CN1516903A - 减小结电容的soi器件 - Google Patents

减小结电容的soi器件 Download PDF

Info

Publication number
CN1516903A
CN1516903A CNA02811244XA CN02811244A CN1516903A CN 1516903 A CN1516903 A CN 1516903A CN A02811244X A CNA02811244X A CN A02811244XA CN 02811244 A CN02811244 A CN 02811244A CN 1516903 A CN1516903 A CN 1516903A
Authority
CN
China
Prior art keywords
layer
buried oxide
oxide layer
doped region
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA02811244XA
Other languages
English (en)
Other versions
CN1295796C (zh
Inventor
��˹��ŵ��
古川俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1516903A publication Critical patent/CN1516903A/zh
Application granted granted Critical
Publication of CN1295796C publication Critical patent/CN1295796C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands

Abstract

一种硅/绝缘体(SOI)场效应晶体管(FET)包含硅衬底,其硅层在氧化物埋层上,氧化物埋层有掺杂区和未掺杂区。掺杂区的介电常数不同于未掺杂区。硅层中还有一本体区将硅层中的源/漏区分开。源/漏区安排在掺杂区上面,而本体区安排在未掺杂区上面。栅介电层在本体区上面,而栅导体层在栅介电层上面。

Description

减小结电容的SOI器件
技术领域
本发明涉及到硅/绝缘体(SOI)场效应晶体管(FETs)领域,更确切地说,涉及到一种减小结区电容的SOI FET和所述器件的制作方法。
背景技术
在SOI技术中,硅层制作在绝缘层如氧化硅上,而绝缘层则制作在衬底上。此绝缘层常称为氧化物埋层(BOX)或简称BOX。晶体管的源区和漏区是,例如,在薄硅层中离子注入n型或p型掺杂剂而成的,在源与漏间形成本体区。栅极则由,例如,在薄硅层表面上淀积栅介电层和导体层,接着光刻图形并腐蚀而成。
SOI技术的FET比采用硅体材料技术构造的FET有很大的优越性。SOI技术的优点有减小短沟道效应、较低的寄生电容和增大漏极开态电流。然而,随着SOI FET尺寸日益缩小带来的优点是,例如,减小结区电容,而随着BOX的缩小(减薄),结区电容增大。结区电容的增大又引起器件性能退降。
转至图1,图1为SOI FET的部分剖面图,说明了各种有源和寄生电容。FET 100包含硅衬底105、制作在衬底上的BOX 110、以及制作在BOX上面的薄硅层115。FET 100还包含制作在硅层115中的源/漏区120以及也制作在硅层中使源/漏分开的本体区125。FET 100还包含栅介电层130、栅导体层135、以及制作在栅导体层135侧壁145上的侧壁隔层140。从硅层115上表面150,经硅层延伸至BOX 110的是浅沟道隔离层(STI)155。
有源和寄生电容的位置如下。在栅导体层135与本体区125之间存在有前栅电容160。前栅电容160的介电层是栅介电层130。在源/漏区120各自与衬底105间存在有结区电容165。在本体区125与衬底105间存在有背栅电容170。结区电容165和背栅电容170的介电层为BOX 110。这些电容的容量由熟知的公式给出:
C=ε0εOX/TOX
式中C为电容,ε0为自由空间的介电常数,εOX为介电层的介电常数,和TOX为介电层的厚度。希望前栅电容160要大,以增大开态电流和减小关态电流。这是由减小栅介电层130的厚度或使用介电常数更高的材料作为栅介电层来实现的。出于上述原因,希望结区电容165要小。然而,又同时希望背栅电容170要大。希望背栅电容170大的原因是改善对关态电流的控制和阈值电压的控制。由于结区电容165和背栅电容170的介电层都是BOX 110,显然不能同时优化结区电容和背栅电容。
图2为说明各种有源和寄生电容的双BOX SOI FET的部分剖面图。图2的目的是说明双BOX SOI器件仍有上述单BOX器件的问题。FET 200包含硅衬底205、制作在衬底上的第一厚BOX 210、制作在第一BOX上的第一薄硅层215,掺杂至1018-1019原子/cm3、制作在第一硅层上的第二薄BOX 220、以及制作在第二BOX上的第二薄硅层225。FET 200还包含制作在第二硅层225中的源/漏区230和也制作在第二硅层中使源/漏区分开的本体区235。FET 200还包含栅介电层240、栅导体层245、以及制作在栅导体层245侧壁255上的侧壁隔层250。从第二硅层225上表面255,经第二硅层、第二BOX220、第一硅层215延伸至第一BOX 210的是STI 260。
