CN1557016A - 使用纳米管带子的机电式存储阵列及其制法 - Google Patents

使用纳米管带子的机电式存储阵列及其制法 Download PDF

Info

Publication number
CN1557016A
CN1557016A CNA02818498XA CN02818498A CN1557016A CN 1557016 A CN1557016 A CN 1557016A CN A02818498X A CNA02818498X A CN A02818498XA CN 02818498 A CN02818498 A CN 02818498A CN 1557016 A CN1557016 A CN 1557016A
Authority
CN
China
Prior art keywords
nanotube
layer
guide rail
path
rail line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA02818498XA
Other languages
English (en)
Other versions
CN100466181C (zh
Inventor
Bm
B·M·西加尔
D·K·布洛克
T·鲁基斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantero Inc
Original Assignee
Nantero Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantero Inc filed Critical Nantero Inc
Publication of CN1557016A publication Critical patent/CN1557016A/zh
Application granted granted Critical
Publication of CN100466181C publication Critical patent/CN100466181C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C23/00Digital stores characterised by movement of mechanical parts to effect storage, e.g. using balls; Storage elements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0094Switches making use of nanoelectromechanical systems [NEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/16Memory cell being a nanotube, e.g. suspended nanotube
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/81Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/795Composed of biological material
    • Y10S977/796Composed of biological material for electrical or electronic purpose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/855Manufacture, treatment, or detection of nanostructure with scanning probe for manufacture of nanostructure
    • Y10S977/856Manufacture, treatment, or detection of nanostructure with scanning probe for manufacture of nanostructure including etching/cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/943Information storage or retrieval using nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Abstract

