CN1545395A - 可咽下装置 - Google Patents

可咽下装置 Download PDF

Info

Publication number
CN1545395A
CN1545395A CNA02807047XA CN02807047A CN1545395A CN 1545395 A CN1545395 A CN 1545395A CN A02807047X A CNA02807047X A CN A02807047XA CN 02807047 A CN02807047 A CN 02807047A CN 1545395 A CN1545395 A CN 1545395A
Authority
CN
China
Prior art keywords
ingestible pill
probe
gastrointestinal tract
time
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA02807047XA
Other languages
English (en)
Other versions
CN1310617C (zh
Inventor
Y
Y·金奇伊
R·艾拉米
Y·布斯基拉
�ر�����
U·安特比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamic Spectrum Medical Co Ltd
Original Assignee
V- Target Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/765,316 external-priority patent/US20020099310A1/en
Application filed by V- Target Technologies Ltd filed Critical V- Target Technologies Ltd
Publication of CN1545395A publication Critical patent/CN1545395A/zh
Application granted granted Critical
Publication of CN1310617C publication Critical patent/CN1310617C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/067Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe using accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/415Evaluating particular organs or parts of the immune or lymphatic systems the glands, e.g. tonsils, adenoids or thymus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/425Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using detectors specially adapted to be used in the interior of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4423Constructional features of apparatus for radiation diagnosis related to hygiene or sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4472Wireless probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply

Abstract

提供了一种可咽下装置,其适合于在胃肠道内行进并实施其中的组织的诊断影像。该诊断影像可包括作为时间的函数的诊断信息,或者作为在胃肠道内行进的距离的函数的诊断信息。具体而言,所述可咽下装置可被安排成实施放射性药物的核辐射、响应于放射性药物的核辐射的闪烁液体的闪烁、发荧光药物或裸胃肠道组织的光学荧光、胃肠道组织的红外辐射、沿胃肠道的温度差、阻抗、超声反射、磁共振、以及其组合的诊断影像。该可咽下装置可一方面适合于大人群的总筛查,另一方面适合于可以病理的特定诊断。