其有源和寄生电容的位置如下。在栅极245与本体区235间存在有前栅电容265。前栅电容265的介电层是栅介电层240。在源/漏区230各自与第一硅层215间存在有结区电容270。在本体区235与第一硅层215间存在有背栅电容275。结区电容270和背栅电容275的介电层是第二BOX 220。在第一硅层215与衬底205间存在有衬底电容280。衬底电容280的介电层是第一BOX 210。虽然第一BOX210可为厚层以减小衬底电容280的容量,又由于结区电容270和背栅电容275的介电层都是第二BOX 220,显然,不能同时优化结区电容和背栅电容。
因此,需要一种制作SOI FET的方法,该FET具有小的结区电容和大的背栅电容,以在缩小尺寸时获得SOI技术的所有益处。
发明内容
本发明的第一方面为一种半导体结构,该结构包含:介电层,此介电层具有第一和第二区,第一介电区具有第一介电常数,第二介电区具有与第一介电常数不同的第二介电常数。
本发明的第二方面为一种SOI FET,包含:硅衬底,其硅层在具有掺杂区和未掺杂区的氧化物埋层上面,未掺杂区的介电常数与掺杂区的介电常数不同;硅层中的源/漏区被硅层中的本体区分开,源/漏区安排在掺杂区上面,本体区安排在未掺杂区上面;以及在本体区上面的栅介电层和在栅介电层上面的栅导体层。
本发明的第三方面为一种制作半导体结构的方法,包括:提供介电层;在此介电层中制作第一区,此第一区具有第一介电常数;以及在第二介电层中制作第二区,此第二区具有不同于第一介电常数的第二介电常数。
本发明的第四方面为一种制作SOI FET的方法,包括:提供硅衬底,其硅层在氧化物埋层上面;在硅层上制作栅介电层;在栅介电层上制作栅导体层;在硅层中制作源/漏区;源和漏区被硅层中的本体区分开,此本体区安排在栅极下面;以及在氧化物埋层中制作掺杂区,此掺杂区安排在源/漏区下面,且其介电常数不同于氧化物埋层未掺杂区的介电常数。
附图说明
本发明的特点在所附权利要求中做了描述。然而参照下面对所示实施方式的详细描述并结合附图,将可最好地了解此发明,其中:
图1为说明各种有源和寄生电容的SOI FET的部分剖面图;
图2为说明各种有源和寄生电容的双BOX SOI FET的部分剖面图;
图3A-3E为说明根据本发明第一种实施方式制作SOI FET的部分剖面图;
图4为说明根据本发明第一种实施方式制作的双BOX SOI FET的部分剖面图;
图5A-5F为说明根据本发明第二种实施方式制作SOI FET的部分剖面图;
图6为说明根据本发明第二种实施方式制作的双BOX SOI FET的部分剖面图;
图7为说明根据本发明第三种实施方式制作SOI FET的部分剖面图。
具体实施方式
参见图3A-3E,这是说明根据本发明第一种实施方式制作SOIFET器件的部分剖面图。此制作方法始于图3A,硅衬底300含有薄硅层310和衬底之间的BOX 305。从硅层310上表面315,经硅层延伸至BOX 305的是STI 320。STI 320可由以下步骤形成:先进行光刻,接着由硅衬底300的反应离子刻蚀(RIE)形成降至BOX 305的沟槽,再淀积绝缘体填充沟槽,然后进行化学机械抛光(CMP)打平表面来制成上表面315。在一个实例中,BOX 305是用离子注入氧来制成50-500厚的氧化硅,而硅层310为50-500厚,n型或p型掺杂至1016-1018原子/cm3。制作在上表面315上面的是栅介电层325。在一个实例中,栅介电层325为氧化硅,是用热氧化或化学汽相沉积(CVD)制作的,厚约10-50。在另一个实例中,栅介电层325为氮氧化硅,是用热氧化接着用遥控等离子体氮化(RPN)或非耦合等离子体氮化(DPN)使氧化物氮化而成的。在还有一个实例中,栅介电层325为高κ值材料,如用CVD制作的氧化铝或氧化铪。制作在栅介电层325上面的是栅导体层330,制作在栅导体层上面的是硬掩模335。在一个实例中,栅导体层330为用CVD制作的多晶硅,厚约500-2000,硬掩模335为用氧化或CVD制作的氧化硅、CVD制作的氮化硅、或其组合,厚100-1000。硬掩模335用来防止以后的离子注入过程透入栅导体层330或栅介电层325,如图3D所示和下面所述。制作在硬掩模335上的是光致抗蚀剂340。对光致抗蚀剂340刻制FET的栅极图形,使之安排在STI 320间的硅层310上。
在图3B中,用RIE工艺使光致抗蚀剂图形340转换为栅导体层330和硬掩模335的图形,然后除去光致抗蚀剂。在栅极330/硬掩模335的侧壁350上制作侧壁隔层345。侧壁隔层345可用保形(conformal)淀积介电材料然后进行RIE工艺而成。在一个实例中,侧壁隔层345为氮化硅,在侧壁隔层345/栅介电层325的界面360处其宽度为约100-2000。
在图3C中,源/漏区365已制作在硅层310中,是用离子注入n型或p型掺杂剂至浓度为1019-1021原子/cm3,接着进行退火而成的。侧壁隔层345限制了源/漏区365在栅极330下面的扩展。硅层310在源/漏区365之间和栅极330下面的区域现在为本体区370。显然,对于PFET,源/漏区365为p型掺杂,本体区370为n型,而对于NFET,源/漏区365为n型掺杂,本体区370为p型。应看到,图3C说明的是全耗尽型器件,但也可说明部分耗尽型器件。
在图3D中,进行氟的离子注入,在BOX 305中产生富氟氧化物区375。侧壁隔层345限制了富氟氧化物区375在栅极330下面的扩展。氟的注入是在这样的条件下进行的,即,其能量使注入分布的峰值在BOX 305内,并有充足的剂量使BOX 305在图3E说明并如下面所述的退火步骤后,其介电常数降低5-25%。在一个实例中,氟注入的剂量为约1×1014-1×1017原子/cm2,能量为约2-40Kev。