揭示了机电式电路,如存储单元,及其制法。所述电路包括由电导轨线和从基质表面延伸的支持构成的结构,以及由穿过电导轨线的支持悬置的纳米管带子,其中各个带子包括一个或多个纳米管。所述机电式电路元件可由具有电导轨线和支持的结构制成,其中的支持从基质表面延伸。在支持上有一层纳米管,并选择性除去纳米管层的某些部分,形成穿过电导轨线的纳米管带子。每个带子包括一个或多个纳米管。

Description

使用纳米管带子的机电式存储阵列及其制法
相关申请的交叉引用
本申请与下列申请相关,它们都与本申请同日提交,并全部转让给本申请的受让人,而且它们全部参考结合于此:
具有纳米管机电式存储器的混合电路(美国专利申请系列号,尚未转让);
用纳米管技术制造的具有存储单元选择电路的机电式存储器(美国专利申请系列号,尚未转让)。
背景
1.技术背景
本发明一般涉及用作电子装置存储装置的非易失存储器,特别涉及使用机电式元件作为单个存储单元的非易失存储阵列。
2.相关技术的讨论
电子装置的存储单元的重要特性是低成本、非易失性、高密度、低功率和高速。常规的存储器包括只读存储器(ROM)、可编程序只读存储器(PROM)、电可编程序存储器(EPROM)、电可擦除可编程序存储器(EEPROM)、动态随机存取存储器(DRAM)和静态随机存取存储器(ERAM)。
ROM相对费用较低但无法改写。PROM可电子编程但只有一个写入周期。EPROM的阅读周期相对ROM和PROM的阅读周期快,但其擦去时间相对较长且只有几个迭代的读/写周期。EEPRO(或“闪存”)比较便宜,且是低功率的,但写入周期(ms)较长,且相对速度低于DRAM或SRAM。闪存也有限定数目的读/写周期,从而导致较低的长期可靠性。ROM、PROM、EPROM和EEPROM都是非易失的,即如果存储器的电源中断,存储器会保存存储单元中储存的信息。
DRAM将电荷存储在作为电容器的晶体管的门中,但每几个毫秒就必需电更新一次,这使系统设计复杂化,因为需要单独的电路来在电容器放电之前将存储内容“更新”。SRAM不需要更新,且相对于DRAM速度较快,但密度较低且更加昂贵。SRAM和DRAM都是易失的,即如果存储器的电源中断则将丢失存储单元中储存的信息。
因此,现有的技术要么是非易失的,但不是随机存储,且密度低、成本高,难以以高的电路功能可靠性多次写入,要么是易失的,系统设计复杂或密度较低。一些新兴的技术已经在试图解决这些问题。
例如,磁性RAM(MRAM)或铁磁RAM(FRAM)利用磁化的取向或铁磁区域来产生非易失的存储单元。MRAM采用磁阻性存储元件,其中包括各向异性的磁阻或铁磁材料的巨大磁阻来产生非易失性。这些类型的存储单元都有相对较高的电阻和低密度。另一种基于磁性隧道结的存储单元已经在试验,但还未用于大规模商业生产MRAM装置。FRAM采用与DRAM类似的电路,但其中使用了薄膜铁电电容器。这种电容器可在除去外部施加的电场后保留其电极化,从而产生非易失的存储器。FRAM的缺点在于存储单元尺寸过大,并且不易于作为大规模集成元件进行制造。参见美国专利4,853,893;4,888,630;5,198,994。
另一种具有非易失存储器的技术是相变储存器。这种技术通过含有如硒或碲元素的薄膜合金的结构相变来储存信息。这些合金在晶体状态和无定形状态下都保持稳定,从而形成了双稳开关。尽管满足了非易失条件,这种技术似乎有操作慢、制造困难、可靠性低和未达到商业规模的缺点。参见美国专利3,448,302;4,845,533;4,876,667;6,044,008。
还提出了电线纵横制存储器(MWCM)。参见美国专利6,128,214;6,159,620;6,198,655。这些存储器设想以分子作为双稳开关。两根电线(金属或半导体类型)之间有分子层或分子型化合物层。采用化学装配和电化学氧化或还原来产生“开”或“关”状态。由于氧化还原过程固有的不稳定性,这种存储器形式需要高度专一的电线连接,且可能无法保持非易失性。