Description

可咽下装置
发明领域
本发明通常涉及对所述胃肠道疾病的诊断的领域,更具体而言,涉及在胃肠道中行进并在其中执行诊断的可下咽装置。
发明背景
胃肠道癌症的影响是严重的。尽管有财力和人力资源的庞大支出,恶性肿瘤的早期检测仍是未完成的医学目标。尽管已知如果在早期被检测到,则许多癌症是可治疗的,但可靠筛查过程的缺乏导致了它们未被检测到并且未被治疗。
有其它的胃肠道病症,其类似地需要可靠的筛查和诊断过程以便于早期检测和治疗。例如,这些包括过敏性肠综合症、流动性腹泻、溃疡性结肠炎、胶原性结肠炎、微观结肠炎、淋巴细胞结肠炎、炎症性肠病、克罗恩氏病、传染性腹泻、溃疡性肠病、乳糖酶缺乏、传染性腹泻、阿米巴病和贾第鞭毛虫病。
在某种程度上,作为例行检查的一部分,用于胃肠病理的简单诊断过程可被采用。例如,用于便血的采样是一种用于消化道癌症的筛查技术。然而,该过程不是很敏感,这是因为当相对大的息肉出现时血被释放。有时候,没有血的释放,直到疾病发展的很晚期。
另外,PCT国际申请WO92/00402 PCT描述了一种非侵入性方法,用于使用口服给病人的二糖如蔗糖、麦芽糖或乳糖来检测胃上皮损伤。血和尿样然后被化验二糖以确定胃上皮损伤的存在和程度。然而,该方法不能可靠地检测肠道的损伤。
为了较为可靠的诊断,可使用各种形式的内窥镜和其它成像设备。
结肠的不同状况的诊断通常涉及使用结肠镜。典型的结肠镜在其相对于操作者的远心端包括光源、视频芯片和抽吸通道。这些元件均通过在挠性管内容纳的导线和通道与结肠镜的近端通信。远心端被插入到病人的直肠内并可沿结肠的长度被操纵。结肠镜可被插入到病人结肠内的足够远处以便于远心端进入病人的盲肠。结肠镜的尖亦可被操纵经过回盲瓣到达回肠末端中。
结肠镜仅提供了紧邻光源和视频芯片的结肠区域的可视影像,在任何给定时间得到了仅用于结肠的小区域的可视信息。病人结肠内的损害典型地通过对整个结肠的渐进(progressive)且用心的可视检查来识别。然而,单一的结肠镜检查常常不足以识别结肠直肠出血的来源,其典型为零散的,并且在许多情况下将通过在一个时间段上观察整个结肠来最佳地定位。
结肠镜的各种附件允许小的外科过程如活组织检查在结肠镜检查期间被实施。
小肠的内窥镜检查亦是已知的。名为“Pass-through duodenalenteroscopic device”的被授予Shan的U.S.专利5,984,860描述了系留的可咽下的、肠镜检查(enteroscopic)摄像机,其利用小肠的自然收缩波以与其中的任何其它物体相同的速度将其推动经过小肠,该专利的公开内容在此引入作为参考。所述摄像机包括在其前端的照明源。覆盖摄像机透镜和照明源的是透明的可膨胀气球,其适合于在摄像机的紧前面轻微地扩张小肠以便于较好地观察。小直径的通信和电力线缆随着其移动经过小肠而经过摄像机后部的孔径展开。一旦完成经过小肠的运动,该线缆被自动分离,从而允许线缆经过胃和肠而被取出。所述摄像机继续经过大肠并经过直肠从病人排出。
尽管提供了接近和可视化胃肠道的部分的方式,上述内窥镜未提供检测不能清楚看到的胃肠道病理的方式。具体而言,它们未提供用于定位和区分隐蔽肿瘤的方式。典型的是,大肿瘤容易通过可视化来定位。然而,为了随后的手术成功并为了其它形式的治疗的成功,有必要以某种方式在其隐蔽阶段定位肿瘤,该阶段是通过视觉和触觉来发现它们的阶段。
用于肿瘤可视化的放射性标记的免疫球蛋白的使用在Day等放射性标记的被隔离的抗纤维蛋白的1959年表明是可能的。(Day,E.O.;Planisek,J.A.;Pressman D:“Localization of RadioiodinatedRat Fibrinogen in Transplanted Rat Tumors”,J.Natl.CancerInst.23:799-812,1959)。尽管不是肿瘤特定的抗原,纤维蛋白被已知为具有肿瘤中存在的频率,这是由于发炎过程伴随的侵入。Day等证明,肿瘤部位中高浓度的蛋白质可被用于定位肿瘤。人的纤维蛋白和铁蛋白的抗体在采用用于诊断的特定免疫球蛋白的尝试中被使用。
自从Day等在1959年的工作以来,日益增长的数量的单克隆抗体已收到FDA的批准。适用于胃肠道肿瘤的实例包括以下:
1.CEA-Scan是Tc99m标记的单克隆抗体碎片(fragment),其以结肠直肠癌细胞产生和脱落的CEA为目标。抗CEA单克隆抗体的使用已被推荐为估算疗法的预后和反应的唯一标志。抗CEA单克隆抗体亦可由其它放射性同位素例如碘同位素来标记。(Jessup JM.1998,Tumor markers-prognostic and therapeutic implication forcolorectal carcinoma,Surgical Oneology;7:139-151)。
2.In111-Satumomab Pendetide(Oncoscint)被设计成以TAG-72为目标。TAG-72是在人的结肠直肠癌、胃癌、卵巢癌、乳腺癌和肺癌中显示的类似粘蛋白的糖蛋白。它很少在正常人的成熟组织中显示(express)。(MolinoloA;Simpson JF等,1990,Enhanced tumorbinding using immunohistochemical analyses by secondgeneration anti-tumor-associated glycoprotein 72 monoclonalantibodies versus monocolonal antibody B72.3 in humantissue,Cancer Res.50(4):1291-8)。
3.脂类关联的唾液酸(LASA)是肿瘤抗原,其对于结肠直肠癌LASA,具有与CEA类似的灵敏度但比之大的用于在良性和恶性损害之间区分的特异性。(Ebril KM,Jones JD,Klee GG.1985,Use andlimitation of serum total and lipid-bound sialic acidconcentrations as markers for colorectal cancer,Cancer;55:404-409)。
4.Matrix Metaloproteinase(MMP-7)是蛋白质酶,被认为涉及肿瘤扩散和转移。与正常组织相比,其表现在肿瘤组织中被升高,并且可能是用于肿瘤侵蚀(aggressiveness)和传统病期(staging)的潜在标志。(Mori M,Barnard GF等1995,Overexpression ofmatrix metalloproteinase-7 mRNA in human colon carcinoma.Cencer;75:1516-1519)。
另外,药物可被用作用于非恶性病理如胃肠道炎症和感染的标志。实例包括以下:
1.Ga67柠檬酸盐结合于铁传递蛋白并被用于检测慢性炎症。(Mettler FA,and Guiberteau MJ,Eds.1998,Inflammation andinfection imaging.Essentials of nuclear medicine.Fourthedition.Pgs:387-403)。
2.非特定多克隆免疫球蛋白G(IgG)可用In111或Tc99m来标记,并且具有非细菌性感染的潜能。(Mettler FA,and Guiberteau MJ,同上)。
3.放射性标记的白细胞,如In1118羟基喹啉白细胞和Tc99mHMPIO白细胞,被吸引到炎症部位,在这里它们通过本地趋化因子激活并经过内皮到达软组织中。胃肠道中被标记的白细胞是非特定的,并且可指示病理的数量,包括克罗恩氏病、溃疡性结肠炎、伪膜性结肠炎、肠憩室病、各种胃肠道感染、瘘、缺血性或内曲肠。(Mettler FA,andGuiberteau MJ,同上;Corstens FH;van der Meer JW.1999.Nuclearmedicine’s role in infection and inflammation.Lancet;354(9180):765-70)。
用于标记抗体的放射性核素的特定选择依赖于其核特性、物理半衰期、检测设备的能力、放射性标记的抗体的药物代谢动力学以及标记过程的困难程度。被用于标记抗体的放射性核素的实例包括锝Tc99m、碘I125、I123、I131和I133、铟In111、镓Ga67、铊Tl201、氟F18和P32
放射性核素标记的抗体的核辐射成像是继续发展和研究的主题。使用放射性核素中的特定困难是血库背景放射性已导致普通闪烁图证明是难以解释的。已尝试了放射性血库背景的放射性的计算机减影法以增强成像。然而检测隐蔽肿瘤的能力仍是低的。
克服血库背景放射性的一种尝试被描述于名为“Method forlocating,differentiating,and removing neoplasms”的授予Martin,Jr.等的U.S.专利4,782,840,其公开内容在此引入作为参考。Martin,Jr.等描述了一种用于对动物体内肿瘤组织的改进的定位、区分和去除的方法。经改进的方法从给动物服用有效量的所标记的抗体开始,该抗体对肿瘤组织是特定的并且用显示出能级的特定光子发射的放射性同位素来标记。随后是等待时间,从而允许所标记的抗体优选地浓缩于动物体内存在的肿瘤组织内并允许血库背景放射性降低,由此增加来自肿瘤组织的光子发射与动物体内的背景光子发射的比。之后,对于组织,一般的背景光子发射计数被确定。一旦确定背景计数,则通过外科方式来接近被怀疑有肿瘤的组织,并且沿该组织手动操纵手持探头。该探头被配置用于成束(fascicle)手放置和操纵。该探头的特征在于可准直的辐射检测器,其具有选择性光子入口并且当该入口紧邻于光子发射而被放置时,具有响应于光子发射的输出得到(deriving)离散信号。该探头进一步包括放大器装置,其具有与辐射检测器输出耦合的输入,并且响应于所述离散信号以提供对应的经放大的输出脉冲。最后,所述探头包括读出装置,其对所述输出脉冲起反应,并且对于初始条件是可激励的,该初始条件用于开始提供对应于所接收输出脉冲数量的记号的可察觉指示。从所述可察觉的指示,组织显示出输出脉冲的数量的程度被确定,该输出脉冲具有背景输出脉冲以上的值;并且这样的组织从外科上被去除。
由于检测探头与所标记的抗体的邻近,源于隐蔽部位的微弱辐射变成可检测的。这部分是由于辐射传播的近似平方反比定律的内在应用,部分是因为可准直的辐射检测器可在相对于被怀疑的肿瘤组织的各种角度上被操纵,因此在一些位置处,准直仪与辐射源是对准的。该过程现在已知为放射性免疫引导的(radioimmunoguided)外科,或RIGSTM。(RIGS是Neoprobe Corporation of Dublin,Ohio的注册商标)。
用于外科的RIGSTM系统是成功的,这是因为循环放射性标记的抗体的血库背景在用探头成像之前从身体被清除。作为结果,与周围的组织相比,在微小肿瘤处所发射的光子发射或辐射变成可检测的。在偶然情况下,放射性标记的抗体能保持被结合于肿瘤组织或与之关联一个延长的时间段,同时无线电标签(tag)仍被结合于其。即使肿瘤部位处的放射性的增长随着时间的过去而降低,周围组织(相对于肿瘤部位)处的血库背景以更大的速率降低。
RIG设备通常包括两个基本部件,如以上所述的手持探头和控制台,其通过挠性线缆与手持探头进行电通信。控制台被置于手术室设施内但在无菌场之外,而手持探头和其关联线缆的前面部分被置于所述场内。手持辐射检测探头是相对小的,并且结合镉锌碲化物检测器或晶体来操作。
进一步的工作继续进行以提高RIGSTM对可从隐蔽肿瘤发射的微小数量光子的灵敏度。名为“Detector and localizer for low energyradiation emissions”的被授予Denen等的U.S.专利4,801,803公开了特别适合于在免疫引导的(immuno-guided)外科中使用的探头,其能检测很微弱的伽玛发射并由此定位癌肿瘤,该专利的公开内容在此引入作为参考。检测是使用诸如碲化镉的晶体在室温条件下实现的。为实现设备的极端灵敏度能力,已发展了设备途径,在其中在某种程度上易碎晶体被安全地保持与外部引入的小事件隔离,否则将产生过度的噪声。通过采用一系列显示出发散声学阻抗的材料而使颤噪效应最小化。由微小的部件间的移动导致的电容效应被控制到可接受的水平。
另外,前置放大器被结合到探头本身中,其采用积分器级前端,组合了场效应晶体管和双极器件与小于一皮可法拉的很小的反馈电容。自益电路技术被利用以提高双极放大级的放大率。从所述装置输出的脉冲相关的信号被规格化并被比较以产生经分析的脉冲数据。在工作的一个模式下,采用汽笛效应以将外科医生导向发射源。
上述探头以低能量放射性核素如I125来引导。另外,有核素的放射性标记的抗体的分布是相当零散的,因此背景发射可被最小化,而所接收的肿瘤特定的计数与背景计数的比可被最大化。探头设备和相关的控制电路已被指定了商业名称“NEOPROBE”设备。
对“NEOPROBE”设备进一步的改进被描述于名为“Detector andlocalizer for low energy radiation emissions”的被授予Denen等的U.S.专利5,151,598中,其公开内容在此引入作为参考。进一步的改进包括控制由于最微小的部件间的移动而导致的电容和压电效应。另外,结合电传导性但易弯的表面支持而采用电接触和晶体的压缩性保持(compressive retention)。
另外,对“NEOPROBE”设备进一步的改进被描述于名为“Detectorand localizer for low energy radiation emissions”的被授予Denen等的U.S.专利4,893,013中和名为“Detector and localizerfor low energy radiation emissions”的被授予Denen等的U.S.专利5,070,878中,其公开内容在此引入作为参考。探头包括碲化镉晶体,其被妥善保管于防光的环境中。探头和晶体组合的抗噪构造包括利用位于晶体的一面的电传导性、适应性(compliant)垫层,其结合了自由邻接偏置和接地接触。尼龙、弹性的保持器被受拉地置于晶体、接地和偏置接触以及适应层的集合物(assemblage)上以实现被压缩性保持的集合物。封闭空间被产生于探头的前面的窗口和晶体保持集合物之间。
为得到表示隐蔽肿瘤存在或不存在的数据,分析的微处理器驱动的复杂系统连续工作以在统计上估计有效计数或伽玛撞击(strike),从而向外科医生报告隐蔽肿瘤组织的存在或不存在。名为“GammaRadiation Detector with Enhanced Signal Treatment”的被授予Ramsey和Thurston的U.S.专利4,889,991描述了进行这种估计的算法,该专利的公开内容在此引入作为参考。因此,诸如NEOPROBE设备的手持伽玛辐射探头被采用,其结合了提供增强的音频输出的控制功能,当用户沿组织操纵探头时,该功能被引导以便于向该用户提示源位置。探头被置于表示背景辐射的动物身体上的位置处,并且静噪(squelch)低计数率从其产生。静噪低计数率被乘以一个范围因子以产生静噪高计数率,并且从对应于所产生的高和低静噪计数率的从最高到最低的查询频率表产生频率。通过产生静噪德尔塔值来提供计数率的转换速率限制,该静噪德尔塔值表示静噪高和低计数率之间的差除以时间元素。从频率表中选择用于音频输出的频率是由静噪德尔塔值的值来限制的。连续进行所接收的辐射计数的加权以产生由系统使用的计数率。
名为“System and apparatus for detecting and locatingsource of radiation”的被授予Boutun等的U.S.专利6,259,095描述了对Neoprobe Corporation的上述探头的进一步改进,该专利的公开内容在此引入作为参考。所述设备结合了大窗口显示器,其利用图标影像(imagery)来识别计数函数,如目标计数和背景。操作的各种放射性核素模式可由操作者来选择,并且系统对应于所选放射性核素而自动默认检测器偏压选择和窗口基准电压选择。条图读出向用户报告在目标过程或背景过程中剩余的计数水平或时间量,并且图标标识符的闪烁在所述过程中出现。脉冲有效性是通过利用估计脉冲宽度的鉴别器来改进的。
尽管有这些优点,背景辐射仍然是限制探头对隐蔽肿瘤的灵敏度的障碍,并且有使其作用最小化的持续的努力。
光学荧光光谱学是已知的成像技术。
当例如由激光来照射大分子的试样时,它将吸收辐射,并且各种水平将被激励。一些受激状态将通过弹性散射返回到先前状态,并且一些能量将在内部变换、碰撞和其它损失机理中损失。然而,一些受激状态将产生荧光辐射,其由于状态的分布而将给出特征波长分布。
当由激光来照射时,一些肿瘤标记的试剂将给出良好构建的荧光光谱。具体而言,当在405nm左右的索瑞氏带中受激时,血卟啉衍生物(HPD)给出良好构建的荧光光谱。该荧光光谱示出在大约620和690nm处的典型峰值,其实际上被叠加于较无组织的(moreunstructured)组织自身荧光上。当在337nm处照射(N2激光器)时,其它有用的肿瘤标记的试剂是双血卟啉醚/酯(DHE)、血卟啉(HP)、聚血卟啉酯(PHE)和四磺化酞菁(tetrasulfonatedphthalocyanine)(TSPC)。
名为“Diagnosis by means of fluorescent light emission fromtissue”的被授予Andersson-Engels等的U.S.专利5,115,137涉及借助大分子的感应荧光进行的对组织特性的改进的检测,该专利的公开内容在此引入作为参考。然后可从所观察的大分子光谱来估计组织特征。依照U.S.专利5,115,137,由于内生性卟啉,用于扁桃体癌的光谱明显不同于正常的粘膜。
类似地,名为“Laser ablation process and apparatus”的被授予Deckelbaum的U.S.专利4,785,806描述了用于除去动脉粥样硬化或肿瘤组织的过程和设备,该专利的公开内容在此引入作为参考。光纤在待除去的组织的一部分处引导低功率光能以使该部分发荧光。荧光图形被分析以确定荧光频谱表示正常或异常组织。仅当荧光测定分析表明它被引导在异常组织处时,在组织的所述部分处通过光纤引导的高功率、紫外、激光能量源被激发。
另外,名为“Probe-and fire lasers”的被授予Mol的U.S.专利4,682,594描述了用于照射体内治疗区域如血管斑(blood vesselplaque)的方法和设备,该专利的公开内容在此引入作为参考。该方法包括:一开始给病人服用无毒的动脉粥样化增强反应剂,当用给定辐射照射时,其使所述斑具有特征光学特性;将包括光纤线缆装置的导管系统引入到动脉中以使其远心端在工作上与斑部位相对;将给定辐射引入到光纤线缆的近端;在近端从光电上传感特征光学特性以产生控制信号;以及直接在通过线缆装置从近端发送到远心端的控制信号的控制下,周期性地发生激光脉冲,直到特征光学特性不再被感知。
相关的荧光技术被描述于名为“Human and animal tissuephotoradiation system and method”的被授予Clark的U.S.专利4,336,809中,其公开内容在此引入作为参考。它涉及利用某种染料,其不仅选择性地对肿瘤组织染色,并且响应于照射而发荧光。另外,在活组织内存在氧时,响应于光的正确波长,它们在光力学上是毒害细胞的。当前对这些特征为优选的染料之一包含血卟啉或血卟啉衍生物,当在静脉内服用时,其在受伤或恶化的组织中以比在正常组织中高的浓度保持较长的时间段。该染料亦具有集中于近似407纳米波长的强吸收峰值,并且对大约该波长处的激励起反应,即在大约614纳米的波长处发荧光。通过注入染料,使其在肿瘤组织中浓缩,用深蓝紫光照射该组织并且观察红荧光,这使肿瘤诊断成为可能。这样,经染色的组织和未染色的健康组织的光学特性的差异提高了治疗区域的可视化。这种相同的染料在大约631纳米处具有光力学吸收峰值,并且当用大约该波长的红光照射时,对包含该染料的恶性组织是毒害细胞的。为了诊断的目的,氪离子激光器被用于匹配血卟啉的407纳米吸收峰值的其406.7/413.1纳米线。
名为“Diagnostic method and apparatus for cervicalsquamous intraepithelial lesions in vitro and in vivo usingfluorescence spectroscopy”的被授予Richards-Kortum等的U.S.专利6,258,576涉及在荧光光谱学中使用多个照明波长以便于诊断子宫颈癌和初癌,该专利的公开内容在此引入作为参考。以这种方式,以下已成为可能:(i)区分正常或发炎组织与鳞状上皮内损害(SIL)和(ii)区分高级SIL与非高级SIL。检测可在体外或体内进行。多元统计分析已被用于减小说明分类精度的最小降低的再发展算法所需的荧光激励发射波长对的数量。
例如,上述专利的方法可包括:用大约337nm、380nm和460nm的电磁辐射波长照亮组织试样以产生荧光;从该荧光检测多个离散的发射波长;以及从该发射波长计算组织试样属于特定组织分类的概率。
超声是另一种已知的成像技术。常规的超声探头被用于产科学、妇科学、泌尿学等的领域中的内部检查。
名为“Ultrasonic diagnosis system”的被授予Kawagishi、Tetsuya等的U.S.专利申请20010020131描述了一种具有超声探头的超声诊断设备,该探头具有多个阵列安排的变换器单元;发送波束生成器,用于产生驱动变换器单元的驱动信号;以及接收波束生成器,用于在由变换器单元接收的回波信号的基础上产生接收信号,该申请的公开内容在此引入作为参考。发送波束生成器产生驱动信号以使从变换器单元产生的超声波的相位在多个焦点上被对准。影像处理器从具有多个焦点的超声波的接收信号中提取谐波分量,并且基于该谐波分量产生超声影像数据。
名为“Ultrasound finger probe and method for use”的被授予Wedel等的U.S.专利5,088,500描述了一种方法和设备,用于通过以下来执行超声直肠检查:提供在医生的指尖(finger tip)上滑动然后被插入病人直肠的超声变换器以及用于将医疗设备导入待成像的区域中的设备,该专利的公开内容在此引入作为参考。
类似地,名为“Ultrasonic probe to be installed onfingertip”的被授予Hanoaka等的U.S.专利5,284,147涉及一种超声探头,其待插入到对象体内以便于通过发送给身体内部并且从其接收的超声波来对其诊断目标进行影像处理,该专利的公开内容在此引入作为参考。更具体而言,它涉及一种可被直接安装于触诊手指上的内部检查超声探头。该超声探头包括:变换器阵列,用于发送和接收超声波;外壳,用于支持变换器阵列,该外壳被提供了用于在其中安装操作者的指套(fingertip)的装置;以及电接线组件,其被连接于变换器阵列,并且从所述外壳延伸到外部以使超声波的发送和接收信号通过它来提供。
对比剂可结合超声成像来使用,例如如在名为“Ultrasonicimaging system utilizing a long-persistence contrast agent”的被授予Schutt等的U.S.专利6,280,704中所讲,其公开内容在此引入作为参考。
用于定位和检测肿瘤组织的温度成像亦是已知的。在20世纪50年代,发现在恶性肿瘤的区域中的皮肤的表面温度显示出比健康组织所期望的高的温度。这样,通过测量身体皮肤温度,筛查异常身体活动如癌肿瘤生长的存在变为可能。随着液晶和形成温度响应的化学基片的方法的发展,接触温度测量法与其在医学应用中的使用一起成为现实。采用接触温度测量法的装置可通过指示剂来传感并显示温度变化,当与诸如皮肤的表面在物理上接触而被放置时,该指示剂永久或暂时地改变颜色,从而反映接触点或其附近的温度。异常读数将向用户警告需要对所讨论区域的较精细、较详细的检查。然而,该领域中的技术主要已被指向传感和显示外部皮肤表面上的温度。这样,例如,被授予Vanzetti等的专利(U.S.专利No.3,830,224)公开了在乳罩中的各个点上放置温度响应的、颜色变化的液晶以便于检测乳腺癌的存在,而被授予Sagi的专利(U.S.Re.32,000)公开了为了相同的目的,使用温度响应的指示剂的径向安排的行,该指示剂被沉积于插入到乳罩的乳房容纳杯中的盘上。
另外,Tomatis,A.等研究了皮肤的43个着色损害的反射影像(18个黑素瘤、17个普通黑素细胞痣和八个发育异常的痣)。反射影像通过远测分光光度测定系统(telespectro photometric system)采集并且在从420到1040nm的光谱范围内被分析,从而区分黑素瘤与良性黑素细胞实体。不同的估计是通过考虑整个光谱而进行的,包括可见的和近红外的。与35个(81.4%)的正确的临床诊断相比,通过远测分光测光系统正确地诊断了总共33个(76.7%)损害。红外带中的反射表现出诊断上的相关。
人们相信相同的原理可应用于内部身体器官。当与周围组织相比时,内部器官表面处的异常高温亦可显示出医学问题的相似性。这样,用于异常情况早期指示的体腔中的温度的诊断性测量是有优点的。这些可提供对筛查过程的简单、快速、精确和成本有效的解决方案。
名为“Differential temperature measuring device andmethod”的被授予Brounstein的U.S.专利6,135,968描述了一种装置和方法,用于在仅通过身体的口而可非外科地接近的内部身体位置处传感温度,该专利的公开内容在此引入作为参考。该装置在诸如筛查癌症和由所选部位处的温度的增加表示的其它异常生物活动的医学应用中是特别有用的。在被应用于前列腺检查时,该装置被暂时、粘附地固定于用户的指套或机械探头。在优选实施例中,该装置包括两个温度传感单元,其可包括多个化学指示剂。每个指示剂都响应于检测到预定的特定温度而改变颜色。当被正确地对准和安装时,第一单元被置于指套的手掌表面上,而第二单元被置于指套的背部表面。在将检查手套穿到携带所述装置的指套上之后,前列腺检查被执行,在此期间,第一单元被使得达到与前列腺区有恒定但短暂的接触,而第二单元类似地同时被使得达到与相对于前列腺区的皮表面接触。一旦从直肠撤出指套并去除手套,两个温度传感单元可被可视地检查以确定由每个单元检测的温度。所观察的温度的显著差异表示异常生物活动的可能性和对进一步诊断或医疗过程的需要。
红外温度记录是一种温度成像技术,其迅速且动态地测量从体表发射的热能而无需接触,并且产生用于分析的温度影像。Harzbecker K等基于63个病人中的热观察和15个病人中的对照实验报告了在疾病诊断中使用温度记录的经验,所述疾病被较深地(more profoundly)定位于胸腔中。(Harzbecker K等“Thermographic thoraxdiagnostics”,Z Gesamte Inn Med.978 Feb 1;33(3):78-80)。
类似地,Dexer LI,Kondrat’ev VB报告了涉及使用淋巴系造影术和温度记录以便于建立42个病人中的差异诊断的数据,所述病人有不同起源的下肢浮肿。差异诊断的不同方法的比较估算显示出红外温度记录的优点。(Dexer LI,Kondrat’ev VB,“Thermography indifferential diagnosis of lymphostasis in the lower limbs”,Vestn Khir Im II Grek.1976 Jun;116(6):60-4)。
电阻抗成像是用于检测肿瘤的另一种已知的成像技术。依赖于便宜的探头,其提供了简单的筛查过程,特别是对于乳腺癌。(G.Piperno等的“Breast Cancer screening by impedance measurements”,Frontiers Med.Biol.Eng.Vol.2,pp 111-117)。它涉及在其中确定皮肤表面上的点和病人身体上的某个基准点之间的阻抗的系统。有时,被形成为有电接触阵列的片(sheet)的多单元探头被使用,以便于获得例如乳房的组织的二维阻抗图。可能结合其它数据如乳房造影术来使用二维阻抗图以便于检测癌症。
Rajshekhar,V.等描述了使用具有单电极的阻抗探头来测量损害的阻抗特征(“Continuous impedance monitoring during CT-guidedstereotactic surgery:relative value in cystic and solidlesions”,Rajshekhar,V.,British Journal of Neurosurgery,1992,6,439-444)。研究的目的是使用在损害中进行的测量来确定损害的程度并较精确地定位损害。探头通过CT导向肿瘤,并且在探头经过损害时在损害中进行四个测量。在探头本身被撤出之后,使用探头的外鞘作为对位置的引导来执行对损害的活组织检查。
名为“Apparatus and method for detection of tumors intissue”的被授予Sollish等的U.S.专利4,458,694涉及用于在乳房组织的局部区域的介电常数的基础上检测人的乳房内的肿瘤的设备,该专利的公开内容在此引入作为参考。所述设备进一步包括:用于将AC信号施加给组织的装置;用于在不同时间在每个探头单元处传感电特性的装置;以及信号处理电路,其被耦合于传感装置,用于比较在不同时间传感的电特性。该设备由此提供与探头关联的乳房组织的局部区域的介电常数的输出。
类似地,名为“Apparatus and method for detection of tumorsin tissue”的被授予Frei等的U.S.专利4,291,708涉及用于检测人的乳房组织内的肿瘤的设备,该专利的公开内容在此引入作为参考。所述设备包括用于确定人乳房组织的多个局部区域的介电常数的装置。这些包括一个桥,其被提供有用于在操作中自动调零该桥(nullingthe bridge)的电路。进一步提供了装置,用于测量在多个区域上的介电常数的变化并作为测量的结果用于指示肿瘤的可能存在。所述设备可在实施检测肿瘤的方法中被利用,该方法包括步骤:将多个探头单元应用于乳房组织以便于传感其局部区域的特征,将电信号施加给探头单元以便于确定所述组织的局部区域的介电常数,传感介电常数的变化,以及确定每个局部区域处的介电常数的变化率。
名为“Tissue characterization based on impedance imagesand on impedance measurements”的被授予Pearlman,A.L.的U.S.专利6,308,097、6,055,452和5,810,742描述了用于帮助识别阻抗影像中的反常组织的组织类型的设备,所述设备包括:用于提供身体一部分的多色导抗图的装置;用于从身体一部分的一个或两个确定多个多色度量(measure)的装置;以及显示器,其基于所述多个多色量度来显示指示,所述专利的公开内容在此引入作为参考。
磁共振成像(MRI)是基于通过具有不成对自旋的核在电磁频谱的射频范围内对能量的吸收和发射。
与MRI成像仪关联的硬件部件是:
i.主磁体,其产生用于成像过程的B0场;
ii.梯度线圈,用于产生B0中的梯度;
iii.RF线圈,用于产生B1磁场,其是旋转自旋90°或180°所必要的,并且用于检测NRI信号;以及
iv.计算机,用于控制MRI成像仪的部件。
通常,所述磁体是大的水平孔(bore)超导磁体,其在磁体的内部区域中提供均匀的磁场。待成像的病人或物体通常被置于均匀场区中,该场区位于用于成像的中心气隙中。
典型的梯度线圈系统包括抗亥姆霍兹(antihelmholtz)型线圈。这是绕z轴的两个平行的环形线圈。两个线圈的每个中的电流在相反方向上流动,从而产生两个线圈之间的磁场梯度。
RF线圈产生B1场,其旋转脉冲序列中的净磁化。它们可以是:1)发送和接收线圈;2)仅接收的线圈;和3)仅发送的线圈。
在该几何结构中,使用用于体腔的内部成像的被配备有微型RF线圈的导管仍需要将病人置于常规的大MRI磁体中。这种环境可导致有缺陷的影像,这是因为RF线圈的各种取向,例如在动脉中,将不总是被放置得与RF激励场共线。
该问题已由名为“MRI probe for external imaging”的被授予Pulyer等的U.S.专利5,572,132解决,其公开内容在此引入作为参考,其中用于直肠、尿道、肠、食管、鼻通道、阴道、动脉壁组织的内窥镜成像和其它生物医学应用的MRI导管被描述。
该发明讲授了MRI分光镜检查探头,其具有外部背景磁场B0(与大的水平孔超导磁体的内部背景磁场相反)。该探头包括(i)微型主磁体,具有纵轴和在该轴向上延伸的外部表面,和(ii)RF线圈,其包围并邻近所述表面。主磁体被构建和配置成提供在磁体表面的外部的对称的、优选为圆柱形的、均匀场区。RF线圈从被激励的核接收NMR信号。为了成像,一个或多个梯度线圈被提供以在空间上编码由RF线圈激励的核的核自旋,该RF线圈可以与被用于接收NMR信号的线圈相同或是另一个RF线圈。
名为“Gas filled microspheres as magnetic resonanceimaging contrast agent”的被授予Unger的U.S.专利6,315,981描述了使用充气的微球体作为对比剂以便于磁共振成像(MRI),该专利的公开内容在此引入作为参考。Unger进一步描述了气体如何与聚合物组分并且可能还有顺磁性、超顺磁性和液体碳氟化合物组合而被用作MR I对比剂。进一步示出了由聚合物来稳定的气体如何起到有效敏感度对比剂的作用,从而降低T2加权的影像上的信号强度;并且这样的系统对于用作胃肠MRI对比介质是特别有效的。
作为包含发送器的可咽下包套(capsule)的可咽下无线电丸是已知的。在1964年,Heidelberg大学的研究开发了一种用于监视胃肠道的pH的丸。(Noller,H.G.,“The Heidelberg Capsule UsedFor the Diagnosis of Pepic diseases”,Aerospace Medicine,1964年2月,pp.15-117)。
名为“Ingestible size continuously transmittingtemperature monitoring pill”的1989年7月的被授予Lesho等的U.S.专利4,844,076描述了一种温度响应的发送器,可咽下尺寸的包套中的封装,该专利的公开内容在此引入作为参考。所述包套被配置成在内部监视平均体温。可咽下尺寸的温度丸可被配置于可再充电的实施例中。在该实施例中,所述丸将槽路中的感应线圈用作磁性拾取器以对可再充电的镍镉电池充电。
名为“Telemetry capsule and process”的被授予Schentag等的U.S.专利5,279,607描述了一种可咽下包套和过程,用于将药剂递送,特别是可重复地递送给消化道,该专利的公开内容在此引入作为参考。可咽下的包套本质上是不可消化的包套,其包含电能发射装置、无线电信号发送装置、药剂存储装置和远程可激励的药剂释放装置。当以预先计划的路线前进经过消化道时,该包套给远程接收器发信号,并且一旦到达指定部位,被远程触发以释放药剂的剂量。
类似地,名为“Sampling capsule and process”的被授予D’Andrea等的U.S.专利5,395,366描述了类似的可咽下包套和过程,用于采样消化道中的流体,该专利的公开内容在此引入作为参考。
名为“In vivo camera system”的被授予Iddan等的U.S.5,604,531描述了一种被封装于可咽下的丸内的摄像机系统,其被安排经过整个消化道,用作自主的视频内窥镜,该专利的公开内容在此引入作为参考。可咽下的丸包括摄像机系统和用于将兴趣区域成像到该摄像机系统上的光学系统,以及发送器,其将摄像机系统的视频输出传递给身体外的接收系统。光源位于光学系统的镗孔(borehole)内。
类似地,名为“Device and system for in vivo imaging”的被授予Iddan,G.J.等的U.S.专利申请20010035902描述了一种用于获得体内影像的系统和方法,该申请的公开内容在此引入作为参考。所述系统包括成像系统和超低功率射频发送器,用于将信号从CMOS成像系统发送到位于病人体外的接收系统。所述成像系统包括至少一个CMOS成像照相机、至少一个用于照亮体内部位的照明源和用于将体内部位成像到CMOS成像照相机上的光学系统。
名为“Portable tissue spectroscopy apparatus and method”的被授予Crowley等的U.S.专利6,324,418描述了一种便携式组织分光镜检查设备,该设备包括至少一个光源、至少一个光检测器、电源和控制器模块,全部被置于可插入到体内的外壳中,该专利的公开内容在此引入作为参考。所述外壳可以是可手持探头的形式或可被吞咽或植入于体内的包套的形式。所述探头进一步包括被安装于外壳的近端的显示器,用于显示组织特征。所述包套进一步包括被安装于包套内的发送器和被置于体外的接收器,用于将表示组织特征的信号发送给远程接收器。
所述包套包括一个或多个光发射器和一个或多个光检测器。光检测器可位于外壳内的各种位置以便于从包套附近的各种组织检测分光镜检查特性。该包套可进一步包括其它类型的发射器和传感器。例如,另外的发射器和传感器可涉及电磁辐射、压力、温度、x射线辐射和/或热。在一个实施例中,所述包套进一步包括声音发送器和接收器,用于测量流体的流动或用于检测包套的回波位置。在另一个实施例中,所述包套进一步包括诊断传感器,如监视电极、压力传感器和温度传感器。
名为“AM/FM multi-channel implantable/ingestiblebiomedical monitoring telemetry system”的被授予Hogrefe等的U.S.专利5,415,1818描述了一种无线多信道电路,用于将表示生理值的信号从人体内的点遥测到体外的接收器,该专利的公开内容在此引入作为参考。除了温度信号以外的两个信号S1和S2被用于提供两个频率调制的信号,其通过放大器与求和FM信号相加,然后被应用于对频率作为温度的函数而变化的载波进行振幅调制。所得的FM/AM信号在体外被感应地遥测给外部接收器。外部电路中的适当的解调、滤波和整形电路检测所述FM信号并由此产生三个独立的频率,其两个是原始的生理变量,而第三个是本地温度的函数。两个生理变量的实时曲线可通过使用FM鉴别器来获得,而温度独立的频率由计数器最佳地监视。