在图3E中,为了激活氟,在氮气或其他惰性气氛中在600-1100℃下进行退火。氟的激活驱使氟进入氧化硅晶格而产生氟化BOX380。氟化BOX 380在本体区370中没有明显的扩展。在一个实例中,BOX 305的介电常数为3.9,而氟化BOX 380的介电常数为约3.7-2.9。参见图1和图3E,由于BOX 305和氟化BOX 380的TOX是相同的,但BOX 305的εOX高于氟化BOX 380的εOX,则由源/漏区365、氟化BOX 380和衬底300组成的结区电容的容量小于由本体区370、BOX 305和衬底300组成的背栅电容的容量。
图4为说明根据本发明第一种实施方式制作双BOX SOI FET的部分剖面图,并且除了添加在BOX 305和氟化BOX 380下面的第二硅层385和在第二硅层与衬底300间的第二BOX 390之外,与图3E相同。此外,STI 320经氟化BOX 380、第二硅层385延伸至第二BOX 390。
图5A-5F为说明根据本发明的第二种实施方式制作SOI FET的部分剖面图。图5A-5C与上述的图3A-3C相同。此制作方法始于图5A,硅衬底400含有介于薄硅层410和衬底之间的BOX 405。从硅层410上表面415,经硅层延伸至BOX 405的是STI 420。在一个实例中,BOX 405包含厚约50-500的氧化硅,硅层410厚50-500,p型或n型掺杂至约1015-1018原子/cm3。制作在上表面415上面的是栅介电层425。在一个实例中,栅介电层425是厚为约10-50的二氧化硅。制作在栅介电层425上面的是栅导体层430,制作在栅导体层上面的是硬掩模435。在一个实例中,栅导体层430为多晶硅,厚约500-2000,硬掩模435为氧化硅、氮化硅或其组合,厚100-1000。硬掩模435用来防止以后的离子注入过程透入栅导体层430或栅介电层425,如图5E所示和下面所述。制作在硬掩模435上面的是光致抗蚀剂440。对光致抗蚀剂440刻制FET栅极图形,并使之安排在STI 420间的硅层410上。
在图5C中,源/漏区465已制作在硅层410中,是用离子注入n型或p型掺杂剂至浓度为约1019-1021原子/cm3,接着进行退火而成的。侧壁隔层445限制了源/漏区465在栅极430下面的扩展。硅层410在源/漏区465之间和栅极430下面的区域现在为本体区470。应看到,图5C说明的是全耗尽型器件,但也可说明部分耗尽型器件。
在图5D中,第二侧壁隔层475制作在第一侧壁隔层445的侧面480上。在一个实例中,第二侧壁隔层475为氮化硅,在第二侧壁隔层475/栅介电层425的界面485处其宽度为约100-2000。
在图5E中,进行氟的离子注入,以在BOX 405中产生富氟氧化物区490。氟的注入是在这样的条件下进行的,即,其能量使注入分布的峰值在BOX 405内,并有充足的剂量使BOX 405在图3E说明的退火步骤后并如下面所述,其介电常数降低约5-25%。在一个实例中,氟注入的剂量为约1×1014-1×1017原子/cm2,能量为约2-40Kev。
在图5F中,为了激活氟,在氮气或其他惰性气氛中在600-1100℃下进行退火。氟的激活驱使氟进入氧化硅晶格而产生氟化BOX495。氟化BOX 495在本体区470中没有明显的扩展。在一个实例中,BOX 405的介电常数为3.9,而氟化BOX 495的介电常数为约3.7-2.9。参见图2和图5F,由于BOX 405和氟化BOX 495的TOX是相同的,但BOX 405的εOX高于氟化BOX 495的εOX,则由源/漏区465、氟化BOX 495和衬底400组成的结区电容的容量小于由本体区470、BOX 405和衬底400组成的背栅电容的容量。
图6为说明根据本发明第二种实施方式制作双BOX SOI FET的部分剖面图,并且除了在BOX 405和BOX 495下面添加第二硅层500和在第二硅层与衬底400间添加第二BOX 505外,与图5E相同。此外,STI 420经氟化BOX 495、第二硅层500延伸至第二BOX505。
图7为说明根据本发明第三种实施方式制作SOI FET的部分剖面图。图7拟更换图3D所示和上述的工艺。此外,去掉了制作硬掩模335的步骤。在图7中,在栅极330和栅介电层325的上表面515上制作第二光致抗蚀剂层510。对光致抗蚀剂层510刻制稍大于图3A所示的FET栅极图形,并安排得使侧壁520处于隔层345与STI320之间的源/漏区365上。这种实施方式特别适于具有长的栅长的大FET器件。
第二光致抗蚀剂层510的侧壁520限制了富氟氧化物区375在栅极330下面的扩展。氟的注入是在这样的条件下进行的,即,其能量使注入分布的峰值在BOX 305内,并有充足的剂量使BOX 305在图3E说明的退火步骤后,其介电常数降低约5-25%。在一个实例中,氟注入的剂量为约1×1014-1×1017原子/cm2,能量为约2-40Kev。
上面给出了对本发明各实施方式的描述以了解本发明。将会了解,本发明不只是此处所描述的特定实施方式,而是能够作出各种修改、重新安排和代换而不超出本发明的范围,对于本技术领域的熟练人员这都是明显的。例如,本发明可适用于凸起源/漏区的FET,其中的氟注入和退火步骤可在制作凸起的源/漏区之前或之后进行。此外,可将在制作源/漏区之前进行氟注入和退火步骤代之以在氟注入和退火后制作栅极,然后制作源/漏区隔层、注入和退火。