最近提出了使用纳米电线,如单壁碳纳米管,形成纵横制结作为存储单元的存储装置。参见WO 01/03208,基于纳米电线的装置、阵列及其制造方法(NanoscopicWire-Based Devices,Arrays,and Methods of Their Manufacture);以及ThomasRueches等人的“用于分子计算的基于碳纳米管的非易失随机存取存储器”(CarbonNanotube-Based Nonvalatile Random Access Memory for Molecular Computing),Science,289卷,94-97页,2000年7月7日。下面将这些装置称为纳米管线纵横制存储器(NTWCM)。在这些建议下,悬置在其它电线上的各个单壁纳米管线形成了存储单元。电信号被写到一根或两个电线,使它们相互物理吸引或排斥。每一物理状态(即相吸或相斥的电线)相应于一种电学状态。相斥的电线是开放的电路结。相吸的电线是形成整流结的闭合状态。当从结上除去电源时,这些电线保持其物理状态(因而保持电状态),从而形成非易失存储单元。
NTWCN建议迄今采用直接生长或化学自装配技术来生长存储单元所需的各个纳米管。现在认为这些方法难以采用现代技术在商业规模上应用。此外,它们可能有固有的缺陷,例如用这些技术制造的纳米管的长度问题,且可能难以控制如此生长的纳米管的几何统计变异。
发明简述
本发明提供了机电式电路,如存储器单元,及其制造方法。所述电路包括由电导轨线和从基质表面延伸的支持物构成的结构,以及由支撑层悬置的穿过电导轨线的纳米管带子,其中各个带子包括一个或多个纳米管。
根据本发明的一个方面,所述机电式电路元件由具有电导轨线和支撑层的结构制成,其中的支持从基质表面延伸。在支持上有一层纳米管,并且选择性地除去纳米管层部分以形成穿过电导轨线的纳米管带子。每个带包括一个或多个纳米管。
附图简述
附图中,
图1显示依据本发明的某些实施方式,一种纳米管带子纵横制存储装置;
图2A-B显示依据本发明的某些实施方式,一种存储单元的两种状态;
图3显示依据本发明的某些实施方式,制造存储装置的步骤;
图4-11显示依据本发明的某些实施方式,产生用来制造存储装置的中间结构的几种形式;
图12显示用来制造本发明的某些实施方式的非织造纳米管织物或毡合的纳米管层;
图13显示与本发明的某些实施方式中毡合的纳米管层与隐藏在下面的轨线的关系;
图14显示本发明某些实施方式的寻址逻辑;
图15显示本发明实施方式的一种混合技术,其中存储核心使用了纳米管技术;
图16显示本发明实施方式的一种混合技术,其中存储核心和寻址线使用了纳米管带子技术;
详细描述
本发明的优选实施方式提供了新颖机电式存储阵列及其制造方法。具体言之,创造了按照类似于WO 01/03208中所述NTWCM装置操作的机电式存储单元,该文献全文参考结合于此。但是,和WO 01/03208中所述的NTWCM装置不同,本发明优选的实施方式将NTWCM装置中使用的悬置的纳米电线换成新的纳米管的毡合层或纳米管的非织造织物的带子。这些新的装置在这里被称为纳米管带子纵横制存储器(NTRCM)。这种新的纳米管带子结构被认为容易以所需的集成度和规模(所生产的装置数)制造,而且其几何形状也较易控制。
因为新型的纳米管带子纵横制存储器装置的运行和NTWCM相似,它们的结构描述和运行原理在此是简单的,其描述和背景可参见WO 01/03208。
图1显示依据本发明优选实施方式的原理所构建的一个典型的机电式存储阵列100。该阵列有很多非易失性存储单元103,可置于“开”或“关”的状态。这样的单元的确切数目对于理解本发明并不重要,但是,其技术可支持其信息存储容量与现代非易失性电路装置的容量相当或更大的装置。
每个存储单元103包括一根纳米管带子101,它通过一个或多个支撑层102悬置在电路轨线或导线例如104上方。
每根带子101和导线如104的交叉,形成了一个交叉结,构成了一个存储单元。在有些实施方式中,通过对电极112(该电极与带子101电路连通施加电流或电压,或通过与轨线或导线104连通的电极(未显示),各个单元可被读写。支撑层102是氮化硅(Si3N4)层108。在层108的下面是门氧化物层109,它将n-掺杂的硅轨线与下面的硅片110分隔。
试联合参见图1-2B,结106显示了在第一种物理和电学状态的单元,其中纳米管带子101和对应的轨线104分隔。结105显示了在第二种物理和电学状态的单元,其中纳米管带子101弯曲朝对应的轨线104。在第一种状态中,结是开路的,当就这样寻址时,它可在带子101或轨线104上被探测到是这种状态。在第二种状态中,结是个整流结(如Schotty或PN结),当就这样寻址时,它可在带子101或轨线104上被探测到是这种状态。