类似地,名为“Multi-channel pill with integrated opticalinterface”的被授予Lesho等的U.S.专利5,842,977描述了一种光学接口,其被结合到多信道遥测装置中,用于提供表示生理状况的数据,该专利的公开内容在此引入作为参考。
跟踪诸如无线电丸的可咽下装置的方法是已知的。以上所述的名为“Telemetry capsule and process”的被授予Schentag等的U.S.专利5,279,607和名为“Sampling capsule and process”的被授予D’Andrea等的U.S.专利5,395,366包括具有多个天线的体外设备,用于确定胃肠道内的包套的地理位置。例如,位于距点源的不同距离处的至少三个天线和专用的算法可被用于在任何时间确定包套的精确位置。
名为“Method and arrangement for determining the positionof a marker in an organic cavity“的被授予Andrii等的U.S.专利6,082,366描述了一种用于精确定位诸如可咽下包套的标志的方法,该专利的公开内容在此引入作为参考。所述方法需要病人被置于例如用于MRI成像的磁场内
尽管有上述系统的高水平完善度,胃肠道病理,特别是隐蔽肿瘤,在医学诊断中仍是难以捉摸的。由此普遍认识到需要一种用于检测胃肠道中的病理而没有以上局限性的装置和方法,并且具有这样的装置和方法将是高度有利的。
发明概述
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
探头,在工作上沿所述胃肠道通过放射性药物的核辐射来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
依照本发明的附加方面,所述探头包括核辐射检测器,其被安排以便于检测伽玛和贝塔辐射。
依照本发明的再一个附加方面,所述核辐射检测器不被准直,以检测任何角度上的核辐射冲击。
依照本发明的又一个附加方面,所述核辐射检测器被选通到与特定放射性同位素关联的窄能量范围。
依照本发明的再一个附加方面,所述核辐射检测器包括至少两个晶体。
依照本发明的又一个附加方面,所述至少两个晶体的每个都被选通到与不同放射性同位素关联的不同窄能量范围。
依照本发明的再一个附加方面,所述至少两个晶体在行进方向上相隔预定的距离,并且通过交叉相关在时间T和稍后的时间T+ΔT照到(strike)所述至少两个晶体的核辐射,用于估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的另一个方面,所述探头包括光检测器,其被安排成检测由响应于所述放射性药物的核辐射的闪烁液体产生的闪烁。
依照本发明的附加方面,所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的闪烁,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
探头,包括光检测器,在工作上沿所述胃肠道通过发荧光药物的光学荧光来实施诊断影像;
激光源,其波长基本上匹配所述发荧光药物的至少一个吸收峰值;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头、光源和数据处理设备供电;以及
壳体,其封装其中的所述探头、光源、数据处理设备和电源。
依照本发明的附加方面,所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的荧光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的再一个附加方面,所述可咽下装置进一步包括至少两个反射光光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述反射光光传感二极管的反射光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
探头,包括光检测器,在工作上沿所述胃肠道通过裸胃肠道组织的光学荧光来实施诊断影像;
激光源,其波长基本上匹配所述裸胃肠道组织的吸收峰值;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头、光源和数据处理设备供电;以及
壳体,其封装其中的所述探头、光源、数据处理设备和电源。
其中所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的荧光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的附加方面,所述可咽下装置进一步包括至少两个反射光光传感二极管,适合于传感来自所述激光源的反射光,被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述反射光光传感二极管的反射光,用于估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
探头,包括温度记录检测器,在工作上沿所述胃肠道通过红外温度记录来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
依照本发明的附加方面,所述温度记录检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的红外辐射,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
热电耦探头,在工作上沿所述胃肠道通过温度差来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
阻抗探头,在工作上沿所述胃肠道通过阻抗来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
超声探头,在工作上沿所述胃肠道通过超声反射来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
MRI探头,在工作上沿所述胃肠道通过磁共振来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
依照本发明的一个方面,提供了一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
至少两个探头,每个都在工作上沿所述胃肠道来实施从一组中选择的诊断影像,该组包括放射性药物的核辐射、响应于放射性药物的核辐射的闪烁液体的闪烁、发荧光药物的光学荧光、裸胃肠道组织的光学荧光、红外温度记录、温度差、阻抗、超声反射、磁共振、以及视频,其中每个探头在工作上实施不同的诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和所述数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
依照本发明的附加方面,所述可咽下装置进一步包括从一组中选择的包衣,该组包括类似糖果的包衣,在使用之间替换的生物学惰性包衣,以及用类似糖果的包衣来覆盖在使用之间替换的生物学惰性包衣。
依照本发明的再一个附加方面,所述数据处理设备包括发送器,其可与所述探头通信并且与体外设备进行信号通信。
依照本发明的又一个附加方面,所述发送器包括压电变换器。
依照本发明的再一个附加方面,所述压电变换器被进一步安排以便于与所述身体直接接触而在不同位置处与至少三个体外压电变换器合作基于信号从每个所述体外压电变换器传播到所述可咽下装置并返回的时间跟踪所述胃肠道内的所述可咽下装置。
依照本发明的又一个附加方面,所述发送器包括RF发送器。
依照本发明的再一个附加方面,所述发送器被进一步安排以便于与至少三个体外RF接收器合作在所述胃肠道内跟踪所述可咽下装置。
依照本发明的又一个附加方面,所述发送器包括多信道发送器。
依照本发明的再一个附加方面,所述发送器以预定时间间隔产生基准信号。
依照本发明的又一个附加方面,所述基准信号进一步包括对所述身体的识别信息。
依照本发明的再一个附加方面,所述可咽下装置进一步包括接收器。
依照本发明的又一个附加方面,所述接收器包括多信道接收器。
依照本发明的再一个附加方面,所述数据处理设备包括计算装置。
依照本发明的又一个附加方面,所述可咽下装置进一步包括存储器,用于在其中记录由所述探头产生的诊断信息。
依照本发明的再一个附加方面,所述存储器是可移动数据存储装置。
依照本发明的又一个附加方面,所述电源包括可赋予能量的(energizable)电源。
依照本发明的再一个附加方面,所述可赋予能量的电源包括压电变换器。
依照本发明的又一个附加方面,所述可咽下装置进一步包括跟踪装置,用于在所述胃肠道内跟踪所述可咽下装置。
依照本发明的再一个附加方面,所述跟踪是相对于(vis a vis)体外基准系统而实施的。
依照本发明的又一个附加方面,所述跟踪装置包括至少一个加速度传感器,其传感相对于一套三个相互垂直的坐标轴的至少三个自由度上的加速度。
依照本发明的另一个方面,所述跟踪装置包括至少三个加速度传感器,每个都传感沿一套三个相互垂直的坐标轴中的单个轴的加速度。
依照本发明的再一个方面,所述跟踪装置包括磁跟踪和定位系统。
依照本发明的又一个方面,所述跟踪装置包括压电变换器,可在工作上与所述身体直接接触而在不同位置处与至少三个体外压电变换器合作,用于基于信号从每个所述体外压电变换器传播到所述可咽下装置并返回的时间来进行跟踪。
依照本发明的另一个方面,所述跟踪是相对于所述胃肠道的壁而实施的。
依照本发明的附加方面,所述跟踪装置包括至少一个滚筒,其适合于相对于所述胃肠道的组织而滚动,其中所述至少一个滚筒与接收器通信,并且其中所述至少一个滚筒进行的旋转(revolution)的数量表示所述可咽下装置行进的长度。
依照本发明的再一个附加方面,所述跟踪装置包括至少两个压电变换器,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述至少两个压电变换器的源自所述至少两个压电变换器之一的超声脉冲的超声反射,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的又一个附加方面,所述可咽下装置进一步包括多个压电变换器以提高交叉相关性。
依照本发明的再一个附加方面,所述跟踪装置包括光源和至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的反射光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
依照本发明的又一个附加方面,所述可咽下装置进一步包括多个光传感二极管以提高交叉相关性。
依照本发明的再一个附加方面,所述可咽下装置是一次性的,并且不需要被收回。
依照本发明的一个方面,提供了一种组织诊断系统,包括:
可咽下装置;以及
体外设备,包括:
至少一个体外接收器;
体外计算装置;和
体外电源。
依照本发明的附加方面,所述体外设备进一步包括可更换的接口。
依照本发明的再一个附加方面,所述至少一个体外接收器进一步包括至少三个体外接收器,用于跟踪所述可咽下装置。
依照本发明的又一个附加方面,所述至少三个体外接收器进一步包括至少三个压电变换器补贴传感器(patch-sensor)装置。
依照本发明的另一个方面,所述至少一个体外接收器包括RF接收器。
依照本发明的附加方面,所述至少一个体外接收器包括多信道接收器。
依照本发明的再一个附加方面,所述系统进一步包括RF发送器。
依照本发明的又一个附加方面,所述可咽下装置进一步包括至少一个体内加速度传感器,其传感相对于一套三个相互垂直的坐标轴的至少三个自由度上的加速度,并且所述体外设备进一步包括至少一个体外加速度传感器,用于传感相对于一套三个相互垂直的坐标轴的至少三个自由度上的所述身体的加速度,从而为所述身体的移动校正所述体内加速度传感器的测量。
依照本发明的一个方面,提供了一种实施身体的胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括探头,其在工作上沿所述胃肠道通过放射性药物的核辐射来实施诊断影像;
服用所述放射性药物;
在服用所述放射性药物之后的预定时间咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
依照本发明的附加方面,所述探头包括核辐射检测器,其被安排以便于检测伽玛和贝塔辐射。
依照本发明的再一个附加方面,所述核辐射检测器包括至少两个晶体。
依照本发明的又一个附加方面,所述方法进一步包括选通每个所述晶体到与不同放射性同位素关联的不同窄能量范围。
依照本发明的再一个附加方面,所述方法进一步包括通过至少两个放射性同位素的活动比使用核辐射的类似时钟的特性来识别病理部位。
依照本发明的再一个附加方面,所述至少两个晶体被安排在行进方向上相隔预定的距离,并且其中所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述至少两个晶体的核辐射,估计在所述胃肠道内行进的距离。
依照本发明的另一个方面,所述探头包括光检测器,其中所述方法进一步包括在所述放射性药物的所述服用之后的预定时间和在所述可咽下装置的所述咽下之前的预定时间服用闪烁液体,并且其中用所述探头产生诊断信号进一步包括检测响应于所述放射性药物的核辐射由所述闪烁液体产生的闪烁,由此形成所述诊断影像。
依照本发明的附加方面,所述探头包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,并且所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的闪烁,估计在所述胃肠道内行进的距离。
依照本发明的一个方面,提供了一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括激光源和探头,该探头包括光检测器,在工作上沿所述胃肠道通过发荧光药物的光学荧光来实施诊断影像,其中所述激光源在一个基本上匹配所述发荧光药物的吸收峰值的波长上工作;
服用所述发荧光药物;
在服用所述发荧光药物之后的预定时间咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
依照本发明的附加方面,所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,并且所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的荧光,估计在所述胃肠道内行进的距离。
依照本发明的再一个附加方面,所述可咽下装置进一步包括至少两个反射光光传感二极管,其被安排在行进方向上相隔预定的距离,并且所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述反射光光传感二极管的反射光,估计在所述胃肠道内行进的距离。
依照本发明的一个方面,提供了一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括激光源和探头,该探头包括光检测器,在工作上沿所述胃肠道通过裸组织的光学荧光来实施诊断影像,其中所述激光源在一个基本上匹配所述裸胃肠道组织的吸收峰值的波长上工作;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
其中所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,并且其中所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的荧光,估计在所述胃肠道内行进的距离。
依照本发明的附加方面,所述可咽下装置进一步包括至少两个反射光光传感二极管,其被安排在行进方向上相隔预定的距离,并且其中所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述反射光光传感二极管的反射光,估计在所述胃肠道内行进的距离。
依照本发明的一个方面,提供了一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括探头,该探头进一步包括温度记录检测器,在工作上沿所述胃肠道通过红外温度记录来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
依照本发明的附加方面,所述温度记录检测器进一步包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,并且其中所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的红外辐射,估计在所述胃肠道内行进的距离。
依照本发明的一个方面,提供了一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括热电耦探头,在工作上沿所述胃肠道通过温度差来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
依照本发明的一个方面,提供了一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括阻抗探头,在工作上沿所述胃肠道通过阻抗来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
依照本发明的一个方面,提供了一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括超声探头,在工作上沿所述胃肠道通过超声反射来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
依照本发明的一个方面,提供了一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括MRI探头,在工作上沿所述胃肠道通过磁共振来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
依照本发明的附加方面,所述方法进一步包括以已被服用给所述身体的对比剂的频率来共振。
依照本发明的一个方面,提供了一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括至少两个探头,每个都在在工作上沿所述胃肠道来实施从一组中选择的诊断影像,该组包括放射性药物的核辐射、响应于放射性药物的核辐射的闪烁液体的闪烁、发荧光药物的光学荧光、裸的胃肠道组织的光学荧光、红外温度记录、温度差、阻抗、超声反射、磁共振、以及视频,其中每个探头在工作上实施不同的诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
依照本发明的附加方面,所述诊断影像包括作为时间的函数的诊断信息。
依照本发明的又一个附加方面,所述诊断影像包括作为所述可咽下装置行进的距离的函数的诊断信息。
依照本发明的再一个附加方面,所述记录进一步包括体外地发送所述信息,并且通过体外设备记录所述信息。
依照本发明的另一个方面,所述记录进一步包括在所述可咽下装置内记录所述信息。
依照本发明的再一个附加方面,所述方法进一步包括在所述可咽下装置的所述咽下之前的预定时间服用药物。
依照本发明的再一个附加方面,所述方法进一步包括对大人群(large population)进行筛查。
依照本发明的再一个附加方面,所述方法进一步包括筛查胃肠道肿瘤。
依照本发明的再一个附加方面,所述方法进一步包括为可疑病理进行诊断。
依照本发明的再一个附加方面,所述可疑病理是恶性的。
依照本发明的再一个附加方面,所述可疑病理是非恶性的。
依照本发明的一个方面,提供了一种定位胃肠道内的部位的方法,包括:
相对于所述胃肠道的壁通过跟踪所述胃肠道内的可咽下装置,估计从基准点到所述部位的距离;以及
侵入性地测量从所述基准点到所述部位沿所述胃肠道的所述距离。
依照本发明的附加方面,所述距离的所述估计进一步包括:
提供至少两个传感器,其被安排在行进的方向上相隔预定距离;
交叉相关在时间T和稍后的时间T+ΔT由所述至少两个传感器传感的参数;
确定时间段ΔT内在所述胃肠道内所述可咽下装置行进的增量距离;以及
对所述可咽下装置经过所述基准点的时间和所述可咽下装置经过所述部位的时间之间的增量距离进行求和,从而获得所述距离。
依照本发明的再一个附加方面,由所述至少两个传感器传感的所述参数是从一组中选择的,该组包括放射性药物的核辐射、响应于放射性药物的核辐射的闪烁液体的闪烁、光学荧光、反射光、红外辐射、温度差、阻抗和超声反射。
依照本发明的另一个方面,所述距离的所述估计进一步包括:
采用至少一个滚筒,其被安排在所述胃肠道的壁上滚动;以及
采用计数器,其与所述至少一个滚筒通信,用于对所述可咽下装置经过所述基准点的时间和所述可咽下装置经过所述部位的时间之间由所述至少一个滚筒进行的旋转的数量进行计数。
依照本发明的一个方面,提供了一种定位胃肠道内的部位的方法,包括:
相对于所述体外基准系统通过跟踪所述胃肠道内的可咽下装置,估算从基准点到所述部位的距离;以及
侵入性地测量从所述基准点到所述部位沿所述胃肠道的所述距离。
依照本发明的附加方面,所述方法进一步包括:
跟踪所述胃肠道内的可咽下装置以获得相对于所述体外基准系统的瞬时x;y;z;值;
估算时间段ΔT内在所述胃肠道内所述可咽下装置行进的增量距离;以及
对所述可咽下装置经过所述基准点的时间和所述可咽下装置经过所述部位的时间之间的所估算的增量距离进行求和,从而估算所述距离。
依照本发明的附加方面,所述跟踪是从一组中选择的,该组包括用体内RF发送器和三个体外RF发送器来跟踪,用体内压电变换器和三个体外压电变换器来跟踪,用至少一个加速度传感器来跟踪,以及用磁跟踪和定位系统来跟踪。
依照本发明的一个方面,提供了一种使用放射性同位素的类似时钟的特性来识别病理的方法,包括:
提供核辐射检测器,其被安排以便于在与至少两个放射性同位素关联的至少两种形式的辐射之间进行区分;
服用包括所述至少两个放射性同位素的放射性药物;
通过所述至少两个放射性同位素的每个的核辐射来实施诊断影像;
估计所述至少两个放射性同位素的活动比;以及通过观察所述活动比的变化来识别所述病理。
通过提供适合于在胃肠道内行进并且实施其中的组织的诊断影像的可咽下装置,本发明成功地处理了当前已知的配置的缺点。诊断影像包括作为例如从可咽下装置的咽下以来的时间的函数的诊断信息,或者作为可咽下装置行进距离的函数的诊断信息。具体而言,可咽下装置可被安排成实施以下的任何的诊断影像,或者其组合:
i.放射性药物的核辐射;
ii.响应于放射性药物的核辐射的闪烁液体的闪烁;
iii.发荧光药物或裸胃肠道组织的光学荧光;
iv.借助红外温度记录的胃肠道组织的红外辐射;
v.沿胃肠道组织的温度差;
vi.胃肠道组织的阻抗;
vii.胃肠道组织的超声反射;以及
viii.胃肠道组织的磁共振。
另外,可咽下装置可适合于大人群的总筛查以及可疑病理的特定诊断。
附图简述
在此参照附图来描述本发明,这仅仅是为了举例。现在具体参照详细的附图,所强调的是,所示的细节仅仅是为了举例和本发明优选实施例的说明性讨论,并且是为了提供被认为是本发明原理和概念性方面的最有用和容易理解的描述而被提供的。在这一点上,没有试图比本发明基本理解所必要的详细而示出本发明的结构细节,结合附图的描述使得对本领域的技术人员来说,如何在实际中实施本发明的几种形式是显然的。
在附图中:
图1A-1C示意性地说明依照本发明的诊断系统的概观(overview);
图2A-2B示意性地说明依照本发明优选实施例的可咽下装置;
图3A-3D示意性地说明依照本发明优选实施例的可咽下装置,包括被安排为核辐射检测器的探头;
图4A-4D示意性地说明依照本发明的另一个优选实施例的可咽下装置,包括被安排为核辐射检测器的探头;
图5示意性地说明依照本发明的又一个优选实施例的可咽下装置,包括被安排为至少一个光电传感器的探头;
图6示意性地说明依照本发明的再一个优选实施例的可咽下装置,包括被安排为至少一个检测器光学荧光和光源的探头;
图7示意性地说明依照本发明的又一个优选实施例的可咽下装置,包括被安排用于红外温度记录的探头;
图8A和8B示意性地说明依照本发明的又一个优选实施例的可咽下装置的工作,该可咽下装置包括至少一个热电耦探头;
图9A和9B示意性地说明依照本发明的再一个优选实施例的可咽下装置的工作,该可咽下装置包括至少一个阻抗探头;
图10A和10B示意性地说明依照本发明的还有的其它优选实施例的可咽下装置;
图11示意性地说明依照本发明的又一个优选实施例的可咽下装置,包括超声探头;
图12A-12C示意性地说明依照本发明的又一个优选实施例的探头,其被安排为MRI探头;
图13A-13B示意性地说明依照本发明优选实施例的跟踪系统;
图14A-14C示意性地说明依照本发明另一个优选实施例的跟踪系统;
图15示意性地说明依照本发明另一个优选实施例的跟踪系统;
图16A-16B示意性地说明依照本发明再一个优选实施例的跟踪系统;
图17示意性地说明依照本发明又一个优选实施例的跟踪系统;
图18示意性地说明依照本发明再一个优选实施例的跟踪系统;
图19A-19B示意性地说明依照本发明又一个优选实施例的跟踪系统;并且
图20示意性地说明依照本发明优选实施例的可咽下装置,其被安排用于总筛查。
优选实施例描述
本发明是一种可咽下装置,其适合于在胃肠道内行进并且实施其中的组织的诊断影像。诊断影像包括作为例如从可咽下装置的咽下以来的时间的函数的诊断信息,或者作为可咽下装置行进距离的函数的诊断信息。具体而言,可咽下装置可被安排成实施以下的任何的诊断影像,或者其组合:
i.放射性药物的核辐射;
ii.响应于放射性药物的核辐射的闪烁液体的闪烁;
iii.发荧光药物或裸胃肠道组织的光学荧光;
iv.借助红外温度记录的胃肠道组织的红外辐射;
v.沿胃肠道组织的温度差;
vi.胃肠道组织的阻抗;
vii.胃肠道组织的超声反射;以及
viii.胃肠道组织的磁共振。
另外,一方面,可咽下装置可适合于大人群的总筛查,而另一方面,适合于可疑病理的特定诊断。
依照本发明的可咽下装置的原理和工作可参照附图和伴随的描述来较好地理解。
在详细说明本发明的至少一个实施例之前,应理解本发明不局限于其在以下描述中提出或在附图中说明的部件的安排和构造的细节的应用。本发明可以是其它实施例或者以各种方式实施或应用。还有,在此采用的措词和术语是为了说明的目的,而不应被看作是局限性的。
参考附图,图1A-1C示意性地说明依照本发明优选实施例的诊断系统10的部件12、18和20。
诊断系统10包括可咽下装置12,其适合于在身体16的胃肠道14内行进并且执行对其中的组织的诊断。
诊断系统10可进一步包括体外设备18,其与可咽下装置12进行无线通信,适合于由身体16佩戴,或被置于身体16附近。另外,诊断系统10可包括计算机站20。
例如,体外设备18可被配置为类似腰带的衣服22,具有带24和带扣26,被安排成围绕身体16的腹部佩戴,从而紧密地接近(closelyproximate)胃肠道14。可替换的是,设备18可被佩戴为弹性的衣服、背包、手提包等或被置于身体16附近。
优选的是,当由身体16佩戴时,体外设备18进一步包括接口15,如可拆卸的衬里15或可拆卸的包装15,用于提供设备18和身体16之间的可更换或可洗的表面。
优选的是,体外设备18包括电源28、计算机装置30和有关电路32。另外,计算机装置30包括处理器34,和优选的存储器36和有关电路33。然而,依照本发明,体外设备18和(或)计算机装置30内的信号通信可以是无线的。优选的是,计算机装置30进一步包括可移动数据存储装置38,如磁盘、小型磁盘、CD、磁带等。
设备18进一步包括至少一个接收器40,用于接收来自可咽下装置12的信号。另外,设备18可包括两个或优选的是三个或更多接收器40,如40A、40B、40C,并且可能还有40D、40E和40F。与可咽下装置12的通信可借助RF或借助超声辐射。
设备18可进一步包括发送器42,或发送器和接收器系统42,用于与计算机站20通信,优选的是借助RF辐射。可替换的是,与计算机站20的通信可借助线缆。
可替换的是,或另外,发送器42可被用于发送指令给可咽下装置12。
诊断系统10可进一步包括体外基准系统x;y;z,以例如设备18的任何一个接收器40为基准。另外,诊断系统10可进一步包括体内基准系统u;v;w,以胃11的出口为基准。
计算机站20可以是个人计算机、小型计算机、笔记本等。优选的是,计算机站20包括数据读取装置44,其与设备18的可移动数据存储装置38兼容。另外,计算机站20可包括接收器46,或发送器和接收器系统46,用于与设备18的发送器和接收器系统42或与可咽下装置12通信。计算机站20亦可与网络通信,例如用于访问数据库并用于贡献给数据库以相关的诊断数据。
进一步参考附图,图2A-2B示意性地说明依照本发明优选实施例的可咽下装置12。
如在图2A中所看到的,可咽下装置12包括至少一个探头50,在工作上沿胃肠道14实施组织的诊断影像。可咽下装置12进一步包括相对于胃11(图1A)的远心端11和近端13。此外,可咽下装置12限定与其行进方向平行的轴R。
另外,可咽下装置12包括数据处理设备53,其与探头50进行信号通信,被安排以便于接收和处理由探头50产生的成像数据。
数据处理设备53可以是例如发送器54,其被安排成将探头50传感的数据发送给体外设备18(图1C)的至少一个接收器40,或直接发送给计算机站20的接收器46。发送器54亦可发送周期性的基准信号,其可包括对身体16的识别细节和诊断的日期和(或)时间。
依照本发明的优选实施例,发送器54和至少一个接收器40(图1C)被安排用于RF通信,其可进一步包括多信道通信。例如,数据可在一个信道中被发送,而基准信号可在另一个中被发送。另外,如将在以下所描述的,在多个探头结合可咽下装置12而被使用的情况下,每个探头可被指定一个信道。可替换的是,发送器54可被安排通过超声辐射与至少一个接收器40通信。
可咽下装置12可进一步包括电源52和有关电路56。然而,可咽下装置12内的信号通信可以是无线的。
探头50、数据处理设备53、电源52和有关电路56被封装于壳体58内。壳体58可以由惰性的生物相容材料形成,如聚碳酸脂、聚乙烯、天然橡胶、硅、或例如被形成为充满(impregnated with)玻璃纤维的环氧树脂的合成物。
另外,壳体58可用类似糖果的包衣59包上,其例如由结硬皮的(crusted)糖、加糖的(sugared)明胶、巧克力等形成。
可咽下装置12的总尺寸应当足够小以便于咽下,例如大约2cm的长度和大约1cm的宽度。应理解,较小的尺寸是可能的。另外,在某种程度上,较大的尺寸是可能的。
优选的是,可咽下装置12是一次性的。可咽下装置12可由身体自然处理,或被收回用于检查,然后被处理。可替换的是,可咽下装置12可被收回以便于在清洁和消毒之后重复使用。
依照图2A中看到的本发明优选实施例,装置12包括诊断所必要的最小数量的部件。就这一点而言,是相对便宜的,因此适合于作为总筛查装置。另外,可从部件之间的干扰产生的噪声可被保持在最小。
依照图2B中看到的本发明的另一个优选实施例,可咽下装置12被安排用于收回和重复使用,并且进一步包括第二壳体60。第二壳体60可例如由薄聚碳酸脂(polycarbon)层、或类似的材料形成,并且在清洁和消毒之后在使用之间被更换。另外,第二壳体60可包括类似糖果的包衣。第二壳体60被用于克服任何与咽下已经过另一个人的胃肠道的装置关联的不安。
进一步参考附图,图3A-3D示意性地说明依照本发明优选实施例被安排用于成像放射性药物的核辐射的可咽下装置12和其成像方法。优选的是,探头50包括核辐射检测器49。如已在以上结合图2A所述的,可咽下装置12可进一步包括发送器54、电源52和有关电路56。
核辐射检测器49可包括至少一个镉锌碲化物晶体或至少一个镉碲化物晶体,在工作上检测伽玛和贝塔辐射两者。另外,可采用两个或多个晶体。这些可从eV Products,PA,USA)375 Saxonberg Blvd.Saxonberg,PA 16056获得。可替换的是,如已知的,可使用另一种核辐射检测器49,其优选地在工作上检测伽玛和贝塔辐射两者。
优选的是,核辐射检测器49不被准直;相反,它在工作上检测来自任何方向的核辐射。可替换的是,核辐射检测器49可包括绕其圆周安排的蜂窝型准直仪,在工作上检测来自任何方向的核辐射。可替换的是,如已知的,可使用另一种准直仪。
优选的是,核辐射检测器49在工作上检测在与贝塔和伽玛辐射关联的大约6.0KeV到大约1.5MeV的宽能谱上的核辐射。可替换的是,可执行选通以检测处于与特定同位素关联的特定能量范围的辐射。作为一个实例,核辐射检测器49可为处于大约28KeV的能量的输入辐射而被选通,其对应于I125发射的伽玛光子。作为另一个实例,核辐射检测器49可为处于大约0.9MeV的能量的输入辐射而被选通,其对应于P32的贝塔能量。在使用两个或多个晶体的情况下,一个可为一个能量范围而被选通,而另一个为另一个能量范围而被选通,从而检测由不同同位素发射的特定辐射,以例如使背景干扰最小。
优选的是,核辐射检测器49以足够的时间分辨率产生与被检测粒子的能量成比例的电流脉冲以分别检测伽玛和(或)贝塔粒子。这样可依照粒子的能量通过电子电路来执行选通(gating)。
在咽下可咽下装置12之前的某个时间,例如在咽下之前的几个小时到大约两天,将放射性药物服用给身体16。优选的是,服用是借助注射进行的。可替换的是,服用可以是口服或静脉内的。放射性药物可包括单克隆抗体,如anti-CEA、anti-TAG-72,或用放射性同位素标记的另一种抗体,例如锝Tc99m、碘I125、I123、I131和I133、铟In111、镓Ga67、铊Tl201、氟F18和P32中的任何一个。在这些中,镓Ga67、I131和PU32发射βετα辐射。
依照本发明,βετα辐射在小肠中有特定用途。在水或身体组织中,βετα辐射在其被吸收之前具有仅几毫米的范围。然而在小肠中,可咽下装置与胃肠道14的壁接触,并且当被选通到特定贝塔能量时,在工作上检测βετα辐射,而没有背景辐射的干扰。
放射性药物可包括两个或多个抗体,每个都用不同的同位素来标记。例如,可使用用I125、I123、I131、I133或Tc99m的任何一个来标记的anti-CEA的鸡尾酒和用铟In111标记的anti-TAG-72。
另外,放射性药物可包括两个放射性同位素的混合物,例如用I131标记的anti-CEA和用I133标记的anti-CEA。
优选的是,在咽下可咽下装置12之前,病人被准备以使最小容量(content)存在于胃肠道14中。
为了说明的目的,假定病理部位82沿胃肠道14存在。被结合于病理特定抗体的放射性药物有可能在部位82浓缩,从而产生核辐射81。
如在图3A中看到的,随着可咽下装置12在胃肠道14中行进,其将表示核辐射计数的数据发送给体外计算机装置30(图1C)。优选的是,计算机装置30作为从咽下时间以来的时间的函数而记录输入数据。
优选的是,计算机装置30(图1C)将所述数据记录为从咽下时间以来的所有时间间隔的时间通道(time channel)或预定时间间隔内的计数的数量。预定时间间隔可以是例如30秒、1分钟或10分钟,或者另一个预定值,并且可依赖于预期的计数速率。例如,如果可咽下装置12用70个小时(=4200分钟)行进胃肠道14的长度,则计算机装置30可采集1分钟间隔的4200个通道(channel)或10分钟间隔的420个通道或者预定的任何其它数量的通道中的数据。数据处理可在以后合并(coalesce)通道以有助于解释。例如,数据可被采集并存储于例如1秒的很精细的通道中,并且在以后被聚结并显示于10分钟的通道中。
图3B示意性地说明如可由计算机装置30(图1C)所产生的咽下之后的10到12个小时(600-720分钟)的10分钟信道中的核辐射计数。集中在咽下之后的640分钟左右的统计上有意义的辐射峰值表示那个位置处的可疑病理,如肿瘤组织。
尽管仅已知为咽下之后的640(=10.7小时)的位置不必要被精确限定,然而它能提供某些信息。一般来说,可咽下装置12用大约70个小时或近似为3天来完成其路线。其中稍后的30到50个小时用在结肠中。这样,外科医生可估算在吞咽之后的大约11个小时,可咽下装置12可能在小肠中。
以下结合图3C和3D描述识别病理部位82的位置的方法。识别病理部位82的位置的可替换方法在以下结合图13A-19B来描述。
如名为“Telemetry Capsule and Process”的被授予Schentag等的U.S.专利5,279,607和名为“Sampling capsule and process”的被授予A’Andrea等的U.S.专利5,396,366所讲的,被安排于不同位置的至少三个接收器如接收器40A、40B和40C(图1C)和专用的算法可被用于在给定时间确定辐射源,可咽下装置12的发送器54(图2A)的精确位置,所述专利的公开内容在此引入作为参考。
然而,由于作为消化过程一部分的身体16(图1A)内消化道14的固有运动,相对于体外基准系统x;y;z的部位82的精确位置是没有意义的。用相同的体外基准系统x;y;z在一周以后执行的相同诊断将产生用于部位82的不同x,y,z值。
尽管如此,从体内基准系统u;v;w,例如胃11的出口到部位82由可咽下装置12行进的距离L可基于可咽下装置的瞬时x;y;z值来估算。该距离是外科医生沿胃肠道14侵入性地测量并到达部位82的值。
为此,可由计算机装置30为每个时间间隔i来估算相对于体外设备18(图1C)的多个接收器40的可咽下装置12的精确、瞬时的位置。优选的是,例如通过使用一个接收器作为位置(0;0;0),使体外基准系统x;y;z(图1A)与接收器40的位置相关。每个时间间隔i的瞬时x,y,z值可被表示为(x,y,z)i
图3C示意性地说明借助接收器40A、40B和40C获得的可咽下装置12的瞬时(x,y,z)i值。基于这些值,通过如以下在所估算的增量距离ΔL上求和,可计算从体内基准系统u;v;w到部位82可咽下装置12已行进的估算距离L:
L=∑ΔL,其中ΔL=[(xi+1-xi)2+(yi+1-yi)2+(zi+1-zi)2]1/2
优选的是,在例如几秒很短时间间隔上获得(x,y,z)i的瞬时值。
图3D示意性地说明作为从咽下以来的时间的函数的估算距离L。可替换的是,可使用另一个时间,例如从体内基准系统u;v;w以来的时间。这样,例如,外科医生可观察例如在咽下之后的640分钟,对应于例如从体内基准系统u;v;w以来的240分钟,可咽下装置12经过部位82附近,已在胃肠道14内行进近似2.8米。
这样,核辐射的诊断影像可包括如在图3A中看到的作为时间的函数的诊断信息,或基于在图3D中看到的信息的作为可咽下装置12行进距离的函数的诊断信息。
参照图3A-3B,将理解,计算机装置20(图1B)可与计算机装置30(图1C)合作使用或取代后者而使用。
进一步参考附图,图4A-4D示意性地说明依照本发明另一个优选实施例被安排用于成像至少两个放射性同位素的核辐射的可咽下装置12和其成像方法。
放射性同位素的类似时钟的特性可单独用于如以下的识别体内病理部位的技术:
在滞水池(stagnant pool)中,具有初始浓度N0和衰变常数λ的同位素的时间依赖的同位素浓度N(t)可被描述为
N(t)=N0e-λt
在体内,净化可由净化速率常数来描述。这样,体内的时间依赖的同位素浓度通过衰变和净化以速率常数λ+降低。除了>>λ的情况,降低速率常数λ+对每个同位素是唯一的。
在病理部位,在由于吸收而发生积累(buildup)时,由于衰变和释放而发生去除,其中释放可由释放速率常数η来描述。这样,病理部位处的时间依赖的同位素浓度以λ+η的速率常数降低。在通常的身体内的情况下,除了η>>λ的情况,降低速率常数λ+η对每个同位素是唯一的。
实际上,如以下,给定同位素表现的好像它具有不同的有效衰变常数:通常的用于身体的λ+,以及用于病理部位的λ+η。由于抗体或放射性药物因为病理中的阻挡(hold up)机理明显不同于通常的组织(即,η<<)而被具体选择,这些有效衰变常数可被用于识别病理部位。
识别病理部位的第一技术基于服用包含优选地被结合于相同抗体的两个放射性同位素A和B的放射性药物。在体内,两个放射性同位素的时间依赖的浓度将以对A和B分别为λA+和λB+的速率降低,并且A/B的时间依赖的浓度比将依赖于这些值。然而,在病理部位,其时间依赖的浓度将以对A和B分别为λA+η和λB+η的速率降低。这样,同位素浓度比的变化可发生于病理部位。该变化将通过通常的组织和病理部位之间的活动比的变化来观察。
在图4A-4D中,服用放射性药物给身体16已包括了两个同位素I131和I133的鸡尾酒。另外,核辐射检测器49已被安排成如在以上所述的,基于所产生的电流脉冲在与I131关联的第一能量的光子和与I133关联的第二能量的光子之间区分。
如在图4A中看到的,病理部位92可在例如从可咽下装置12的咽下时间的大约540分钟时存在于胃肠道14中。另外,如在图4B和4C中看到的,病理部位92过小以至于不能产生I131或I133的辐射计数的统计上有意义的光子峰值。
然而,如在图4D中看到的,部位92处的I131与I133的同位素活动比的变化表示可疑的病理。
将理解,甚至可在观察到核辐射计数的统计上有意义的峰值时,同位素活动比的变化可被观察到,并且可被用作确认。
同位素活动比的变化的诊断影像可包括如在图4D中看到的作为时间的函数的诊断信息,或者基于图3D中看到的信息作为可咽下装置12行进距离的函数的诊断信息。
识别病理部位的第二技术基于服用包含两个放射性同位素A和B的放射性药物,其中仅A被结合于抗体。对于通常的体内,两个放射性同位素的时间依赖的浓度将以对A和B分别为λA+和λB+的速率降低,并且A/B的时间依赖的浓度比将依赖于这些值。然而,在病理部位,A的时间依赖的浓度将以速率λA+η降低,而B将以速率λB+降低。并且病理部位处的A/B的时间依赖的浓度比将依赖于这些值。同样,可在病理部位附近观察到同位素活动比的变化。
依照本发明,使用两个同位素的活动比来检测病理部位的技术可通过选择同位素、抗体、服用形式以及服用放射性药物和咽下可咽下装置12之间的等待周期来最优化。另外,可使用三个或更多放射性同位素。此外,同位素不需要在化学上相同。另外,它们不需要被结合于相同的抗体。依赖于放射性同位素的类似时钟的特性而识别与病理部位关联的滞留机理的上述技术的许多变化是可能的,并且处于本发明的范围内。
依照本发明,核辐射检测器49可包括由以下专利所讲的特色:名为“Detector and localizer for low energy radiation emissions”的授予Denen等的U.S.专利4,801,803、名为“Detector andlocalizer for low energy radiation emissions”的授予Denen等的U.S.专利5,151,598、名为“Detector and localizer for lowenergy radiation emissions”的授予Denen等的U.S.专利4,893,013和名为“Detector and localizer for low energyradiation emissions”的授予Denen等的U.S.专利5,070,878以及名为“System and apparatus for detecting and locating sourceof radiation”的被授予Boutun等的U.S.专利6,259,095,其公开内容在此引入作为参考。
进一步参考附图,图5示意性地说明了依照本发明再一个优选实施例的可咽下装置12,其被安排用于通过其产生的闪烁来间接成像核辐射。本实施例提供了一种用闪烁液体间接识别病理部位的技术。因此,可咽下装置12的探头50包括光检测器51。如在以上结合图2A所述的,可咽下装置12可进一步包括发送器54、电源52和有关电路56。
依照本实施例,服用药物给身体16(图1A)包括放射性药物和闪烁液体。尽管在咽下可咽下装置12之前的几个小时到大约两天之间优选地通过注射来服用放射性药物,闪烁液体在咽下可咽下装置12之前的大约两个小时优选地被口服。
优选的是,在咽下可咽下装置12之前,身体16被准备以使最小容量存在于胃肠道14中。
闪烁液体可从例如IN/U.S.Systems.Inc.5809 North 50thStreet,Tampa.FL 33610-4809获得,其提供两种可生物降解、无毒的闪烁鸡尾酒,IN-FLOW BD和IN-FLOW ES。这两种产品都具有低粘度以确保可泵性,都是无害的,并且可作为一般液体废物而被处理。
在可咽下装置12在胃肠道14内行进时,它被闪烁液体94包围,该闪烁液体产生对伽玛和贝塔辐射的闪烁。在病理部位82附近,闪烁96被产生于液体内,它是通过来自结合于所述部位82的放射性药物的核辐射81产生的。闪烁96将被光检测器51检测到,并且通过发送器54发送给设备18。
闪烁的诊断影像可包括以类似于在图3A中看到的方式的作为时间的函数的诊断信息,或者基于图3D中看到的信息作为可咽下装置12行进距离的函数的诊断信息。
光检测器51可包括单个光传感二极管,或者两个或更多光传感二极管。可被用于本实施例的光传感二极管的实例包括NT55-754或者NT53-372,其被描述于Edmund Industrial Optics的www.edmundoptics.com/IOD/DisplayProduct.cfm?productid=2232中。
进一步参考附图,图6示意性地说明依照本发明优选实施例的可咽下装置12,其被安排用于成像光学荧光。光学荧光可以是发荧光药物或裸胃肠道组织的。
优选的是,探头50包括光检测器55,其类似于例如在以上结合图5所述的光检测器51,但优选地进一步包括滤色镜,例如,从以上的Edmund Industrial Optics获得的NT46-149,从而对特定颜色是敏感的。可替换的是,光检测器51可包括多于一个的光电二极管,每个都具有不同的滤镜。
另外,可咽下装置12进一步包括在光检测器55远端的激励源78,优选为激光源78。如名为“Portable tissue spectroscopy apparatusand method”的Crowley的U.S.专利6,324,418所讲,激光源78可被装配到可咽下装置12中,该专利的公开内容在此引入作为参考。光垒79可分离源78和光检测器55。
如在以上结合图2A所述的,可咽下装置12可进一步包括发送器54、电源52和有关电路56。
光学荧光的诊断影像可包括以类似于在图3A中看到的方式的作为时间的函数的诊断信息,或者基于图3D中看到的信息作为可咽下装置12行进距离的函数的诊断信息。
当在405nm左右的Soret带中被激励时,给出良好构建的荧光光谱的已知发荧光药物包括血卟啉衍生物(HPD)。另外,当由例如N2激光器在337nm照射时,它们包括双血卟啉醚/酯(dihematoporphyrin ether/ester,DHE)、血卟啉(hematoporphyrin,HP)、聚血卟啉酯(polyhematoprohyrinester,PHE)和四磺化酞菁(tetrasulfonatedphthalocyanine,TSPC)。依照本发明,可使用这些中的每个或这些的组合,或者其它已知的发荧光药物和其各种组合。
如名为“Diagnosis by means of fluorescent light emissionfromtissue”的被授予Andersson-Engels等的U.S.专利5,115,137所讲,发荧光药物可包括四磺化酞菁(TSPC),而源78可包括用于337nm处的照射的N2激光器,该专利的公开内容在此引入作为参考。
可替换的是,如名为“Human and animal tissue photoradiationsystem and method”的被授予Clark的U.S.专利4,336,809所讲,发荧光药物可包括血卟啉或血卟啉衍生物,而源78可包括氙离子激光器,该专利的公开内容在此引入作为参考。依照Clark,氙离子激光器具有近似匹配血卟啉的红吸收峰值的大约627纳米的波长处的红范围中的单离子化激光跃迁(singly ionized lasing transition)。另外,氙离子激光器具有一组大约406、421、424和427纳米的波长处的双离子化线。这些近似地匹配血卟啉的407纳米蓝吸收峰值。
可替换的是,如以上的Clark所讲,所服用的药物可包括血卟啉或血卟啉衍生物,而源78可以是氪离子激光器,其具有匹配血卟啉的407纳米吸收峰值的406.7/413.1纳米线。
在可咽下装置12行进于胃肠道14内时,可产生发荧光药物的光学荧光影像。荧光影像的信息以类似于结合图3A所述的方式而被记录。
将理解,可使用其它药物,其具有可被适当的激光器具体匹配的吸收峰值。
与以上讲授用于实施裸组织的激光激励光学荧光的可咽下丸的被授予Crowley的U.S.专利6,324,418不同,本发明包括服用荧光药物并在具体匹配药物吸收峰值的能量处感应它。
然而,依照本发明的其它优选实施例,可咽下装置12可被安排用于成像裸胃肠道组织的光学荧光。
进一步参考附图,图7示意性地说明依照本发明优选实施例的可咽下装置12,其被安排用于通过红外温度记录来成像胃肠道组织的红外辐射。
在小肠中,可咽下装置12很可能与胃肠道14的壁接触。然而,在结肠中,与壁的接触是不可能的。测量从表面发射的热能而不接触并产生用于分析的温度影像的红外温度记录由此唯一地适合于与可咽下装置12一起使用。
优选的是,探头50包括红外温度记录检测器61,其被形成为结合图5在以上描述的光检测器51,进一步包括IR滤波器,例如,以上的Edmund Industrial Optics获得的IR-NT54-518。可替换的是,红外温度记录检测器61可由用于IR的单个光传感二极管或者两个或多个光传感二极管形成,如从ROITHNER LASERTECHNIK,A-1040 Vienna,Austria,Schoenbrunner Strasse获得的EPD-740-0/1.0-IR选择性光电二极管。
如在以上结合图2A所述的,可咽下装置12可进一步包括发送器54、电源52和有关电路56。
在可咽下装置12行进于胃肠道14内时,可获得组织温度的影像。诸如部位82的病理部位有可能处于比周围组织高的温度,并且可由此产生表示病理的温度记录峰值。
组织温度的诊断影像可包括以类似于在图3A中看到的方式的作为时间的函数的诊断信息,或者基于图3D中看到的信息作为可咽下装置12行进距离的函数的诊断信息。
进一步参考附图,图8A和8B示意性地说明依照本发明优选实施例被安排用于成像沿胃肠道组织的温度差的可咽下装置12和其成像方法,使用至少一个热电耦106A。
热电耦是用于测量温度的已知装置。它包括由不同金属制成的两个导线,在一端且很紧密地连接,而在另一端不连接。当热电耦的连接端被置于温度比另一端高的区域中时,在另一端在导线之间建立电压。
至少一个热电耦探头106A具有尖108A1和108A2,其优选地与壳体58的外表面对接。温度差可由此被测量于尖108A1和108A2之间。优选的是,探头50包括附加的具有尖108B1和108B2的热电耦106B以及具有尖108C1和108C2的热电耦106C。如在以上结合图2A所述的,可咽下装置12可进一步包括发送器54、电源52和有关电路56。
在小肠中,可咽下装置12和胃肠道14的壁之间的直接接触很有可能发生。在可咽下装置12行进于胃肠道14中特别是小肠中时,组织温度的差被检测,这是由于尖108A、108B和108C形成与胃肠道14的组织的接触。在健康组织和病理之间的接口处,例如在108A1与病理接触而108A2与健康组织接触的地方,可观察到表示两种类型组织之间的温度梯度的波峰。
组织温度差的诊断影像可包括以在图8B中看到的方式的作为时间的函数的诊断信息,或者基于图3D中看到的信息作为可咽下装置12行进距离的函数的诊断信息。
进一步参考附图,图9A和9B示意性地说明依照本发明优选实施例被安排用于成像胃肠道组织的阻抗的可咽下装置12和其成像方法,其使用至少一个阻抗探头110A。已发现阻抗成像在检测肿瘤和其它病理中是有用的。
至少一个阻抗探头110A具有尖112A1和112A2,其优选地与壳体58的外表面对接,从而形成与胃肠道组织14的直接接触。优选的是,尖112A1和112A2由以下形成:生物相容的金属,如SS、钛、钛合金等或者另一种生物相容的导体。阻抗可由此被测量于尖112A1和112A2之间。优选的是,探头50包括附加的具有尖112B1和112B2的阻抗探头110B以及具有尖112C1和112C2的阻抗探头110C
如在以上结合图2A所述的,可咽下装置12可进一步包括发送器54、电源52和有关电路56。
在小肠中,可咽下装置12和胃肠道14的壁之间的直接接触很有可能发生。在可咽下装置12行进于胃肠道14中特别是小肠中时,组织阻抗的差被检测,这是由于尖112A1和112A2、112B1和112B2以及112C1和112C2形成与胃肠道14的组织的接触。在病理部位,有可能观察到阻抗的变化。
组织阻抗的诊断影像可包括以在图9B中看到的方式的作为时间的函数的诊断信息,或者基于图3D中看到的信息作为可咽下装置12行进距离的函数的诊断信息。
进一步参考附图,图10A和10B示意性地说明依照本发明其它优选实施例的可咽下装置12的附加部件。可咽下装置12可进一步包括任何一个以下部件:
i.跟踪系统48;
ii.例如微计算机64形式的计算机装置64,其可包括处理器66,并且优选地还包括存储器68;
iii.接收器70,如将在以下描述的,用于从计算机装置30或计算机系统20接收指令;
iv.变换器69,与电源52进行电通信,用于对电源52体外赋予能量;
v.如已知的专用于信号放大和(或)前置放大的电路和部件74;以及
vi.如已知的专用于减小信噪比的电路和部件76。
依照本发明,计算机装置64是数据处理设备53的另一个部件,被安排用于接收并处理由探头50产生的成像数据。如图10A中所示,计算机装置64可通过发送器54并且可能还有接收器70与体外设备18(图1C)的计算机装置30和(或)计算机站20(图1B)合作而使用。
可替换的是,计算机装置64可仅通过接收器70与体外设备18(图1C)的计算机装置30和(或)计算机站20(图1B)合作而使用。
可替换的是,计算机装置64可代替体外设备(图1C)的计算机装置30并代替发送器54而使用,使可咽下装置12成为自主单元。如图10B中所示。因此,不需要使用体外设备18。优选的是,在不使用体外设备18的情况下,数据可由计算机装置64记录,并在完成胃肠道14中的诊断路线之后用可咽下装置12取回。如在以上结合图3A-9B所描述的,计算机装置64能以类似于计算机装置30(图1C)或计算机站20(图1B)的方式记录数据并执行计算。存储器68优选地类似于可移动数据存储装置38(图1C)并可通过计算机站20(图1B)的数据读取装置44去除和读取。
电源52可以是可赋予能量的电源,其进一步包括变换器69,例如,如名为“System and method for monitoring a parameterassociated with the performance of a heart”的被授予Porat等的U.S.专利6,277,078所讲,其公开内容在此引入作为参考。优选的是,变换器69是压电变换器,其可通过被导向它的体外超声辐射来赋予能量。
接收器70可被安排用于RF通信,其可以是多信道的。可替换的是,接收器70可以是超声接收器。接收器70和发送器54可被集成于单个单元。
可咽下装置12的部件之间的通信可以是有线或无线的。
依照本发明,可使用各种类型的跟踪系统48。如将在以下结合图13A-19B所描述的,这些可以是除了体外设备18(图1C)的多个接收器40和发送器54以外的,或可取代它们。
进一步参考附图,图11示意性地说明依照本发明优选实施例的可咽下装置12,其被安排用于成像胃肠道组织的超声反射。因此,探头50包括超声探头67,其被形成为例如变换器阵列,被安排用于发送和接收超声辐射。可咽下装置12可进一步包括计算机装置64和(或)发送器54并且可能还有接收器70,以及其它部件,如在以上结合图10A和10B所描述的。
类似于本发明的探头67的超声探头由名为“Ultrasound fingerprobe and method for use”的被授予Wedel等的U.S.专利5,088,500、名为“Ultrasonic probe to be installed onfingertip”的被授予Hanoaka等的U.S.专利5,284,147和名为“Ultrasonic diagnosis system”的被授予Kawagishi、Tetsuya等的U.S.专利申请20010020131讲授,其公开内容在此引入作为参考。
各种对比剂可与超声探头67一起使用,例如,如名为“Ultrasonicimaging system utilizing a long-persistence contrast agent”的被授予Schutt等的U.S.专利6,280,704所讲,其公开内容在此引入作为参考。
超声反射的诊断影像可包括以类似于在图3A中看到的方式的作为时间的函数的诊断信息,或者基于图3D中看到的信息作为可咽下装置12行进距离的函数的诊断信息。
进一步参考附图,图12A-12C示意性地说明依照本发明优选实施例的可咽下装置12,其被安排用于成像胃肠道组织的磁共振。因此,探头50包括MRI探头63。
MRI探头63包括微型永磁体120,其优选地被形成为圆柱棒。永磁体120限定纵轴z,并具有z方向上的磁场B0。另外,MRI探头63包括RF线圈122,其优选地包围永磁体120。RF线圈122可被形成为鸟笼RF线圈。可替换的是,RF线圈可被形成为多匝RF线圈,该多匝包围永磁体120。可替换的是,可使用另一种已知的RF线圈。
依照本发明的优选实施例,没有使用梯度线圈;如在以下结合图3A-3D所描述的,或如在以上结合图13A-17B所描述的,位置信息可被采集。
这样,MRI的诊断影像可包括以类似于在图3A中看到的方式的作为时间的函数的诊断信息,或者基于图3D中看到的信息作为可咽下装置12行进距离的函数的诊断信息。
依照本发明的另一个优选实施例,可使用例如被形成为抗亥姆霍兹型线圈的梯度线圈124。
可通过接收器70以无线方式通过计算机装置30或通过计算机站20来控制MRI探头63的工作。可替换的是,可通过计算机装置64来控制MRI探头63的工作。
依照本发明的优选实施例,为了与MRI探头63一起使用,发送器54优选地包括超声发送器,而接收器70优选地包括超声接收器,其中发送器和接收器可被结合于单个超声变换器中。这样,来自体外的RF信号的干扰被最小化。
各种对比剂可与MRI探头63一起使用,例如,如名为“Gas filledmicrospheres as magnetic resonance imaging contrast agent”的被授予Unger的U.S.专利6,315,981所讲,其公开内容在此引入作为参考。
进一步参考附图,图13A-13B示意性地说明依照本发明优选实施例的跟踪系统48,其使用至少一个加速度传感器152。
如在图13A中看到的,跟踪系统48可包括至少一个加速度传感器152,其传感在至少三个自由度上,如相对于一套三个相互垂直的坐标轴的加速度。可替换的是,跟踪系统48可包括至少三个加速度传感器152,每个都传感沿一套三个相互垂直的坐标轴的单个轴的加速度。加速度传感器可包括一个或多个微型或微加速度计。计算机装置64或计算机装置30可估算胃肠道14内胃肠诊断装置12行进的距离L(图3A),其是加速度传感器所传感的加速度的函数。
如在图13B中看到的,体外设备18可进一步包括传感至少三个自由度上的加速度的至少一个体外加速度传感器154,或至少三个加速度传感器,每个都传感一套三个相互垂直的坐标轴的单个自由度上的加速度。以这种方式,可进行对身体16(图1A)的运动的校正。
加速度传感器152和154可代替多个天线40而使用,或者是除了它们以外还使用的。
进一步参考附图,图14A-14C示意性地说明依照本发明另一个优选实施例的借助磁跟踪和定位的跟踪系统48。跟踪系统48可包括已知为miniBirdTM的系统158,其是商业上可从Ascesion TechnologyCorporation,P.O.Box 527,Burlington,Vermont 05402 USA(http://www.ascesion-tech.com/graphic.htm)获得的磁跟踪和定位系统。miniBirdTM158测量一个或多个微型化传感器的实时位置和方位(六个自由度),从而精确地跟踪探头、设备和其它装置的空间位置。这样,距离L(图3A)可被估算。miniBirdTM 158的尺寸对于型号800是18mm×8mm×8mm,而对于型号500是10mm×5mm×5mm,这对于与可咽下装置12一起使用是足够小的。
miniBirdTM158的工作的实验结果见图14B和14C。长度为120cm且直径为6cm的挠性U形塑料管140被固定于平表面(未示出)并用作人结肠的模型。构成57Co的100μCi的点源142的单辐射源被附着于管的外表面。可咽下装置12由辐射检测器144模拟,该辐射检测器包括从eV Products,PA,USA)375 Saxonburg Blvd.Saxonburg,PA 16056获得的125mm3的CdZnTe晶体,其无需准直仪而被使用。
被附着于辐射检测器144的是miniBird 158,其形成可咽下装置12的模型。计数读数使用122KeV能量峰值左右的+/-6%的能量窗口来过滤。辐射检测器144和miniBird 158被结合于一个串(未示出)并通过管140的内径,经过辐射源142用手拉出距离L’。集成的计数读数和位置信息被传递给个人计算机以便于处理和可视呈现。最终结果是图14C中以黑白示出的颜色编码的图,其与沿所述管检测的辐射计数读数成比例。图14C示出辐射的逐渐增加和对应于所述源的真实位置的峰值辐射的逐渐降低。
结果确认了被配备有辐射检测器和定位系统和软件的可咽下装置12可正确地识别胃肠道内的放射性标记的组织。
进一步参考附图,图15示意性地说明依照本发明又一个优选实施例的跟踪系统48,其包括至少一个微型滚筒84。因此,可咽下装置12进一步包括在壳体58外部的至少一个微型滚筒84。滚筒84与计数器86通信,该计数器在壳体58的内部并对滚筒84进行的完整旋转进行计数并且将计数转换为信号,该信号被传递给发送器54并被发送给体外计算机装置30。滚筒84以类似于轮胎测量汽车行进距离的方式来测量可咽下装置12行进的距离。在一些实施例中,可使用两个或多个滚筒84。
优选的是,有至少一个滚筒84的可咽下装置12被密封在明胶、糖或容易溶解的另一种物质的铸型(cast)88内以便于吞咽。铸型88在胃11(图1A)中溶解,露出至少一个滚筒84,其然后可跟踪从胃11的出口处的体内基准系统u;v;w以来在胃肠道14中行进的距离。以类似于图3D的方式,可咽下装置12行进的距离可被呈现为时间的函数。
进一步参考附图,图16A-16B示意性地说明依照本发明的再一个优选实施例的跟踪系统48,其基于反射光的交叉相关。
反射光的交叉相关是一种移动跟踪技术,该技术由LogiteciFeelTM MouseMan使用,并且被描述于www.logutech.com/cf/products/productoverview.cfm/95。
如在图16A中看到的,跟踪系统48包括光源75,例如发光二极管75,以及至少两个光传感二极管71A和71B,其被安排距离ΔPαπαρτ,αλονγ τηε P αξισ?优选的是,光垒79分离发光二极管75和光传感二极管71A和71B
从二极管75发射的光被胃肠道14的壁反射并用至少两个光传感二极管71A和71B来检测。通过交叉相关在第一时间T和稍后的时间T+ΔT的所检测的信号,时间段ΔT内可咽下装置12在胃肠道14内行进的增量距离可被估计。可咽下装置12行进的距离L(图3A)  可由此通过求和增量距离来估计。优选的是,时间段ΔT是几秒的量级。
可替换的是,如在图16B中看到的,可使用光检测器71,其包括多个光传感二极管,沿R轴以它们之间的各种距离被安排以提高交叉相关性。
如以上所述,在使用光源78(图6)的实施例中,光源78可代替二极管75来使用。
另外,光传感二极管71A和71B可被安排成传感由光源75或78发射的反射光或光学荧光。
依照本发明,其它形式的交叉相关可被使用,例如,借助超声反射、核辐射、红外辐射、由闪烁液体产生的闪烁、阻抗测量等。
进一步参考附图,图17示意性地说明依照本发明再一个优选实施例的跟踪系统48,其中交叉相关基于背景水平的核辐射。因此,核检测器49包括至少两个并且优选为多个晶体,其沿R轴以它们之间的各种距离来安排。通过交叉相关在第一时间T和稍后的时间T+ΔT的背景辐射水平,在时间段ΔT内可咽下装置12行进的增量距离可被估计。
进一步参考附图,图18示意性地说明依照本发明又一个优选实施例的跟踪系统48,其中交叉相关基于红外辐射。这样,温度记录检测器61可包括至少两个并且优选为多个光传感二极管,其沿R轴以它们之间的各种距离来安排。通过交叉相关在第一时间T和稍后的时间T+ΔT的红外辐射水平,在时间段ΔT内可咽下装置12行进的增量距离可被估计。
类似地,依照本发明的再一个优选实施例,小肠中的跟踪可使用阻抗探头通过阻抗的交叉相关来执行,所述阻抗探头优选为多单元阻抗探头,该多个单元沿R轴以它们之间的各种距离来安排。
另外,依照本发明的又一个优选实施例,小肠中的跟踪可使用热电耦探头通过温度差的交叉相关来执行,所述热电耦探头优选为多单元热电耦探头,该多个单元沿R轴以它们之间的各种距离来安排。
进一步参考附图,图19A和19B示意性地说明依照本发明还有的其它优选实施例的使用超声辐射的跟踪系统48。跟踪系统48包括压电变换器72,能以几毫瓦的功率在大约40KHz到大约20MHz的频率范围内工作。
如以下,压电变换器72可通过几种方法来工作以便于跟踪可咽下装置12:
1.可通过超声辐射的交叉相关来执行跟踪。如在图19A中看到的,变换器72发送的信号将被反射离开胃肠道14的壁,并且由变换器72和有类似特征的附加变换器77再次接收。变换器77和72沿R轴以它们之间的预定距离被安排。通过交叉相关在第一时间T和稍后的时间T+ΔT的来自变换器72的信号,在时间段ΔT内可咽下装置12行进的增量距离可被估计。另外,可使用多个变换器77,沿R轴以它们之间的各种距离来安排。
2.变换器72可与至少三个体外接收器40A、40B和40C(图1C)合作而工作,该接收器被形成为压电变换器并被安排在不同位置与身体16直接接触。例如,体外变换器40A、40B和40C可以是补片传感器装置,其被描述于U.S.专利5,807,268;5,913,829和5,885,222中,所有这些专利都被转让给MedAcoustics,Inc.,Raleigh,NC,USA,其公开内容在此引入作为参考。变换器40A发送的第一信号由变换器72接收,然后再次由变换器72发送出并由变换器40A、40B和40C接收。变换器40B发送的第二信号由变换器72接收,然后再次由变换器72发送出并由变换器40A、40B和40C接收。变换器40C发送的第三信号由变换器72接收,然后再次由变换器72发送出并由变换器40A、40B和40C接收。然后再次由变换器40A发送出信号,并且重复所述过程。变换器40A和72之间的距离基于信号从变换器40A到变换器72并且返回到变换器40A的时间来计算。以类似的方式,可计算变换器40B和72之间和40C和72之间的距离。作为结果,可咽下装置12的瞬时x;y;z位置可被获得,并且可咽下装置12行进的距离L(图3A)可被估算,如在以下结合图3C和3D所描述的。可进一步使用附加的体外变换器,如40D、40E和40F
3.可替换的是,或另外,变换器72发送的信号可由至少三个体外变换器40A、40B和40C接收,并且从接收器40到变换器72的距离可基于振幅差依照反平方关系来估算。
变换器72可进一步被用作超声发送器,其代替发送器54(图2A)而被使用,或者是除了发送器54以外还被使用的。此外,变换器72可被用作超声接收器,其代替接收器70(图10A)而被使用,或者是除了接收器70以外还被使用的。就这一点而言,变换器72包括数据处理设备53并被安排用于接收和处理探头50产生的成像数据。
重要的是指出如在以上结合图3C-3D、13A-13B、14A-14C和19B所描述的估算距离L(图3A)与如在以上结合图15、16A、16B、17、18和19A所描述的估计距离L之间的途径的差异。
在3C-3D、13A-13B、14A-14C和19B中,使用至少三个体外接收器或至少一个加速度传感器或磁跟踪和定位系统相对于体外基准系统x;y;z而获得瞬时x;y;z值。该途径伴随有小的误差,这是由于作为消化过程一部分的胃肠道14的运动而造成的。这样,对例如从胃11的出口到病理部位由可咽下装置12行进的距离的计算将仅给出估算的距离。
然而,在图15、16A、16B、17、18和19A中,增量距离是通过使用滚筒或所传感的参数的交叉相关相对于胃肠道14的壁而获得的。该途径没有由于胃肠道14的运动而造成的任何误差。这样,对可咽下装置12进行距离的计算将给出比第一途径确切的值。
本发明进一步包括胃肠道诊断程序,包括一个范围的可咽下装置,一方面适合于大人群的总筛查,另一方面适合于可疑病理的特定诊断。
例如,用于胃肠道肿瘤的总筛查可借助包括核辐射检测器49的可咽下装置12来处理,该装置在服用anti-CEA或anti-TAG-72放射性药物或包含两种的放射性药物之后被咽下。
例如炎症的特定诊断可借助包括核辐射检测器49的可咽下装置12来处理,该装置在服用用于检测慢性炎症的Ga67柠檬酸盐之后或在服用对急性感染具有高灵敏度和特异性的Tc99m-HMPAO白细胞之后被咽下。
将理解,可采用特定药物和可咽下装置12的任何其它组合。
依照本发明的另一个优选实施例,用于胃肠道病理的总筛查可无需药物而被处理。另外,可通过提供便宜的可咽下装置来处理总筛查,该装置不需要被收回并且可由身体自然处理。可指出,对于总筛查,不需要被收回的可咽下装置12是有利的,这是由于收回总是与心理和身体上的不安关联的。
无需药物而工作的相对便宜的可咽下装置12的实例是由以上图7的可咽下装置12提供的,其中红外温度记录检测器61被用于温度成像。另外,在以上的图8A中提供了实例,其中至少一个热电耦探头106A被使用,用于特别是小肠的温度差成像。另外,在以上的图9A中提供了实例,其中至少一个阻抗探头110A被使用,用于特别是小肠的阻抗成像。这些可以是单独的,或者是组合的。由于这些无需药物而被使用,几乎没有与它们关联的副作用。
进一步参考附图,图20示意性地说明依照本发明优选实施例的优选地一次性的一般筛查可咽下装置12。优选的是,可咽下装置12包括红外温度记录检测器61,用于没有接触的温度成像。此外,红外温度记录检测器61优选地包括多个光传感二极管,其例如沿R轴被安排,用于通过红外辐射的交叉相关来跟踪可咽下装置12。
另外,总筛查可咽下装置12可包括多单元热电耦探头106,其具有多个尖1081和1082,例如被安排为绕可咽下装置12的圆周的两个或多个环。此外,总筛查可咽下装置12可包括多单元阻抗探头110,其具有多个尖1121和1122,1082,例如被安排为绕可咽下装置12的圆周的两个或多个环。
尽管多单元热电耦探头106和阻抗探头110适合于小肠的诊断,红外温度记录检测器61被安排成产生整个胃肠道14的温度影像。
优选的是,可咽下装置12进一步包括电源52、发送器54或变换器72(图19B)和有关电路56。
依照本发明,总筛查可咽下装置12可作为第一阶段而被服用。在病理可疑的地方,可用被安排用于其它形式的诊断的可咽下装置12,优选为用特定药物来重复成像。
另外,被安排用于其它形式的诊断的可咽下装置12可进一步包括总筛查可咽下装置12的探头,从而使早期发现与较晚阶段的那些相关。
依照本发明,可咽下装置12可包括单个探头50或者两个或多个不同探头50,用于通过不同技术产生同时成像。
依照本发明,可咽下装置12可包括探头50和第二探头,其被形成为摄像机,例如名为“In vivo camera system”的被授予Iddan等的U.S.5,604,531和名为“Device and system for in vivoimaging”的被授予Iddan,G.J.等的U.S.专利申请20010035902所讲的摄像机,其公开内容在此引入作为参考。
依照本发明,用于肿瘤组织的检测的药物的选择可包括以下的任何一个:
1.CEA-Scan是Tc99m标记的单克隆抗体碎片,其以CEA或由另一种放射性同位素例如I131标记的抗CEA单克隆抗体为目标。(Jessup JM.1998,Tumor markers-prognostic and therapeutic implicationfor colorectal carcinoma,Surgical Oneology;7:139-151)。
2.In111-Satumomab Pendetide(Oncoscint),作为antiTAG-72。(Molinolo A;Simpson JF等,1990,Enhanced tumor bindingusing immunohistochemical analyses by second generationanti-tumor-associated glycoprotein 72 monoclonal antibodiesversus monocolonal antibody B72.3 in human tissue,Cancer Res.50(4):1291-8)。
3.脂类关联的唾液酸(LASA)。(Ebril KM,Jones JD,Klee GG.1985,Use and limitation of serum total and lipid-bound sialicacid concentrations as markers for colorectal cancer,Cancer;55:404-409)。
4.Anti-Matrix Metaloproteinase(MMP-7)。(MoriM,BarnardGF等1995,Overexpression of matrixmetalloproteinase-7 mRNAin human colon carcinoma.Cencer;75:1516-1519)。
另外,依照本发明,药物可被用作用于非恶性病理如胃肠道炎症和感染的标志。实例包括以下:
1.Ga67柠檬酸盐。(Mettler FA,and Guiberteau MJ,Eds.1998,Inflammation and infection imaging.Essentials of nuclearmedicine.Fourth edition.Pgs:387-403)。
2.非特定多克隆免疫球蛋白G(IgG)。(Mettler FA,andGuiberteau MJ,同上)。
3.放射性标记的白细胞,如In1118羟基喹啉白细胞(oxineleukocytes)和Tc99mHMPIO白细胞。(Mettler FA,andGuiberteau MJ,同上;Corstens FH;van der Meer JW.1999.Nuclearmedicine’s role in infection and inflammation.Lancet;354(9180):765-70)。
用于标记放射性药物的放射性核素的特定选择依赖于其核特性、物理半衰期、检测设备的能力、放射性标记的抗体的药物代谢动力学、以及标记过程的困难程度。放射性核素可以是例如锝Tc99m、碘I125、I123、I131和I133、铟In111、镓Ga67、铊Tl201、氟F18和P32的任何一个。
应理解,为清楚起见在单独实施例中描述的本发明的特定特征亦可被组合提供于单个实施例中。相反,为简便起见在单个实施例中描述的本发明的各个特征亦可被单独或以任何适当的子组合来提供。
尽管本发明已结合其特定实施例被描述,显然许多替换、修改和变化对本领域的技术人员来说是显然的。因此,想要包含属于所附权利要求的精神和宽广范围的所有这样的替换、修改和变化。本说明书中提及的所有出版物、专利和专利申请在此全部引入本说明书作为参考,就好像每个单独的出版物、专利或专利申请是被具体和单独表示为在此引入作为参考。另外,本申请中的任何参考的引用和标识不应被看作是许可该参考作为本发明的现有技术而可用。