Claims (18)

1.一种硅/绝缘体(SOI)场效应晶体管(FET)包含:
硅衬底(300),其硅层(310)在氧化物埋层(305)上面,氧化物埋层具有掺杂区(380)和未掺杂区(305),所述未掺杂区的介电常数不同于所述掺杂区的介电常数;
在所述硅层中的源/漏区(365),由所述硅层中的本体区(370)分开,所述源/漏区安排在所述掺杂区上面,而所述本体区安排在所述未掺杂区上面;以及
在所述本体区上面的栅介电层(325)和在所述栅介电层上的栅极(330)。
2.在权利要求1的SOI FET中,所述掺杂区的所述介电常数小于所述未掺杂区的所述介电常数。
3.在权利要求2的SOI FET中,所述掺杂区的所述介电常数比所述未掺杂区的所述介电常数小5-25%。
4.任何前述权利要求的SOI FET,其所述掺杂区是掺氟的。
5.在任何前述权利要求的SOI FET中,所述氧化物埋层为第一氧化物埋层,还包含在第二氧化物埋层上面的第二硅层,所述第二硅层和所述第二氧化物埋层处于所述第一氧化物埋层与所述衬底之间。
6.在权利要求1-5任一个的SOI FET中,所述硅层为50-500厚,所述氧化物埋层为50-500厚。
7.一种制作硅/绝缘体(SOI)场效应晶体管(FET)的方法,包括:
提供硅衬底(300),其硅层(310)在氧化物埋层(305)上面;
在硅层上面制作栅介电层(325);
在所述栅介电层上面制作栅导体层(330);
在所述硅层中制作源/漏区(365),所述源/漏区被所述硅层中的本体区分开,所述本体区安排在所述栅极下面;以及
在所述氧化物埋层中制作掺杂区(380),所述掺杂区安排在所述源/漏区之下,且其介电常数不同于所述氧化物埋层未掺杂区(305)的所述介电常数。
8.在权利要求7的方法中,所述掺杂区通过注入氟而掺氟。
9.在权利要求8的方法中,氟的注入是在注入能量足以使氟注入分布的峰值处于所述氧化物埋层中的条件下进行的。
10.权利要求8或9的方法,还包括在600-1100℃的温度范围对所述SOI FET进行退火。
11.在权利要求7-10的任何方法中,所述掺杂区的所述介电常数比所述未掺杂埋层氧化物的所述介电常数低5-25%。
12.权利要求8-10的任何方法,还包括在所述栅极侧壁上制作第一隔层,以限制所述源/漏区和所述氟注入在所述栅极下面的扩展。
13.权利要求12的方法,还包括在所述第一隔层的侧面上制作第二隔层,以限制所述氟注入在所述栅极下面的扩展。
14.权利要求7的方法,还包括在所述栅极上面制作硬掩模。
15.权利要求8-10的任何方法,还包括在所述栅极上面刻制光致抗蚀剂图形层,所述光致抗蚀剂层的边缘扩展并安排至所述源/漏区上,以限制所述氟注入在所述栅极下面的扩展。
16.在权利要求7-15的任何方法中,所述硅层为50-500厚,所述氧化物埋层为50-500厚。
17.在权利要求7的方法中,所述氧化物埋层是第一氧化物埋层,还包含在第二氧化物埋层上的第二硅层,所述第二硅层和所述第二氧化物埋层处于所述第一氧化物埋层与所述衬底之间。
18.在权利要求8-10的任何方法中,所述氟的注入剂量为1×1014-1×1017原子/cm2,能量为2-40Kev。
CNB02811244XA 2001-06-06 2002-05-20 场效应晶体管及其制作方法 Expired - Lifetime CN1295796C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/681,794 2001-06-06
US09/681,794 US6596570B2 (en) 2001-06-06 2001-06-06 SOI device with reduced junction capacitance