在某些实施方式中,纳米管带子101可通过摩擦固定在支撑层上,在其它的实施方式中,带子可用其它方法来固定,如使用任何其它的技术将带子钉扎在支撑层上。通过化学相互作用可使摩擦增强,包括通过例如芘或其它化学活性物质的碳化合物来进行共价结合。蒸发或旋涂的材料如金属、半导体或绝缘体,尤其是硅、钛、二氧化硅或聚酰亚胺也可加入用以提高此钉扎的强度。纳米管带子或单个的纳米管也可使用晶片结合在表面上。参见R.J.Chen等。“用于蛋白质固定化的单壁碳纳米管的非共价边壁功能化”美国化学会杂志。,123,2001,3838-39和Dai等人,《应用化学通讯》77,2000,3015-17,其中描述了用金属钉扎和涂布纳米管的典型技术。也可参见WO 01/03208中的技术。
在图2A-B显示的某些优选的实施方式中,纳米管带子101的宽度约为180nm,它钉扎在优选由氮化硅制成的支撑层102上。在带子101下面的轨线104的局部区域形成n-掺杂的硅电极,且在接近支撑层102的位置,其宽度优选不超过带子如180nm的宽度。从支撑层102的顶部到带子101连接电极206的下弯位置(见图2B)的相互间距208应为5-50nm。此间距208的大小的设置应与存储器的机电式开关性能适应。对于此实施方式,5-50nm的间距对于使用纳米管制成的带子101的某些实施方式是优选的,但对其他材料,其他间距也可能较好。这个间距大小是由下弯的纳米管的应变能和附着能的相互作用而产生的。这些特征尺寸是由现代制造技术所提出的。在其它实施方式中,根据制造设备的能力,该下弯尺寸或大或小。
某些实施方式的纳米管带子101是由一种缠绕或毡合的纳米管非织造织物形成的(下面将详述)。这种带子的开关参数与单根的纳米管相似。这样,预计的带子的开关时间和电压大约和纳米管的开关时间和电压相近。和先前依赖于单个纳米管的定向生长和化学自组装的技术不同,本发明的优选的实施方式中,使用薄膜和平版印刷的制造技术。这种制造方法能产生超大的表面,尤其是至少6英寸的晶片。(与此不同,让纳米管生长超过亚毫米级的尺寸现在还难以做到)。纳米管带子与单个纳米管相比,应有更好的缺陷容忍性,这是因为在带子中提供了许多导电通路的缘故。(如果带子中一根纳米管损坏了,其它纳米管还能提供其它导电通路,而如果使用单根纳米管,存储单元就损坏了)。还有,带子的电阻应比单根的纳米管小得多,这样就减少了阻抗,因为纳米管带子可比单个纳米管制成更大的截面积。
图3显示某些实施方式的NTRCM装置100的制造方法。先制造或提供第一中间结构层302。在所示的实施方式中,结构层302包括一个硅基片110,它具有一个绝缘层109(如二氧化硅)和一个氮化硅层108,后者形成很多支撑层102。在此例中,支撑层102是排列成图案形式的氮化硅,但是其它的排列也可能,例如很多纵列。导电轨线104在支撑层102之间延伸。在此例中,轨线104与支撑层102是基本互相接触的,但其它的排列以及另外的几何形状也有可能,例如:轨线104和支撑层102之间可以有空间,轨线104可以是导线的形状,或有非矩形的纵截面或横截面,包括三角形或梯形截面。牺牲层304位于轨线104上方,和支撑层102的上表面形成一个平表面306。此平表面,下面将要叙述,有助于形成一层毡合的纳米管层。
结构302制成或提供了后,其上表面306上施加一种催化剂308。例如,某些实施方式中,一种含铁(Fe)、钼(Mo)、钴或其它金属的金属催化剂,用旋涂或其它技术施加上去,形成一个第二中间结构层310。
然后,一个毡合的纳米管层312生长为单壁纳米管非织造织物,形成第三中间结构层314。例如,第二中间结构层可置于一加热炉中,加热至高温(如800-1200℃),同时将含有碳源物质、氢气和惰性气体如氩气或氮气的气体吹过其上表面。此气氛使得单壁碳纳米管的毡合层或膜312有可能产生或生长。312层主要是一个纳米管的厚度,不同的纳米管之间通过范德华力相互连接。偶而会有一个纳米管在另一个纳米管的上面生长,但是因为此材料的生长特性,这种生长是不常见的。在一些实施方式中(图中未显示),催化剂308可以以一定图案形式分布,生长成特定密度的纳米管,可按要求的密度大或小些。当催化剂的组成和密度、生长气氛和时间条件适当地控制后,纳米管可以均匀地分布在一给定区域,主要是单层。合适的生长要求控制的参数,包括但不限于催化剂的组成和浓度、下面表面的功能化、旋涂参数(长度和每分钟转数)、生长时间、温度和气体浓度。
一层光致抗蚀剂然后可施加在层312上,并使层312具有一定图案形式,用以形成毡合纳米管层312形式的带子。该带子的图案穿过(例如垂直)下层的轨线104。去除光致抗蚀剂后,留下非织造的纳米管织物带子101在306平面上,形成第四中间层318。