Claims (98)

1.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
探头,在工作上沿所述胃肠道通过放射性药物的核辐射来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
2.权利要求1的可咽下装置,其中所述探头包括核辐射检测器,其被安排以便于检测伽玛和贝塔辐射。
3.权利要求2的可咽下装置,其中所述核辐射检测器不被准直,以检测任何角度上的核辐射冲击。
4.权利要求2的可咽下装置,其中所述核辐射检测器被选通到与特定放射性同位素关联的窄能量范围。
5.权利要求2的可咽下装置,其中所述核辐射检测器包括至少两个晶体。
6.权利要求5的可咽下装置,其中所述至少两个晶体的每个都被选通到与不同放射性同位素关联的不同窄能量范围。
7.权利要求5的可咽下装置,其中所述至少两个晶体在行进方向上相隔预定的距离,并且通过交叉相关在时间T和稍后的时间T+ΔT照到所述至少两个晶体的核辐射,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
8.权利要求1的可咽下装置,其中所述探头包括光检测器,其被安排成检测由响应于所述放射性药物的核辐射的闪烁液体产生的闪烁。
9.权利要求8的可咽下装置,其中所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的闪烁,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
10.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
探头,包括光检测器,在工作上沿所述胃肠道通过发荧光药物的光学荧光来实施诊断影像;
激光源,其波长基本上匹配所述发荧光药物的至少一个吸收峰值;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头、光源和数据处理设备供电;以及
壳体,其封装其中的所述探头、光源、数据处理设备和电源。
11.权利要求10的可咽下装置,其中所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的荧光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
12.权利要求10的可咽下装置,并且进一步包括至少两个反射光光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述反射光光传感二极管的反射光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
13.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
探头,包括光检测器,在工作上沿所述胃肠道通过裸胃肠道组织的光学荧光来实施诊断影像;
激光源,其波长基本上匹配所述裸胃肠道组织的吸收峰值;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头、光源和数据处理设备供电;以及
壳体,其封装其中的所述探头、光源、数据处理设备和电源;
其中所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的荧光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
14.权利要求10的可咽下装置,并且进一步包括至少两个反射光光传感二极管,适合于传感来自所述激光源的反射光,被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述反射光光传感二极管的反射光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
15.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
探头,包括温度记录检测器,在工作上沿所述胃肠道通过红外温度记录来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
16.权利要求15的可咽下装置,其中所述温度记录检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的红外辐射,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
17.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
热电耦探头,在工作上沿所述胃肠道通过温度差来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
18.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
阻抗探头,在工作上沿所述胃肠道通过阻抗来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
19.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
超声探头,在工作上沿所述胃肠道通过超声反射来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
20.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
MRI探头,在工作上沿所述胃肠道通过磁共振来实施诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
21.一种可咽下装置,其被安排以便于在身体的胃肠道内行进,包括:
至少两个探头,每个都在工作上沿所述胃肠道来实施从一组中选择的诊断影像,该组包括放射性药物的核辐射、响应于放射性药物的核辐射的闪烁液体的闪烁、发荧光药物的光学荧光、裸胃肠道组织的光学荧光、红外温度记录、温度差、阻抗、超声反射、磁共振、以及视频,其中每个探头在工作上实施不同的诊断影像;
数据处理设备,与所述探头进行信号通信,用于接收和处理由所述探头产生的成像数据;
电源,用于给所述探头和所述数据处理设备供电;以及
壳体,其封装其中的所述探头、数据处理设备和电源。
22.权利要求21的可咽下装置,并进一步包括光源。
23.权利要求1、10、13、15、17、18、19、20和21的任何一个的可咽下装置,并且进一步包括从一组中选择的包衣,该组包括类似糖果的包衣,在使用之间替换的生物学惰性包衣,以及用类似糖果的包衣来覆盖在使用之间替换的生物学惰性包衣。
24.权利要求1、10、13、15、17、18、19、20和21的任何一个的可咽下装置,并且所述数据处理设备包括发送器,其可与所述探头通信并且与体外设备进行信号通信。
25.权利要求24的可咽下装置,其中所述发送器包括压电变换器。
26.权利要求25的可咽下装置,其中所述压电变换器被进一步安排以便于与所述身体直接接触而在不同位置处与至少三个体外压电变换器合作基于信号从每个所述体外压电变换器传播到所述可咽下装置并返回的时间来跟踪在所述胃肠道内的所述可咽下装置。
27.权利要求24的可咽下装置,其中所述发送器包括RF发送器。
28.权利要求27的可咽下装置,其中所述发送器被进一步安排以便于与至少三个体外RF接收器合作跟踪在所述胃肠道内的所述可咽下装置。
29.权利要求27的可咽下装置,其中所述发送器包括多信道发送器。
30.权利要求24的可咽下装置,其中所述发送器以预定时间间隔产生基准信号。
31.权利要求30的可咽下装置,其中所述基准信号进一步包括对所述身体的识别信息。
32.权利要求24的可咽下装置,并且进一步包括接收器。
33.权利要求32的可咽下装置,其中所述接收器包括多信道接收器。
34.权利要求1、10、13、15、17、18、19、20和21的任何一个的可咽下装置,并且所述数据处理设备包括计算装置。
35.权利要求34的可咽下装置,并且进一步包括存储器,用于在其中记录由所述探头产生的诊断信息。
36.权利要求35的可咽下装置,其中所述存储器是可移动数据存储装置。
37.权利要求1、10、13、15、17、18、19、20和21的任何一个的可咽下装置,其中所述电源包括可赋予能量的电源。
38.权利要求37的可咽下装置,其中所述可赋予能量的电源包括压电变换器。
39.权利要求1、10、13、15、17、18、19、20和21的任何一个的可咽下装置,并且进一步包括跟踪装置,用于跟踪在所述胃肠道内的所述可咽下装置。
40.权利要求39的可咽下装置,其中所述跟踪是相对于体外基准系统而实施的。
41.权利要求40的可咽下装置,其中所述跟踪装置包括至少一个加速度传感器,其传感相对于一套三个相互垂直的坐标轴的至少三个自由度上的加速度。
42.权利要求40的可咽下装置,其中所述跟踪装置包括至少三个加速度传感器,每个都传感沿一套三个相互垂直的坐标轴中的单个轴的加速度。
43.权利要求40的可咽下装置,其中所述跟踪装置包括磁跟踪和定位系统。
44.权利要求40的可咽下装置,其中所述跟踪装置包括压电变换器,可在工作上与所述身体直接接触而在不同位置处与至少三个体外压电变换器合作,用于基于信号从每个所述体外压电变换器传播到所述可咽下装置并返回的时间来进行跟踪。
45.权利要求39的可咽下装置,其中所述跟踪是相对于所述胃肠道的壁而实施的。
46.权利要求45的可咽下装置,其中所述跟踪装置包括至少一个滚筒,其适合于相对于所述胃肠道的组织而滚动,其中所述至少一个滚筒与接收器通信,并且其中所述至少一个滚筒进行的旋转的数量表示所述可咽下装置行进的长度。
47.权利要求45的可咽下装置,其中所述跟踪装置包括至少两个压电变换器,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述至少两个压电变换器的源自所述至少两个压电变换器之一的超声脉冲的超声反射,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
48.权利要求47的可咽下装置,并且进一步包括多个压电变换器以提高交叉相关性。
49.权利要求45的可咽下装置,其中所述跟踪装置包括光源和至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的反射光,在工作上估计时间段ΔT内在所述胃肠道内行进的增量距离。
50.权利要求49的可咽下装置,并且进一步包括多个光传感二极管以提高交叉相关性。
51.权利要求1、10、13、15、17、18、19、20和21的任何一个的可咽下装置,其中所述可咽下装置是一次性的,并且不需要被收回。
52.一种组织诊断系统,包括:
依照权利要求1、10、13、15、17、18、19、20和21的任何一个的可咽下装置,以及
体外设备,包括:
至少一个体外接收器;
体外计算装置;和
体外电源。
53.权利要求52的组织诊断系统,其中所述体外设备进一步包括可更换的接口。
54.权利要求52的组织诊断系统,其中所述至少一个体外接收器进一步包括至少三个体外接收器,用于跟踪所述可咽下装置。
55.权利要求54的组织诊断系统,其中所述至少三个体外接收器进一步包括至少三个压电变换器补贴传感器装置。
56.权利要求52的组织诊断系统,其中所述至少一个体外接收器包括RF接收器。
57.权利要求56的组织诊断系统,其中所述至少一个体外接收器包括多信道接收器。
58.权利要求52的组织诊断系统,并且进一步包括RF发送器。
59.权利要求52的组织诊断系统,其中所述可咽下装置进一步包括至少一个体内加速度传感器,其传感相对于一套三个相互垂直的坐标轴的至少三个自由度上的加速度,并且所述体外设备进一步包括至少一个体外加速度传感器,用于传感相对于一套三个相互垂直的坐标轴的至少三个自由度上的所述身体的加速度,从而对所述身体的移动校正所述体内加速度传感器的测量。
60.一种实施身体的胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括探头,其在工作上沿所述胃肠道通过放射性药物的核辐射来实施诊断影像;
服用所述放射性药物;
在服用所述放射性药物之后的预定时间咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
61.权利要求60的方法,其中所述探头包括核辐射检测器,其被安排以便于检测伽玛和贝塔辐射。
62.权利要求61的方法,其中所述核辐射检测器包括至少两个晶体。
63.权利要求62的方法,并且进一步包括选通每个所述晶体到与不同放射性同位素关联的不同窄能量范围。
64.权利要求63的方法,并且进一步包括通过至少两个放射性同位素的活动比使用核辐射的类似时钟的特性来识别病理部位。
65.权利要求62的方法,其中所述至少两个晶体被安排在行进方向上相隔预定的距离,并且其中所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述至少两个晶体的核辐射,估计在所述胃肠道内行进的距离。
66.权利要求60的方法,其中所述探头包括光检测器,其中所述方法进一步包括在所述放射性药物的所述服用之后的预定时间和在所述可咽下装置的所述咽下之前的预定时间服用闪烁液体,并且其中用所述探头产生诊断信号进一步包括检测响应于所述放射性药物的核辐射由所述闪烁液体产生的闪烁,由此形成所述诊断影像。
67.权利要求66的方法,其中所述探头包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,并且所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的闪烁,估计在所述胃肠道内行进的距离。
68.一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括激光源和探头,该探头包括光检测器,在工作上沿所述胃肠道通过发荧光药物的光学荧光来实施诊断影像,其中所述激光源可操作在基本上匹配所述发荧光药物的吸收峰值的波长上;
服用所述发荧光药物;
在服用所述发荧光药物之后的预定时间咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
69.权利要求68的方法,其中所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,并且所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的荧光,估计在所述胃肠道内行进的距离。
70.权利要求68的方法,并且进一步包括至少两个反射光光传感二极管,其被安排在行进方向上相隔预定的距离,并且所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述反射光光传感二极管的反射光,估计在所述胃肠道内行进的距离。
71.一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括激光源和探头,该探头包括光检测器,用于沿所述胃肠道通过裸组织的光学荧光来实施诊断影像,其中所述激光源在一个波长上工作,该波长基本上匹配所述裸胃肠道组织的吸收峰值;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息;
其中所述光检测器包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,并且其中所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的荧光,估计在所述胃肠道内行进的距离。
72.权利要求71的方法,并且进一步包括至少两个反射光光传感二极管,其被安排在行进方向上相隔预定的距离,并且其中所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述反射光光传感二极管的反射光,估计在所述胃肠道内行进的距离。
73.一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括探头,该探头进一步包括温度记录检测器,在工作上沿所述胃肠道通过红外温度记录来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
74.权利要求73的方法,其中所述温度记录检测器进一步包括至少两个光传感二极管,其被安排在行进方向上相隔预定的距离,并且其中所述方法进一步包括通过交叉相关在时间T和稍后的时间T+ΔT照到所述光传感二极管的红外辐射,估计在所述胃肠道内行进的距离。
75.一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括热电耦探头,在工作上沿所述胃肠道通过温度差来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
76.一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括阻抗探头,用于沿所述胃肠道通过阻抗来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
77.一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括超声探头,在工作上沿所述胃肠道通过超声反射来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
78.一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括MRI探头,在工作上沿所述胃肠道通过磁共振来实施诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
79.权利要求78的方法,并且进一步包括以已被服用给所述身体的对比剂的频率来共振。
80.一种实施胃肠道内的组织诊断的方法,包括:
提供可咽下装置,其包括至少两个探头,每个都用于沿所述胃肠道来实施从一组中选择的诊断影像,该组包括放射性药物的核辐射、响应于放射性药物的核辐射的闪烁液体的闪烁、发荧光药物的光学荧光、裸胃肠道组织的光学荧光、红外温度记录、温度差、阻抗、超声反射、磁共振、以及视频,其中每个探头在用于实施不同的诊断影像;
咽下所述可咽下装置;
随着所述可咽下装置在所述胃肠道内行进,用所述探头产生诊断信号,由此形成所述诊断影像;以及
记录所述诊断影像的信息。
81.权利要求60、68、71、73、75、76、77、78和80的任何一个的方法,其中所述诊断影像包括作为时间的函数的诊断信息。
82.权利要求60、68、71、73、75、76、77、78和80的任何一个的方法,其中所述诊断影像包括作为所述可咽下装置行进的距离的函数的诊断信息。
83.权利要求60、68、71、73、75、76、77、78和80的任何一个的方法,其中所述记录进一步包括体外发送所述信息,并且通过体外设备记录所述信息。
84.权利要求60、68、71、73、75、76、77、78和80的任何一个的方法,其中所述记录进一步包括在所述可咽下装置内记录所述信息。
85.权利要求60、68、71、73、75、76、77、78和80的任何一个的方法,并且进一步包括在所述可咽下装置的所述咽下之前的预定时间服用药物。
86.权利要求60、68、71、73、75、76、77、78和80的任何一个的方法,并且进一步包括筛查大人群。
87.权利要求86的方法,并且进一步包括筛查胃肠道肿瘤。
88.权利要求60、68、71、73、75、76、77、78和80的任何一个的方法,并且进一步包括为可疑病理进行诊断。
89.权利要求88的方法,其中所述可疑病理是恶性的。
90.权利要求88的方法,其中所述可疑病理是非恶性的。
91.一种定位胃肠道内的部位的方法,包括:
相对于所述胃肠道的壁,通过跟踪所述胃肠道内的可咽下装置,估计从基准点到所述部位的距离;以及
侵入性地测量从所述基准点到所述部位沿所述胃肠道的所述距离。
92.权利要求91的方法,其中所述距离的所述估计进一步包括:
提供至少两个传感器,其被安排在行进的方向上相隔预定距离;
交叉相关在时间T和稍后的时间T+ΔT由所述至少两个传感器传感的参数;
确定时间段ΔT内在所述胃肠道内所述可咽下装置行进的增量距离;以及
对所述可咽下装置经过所述基准点的时间和所述可咽下装置经过所述部位的时间之间的增量距离进行求和,从而获得所述距离。
93.权利要求92的方法,其中由所述至少两个传感器传感的所述参数是从一组中选择的,该组包括放射性药物的核辐射、响应于放射性药物的核辐射的闪烁液体的闪烁、光学荧光、反射光、红外辐射、温度差、阻抗和超声反射。
94.权利要求91的方法,其中所述距离的所述估计进一步包括:
采用至少一个滚筒,其被安排在所述胃肠道的壁上滚动;以及
采用计数器,其与所述至少一个滚筒通信,用于对所述可咽下装置经过所述基准点的时间和所述可咽下装置经过所述部位的时间之间由所述至少一个滚筒进行的旋转的数量进行计数。
95.一种定位胃肠道内的部位的方法,包括:
相对于所述体外基准系统而通过跟踪所述胃肠道内的可咽下装置,估算从基准点到所述部位的距离;以及
侵入性地测量从所述基准点到所述部位沿所述胃肠道的所述距离。
96.权利要求95的方法,并且进一步包括:
跟踪所述胃肠道内的可咽下装置以获得相对于所述体外基准系统的瞬时x;y;z;值;
估算时间段ΔT内在所述胃肠道内所述可咽下装置行进的增量距离;以及
对所述可咽下装置经过所述基准点的时间和所述可咽下装置经过所述部位的时间之间的所估算的增量距离进行求和,从而估算所述距离。
97.权利要求96的方法,其中所述跟踪是从一组中选择的,该组包括用体内RF发送器和三个体外RF发送器来跟踪,用体内压电变换器和三个体外压电变换器来跟踪,用至少一个加速度传感器来跟踪,以及用磁跟踪和定位系统来跟踪。
98.一种使用放射性同位素的类似时钟的特性来识别病理的方法,包括:
提供核辐射检测器,其被安排以便于在与至少两个放射性同位素关联的至少两种形式的辐射之间进行区分;
服用包括所述至少两个放射性同位素的放射性药物;
通过所述至少两个放射性同位素的每个的核辐射来实施诊断影像;
估计所述至少两个放射性同位素的活动比;以及
通过观察所述活动比的变化来识别所述病理。
CNB02807047XA 2001-01-22 2002-01-22 可咽下装置 Expired - Lifetime CN1310617C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/765,316 US20020099310A1 (en) 2001-01-22 2001-01-22 Gastrointestinal-tract sensor
US09/765,316 2001-01-22
US28523301P 2001-04-23 2001-04-23
US60/285,233 2001-04-23
PCT/IL2002/000057 WO2002058531A2 (en) 2001-01-22 2002-01-22 Ingestible device