Publications (2)

Publication Number Publication Date
CN1516903A true CN1516903A (zh) 2004-07-28
CN1295796C CN1295796C (zh) 2007-01-17

Family

ID=24736842

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02811244XA Expired - Lifetime CN1295796C (zh) 2001-06-06 2002-05-20 场效应晶体管及其制作方法

Country Status (10)

Country Link
US (4) US6596570B2 (zh)
EP (1) EP1393381B1 (zh)
JP (1) JP2004528731A (zh)
KR (1) KR20030095402A (zh)
CN (1) CN1295796C (zh)
AT (1) ATE456157T1 (zh)
DE (1) DE60235162D1 (zh)
MY (1) MY127799A (zh)
TW (1) TW579599B (zh)
WO (1) WO2002099891A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638845B2 (en) 2005-10-03 2009-12-29 Seiko Epson Corporation Semiconductor device with buried conductive layer
CN102339784A (zh) * 2011-09-28 2012-02-01 上海宏力半导体制造有限公司 具有阶梯型氧化埋层的soi结构的制作方法
CN106158639A (zh) * 2015-04-01 2016-11-23 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法
CN107634101A (zh) * 2017-09-21 2018-01-26 中国工程物理研究院电子工程研究所 具有三段式埋氧层的半导体场效应晶体管及其制造方法
CN110649036A (zh) * 2018-06-27 2020-01-03 台湾积体电路制造股份有限公司 配置为表现绝缘体上半导体行为的块状半导体衬底

