis et al. Chemistry of carbon nanotubes
Lin et al. Chemistry of carbon nanotubes
Jeon et al. Functionalization of carbon nanotubes
Meng et al. Advanced technology for functionalization of carbon nanotubes
Banerjee et al. Rational chemical strategies for carbon nanotube functionalization
Brozena et al. Outer wall selectively oxidized, water-soluble double-walled carbon nanotubes
Murakami et al. Soluble carbon nanotubes and their applications
Nakashima Solubilization of single-walled carbon nanotubes with condensed aromatic compounds
Curran et al. Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding
Campidelli Click chemistry for carbon nanotubes functionalization
CN1239604C (zh) 聚合物和用该聚合物加溶纳米管的方法
Fu et al. Deuterium attachment to carbon nanotubes in deuterated water
Melchionna et al. 3—Functionalization of carbon nanotubes
Saraireh et al. Chemical properties of carbon nanotubes
Akbar et al. Functionalization of carbon nanotubes: Manufacturing techniques and properties of customized nanocomponents for molecular-level technology
Qu et al. Functionalization and applications of carbon nanotubes
Murmu et al. Carbon Nanotubes: Types of Functionalization
Shaik Di-thiafulvalene functionalized phenylene acetylene-polymers for selective dispersion of single walled carbon nanotubes (SWNTs)
Sorescu Phthalocyanine-based organic supramolecular nanomaterials: A literature review
Dai Carbon nanotubes
Herranz et al. Polymer Based on Carbon Nanotubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SAIWEI HIGH-PERFORMANCE MATERIALS; UNIVERSITY OF

Free format text: FORMER OWNER: CEWY INC.; UNIVERSITY OF PITTSBURGH HIGHER EDUCATION FEDERAL RESERVE SYSTEM

Effective date: 20080822

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080822

Address after: Texas, USA

Co-patentee after: University of Pittsburgh of the Commonwealth System of Higher Education

Patentee after: Saiwei high performance materials

Address before: Texas, USA

Co-patentee before: University of Pittsburgh of the Commonwealth System of Higher Education

Patentee before: Security company

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060524