Publications (2)

Publication Number Publication Date
CN1545395A true CN1545395A (zh) 2004-11-10
CN1310617C CN1310617C (zh) 2007-04-18

Family

ID=26963077

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02807047XA Expired - Lifetime CN1310617C (zh) 2001-01-22 2002-01-22 可咽下装置

Country Status (8)

Country Link
US (1) US8055329B2 (zh)
EP (1) EP1359845B1 (zh)
JP (1) JP2004521680A (zh)
CN (1) CN1310617C (zh)
AU (1) AU2002226655B2 (zh)
CA (1) CA2435205A1 (zh)
IL (1) IL157007A0 (zh)
WO (1) WO2002058531A2 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101810481A (zh) * 2009-02-19 2010-08-25 西门子公司 具有在边缘摩擦情况下支持运送的装置的内窥镜胶囊
CN101190151B (zh) * 2005-11-29 2010-11-17 伊西康内外科公司 内置的胃部限制装置
CN102596044A (zh) * 2009-09-29 2012-07-18 卧龙岗大学 成像方法和系统
CN102639049A (zh) * 2010-09-29 2012-08-15 奥林巴斯医疗株式会社 信息处理装置以及胶囊型内窥镜系统
CN102984991A (zh) * 2010-12-13 2013-03-20 奥林巴斯医疗株式会社 医疗装置
CN103153155A (zh) * 2011-03-15 2013-06-12 奥林巴斯医疗株式会社 医疗装置
CN104376659A (zh) * 2008-03-05 2015-02-25 普罗透斯数字保健公司 多模式通信可摄取事件标记和系统,及使用其的方法
CN102159134B (zh) * 2008-07-08 2015-05-27 普罗透斯数字保健公司 可摄取事件标记数据框架
CN107638624A (zh) * 2017-01-23 2018-01-30 武汉市瑞达源科技有限公司 一种向胃肠道提供药物的系统
CN107743381A (zh) * 2015-06-12 2018-02-27 皇家飞利浦有限公司 电磁设备跟踪
CN111936051A (zh) * 2018-02-06 2020-11-13 光点医疗有限公司 拴系式腹腔镜探针
CN115500769A (zh) * 2022-09-26 2022-12-23 武汉中科科理光电技术有限公司 一种电极内窥镜系统及其使用方法