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030044394A (ko) * 2001-11-29 2003-06-09 주식회사 하이닉스반도체 듀얼 게이트절연막을 구비한 반도체소자의 제조 방법
US20030153149A1 (en) * 2002-02-08 2003-08-14 Zhong Dong Floating gate nitridation
US7494901B2 (en) * 2002-04-05 2009-02-24 Microng Technology, Inc. Methods of forming semiconductor-on-insulator constructions
JP3664704B2 (ja) * 2002-10-03 2005-06-29 沖電気工業株式会社 半導体装置
KR100468785B1 (ko) * 2003-02-19 2005-01-29 삼성전자주식회사 포켓영역을 구비하는 모스 전계효과 트랜지스터의 제조방법
US7291568B2 (en) * 2003-08-26 2007-11-06 International Business Machines Corporation Method for fabricating a nitrided silicon-oxide gate dielectric
US7672558B2 (en) 2004-01-12 2010-03-02 Honeywell International, Inc. Silicon optical device
SE527487C2 (sv) * 2004-03-02 2006-03-21 Infineon Technologies Ag En metod för framställning av en kondensator och en monolitiskt integrerad krets innefattande en sådan kondensator
US20060063679A1 (en) * 2004-09-17 2006-03-23 Honeywell International Inc. Semiconductor-insulator-semiconductor structure for high speed applications
US7354814B2 (en) * 2004-09-23 2008-04-08 Freescale Semiconductor, Inc. Semiconductor process with first transistor types oriented in a first plane and second transistor types oriented in a second plane
US7315075B2 (en) * 2005-01-26 2008-01-01 International Business Machines Corporation Capacitor below the buried oxide of SOI CMOS technologies for protection against soft errors
US7709313B2 (en) * 2005-07-19 2010-05-04 International Business Machines Corporation High performance capacitors in planar back gates CMOS
JP2007035702A (ja) * 2005-07-22 2007-02-08 Seiko Epson Corp 半導体基板及び半導体装置、並びにこれらの製造方法、半導体基板の設計方法
US7362443B2 (en) 2005-11-17 2008-04-22 Honeywell International Inc. Optical gyro with free space resonator and method for sensing inertial rotation rate
US7463360B2 (en) 2006-04-18 2008-12-09 Honeywell International Inc. Optical resonator gyro with integrated external cavity beam generator
US7454102B2 (en) * 2006-04-26 2008-11-18 Honeywell International Inc. Optical coupling structure
US7535576B2 (en) 2006-05-15 2009-05-19 Honeywell International, Inc. Integrated optical rotation sensor and method for sensing rotation rate
US7396776B2 (en) * 2006-07-10 2008-07-08 International Business Machines Corporation Semiconductor-on-insulator (SOI) structures including gradient nitrided buried oxide (BOX)
US20080135953A1 (en) * 2006-12-07 2008-06-12 Infineon Technologies Ag Noise reduction in semiconductor devices
US7821066B2 (en) * 2006-12-08 2010-10-26 Michael Lebby Multilayered BOX in FDSOI MOSFETS
JP4313822B2 (ja) * 2007-02-16 2009-08-12 Okiセミコンダクタ株式会社 半導体装置の製造方法
US20090065820A1 (en) * 2007-09-06 2009-03-12 Lu-Yang Kao Method and structure for simultaneously fabricating selective film and spacer
JP5528667B2 (ja) * 2007-11-28 2014-06-25 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の制御方法
WO2010014281A1 (en) * 2008-07-30 2010-02-04 Maxpower Semiconductor Inc. Semiconductor on insulator devices containing permanent charge
JP2010114409A (ja) * 2008-10-10 2010-05-20 Sony Corp Soi基板とその製造方法、固体撮像装置とその製造方法、および撮像装置
US8232605B2 (en) * 2008-12-17 2012-07-31 United Microelectronics Corp. Method for gate leakage reduction and Vt shift control and complementary metal-oxide-semiconductor device
US20100176495A1 (en) * 2009-01-12 2010-07-15 International Business Machines Corporation Low cost fabrication of double box back gate silicon-on-insulator wafers
US7767546B1 (en) * 2009-01-12 2010-08-03 International Business Machines Corporation Low cost fabrication of double box back gate silicon-on-insulator wafers with built-in shallow trench isolation in back gate layer
US20100176482A1 (en) * 2009-01-12 2010-07-15 International Business Machine Corporation Low cost fabrication of double box back gate silicon-on-insulator wafers with subsequent self aligned shallow trench isolation
DE102009010843B4 (de) * 2009-02-27 2014-04-10 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Substrate und Halbleiterbauelemente hergestellt unter Einsatz einer Verformungstechnologie unter Anwendung eines piezoelektrischen Materials und Verfahren zum Einsatz einer derartigen Verformungstechnolgie
US8587063B2 (en) * 2009-11-06 2013-11-19 International Business Machines Corporation Hybrid double box back gate silicon-on-insulator wafers with enhanced mobility channels
US8431994B2 (en) * 2010-03-16 2013-04-30 International Business Machines Corporation Thin-BOX metal backgate extremely thin SOI device
US8421156B2 (en) * 2010-06-25 2013-04-16 International Business Machines Corporation FET with self-aligned back gate
US8519387B2 (en) * 2010-07-26 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing
US8618554B2 (en) 2010-11-08 2013-12-31 International Business Machines Corporation Method to reduce ground-plane poisoning of extremely-thin SOI (ETSOI) layer with thin buried oxide
FR2970812B1 (fr) * 2011-01-24 2013-11-15 Commissariat Energie Atomique Dispositif a effet de champ avec une faible capacité de jonction
US9397222B2 (en) * 2011-05-13 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8664050B2 (en) * 2012-03-20 2014-03-04 International Business Machines Corporation Structure and method to improve ETSOI MOSFETS with back gate
US8828834B2 (en) 2012-06-12 2014-09-09 Globalfoundries Inc. Methods of tailoring work function of semiconductor devices with high-k/metal layer gate structures by performing a fluorine implant process
US9583414B2 (en) 2013-10-31 2017-02-28 Qorvo Us, Inc. Silicon-on-plastic semiconductor device and method of making the same
US9812350B2 (en) 2013-03-06 2017-11-07 Qorvo Us, Inc. Method of manufacture for a silicon-on-plastic semiconductor device with interfacial adhesion layer
US9263270B2 (en) 2013-06-06 2016-02-16 Globalfoundries Inc. Method of forming a semiconductor device structure employing fluorine doping and according semiconductor device structure
KR102061306B1 (ko) 2013-06-14 2019-12-31 한국전자통신연구원 트랜지스터 및 그 제조방법
EP3146735B1 (en) 2014-05-23 2018-06-27 Sony Corporation A method, apparatus and system for delivering content
US10085352B2 (en) 2014-10-01 2018-09-25 Qorvo Us, Inc. Method for manufacturing an integrated circuit package
US9530709B2 (en) 2014-11-03 2016-12-27 Qorvo Us, Inc. Methods of manufacturing a printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer
US9960145B2 (en) 2015-03-25 2018-05-01 Qorvo Us, Inc. Flip chip module with enhanced properties
US9613831B2 (en) 2015-03-25 2017-04-04 Qorvo Us, Inc. Encapsulated dies with enhanced thermal performance
US20160343604A1 (en) 2015-05-22 2016-11-24 Rf Micro Devices, Inc. Substrate structure with embedded layer for post-processing silicon handle elimination
US10276495B2 (en) 2015-09-11 2019-04-30 Qorvo Us, Inc. Backside semiconductor die trimming
US10020405B2 (en) 2016-01-19 2018-07-10 Qorvo Us, Inc. Microelectronics package with integrated sensors
US10062583B2 (en) 2016-05-09 2018-08-28 Qorvo Us, Inc. Microelectronics package with inductive element and magnetically enhanced mold compound component
US10784149B2 (en) 2016-05-20 2020-09-22 Qorvo Us, Inc. Air-cavity module with enhanced device isolation
US10773952B2 (en) 2016-05-20 2020-09-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10103080B2 (en) 2016-06-10 2018-10-16 Qorvo Us, Inc. Thermally enhanced semiconductor package with thermal additive and process for making the same
US10079196B2 (en) 2016-07-18 2018-09-18 Qorvo Us, Inc. Thermally enhanced semiconductor package having field effect transistors with back-gate feature
WO2018031999A1 (en) 2016-08-12 2018-02-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
SG11201901193UA (en) 2016-08-12 2019-03-28 Qorvo Us Inc Wafer-level package with enhanced performance
EP3497717A1 (en) 2016-08-12 2019-06-19 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10109502B2 (en) 2016-09-12 2018-10-23 Qorvo Us, Inc. Semiconductor package with reduced parasitic coupling effects and process for making the same
US9997606B2 (en) 2016-09-30 2018-06-12 International Business Machines Corporation Fully depleted SOI device for reducing parasitic back gate capacitance
US10090339B2 (en) 2016-10-21 2018-10-02 Qorvo Us, Inc. Radio frequency (RF) switch
US10749518B2 (en) 2016-11-18 2020-08-18 Qorvo Us, Inc. Stacked field-effect transistor switch
US10068831B2 (en) 2016-12-09 2018-09-04 Qorvo Us, Inc. Thermally enhanced semiconductor package and process for making the same
US10490471B2 (en) 2017-07-06 2019-11-26 Qorvo Us, Inc. Wafer-level packaging for enhanced performance
US10366972B2 (en) 2017-09-05 2019-07-30 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US10784233B2 (en) 2017-09-05 2020-09-22 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US10804246B2 (en) 2018-06-11 2020-10-13 Qorvo Us, Inc. Microelectronics package with vertically stacked dies
US10964554B2 (en) 2018-10-10 2021-03-30 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US11069590B2 (en) 2018-10-10 2021-07-20 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US11646242B2 (en) 2018-11-29 2023-05-09 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
EP3915134A1 (en) 2019-01-23 2021-12-01 Qorvo US, Inc. Rf semiconductor device and manufacturing method thereof
US20200235040A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11705428B2 (en) 2019-01-23 2023-07-18 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive
US11387169B2 (en) 2020-08-04 2022-07-12 Nxp Usa, Inc. Transistor with I/O ports in an active area of the transistor
US11302609B2 (en) 2020-08-31 2022-04-12 Nxp Usa, Inc. Radio frequency power dies having flip-chip architectures and power amplifier modules containing the same
US11587852B2 (en) 2020-10-12 2023-02-21 Nxp Usa, Inc. Power amplifier modules with flip-chip and non-flip-chip power transistor dies
US11502026B2 (en) 2020-10-12 2022-11-15 Nxp Usa, Inc. Transistor with flip-chip topology and power amplifier containing same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717677A (en) 1985-08-19 1988-01-05 Motorola Inc. Fabricating a semiconductor device with buried oxide
US5185280A (en) * 1991-01-29 1993-02-09 Texas Instruments Incorporated Method of fabricating a soi transistor with pocket implant and body-to-source (bts) contact
JPH0778994A (ja) 1993-09-07 1995-03-20 Hitachi Ltd Mos型半導体装置及びその製造方法
JP3036619B2 (ja) 1994-03-23 2000-04-24 コマツ電子金属株式会社 Soi基板の製造方法およびsoi基板
JP3980670B2 (ja) 1994-09-09 2007-09-26 株式会社ルネサステクノロジ 半導体装置
JPH08153880A (ja) 1994-09-29 1996-06-11 Toshiba Corp 半導体装置及びその製造方法
JP2755185B2 (ja) 1994-11-07 1998-05-20 日本電気株式会社 Soi基板
JPH08208256A (ja) * 1995-01-31 1996-08-13 Bando Kiko Kk ガラス板の加工装置
JPH08250687A (ja) 1995-03-08 1996-09-27 Komatsu Electron Metals Co Ltd Soi基板の製造方法およびsoi基板
DE19515797C1 (de) 1995-04-28 1996-09-19 Siemens Ag SOI-BiCMOS-Verfahren
JP3435930B2 (ja) 1995-09-28 2003-08-11 株式会社デンソー 半導体装置及びその製造方法
KR0176202B1 (ko) 1996-04-09 1999-04-15 김광호 에스.오.아이형 트랜지스터 및 그 제조방법
US5795813A (en) 1996-05-31 1998-08-18 The United States Of America As Represented By The Secretary Of The Navy Radiation-hardening of SOI by ion implantation into the buried oxide layer
US5770881A (en) 1996-09-12 1998-06-23 International Business Machines Coproration SOI FET design to reduce transient bipolar current
US6045625A (en) 1996-12-06 2000-04-04 Texas Instruments Incorporated Buried oxide with a thermal expansion matching layer for SOI
US5759906A (en) 1997-04-11 1998-06-02 Industrial Technology Research Institute Planarization method for intermetal dielectrics between multilevel interconnections on integrated circuits
TW405155B (en) * 1997-07-15 2000-09-11 Toshiba Corp Semiconductor device and its manufacture
US5880030A (en) 1997-11-25 1999-03-09 Intel Corporation Unlanded via structure and method for making same
US5989966A (en) 1997-12-15 1999-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Method and a deep sub-micron field effect transistor structure for suppressing short channel effects
US5930643A (en) 1997-12-22 1999-07-27 International Business Machines Corporation Defect induced buried oxide (DIBOX) for throughput SOI
JP3699823B2 (ja) 1998-05-19 2005-09-28 株式会社東芝 半導体装置
US5969387A (en) 1998-06-19 1999-10-19 Philips Electronics North America Corporation Lateral thin-film SOI devices with graded top oxide and graded drift region
US6060364A (en) * 1999-03-02 2000-05-09 Advanced Micro Devices, Inc. Fast Mosfet with low-doped source/drain
US6204138B1 (en) * 1999-03-02 2001-03-20 Advanced Micro Devices, Inc. Method for fabricating a MOSFET device structure which facilitates mitigation of junction capacitance and floating body effects
JP2000340794A (ja) 1999-06-01 2000-12-08 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6764898B1 (en) * 2002-05-16 2004-07-20 Advanced Micro Devices, Inc. Implantation into high-K dielectric material after gate etch to facilitate removal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638845B2 (en) 2005-10-03 2009-12-29 Seiko Epson Corporation Semiconductor device with buried conductive layer
CN102339784A (zh) * 2011-09-28 2012-02-01 上海宏力半导体制造有限公司 具有阶梯型氧化埋层的soi结构的制作方法
CN102339784B (zh) * 2011-09-28 2015-02-04 上海华虹宏力半导体制造有限公司 具有阶梯型氧化埋层的soi结构的制作方法
CN106158639A (zh) * 2015-04-01 2016-11-23 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法
CN106158639B (zh) * 2015-04-01 2019-01-29 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法
CN107634101A (zh) * 2017-09-21 2018-01-26 中国工程物理研究院电子工程研究所 具有三段式埋氧层的半导体场效应晶体管及其制造方法
CN110649036A (zh) * 2018-06-27 2020-01-03 台湾积体电路制造股份有限公司 配置为表现绝缘体上半导体行为的块状半导体衬底
US11211283B2 (en) 2018-06-27 2021-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a bulk semiconductor substrate configured to exhibit soi behavior
CN110649036B (zh) * 2018-06-27 2022-05-31 台湾积体电路制造股份有限公司 配置为表现绝缘体上半导体行为的块状半导体衬底及其制备方法