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
WO2004042546A1 (en) * 2002-11-04 2004-05-21 V-Target Technologies Ltd. Apparatus and methods for imaging and attenuation correction
US8565860B2 (en) 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
JP3974527B2 (ja) 2001-01-16 2007-09-12 ギブン・イメージング・リミテツド 生体内で体腔状態を決定するためのシステムおよび方法
IL157007A0 (en) 2001-01-22 2004-02-08 Target Technologies Ltd V Ingestible device
US7160258B2 (en) * 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
US9113846B2 (en) 2001-07-26 2015-08-25 Given Imaging Ltd. In-vivo imaging device providing data compression
IL147221A (en) * 2001-12-20 2010-11-30 Given Imaging Ltd Device, system and method for image based size analysis
US8116845B2 (en) 2005-08-04 2012-02-14 Dune Medical Devices Ltd. Tissue-characterization probe with effective sensor-to-tissue contact
US20030171655A1 (en) * 2002-03-08 2003-09-11 Newman Richard W. Combination otoscope
JP3869291B2 (ja) * 2002-03-25 2007-01-17 オリンパス株式会社 カプセル型医療装置
FR2842721B1 (fr) * 2002-07-25 2005-06-24 Assist Publ Hopitaux De Paris Procede d'exploration non invasif et ambulatoire de la motricite digestive et du transit, et systeme correspondant
WO2004014227A1 (en) * 2002-08-13 2004-02-19 Given Imaging Ltd. System for in vivo sampling and analysis
US20060052667A1 (en) * 2002-10-31 2006-03-09 Yoram Palti System and method for in vivo detection of h. pylori
CA2505743A1 (en) * 2002-11-14 2004-06-03 Ethicon Endo-Surgery, Inc. Methods and devices for detecting tissue cells
AU2003282373A1 (en) * 2002-11-29 2004-06-23 Given Imaging Ltd. Methods device and system for in vivo diagnosis
US20060155174A1 (en) 2002-12-16 2006-07-13 Arkady Glukhovsky Device, system and method for selective activation of in vivo sensors
AU2003304041A1 (en) * 2002-12-24 2004-11-04 Entrack, Inc. Optical capsule and spectroscopic method for treating or diagnosing the intestinal tract
US20050154277A1 (en) * 2002-12-31 2005-07-14 Jing Tang Apparatus and methods of using built-in micro-spectroscopy micro-biosensors and specimen collection system for a wireless capsule in a biological body in vivo
US20040133131A1 (en) * 2003-01-03 2004-07-08 Kuhn David L. In vivo ruminant health sensor
JP2004350963A (ja) * 2003-05-29 2004-12-16 Olympus Corp カプセル型医療装置
DE10327034A1 (de) * 2003-06-16 2005-01-20 Siemens Ag Vorrichtung zur Untersuchung im Körper mit Licht
JP4663258B2 (ja) * 2003-06-17 2011-04-06 オリンパス株式会社 内視鏡装置
WO2004112567A2 (en) * 2003-06-26 2004-12-29 Given Imaging Ltd. Methods, device and system for in vivo detection
JP5033418B2 (ja) * 2003-07-02 2012-09-26 ギブン イメージング リミテッド 画像化センサアレイならびにそれを使用する装置および方法
CN100473336C (zh) * 2003-07-24 2009-04-01 沙丘医疗设备有限公司 用于检查特别是组织的物质以表征其类型的方法和设备
JP4663273B2 (ja) * 2003-08-08 2011-04-06 オリンパス株式会社 カプセル型光センサー及びそれを用いた診断装置
US20050065441A1 (en) * 2003-08-29 2005-03-24 Arkady Glukhovsky System, apparatus and method for measurement of motion parameters of an in-vivo device
AU2012213965B2 (en) * 2003-09-11 2015-10-22 Labrador Diagnostics Llc Medical device for analyte monitoring and drug delivery
EP3851030B1 (en) 2003-09-11 2024-01-17 Labrador Diagnostics LLC Medical device for analyte monitoring
DE10343494B4 (de) * 2003-09-19 2006-06-14 Siemens Ag Magnetisch navigierbare Einrichtung für den Einsatz auf dem Gebiet der medizinischen Endoskopie
JP2005131012A (ja) * 2003-10-29 2005-05-26 Olympus Corp カプセル投薬システム
JP4868720B2 (ja) * 2004-05-27 2012-02-01 オリンパス株式会社 カプセル投薬システム
US8021356B2 (en) * 2003-09-29 2011-09-20 Olympus Corporation Capsule medication administration system, medication administration method using capsule medication administration system, control method for capsule medication administration system
US7787926B2 (en) * 2003-12-17 2010-08-31 Check-Cap LLC Intra-lumen polyp detection
US9392961B2 (en) 2003-12-17 2016-07-19 Check-Cap Ltd. Intra-lumen polyp detection
DE10359981A1 (de) * 2003-12-19 2005-07-21 Siemens Ag System und Verfahren zur In Vivo Positions- und Orientierungsbestimmung einer Endoskopie-Kapsel bzw. eines Endoroboters im Rahmen einer kabellosen Endoskopie
US8571881B2 (en) 2004-11-09 2013-10-29 Spectrum Dynamics, Llc Radiopharmaceutical dispensing, administration, and imaging
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
WO2007010534A2 (en) 2005-07-19 2007-01-25 Spectrum Dynamics Llc Imaging protocols
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
WO2005118659A2 (en) * 2004-06-01 2005-12-15 Spectrum Dynamics Llc Methods of view selection for radioactive emission measurements
US7176466B2 (en) 2004-01-13 2007-02-13 Spectrum Dynamics Llc Multi-dimensional image reconstruction
US8512219B2 (en) 2004-04-19 2013-08-20 The Invention Science Fund I, Llc Bioelectromagnetic interface system
US9011329B2 (en) 2004-04-19 2015-04-21 Searete Llc Lumenally-active device
US8353896B2 (en) 2004-04-19 2013-01-15 The Invention Science Fund I, Llc Controllable release nasal system
US8024036B2 (en) 2007-03-19 2011-09-20 The Invention Science Fund I, Llc Lumen-traveling biological interface device and method of use
US7970455B2 (en) * 2004-05-20 2011-06-28 Spectrum Dynamics Llc Ingestible device platform for the colon
EP1778957A4 (en) * 2004-06-01 2015-12-23 Biosensors Int Group Ltd OPTIMIZING THE MEASUREMENT OF RADIOACTIVE EMISSIONS IN SPECIFIC BODY STRUCTURES
JP2008501466A (ja) * 2004-06-07 2008-01-24 ギブン イメージング リミテッド 吸引生体検査法、システムおよび装置
WO2005122863A1 (ja) 2004-06-16 2005-12-29 Olympus Corporation 被検体内導入装置および被検体内導入システム
JP3950977B2 (ja) * 2004-06-25 2007-08-01 国立大学法人東北大学 体内埋め込み型リアルタイム式マイクロ線量計装置ならびに測定方法
JP4709594B2 (ja) * 2004-08-03 2011-06-22 オリンパス株式会社 磁気誘導医療システム
EP1788925A1 (de) * 2004-09-07 2007-05-30 Thiel, Christian Modulares endoskop
CN100508868C (zh) * 2004-10-15 2009-07-08 奥林巴斯株式会社 无线型被检体内信息取得系统
EP1827505A4 (en) 2004-11-09 2017-07-12 Biosensors International Group, Ltd. Radioimaging
US8615405B2 (en) 2004-11-09 2013-12-24 Biosensors International Group, Ltd. Imaging system customization using data from radiopharmaceutical-associated data carrier
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US8000773B2 (en) * 2004-11-09 2011-08-16 Spectrum Dynamics Llc Radioimaging
WO2008059489A2 (en) 2006-11-13 2008-05-22 Spectrum Dynamics Llc Radioimaging applications of and novel formulations of teboroxime
US20060169294A1 (en) * 2004-12-15 2006-08-03 Kaler Karan V Inertial navigation method and apparatus for wireless bolus transit monitoring in gastrointestinal tract
WO2006095298A1 (en) * 2005-03-10 2006-09-14 Koninklijke Philips Electronics N.V. Seamless enclosures for mr rf coils
DE102005013044B4 (de) * 2005-03-18 2007-08-09 Siemens Ag Fluoreszenz-Scanner
DE102005013042A1 (de) * 2005-03-18 2006-09-28 Siemens Ag Einrichtung zur Erzeugung von 3D-Fluoreszenz-oder Lumineszenz-Scans
DE102005013043A1 (de) * 2005-03-18 2006-09-28 Siemens Ag Mobiler Fluoreszenz-Scanner für molekulare Signaturen
DE102005013045B4 (de) * 2005-03-18 2013-03-14 Siemens Aktiengesellschaft Fluoreszenz-Scanner für molekulare Signaturen
DE102005017817A1 (de) * 2005-04-18 2006-10-26 Siemens Ag Verfahren und Vorrichtung zur Untersuchung eines biologischen Gewebes
US20060264783A1 (en) 2005-05-09 2006-11-23 Holmes Elizabeth A Systems and methods for monitoring pharmacological parameters
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
DE102005034838B4 (de) * 2005-07-26 2018-03-29 Karsten König Vorrichtung zur NMR-Untersuchung intrakorporaler Köperbereiche
US7813778B2 (en) * 2005-07-29 2010-10-12 Spectros Corporation Implantable tissue ischemia sensor
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US20070156016A1 (en) * 2005-12-29 2007-07-05 Ido Betesh Method and system for communication with an ingestible imaging device
US8741230B2 (en) 2006-03-24 2014-06-03 Theranos, Inc. Systems and methods of sample processing and fluid control in a fluidic system
US11287421B2 (en) 2006-03-24 2022-03-29 Labrador Diagnostics Llc Systems and methods of sample processing and fluid control in a fluidic system
US20080058786A1 (en) * 2006-04-12 2008-03-06 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Autofluorescent imaging and target ablation
US8936629B2 (en) 2006-04-12 2015-01-20 Invention Science Fund I Llc Autofluorescent imaging and target ablation
US20120035438A1 (en) 2006-04-12 2012-02-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Path selection by a lumen traveling device in a body tub tree based on previous path
US8007999B2 (en) 2006-05-10 2011-08-30 Theranos, Inc. Real-time detection of influenza virus
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
JP4868945B2 (ja) * 2006-05-31 2012-02-01 オリンパスメディカルシステムズ株式会社 内視鏡
EP2046188B1 (en) 2006-07-24 2019-03-27 Philips Intellectual Property & Standards GmbH Capsule camera with variable illumination of the surrounding tissue
US8588887B2 (en) * 2006-09-06 2013-11-19 Innurvation, Inc. Ingestible low power sensor device and system for communicating with same
WO2008030481A2 (en) * 2006-09-06 2008-03-13 Innurvation, Inc. Imaging and locating systems and methods for a swallowable sensor device
US8615284B2 (en) * 2006-09-06 2013-12-24 Innurvation, Inc. Method for acoustic information exchange involving an ingestible low power capsule
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
JP5303278B2 (ja) * 2006-10-23 2013-10-02 庸美 徳原 通信コンピュータ及び通信コンピュータを用いた情報処理装置
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US20080113391A1 (en) 2006-11-14 2008-05-15 Ian Gibbons Detection and quantification of analytes in bodily fluids
US9275451B2 (en) 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data
CN101883519B (zh) * 2007-02-06 2013-03-06 保护层有限公司 腔内息肉检测
US7689269B2 (en) * 2007-05-10 2010-03-30 Actis, Ltd. System, method and apparatus for the detection of patient-borne fluorescing nanocrystals
US8158430B1 (en) 2007-08-06 2012-04-17 Theranos, Inc. Systems and methods of fluidic sample processing
US20090088618A1 (en) 2007-10-01 2009-04-02 Arneson Michael R System and Method for Manufacturing a Swallowable Sensor Device
US9197470B2 (en) * 2007-10-05 2015-11-24 Innurvation, Inc. Data transmission via multi-path channels using orthogonal multi-frequency signals with differential phase shift keying modulation
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8388541B2 (en) 2007-11-26 2013-03-05 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8529441B2 (en) 2008-02-12 2013-09-10 Innurvation, Inc. Ingestible endoscopic optical scanning device
JP2009195271A (ja) * 2008-02-19 2009-09-03 Fujifilm Corp カプセル内視鏡システム
US20100016662A1 (en) * 2008-02-21 2010-01-21 Innurvation, Inc. Radial Scanner Imaging System
JP5389377B2 (ja) * 2008-05-22 2014-01-15 オリンパスメディカルシステムズ株式会社 アンテナユニット
US8515507B2 (en) * 2008-06-16 2013-08-20 Given Imaging Ltd. Device and method for detecting in-vivo pathology
WO2010005571A2 (en) 2008-07-09 2010-01-14 Innurvation, Inc. Displaying image data from a scanner capsule
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
CN101721194B (zh) * 2008-10-14 2011-11-09 鸿富锦精密工业(深圳)有限公司 胶囊内视镜及其镜片的制造方法
TWI401054B (zh) * 2008-10-24 2013-07-11 Wcube Co Ltd 膠囊內視鏡及其鏡片之製造方法
JP5449816B2 (ja) * 2009-03-26 2014-03-19 オリンパス株式会社 画像処理装置、画像処理プログラムおよび画像処理装置の作動方法
EP3542713A1 (en) 2009-06-12 2019-09-25 Bard Access Systems, Inc. Adapter for a catheter tip positioning device
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US8338788B2 (en) 2009-07-29 2012-12-25 Spectrum Dynamics Llc Method and system of optimized volumetric imaging
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
EP2517622A3 (en) 2009-09-29 2013-04-24 C. R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
BR112012009196B1 (pt) 2009-10-19 2021-03-30 Labrador Diagnostics Llc Sistema para modelar a progressão de uma doença dentro de uma população
US9192353B2 (en) * 2009-10-27 2015-11-24 Innurvation, Inc. Data transmission via wide band acoustic channels
US8945010B2 (en) 2009-12-23 2015-02-03 Covidien Lp Method of evaluating constipation using an ingestible capsule
US20120287750A1 (en) * 2010-01-19 2012-11-15 Koninklijke Philips Electronics N.V. Imaging apparatus
CN102821679B (zh) 2010-02-02 2016-04-27 C·R·巴德股份有限公司 用于导管导航和末端定位的装置和方法
US10300296B2 (en) * 2010-03-17 2019-05-28 Photopill Medical Ltd. Capsule phototherapy
US8647259B2 (en) 2010-03-26 2014-02-11 Innurvation, Inc. Ultrasound scanning capsule endoscope (USCE)
US8581584B2 (en) * 2010-05-26 2013-11-12 Florida State University Research Foundation Membrane proteins, mechanisms of action and uses thereof
WO2011150376A1 (en) 2010-05-28 2011-12-01 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP5980201B2 (ja) 2010-05-28 2016-08-31 シー・アール・バード・インコーポレーテッドC R Bard Incorporated 針および医療用コンポーネントのための挿入誘導システム
EP2590558A4 (en) * 2010-07-07 2013-11-27 Therasyn Sensors Inc DEVICE AND METHOD FOR DETECTION OF CONTINUOUS CHEMICALS
JP2013535301A (ja) 2010-08-09 2013-09-12 シー・アール・バード・インコーポレーテッド 超音波プローブヘッド用支持・カバー構造
BR112013002431B1 (pt) 2010-08-20 2021-06-29 C.R. Bard, Inc Sistema para a reconfirmação da posição de um cateter no interior de um paciente
EP2632360A4 (en) 2010-10-29 2014-05-21 Bard Inc C R IMPROVED ASSISTED BY BIO-IMPEDANCE OF A MEDICAL DEVICE
KR20140051284A (ko) 2011-07-06 2014-04-30 씨. 알. 바드, 인크. 삽입 유도 시스템을 위한 바늘 길이 결정 및 교정
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
WO2013188833A2 (en) 2012-06-15 2013-12-19 C.R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
JP6238672B2 (ja) * 2012-10-04 2017-11-29 東芝メディカルシステムズ株式会社 超音波診断装置
US9232934B2 (en) 2012-12-14 2016-01-12 General Electric Company Systems and methods for communicating ultrasound probe location and image information
US20140243598A1 (en) * 2013-02-25 2014-08-28 Corning Incorporated Optical probe delivery and retrieval systems and methods
CN105101881A (zh) * 2013-03-29 2015-11-25 日立阿洛卡医疗株式会社 图像位置对准显示方法及超声波诊断装置
CN103340592A (zh) * 2013-07-22 2013-10-09 重庆金山科技(集团)有限公司 存储型胶囊内镜
CN105979868B (zh) 2014-02-06 2020-03-10 C·R·巴德股份有限公司 用于血管内装置的导向和放置的系统和方法
KR101565038B1 (ko) 2014-03-03 2015-11-02 금오공과대학교 산학협력단 캡슐 내시경을 이용한 방사선 검출 시스템
KR101585014B1 (ko) 2014-06-30 2016-01-13 명지대학교 산학협력단 캡슐형 방사선 내시경 및 그 제어 방법
EP3197336B1 (en) 2014-09-25 2020-12-23 Progenity, Inc. Electromechanical pill device with localization capabilities
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10190894B2 (en) * 2015-12-26 2019-01-29 Intel Corporation Technologies for controlling degradation of sensing circuits
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10856840B2 (en) 2016-06-20 2020-12-08 Butterfly Network, Inc. Universal ultrasound device and related apparatus and methods
US11712221B2 (en) 2016-06-20 2023-08-01 Bfly Operations, Inc. Universal ultrasound device and related apparatus and methods
WO2018011431A1 (en) * 2016-07-15 2018-01-18 Koninklijke Philips N.V. Temporarily implantable sensing marker
CN109890299A (zh) * 2016-08-18 2019-06-14 普罗根尼蒂公司 采样系统及相关材料和方法
JP2019526423A (ja) 2016-09-09 2019-09-19 ミッチェル・ローレンス・ジョーンズMitchell Lawrence JONES 分注可能物質の送達のための電気機械的摂取可能装置
US20180070917A1 (en) * 2016-09-13 2018-03-15 Butterfly Network, Inc. Ingestible ultrasound device, system and imaging method
WO2018106931A1 (en) 2016-12-07 2018-06-14 Progenity Inc. Gastrointestinal tract detection methods, devices and systems
CA3055762A1 (en) 2017-03-31 2018-10-04 Progenity, Inc. Localization systems and methods for an ingestible device
KR20190046530A (ko) * 2017-10-26 2019-05-07 아주대학교산학협력단 캡슐내시경의 위치 추적 방법 및 장치
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
EP3883635A1 (en) 2018-11-19 2021-09-29 Progenity, Inc. Methods and devices for treating a disease with biotherapeutics
CN114521124A (zh) * 2019-08-26 2022-05-20 Ajm Med-I-Caps有限公司 肠道诊断筛查装置及用于靶向胃肠道治疗的方法
CN110996009B (zh) * 2019-12-20 2021-07-23 安翰科技(武汉)股份有限公司 胶囊内窥镜系统及其自动帧率调整方法及计算机可读存储介质
US11300695B2 (en) 2020-04-24 2022-04-12 Ronald Nutt Time-resolved positron emission tomography encoder system for producing event-by-event, real-time, high resolution, three-dimensional positron emission tomographic image without the necessity of performing image reconstruction
US11054534B1 (en) 2020-04-24 2021-07-06 Ronald Nutt Time-resolved positron emission tomography encoder system for producing real-time, high resolution, three dimensional positron emission tomographic image without the necessity of performing image reconstruction
KR102625668B1 (ko) * 2021-07-07 2024-01-18 성신여자대학교 연구 산학협력단 캡슐 내시경 장치 및 병변 진단 지원 방법