Also Published As

Publication number Publication date
US6596570B2 (en) 2003-07-22
US20080006901A1 (en) 2008-01-10
WO2002099891A1 (en) 2002-12-12
US20050087804A1 (en) 2005-04-28
TW579599B (en) 2004-03-11
JP2004528731A (ja) 2004-09-16
MY127799A (en) 2006-12-29
CN1295796C (zh) 2007-01-17
DE60235162D1 (de) 2010-03-11
US7323370B2 (en) 2008-01-29
KR20030095402A (ko) 2003-12-18
US20020185675A1 (en) 2002-12-12
US20030199128A1 (en) 2003-10-23
ATE456157T1 (de) 2010-02-15
US7671413B2 (en) 2010-03-02
EP1393381B1 (en) 2010-01-20
US7009251B2 (en) 2006-03-07
EP1393381A1 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
CN1295796C (zh) 场效应晶体管及其制作方法
US7326634B2 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
CN101436612B (zh) 场效应晶体管及形成场效应晶体管的方法
US6852559B2 (en) Transistor of semiconductor device, and method for manufacturing the same
CN100346456C (zh) 一种mosfet半导体及其制造方法
CN1253943C (zh) 具有多重栅极及应变的沟道层的晶体管及其制造方法
CN100452435C (zh) 平面超薄绝缘体上半导体沟道mosfet及其制造方法
US7342266B2 (en) Field effect transistors with dielectric source drain halo regions and reduced miller capacitance
CN1282233C (zh) 双栅极场效应晶体管及其制造方法
US20030136985A1 (en) Field effect transistor structure with partially isolated source/drain junctions and methods of making same
CN101138093A (zh) 沟槽型mosfet及其制造方法
US8673757B2 (en) Structure and method for using high-k material as an etch stop layer in dual stress layer process
CN103000671A (zh) Mosfet及其制造方法
CN1510756A (zh) 双栅极场效应晶体管及其制造方法
CN1638067A (zh) 制造应变mosfet的结构和方法
CN101106141A (zh) 绝缘体上半导体(soi)结构及其制造方法
KR20030004144A (ko) 반도체장치 및 그 제조방법
US6664146B1 (en) Integration of fully depleted and partially depleted field effect transistors formed in SOI technology
CN100452437C (zh) 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管
JP2004006891A (ja) 半導体装置とその製造方法
CN1956214A (zh) 场效应晶体管及其制造方法
US7067434B2 (en) Hydrogen free integration of high-k gate dielectrics
US6642536B1 (en) Hybrid silicon on insulator/bulk strained silicon technology
US20050136580A1 (en) Hydrogen free formation of gate electrodes
US7504293B2 (en) Fabrication method for semiconductor device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171121

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171121

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20070117

CX01 Expiry of patent term