Family Cites Families (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2776377A (en) * 1954-04-22 1957-01-01 Hal O Anger In vivo radiation scanner
DE1220966B (de) 1958-12-31 1966-07-14 Hans Guenter Noeller Dr Endoradiosonde
DE1516429A1 (de) 1966-02-18 1969-12-04 Wolf Gmbh Richard Diagnosegeraet
US3719183A (en) * 1970-03-05 1973-03-06 H Schwartz Method for detecting blockage or insufficiency of pancreatic exocrine function
US3684887A (en) 1970-03-26 1972-08-15 Schlumberger Technology Corp Apparatus for inspecting tubular goods having an automatic shutter
US3690309A (en) 1970-08-05 1972-09-12 Viktor Mikhailovich Pluzhnikov Radiocapsule for registering ionizing radiation in the cavities of human bodies
US3739279A (en) * 1971-06-30 1973-06-12 Corning Glass Works Radio capsule oscillator circuit
US3971362A (en) * 1972-10-27 1976-07-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Miniature ingestible telemeter devices to measure deep-body temperature
US4015592A (en) * 1974-12-24 1977-04-05 Bradley Moore Patrick Ralph Nuclear medicine system for imaging radiation
JPS5519124A (en) * 1978-07-27 1980-02-09 Olympus Optical Co Camera system for medical treatment
GB2031142B (en) 1978-09-23 1983-01-12 Shaw R Apparatus and methodfor examining a blood vessel of interest using radiation detected outside the body
US4364377A (en) * 1979-02-02 1982-12-21 Walker Scientific, Inc. Magnetic field hemostasis
US5993378A (en) 1980-10-28 1999-11-30 Lemelson; Jerome H. Electro-optical instruments and methods for treating disease
US5493595A (en) * 1982-02-24 1996-02-20 Schoolman Scientific Corp. Stereoscopically displayed three dimensional medical imaging
US4521688A (en) * 1983-01-21 1985-06-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Three-dimensional and tomographic imaging device for x-ray and gamma-ray emitting objects
USH12H (en) * 1983-03-11 1986-01-07 The United States Of America As Represented By The United States Department Of Energy Nuclear medicine imaging system
US4595014A (en) * 1983-10-18 1986-06-17 University Patents, Inc. Imaging probe and method
US4689041A (en) * 1984-01-20 1987-08-25 Eliot Corday Retrograde delivery of pharmacologic and diagnostic agents via venous circulation
US5033998A (en) * 1984-01-20 1991-07-23 Eliot Corday Retrograde delivery of pharmacologic and diagnostic agents via venous circulation
US4828841A (en) * 1984-07-24 1989-05-09 Colorcon, Inc. Maltodextrin coating
IL74007A (en) 1985-01-06 1988-11-30 Yissum Res Dev Co Method and apparatus for the localization of bleeding in the gastrointestinal tract
DE3505527A1 (de) * 1985-02-18 1986-08-21 Herfurth Gmbh, 2000 Hamburg Vorrichtung zur kontaminationsueberwachung gegen strahlungsverseuchung von personen
US4674107A (en) * 1985-07-31 1987-06-16 Picker International, Inc. Display for radiation imaging
US4689621A (en) 1986-03-31 1987-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Temperature responsive transmitter
US4928250A (en) * 1986-07-02 1990-05-22 Hewlett-Packard Company System for deriving radiation images
JPS6485660A (en) * 1987-02-19 1989-03-30 Nippon Medical Supply Suture coated with sugar fatty acid ester
US5151598A (en) 1987-03-17 1992-09-29 Neoprobe Corporation Detector and localizer for low energy radiation emissions
US4893013A (en) * 1987-03-17 1990-01-09 Neoprobe Corporation Detector and localizer for low energy radiation emissions
US5070878A (en) 1988-11-14 1991-12-10 Neoprobe Corporation Detector and localizer for low energy radiation emissions
US5170789A (en) 1987-06-17 1992-12-15 Perinchery Narayan Insertable NMR coil probe
US5088492A (en) * 1987-09-16 1992-02-18 Olympus Optical Co., Ltd. Radioactive ray detecting endoscope
CN1024112C (zh) * 1987-12-24 1994-04-06 复旦大学 一种用于诊断肿瘤的医用激光荧光诊断仪
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4929832A (en) * 1988-03-11 1990-05-29 Ledley Robert S Methods and apparatus for determining distributions of radioactive materials
US4844076A (en) * 1988-08-26 1989-07-04 The Johns Hopkins University Ingestible size continuously transmitting temperature monitoring pill
JP2656955B2 (ja) * 1988-09-14 1997-09-24 オリンパス光学工業株式会社 放射線検出治療装置
US4995396A (en) * 1988-12-08 1991-02-26 Olympus Optical Co., Ltd. Radioactive ray detecting endoscope
US4959547A (en) 1989-06-08 1990-09-25 Care Wise Medical Products Corporation Apparatus and methods for detecting, localizing, and imaging of radiation in biological systems
US5032729A (en) * 1989-10-18 1991-07-16 Georges Charpak Process and device for determining the spatial distribution of electrons emerging from the surface of a radioactive body
US5088500A (en) * 1989-11-22 1992-02-18 Victor J. Wedel Ultrasound finger probe and method for use
US5170055A (en) 1990-07-25 1992-12-08 Care Wise Medical Products Corporation Radiation detecting biopsy probe
US5119818A (en) * 1990-07-25 1992-06-09 Care Wise Medical Products Corporation Radiation detecting biopsy probe
US5278607A (en) * 1990-10-05 1994-01-11 Asahi Kogaku Kogyo Kabushiki Kaisha Photometering device in single lens reflex camera
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US5484384A (en) * 1991-01-29 1996-01-16 Med Institute, Inc. Minimally invasive medical device for providing a radiation treatment
FR2673728B1 (fr) 1991-03-08 1997-01-31 Assist Publique Systeme de gamma camera a haute sensibilite
US5243988A (en) 1991-03-13 1993-09-14 Scimed Life Systems, Inc. Intravascular imaging apparatus and methods for use and manufacture
US5249124A (en) 1991-04-16 1993-09-28 Siemens Gammasonics, Inc. Multi-isotope imaging using energy-weighted acquisition for, e.g., myocardial perfusion studies
US5395366A (en) * 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
US5279607A (en) * 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5246005A (en) 1991-07-02 1993-09-21 Care Wise Medical Products Corporation Apparatus and method for producing statistically valid discriminable signals
US5361291A (en) 1991-11-20 1994-11-01 General Electric Company Deconvolution filter for CT system
US5349190A (en) 1991-12-02 1994-09-20 Adac Laboratories Adjustable triple-detector image data acquisition system
US5519221A (en) * 1992-01-22 1996-05-21 Ansel M. Schwartz Dedicated apparatus and method for emission mammography
GB9205458D0 (en) * 1992-03-12 1992-04-22 De Beers Ind Diamond Radiation probe
US5307808A (en) * 1992-04-01 1994-05-03 General Electric Company Tracking system and pulse sequences to monitor the position of a device using magnetic resonance
US5299253A (en) * 1992-04-10 1994-03-29 Akzo N.V. Alignment system to overlay abdominal computer aided tomography and magnetic resonance anatomy with single photon emission tomography
ATE194916T1 (de) * 1992-05-06 2000-08-15 Immunomedics Inc Intraoperative, intravaskulare und endoskopische bestimmung und behandlung von verletzungen und tumoren
US5437279A (en) 1992-07-02 1995-08-01 Board Of Regents, The University Of Texas System Method of predicting carcinomic metastases
US5386446A (en) * 1992-07-06 1995-01-31 Kabushiki Kaisha Toshiba Positional adjustment of resolution in radiation CT scanner
FR2693803B1 (fr) * 1992-07-17 1994-09-30 Popescu Gheorghe Appareil de détection et de localisation de marqueurs biologiques radioactifs.
US5429133A (en) * 1992-12-18 1995-07-04 Neoprobe Corporation Radiation responsive laparoscopic instrument
US5441050A (en) 1992-12-18 1995-08-15 Neoprobe Corporation Radiation responsive surgical instrument
US5431161A (en) 1993-04-15 1995-07-11 Adac Laboratories Method and apparatus for information acquistion, processing, and display within a medical camera system
US5657759A (en) 1993-05-13 1997-08-19 Synectics Medical, Incorporated Measurement of gastric emptying and gastrointestinal output
US5939724A (en) 1993-06-02 1999-08-17 State Of Israel, The, Atomic Energy Commission, Soreo Nuclear Research Center Light weight-camera head and-camera assemblies containing it
DE69434119T3 (de) 1993-07-30 2011-05-05 Imcor Pharmaceutical Co., San Diego Stabilisierte mikrogasbläschen-zusammensetzungen für echographie
US5415181A (en) * 1993-12-01 1995-05-16 The Johns Hopkins University AM/FM multi-channel implantable/ingestible biomedical monitoring telemetry system
IL108352A (en) * 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
US6212423B1 (en) * 1994-03-02 2001-04-03 Mark Krakovitz Diagnostic hybrid probes
US5489782A (en) * 1994-03-24 1996-02-06 Imaging Laboratory, Inc. Method and apparatus for quantum-limited data acquisition
US5569924A (en) 1994-08-18 1996-10-29 Picker International, Inc. Transformable dual head spect camera system
NO300407B1 (no) * 1994-08-30 1997-05-26 Vingmed Sound As Apparat for endoskop- eller gastroskopundersökelse av pasienter
US5475219A (en) 1994-10-26 1995-12-12 Neoprobe Corporation Validation of photon emission based signals using an energy window network in conjunction with a fundamental mode discriminator circuit
US5694933A (en) 1995-04-28 1997-12-09 Care Wise Medical Products Corporation Apparatus and methods for determining spatial coordinates of radiolabelled tissue using gamma-rays and associated characteristic X-rays
US5871013A (en) * 1995-05-31 1999-02-16 Elscint Ltd. Registration of nuclear medicine images
US7110587B1 (en) * 1995-05-31 2006-09-19 Ge Medical Systems Israel Ltd. Registration of nuclear medicine images
US6107102A (en) 1995-06-07 2000-08-22 Regents Of The University Of California Therapeutic microdevices and methods of making and using same
US5729129A (en) * 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
FR2735874B1 (fr) * 1995-06-20 1997-08-22 Centre Nat Rech Scient Dispositif d'analyse non invasif par radio-imagerie, notamment pour l'examen in vito de petits animaux, et procede de mise en oeuvre
US5842977A (en) 1995-07-24 1998-12-01 The Johns Hopkins University Multi-channel pill with integrated optical interface
US5900533A (en) * 1995-08-03 1999-05-04 Trw Inc. System and method for isotope ratio analysis and gas detection by photoacoustics
DE19532676C1 (de) 1995-09-05 1997-05-07 Inst Physikalische Hochtech Ev Anordnung zur Bestimmung der Position eines Markers in einem Hohlraum innerhalb des Organismus eines Lebewesens
US5857463A (en) * 1995-10-13 1999-01-12 Neoprobe Corporation Remotely controlled apparatus and system for tracking and locating a source of photoemissions
US5732704A (en) * 1995-10-13 1998-03-31 Neoprobe Corporation Radiation based method locating and differentiating sentinel nodes
US5724401A (en) 1996-01-24 1998-03-03 The Penn State Research Foundation Large angle solid state position sensitive x-ray detector system
US6236050B1 (en) 1996-02-02 2001-05-22 TüMER TüMAY O. Method and apparatus for radiation detection
US5821541A (en) 1996-02-02 1998-10-13 Tuemer; Tuemay O. Method and apparatus for radiation detection
US5811814A (en) 1996-02-12 1998-09-22 Cordis Corporation Radiation measuring catheter apparatus and method
US5833603A (en) * 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5672877A (en) 1996-03-27 1997-09-30 Adac Laboratories Coregistration of multi-modality data in a medical imaging system
UA48221C2 (uk) 1996-04-01 2002-08-15 Валєрій Івановіч Кобозєв Електростимулятор шлунково-кишкового тракту
US8349602B1 (en) 1996-04-19 2013-01-08 Xenogen Corporation Biodetectors targeted to specific ligands
US6263229B1 (en) * 1998-11-13 2001-07-17 Johns Hopkins University School Of Medicine Miniature magnetic resonance catheter coils and related methods
US5961457A (en) 1996-05-03 1999-10-05 The Regents Of The University Of Michigan Method and apparatus for radiopharmaceutical-guided biopsy
US5932879A (en) * 1996-05-07 1999-08-03 Regents Of The University Of Michigan Solid state beta-sensitive surgical probe
US6076009A (en) * 1997-05-05 2000-06-13 The University Of Michigan Solid state beta-sensitive surgical probe
US5744805A (en) * 1996-05-07 1998-04-28 University Of Michigan Solid state beta-sensitive surgical probe
US5690691A (en) 1996-05-08 1997-11-25 The Center For Innovative Technology Gastro-intestinal pacemaker having phased multi-point stimulation
US5682888A (en) 1996-06-13 1997-11-04 Neoprobe Corporation Apparatus and system for detecting and locating photon emissions with remote switch control
US5727554A (en) * 1996-09-19 1998-03-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus responsive to movement of a patient during treatment/diagnosis
FR2754606B1 (fr) * 1996-10-14 1998-10-30 Commissariat Energie Atomique Dispositif et procede de collection et de codage de signaux issus de photodetecteurs
US6459925B1 (en) 1998-11-25 2002-10-01 Fischer Imaging Corporation User interface system for mammographic imager
JPH10186034A (ja) * 1996-12-27 1998-07-14 Mitsubishi Electric Corp シンチレーションファイバを用いた放射線検出器
US5841140A (en) * 1997-01-08 1998-11-24 Smv America, Inc. Gamma camera for pet and spect studies
US5891030A (en) * 1997-01-24 1999-04-06 Mayo Foundation For Medical Education And Research System for two dimensional and three dimensional imaging of tubular structures in the human body
US6261562B1 (en) 1997-02-25 2001-07-17 Corixa Corporation Compounds for immunotherapy of prostate cancer and methods for their use
US5923038A (en) 1997-05-30 1999-07-13 Picker International, Inc. Partial angle tomography scanning and reconstruction
US6147353A (en) 1997-05-30 2000-11-14 Picker International, Inc. Image shift for gamma camera
US6426917B1 (en) 1997-06-02 2002-07-30 Schlumberger Technology Corporation Reservoir monitoring through modified casing joint
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
US5846513B1 (en) 1997-07-08 2000-11-28 Carewise Medical Products Corp Tumor localization and removal system using penetratable detection probe and removal instrument
US6324418B1 (en) 1997-09-29 2001-11-27 Boston Scientific Corporation Portable tissue spectroscopy apparatus and method
CN2303580Y (zh) * 1997-08-14 1999-01-13 张恒 数字式医用内窥镜监视仪
US5928150A (en) 1997-10-04 1999-07-27 Neoprobe Corporation System for locating and detecting a source of photon emissions
US5916167A (en) * 1997-10-10 1999-06-29 Neoprobe Corporation Surgical probe apparatus and system
US5987350A (en) 1997-10-10 1999-11-16 Neoprobe Corporation Surgical probe apparatus and system
US6240312B1 (en) * 1997-10-23 2001-05-29 Robert R. Alfano Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
US6381349B1 (en) 1997-11-12 2002-04-30 The University Of Utah Projector/backprojector with slice-to-slice blurring for efficient 3D scatter modeling
US6129670A (en) 1997-11-24 2000-10-10 Burdette Medical Systems Real time brachytherapy spatial registration and visualization system
IL122602A0 (en) * 1997-12-15 1998-08-16 Tally Eitan Zeev Pearl And Co Energy management of a video capsule
US6104955A (en) 1997-12-15 2000-08-15 Medtronic, Inc. Method and apparatus for electrical stimulation of the gastrointestinal tract
US6431175B1 (en) * 1997-12-30 2002-08-13 Remon Medical Technologies Ltd. System and method for directing and monitoring radiation
US6697660B1 (en) * 1998-01-23 2004-02-24 Ctf Systems, Inc. Method for functional brain imaging from magnetoencephalographic data by estimation of source signal-to-noise ratio
US6205347B1 (en) * 1998-02-27 2001-03-20 Picker International, Inc. Separate and combined multi-modality diagnostic imaging system
US5984860A (en) * 1998-03-25 1999-11-16 Shan; Yansong Pass-through duodenal enteroscopic device
US6236878B1 (en) 1998-05-22 2001-05-22 Charles A. Taylor Method for predictive modeling for planning medical interventions and simulating physiological conditions
US6271524B1 (en) 1998-08-05 2001-08-07 Elgems, Ltd. Gamma ray collimator
US6242743B1 (en) * 1998-08-11 2001-06-05 Mosaic Imaging Technology, Inc. Non-orbiting tomographic imaging system
US6271525B1 (en) 1998-09-23 2001-08-07 Southeastern University Research Assn. Mini gamma camera, camera system and method of use
US6402689B1 (en) * 1998-09-30 2002-06-11 Sicel Technologies, Inc. Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
IL126727A (en) * 1998-10-22 2006-12-31 Given Imaging Ltd A method of bringing a device to the goal
US6239438B1 (en) * 1998-11-19 2001-05-29 General Electric Company Dual acquisition imaging method and apparatus
US6310968B1 (en) 1998-11-24 2001-10-30 Picker International, Inc. Source-assisted attenuation correction for emission computed tomography
CA2356271A1 (en) * 1998-12-23 2000-07-06 Image Guided Technologies, Inc. A hybrid 3-d probe tracked by multiple sensors
US6560354B1 (en) * 1999-02-16 2003-05-06 University Of Rochester Apparatus and method for registration of images to physical space using a weighted combination of points and surfaces
US6173201B1 (en) * 1999-02-22 2001-01-09 V-Target Ltd. Stereotactic diagnosis and treatment with reference to a combined image
US6368331B1 (en) * 1999-02-22 2002-04-09 Vtarget Ltd. Method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body
US6392235B1 (en) 1999-02-22 2002-05-21 The Arizona Board Of Regents On Behalf Of The University Of Arizona Coded-aperture system for planar imaging of volumetric sources
US6525320B1 (en) * 1999-04-14 2003-02-25 Jack E. Juni Single photon emission computed tomography system
US6167297A (en) * 1999-05-05 2000-12-26 Benaron; David A. Detecting, localizing, and targeting internal sites in vivo using optical contrast agents
US6236880B1 (en) * 1999-05-21 2001-05-22 Raymond R. Raylman Radiation-sensitive surgical probe with interchangeable tips
IL130317A0 (en) 1999-06-06 2000-06-01 Elgems Ltd Hand-held gamma camera
US6346706B1 (en) * 1999-06-24 2002-02-12 The Regents Of The University Of Michigan High resolution photon detector
JP4421016B2 (ja) 1999-07-01 2010-02-24 東芝医用システムエンジニアリング株式会社 医用画像処理装置
IL131242A0 (en) 1999-08-04 2001-01-28 Given Imaging Ltd A method for temperature sensing
GB9920401D0 (en) * 1999-08-27 1999-11-03 Isis Innovation Non-rigid motion image analysis
US6516213B1 (en) * 1999-09-03 2003-02-04 Robin Medical, Inc. Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging
US6429431B1 (en) 1999-09-24 2002-08-06 Peter J. Wilk Medical diagnostic method and apparatus utilizing radioactivity detection
US6415046B1 (en) 1999-10-07 2002-07-02 Edmund Kenneth Kerut, Sr. Method and apparatus for the early detection of tissue pathology using wavelet transformation
US6490476B1 (en) 1999-10-14 2002-12-03 Cti Pet Systems, Inc. Combined PET and X-ray CT tomograph and method for using same
AU1547101A (en) 1999-11-26 2001-06-04 Applied Spectral Imaging Ltd. System and method for functional brain mapping and an oxygen saturation difference map algorithm for effecting same
GB9930000D0 (en) 1999-12-21 2000-02-09 Phaeton Research Ltd An ingestible device
US7747312B2 (en) 2000-01-04 2010-06-29 George Mason Intellectual Properties, Inc. System and method for automatic shape registration and instrument tracking
US6549646B1 (en) * 2000-02-15 2003-04-15 Deus Technologies, Llc Divide-and-conquer method and system for the detection of lung nodule in radiological images
US7373197B2 (en) 2000-03-03 2008-05-13 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
US6510336B1 (en) * 2000-03-03 2003-01-21 Intra Medical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
US6602488B1 (en) 2000-03-03 2003-08-05 Intramedical Imaging, Llc Use of radiopharmaceuticals and intraoperative radiation probe for delivery of medicinal treatments
US6633658B1 (en) 2000-03-17 2003-10-14 Senorx, Inc. System and method for managing intermittent interference on imaging systems
US6628984B2 (en) 2000-04-12 2003-09-30 Pem Technologies, Inc. Hand held camera with tomographic capability
US6771802B1 (en) 2000-04-13 2004-08-03 Photon Imaging, Inc. Method and apparatus for imaging and localizing radiation
US6438401B1 (en) 2000-04-28 2002-08-20 Alpha Intervention Technology, Inc. Indentification and quantification of needle displacement departures from treatment plan
US6614453B1 (en) 2000-05-05 2003-09-02 Koninklijke Philips Electronics, N.V. Method and apparatus for medical image display for surgical tool planning and navigation in clinical environments
US20040195512A1 (en) 2000-05-16 2004-10-07 Crosetto Dario B. Method and apparatus for anatomical and functional medical imaging
IL163684A0 (en) * 2000-05-31 2005-12-18 Given Imaging Ltd Measurement of electrical characteristics of tissue
US6748259B1 (en) * 2000-06-15 2004-06-08 Spectros Corporation Optical imaging of induced signals in vivo under ambient light conditions
IL137821A (en) 2000-08-10 2009-07-20 Ultraspect Ltd Spect gamma camera
US8036731B2 (en) * 2001-01-22 2011-10-11 Spectrum Dynamics Llc Ingestible pill for diagnosing a gastrointestinal tract
US8909325B2 (en) * 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8565860B2 (en) * 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
US7826889B2 (en) * 2000-08-21 2010-11-02 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
WO2004042546A1 (en) 2002-11-04 2004-05-21 V-Target Technologies Ltd. Apparatus and methods for imaging and attenuation correction
EP1339312B1 (en) * 2000-10-10 2006-01-04 Microchips, Inc. Microchip reservoir devices using wireless transmission of power and data
US6643538B1 (en) 2000-10-20 2003-11-04 Southeastern Universities Research Assn. Directional intraoperative probe
US6628983B1 (en) 2000-10-25 2003-09-30 Koninklijke Philips Electronics N.V. Nuclear imaging systems and methods with feature-enhanced transmission imaging
EP1204073B1 (en) 2000-10-27 2007-01-31 Canon Kabushiki Kaisha Image generation method and apparatus
US6671541B2 (en) 2000-12-01 2003-12-30 Neomed Technologies, Inc. Cardiovascular imaging and functional analysis system
NO20010234D0 (no) * 2001-01-12 2001-01-12 Nycomed Imaging As Perfusjon avbildningsbilde
CA2434479A1 (en) 2001-01-16 2002-10-10 Board Of Regents, The University Of Texas System A pet camera with individually rotatable detector modules and/or individually movable shielding sections
IL157007A0 (en) 2001-01-22 2004-02-08 Target Technologies Ltd V Ingestible device
US6678546B2 (en) 2001-01-30 2004-01-13 Fischer Imaging Corporation Medical instrument guidance using stereo radiolocation
US7409243B2 (en) 2001-04-04 2008-08-05 Mirabel Medical Ltd. Breast cancer detection
US6484051B1 (en) 2001-05-15 2002-11-19 James Daniel Coincident multiple compton scatter nuclear medical imager
GB2377870B (en) * 2001-05-18 2005-06-29 Canon Kk Method and apparatus for generating confidence data
US6728583B2 (en) * 2001-06-27 2004-04-27 Koninklijke Philips Electronics N.V. User interface for a gamma camera which acquires multiple simultaneous data sets
US6592520B1 (en) 2001-07-31 2003-07-15 Koninklijke Philips Electronics N.V. Intravascular ultrasound imaging apparatus and method
US6940070B2 (en) * 2001-10-25 2005-09-06 Tumay O Tumer Imaging probe
JP2004005364A (ja) * 2002-04-03 2004-01-08 Fuji Photo Film Co Ltd 類似画像検索システム
JP2005521502A (ja) 2002-04-03 2005-07-21 セガミ エス.エー.アール.エル. 胸部および腹部の画像モダリティの重ね合わせ
JP4271040B2 (ja) * 2002-04-06 2009-06-03 バーボア、ランダル・エル 実時間の光学的トモグラフィーの正規化された差方法の変更
US7797033B2 (en) 2002-04-08 2010-09-14 Smart Pill Corporation Method of using, and determining location of, an ingestible capsule
US6741671B2 (en) 2002-04-30 2004-05-25 Ge Medical Systems Global Technology Company Llc Computed tomography system with integrated analogic computer
EP1521982A1 (en) 2002-07-17 2005-04-13 European Organization for Nuclear Research Gamma ray detector for positron emission tomography (pet) and single photon emmission computed tomography (spect)
US20050020915A1 (en) 2002-07-29 2005-01-27 Cv Therapeutics, Inc. Myocardial perfusion imaging methods and compositions
US20040116807A1 (en) * 2002-10-17 2004-06-17 Roni Amrami Blood vessels wall imaging catheter
US7577228B2 (en) 2002-10-28 2009-08-18 General Electric Company Transportable manufacturing facility for radioactive materials
US20040204646A1 (en) 2002-11-04 2004-10-14 V-Target Technologies Ltd. Intracorporeal-imaging head
US7177453B2 (en) * 2002-11-26 2007-02-13 General Electric Company Method and apparatus for partitioning a volume
US7283652B2 (en) 2002-11-27 2007-10-16 General Electric Company Method and system for measuring disease relevant tissue changes
US7490085B2 (en) * 2002-12-18 2009-02-10 Ge Medical Systems Global Technology Company, Llc Computer-assisted data processing system and method incorporating automated learning
US7187790B2 (en) * 2002-12-18 2007-03-06 Ge Medical Systems Global Technology Company, Llc Data processing and feedback method and system
CN1744918A (zh) 2002-12-31 2006-03-08 尼克塔治疗亚拉巴马公司 含有酮或相关官能团的聚合物试剂
US7142634B2 (en) 2003-01-29 2006-11-28 New England Medical Center Hospitals, Inc. Radiation field detection
EP1593087A4 (en) 2003-01-30 2006-10-04 Chase Medical Lp METHOD AND SYSTEM FOR IMAGE PROCESSING AND CONTOUR EVALUATION
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7291841B2 (en) 2003-06-16 2007-11-06 Robert Sigurd Nelson Device and system for enhanced SPECT, PET, and Compton scatter imaging in nuclear medicine
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
US8586932B2 (en) * 2004-11-09 2013-11-19 Spectrum Dynamics Llc System and method for radioactive emission measurement
WO2005118659A2 (en) 2004-06-01 2005-12-15 Spectrum Dynamics Llc Methods of view selection for radioactive emission measurements
US7176466B2 (en) * 2004-01-13 2007-02-13 Spectrum Dynamics Llc Multi-dimensional image reconstruction
US20070166227A1 (en) 2004-02-10 2007-07-19 Shuang Liu Crowned dithiocarbamate metal complexes and methods for their use
US7262417B2 (en) 2004-03-26 2007-08-28 Board Of Regents, The University Of Texas System Method and system for improved image reconstruction and data collection for compton cameras
US20050215889A1 (en) 2004-03-29 2005-09-29 The Board of Supervisory of Louisiana State University Methods for using pet measured metabolism to determine cognitive impairment
US7970455B2 (en) 2004-05-20 2011-06-28 Spectrum Dynamics Llc Ingestible device platform for the colon
EP1778957A4 (en) 2004-06-01 2015-12-23 Biosensors Int Group Ltd OPTIMIZING THE MEASUREMENT OF RADIOACTIVE EMISSIONS IN SPECIFIC BODY STRUCTURES
US7468513B2 (en) 2004-06-18 2008-12-23 The Children's Hospital Of Philadelphia Fast dynamic imaging protocol using a multi-head single photon emission computed tomography system
US9471978B2 (en) * 2004-10-04 2016-10-18 Banner Health Methodologies linking patterns from multi-modality datasets
EP1827505A4 (en) * 2004-11-09 2017-07-12 Biosensors International Group, Ltd. Radioimaging
US8000773B2 (en) * 2004-11-09 2011-08-16 Spectrum Dynamics Llc Radioimaging
US20080260637A1 (en) 2004-11-17 2008-10-23 Dalia Dickman Methods of Detecting Prostate Cancer
EP1844351A4 (en) * 2005-01-13 2017-07-05 Biosensors International Group, Ltd. Multi-dimensional image reconstruction and analysis for expert-system diagnosis
EP1846015A4 (en) 2005-01-19 2009-08-12 Mathew Mark Zuckerman METHOD, COMPOSITIONS AND CLASSIFICATION FOR TUMOR DIAGNOSIS AND TREATMENT
EP1908011B1 (en) 2005-07-19 2013-09-04 Spectrum Dynamics LLC Reconstruction stabilizer and active vision
EP1952180B1 (en) * 2005-11-09 2017-01-04 Biosensors International Group, Ltd. Dynamic spect camera
US7663111B2 (en) 2007-03-28 2010-02-16 Orbotech Ltd. Variable collimation in radiation detection
US20080277591A1 (en) 2007-05-08 2008-11-13 Orbotech Medical Solutions Ltd. Directional radiation detector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101190151B (zh) * 2005-11-29 2010-11-17 伊西康内外科公司 内置的胃部限制装置
CN104376659A (zh) * 2008-03-05 2015-02-25 普罗透斯数字保健公司 多模式通信可摄取事件标记和系统,及使用其的方法
CN102159134B (zh) * 2008-07-08 2015-05-27 普罗透斯数字保健公司 可摄取事件标记数据框架
CN101810481A (zh) * 2009-02-19 2010-08-25 西门子公司 具有在边缘摩擦情况下支持运送的装置的内窥镜胶囊
CN102596044A (zh) * 2009-09-29 2012-07-18 卧龙岗大学 成像方法和系统
CN102639049B (zh) * 2010-09-29 2014-11-26 奥林巴斯医疗株式会社 信息处理装置以及胶囊型内窥镜系统
CN102639049A (zh) * 2010-09-29 2012-08-15 奥林巴斯医疗株式会社 信息处理装置以及胶囊型内窥镜系统
CN102984991B (zh) * 2010-12-13 2015-04-01 奥林巴斯医疗株式会社 医疗装置
CN102984991A (zh) * 2010-12-13 2013-03-20 奥林巴斯医疗株式会社 医疗装置
CN103153155B (zh) * 2011-03-15 2014-09-10 奥林巴斯医疗株式会社 医疗装置
CN103153155A (zh) * 2011-03-15 2013-06-12 奥林巴斯医疗株式会社 医疗装置
CN107743381A (zh) * 2015-06-12 2018-02-27 皇家飞利浦有限公司 电磁设备跟踪
CN107638624A (zh) * 2017-01-23 2018-01-30 武汉市瑞达源科技有限公司 一种向胃肠道提供药物的系统
CN111936051A (zh) * 2018-02-06 2020-11-13 光点医疗有限公司 拴系式腹腔镜探针
CN115500769A (zh) * 2022-09-26 2022-12-23 武汉中科科理光电技术有限公司 一种电极内窥镜系统及其使用方法

Also Published As

Publication number Publication date
EP1359845A2 (en) 2003-11-12
WO2002058531A2 (en) 2002-08-01
AU2002226655B2 (en) 2006-09-07
IL157007A0 (en) 2004-02-08
CA2435205A1 (en) 2002-08-01
WO2002058531A3 (en) 2002-12-12
US8055329B2 (en) 2011-11-08
WO2002058531A8 (en) 2003-11-20
CN1310617C (zh) 2007-04-18
US20030139661A1 (en) 2003-07-24
EP1359845B1 (en) 2012-11-14
JP2004521680A (ja) 2004-07-22
EP1359845A4 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
CN1310617C (zh) 可咽下装置
US8036731B2 (en) Ingestible pill for diagnosing a gastrointestinal tract
US7653427B2 (en) Method and instrument for minimally invasive sentinel lymph node location and biopsy
US6510336B1 (en) Methods and devices to expand applications of intraoperative radiation probes
US7373197B2 (en) Methods and devices to expand applications of intraoperative radiation probes
EP1750676B1 (en) Ingestible device platform for the colon
AU2002226655A1 (en) Ingestible device
US8050743B2 (en) Positron emission detectors and configurations
CN102735752B (zh) 基于金纳米簇的肿瘤靶向活体多模态成像方法
CN1469720A (zh) 配有位置跟踪系统的放射性辐射探测器及其在医疗系统和医疗过程中的应用
JP2010507645A (ja) 前立腺癌を検出するための造影剤
US20040071631A1 (en) Use of radiopharmaceuticals and intraoperative radiation probe for delivery of treatment materials
WO2008132714A2 (en) Ergonomic probes
US20100030069A1 (en) Triple-modality imaging system
US8401621B2 (en) Method and device of detecting, locating and/or analyzing a radioactive source(s) in a material, e.g. a biological tissue
US7787928B2 (en) Methods, device and system for in vivo detection
Liu et al. Molecular imaging of cell-based cancer immunotherapy
Pashazadeh et al. Radioguided surgery: physical principles and an update on technological developments
AU2009351863A1 (en) Compact probe for tracer-assisted diagnostic and surgery
Bakalakos et al. The radioimmunoguided surgery (RIGS) system as a diagnostic tool
Gareus et al. An Introduction to Molecular Imaging
IL172728A (en) An independent in-body device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SPECTRA DYNAMICS CO., LTD.

Free format text: FORMER OWNER: V-TARGET LTD.

Effective date: 20070323

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070323

Address after: American New York

Patentee after: Spectrum Dynamics LLC

Address before: Israel, Mount Carmel

Patentee before: V- target Technologies Ltd

ASS Succession or assignment of patent right

Owner name: BIOSENSOR INTERNATIONAL GROUP CO., LTD.

Free format text: FORMER OWNER: SPECTRUM DYNAMICS LLC

Effective date: 20140528

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140528

Address after: Bermuda Hamilton

Patentee after: Biosensor International Group Co., Ltd.

Address before: American New York

Patentee before: Spectrum Dynamics LLC

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180212

Address after: The British Virgin Islands

Patentee after: Dynamic Spectrum Medical Co., Ltd.

Address before: Bermuda Hamilton

Patentee before: Biosensor International Group Co., Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070418