第四中间层318中有一些部分320,如图所示露出其下面的牺牲层304。结构318然后用酸如HF处理,除去牺牲层304,包括带子101下面的部分。这样就形成了悬置在轨线104上面并由支撑层102支撑的带子101的阵列322。
接下来的金属化可用来形成寻址电极,如图1所示的112。
上述技术的一个方面,是不同的生长、图案化和腐蚀操作可以使用常规技术。如平版印刷图案化。目前,它可以产生的特征尺寸(如带子101的宽度)为约180nm到小至130nm。但如制造技术容许,元件的物理性能可以做到使其特征尺寸更小。
下面将要进行解释,有很多可能的方法用来生成上述中间结构层或相似的结构层。图4,例如就显示了一种生成第一中间结构结构层302的方法。
一块硅片400带有氧化物层402。该氧化物层优选是有几个纳米厚,也可厚至1微米。一层氮化硅(Si3N4)层404沉积在氧化物层402的上面,该氮化硅层优选至少有30nm厚。
氮化硅层然后经图案化并腐蚀产生凹穴406,形成支撑结构407。使用现代技术,凹穴的宽度可以是180nm或更小。剩下的氮化硅材料则形成支撑层102(例如成横排或纵列)。
然后将n-掺杂的硅覆盖层408沉积上去,填满凹穴406。典型的覆盖层408的厚度是1微米,但可薄至30nm。
覆盖层408然后经过加工,例如该厚硅层的自平化或退火,形成平表面306,如上所讨论的,形成结构411。若是自平化,可以使用带终点探测(EPD)的反应性离子腐蚀(RIE)进行,直至达到经腐蚀的氮化硅的上表面410。
结构411然后进行氧化,以形成二氧化硅牺牲层304,它在平表面306以下10-20nm深。
未转化的余下的硅则形成轨线104。
图5显示另一种制造方法可用来形成NTRCM装置100。先提供一个如图4所示的一个支撑结构407,然后用CVD、溅射或电镀的方法加上一层n-掺杂硅层514。在某些实施方式中,所加的层514的厚度是氮化硅支撑层102厚度的一半。
层514加上以后,进行退火操作以生成一平表面306,形成如上所述的结构411。该退火操作使层514中的硅流入到凹穴406中。
如就图4所述的,结构411然后经过氧化,形成二氧化硅牺牲层304,它深入平表面306以下10-20nm。
图6显示形成另一种第一中间结构层302’的另一种方法。在此实施方式中,一个硅基片600上覆盖有一层氮化硅层602,其厚度604至少为30nm。
氮化硅层602然后经图案化并腐蚀产生凹穴606并形成支撑层102。该腐蚀操作暴露出硅基片600表面的一部分608。
暴露的硅表面608经氧化产生二氧化硅(SiO2)层610,其厚度为几个纳米。这些层610最终使轨线104绝缘,其方式与上述结构302中的绝缘层109相似。
一旦绝缘层610形成后,轨线104可用多种方法制备。图6显示了图4-5中的制造步骤,用来生成这样的轨线进行说明。
图7显示另一种形成第一中间结构层302的方法。一个硅基片700上具有一个二氧化硅层702和一个氮化硅层704,后者上面再有图案化的光致抗蚀剂层706。例如,一个光致抗蚀剂层可旋涂在层704上,再经曝光和光刻显影。
反应性离子腐蚀(RIE)等方法然后可以用来腐蚀氮化硅层704,形成凹穴708并形成支撑层102。
然后,n-掺杂的硅710可沉积进入凹穴708中,在某些实施方式中,硅的沉积高度大约与氮化硅支撑层102的高度712相同
然后除去光致抗蚀剂706和在光致抗蚀剂706上的硅710,形成如上所述的中间结构层411。
结构层411然后经氧化生成二氧化硅牺牲层304。
图8显示生成第一中间结构层302的另一种方法。在这种方法中,提供一起始结构800,它具有最低的硅层802,其上有最低的二氧化硅层804。第二硅层806置于层804上,而第二个二氧化硅层808又置于第二硅层806之上。
顶部的二氧化硅(SiO2)层808经光刻图案化,生成RIE掩模810。此掩模用来腐蚀第二硅层806的外露部分812,直到第一二氧化硅层804。该腐蚀操作生成凹穴814并形成轨线104。
凹穴814用氮化硅(Si3N4)816填满和覆盖之。
此氮化硅覆盖层经RIE背腐蚀达到高度818,和覆盖着n-掺杂硅电极104的二氧化硅层806余下部分一致(形成牺牲层304)。
图9显示形成第一中间结构层302”的另一方法。在此方法中,先提供类似407的结构(在图4中显示,图9中未显示)。在此例子中,Si3N4支撑层102的高度约为30nm。一金属薄层902沉积在Si3N4支撑层102的上面,并沉积在凹穴904底部的SiO2外露的部分上,此沉积的部分标为903。金属902和903形成暂时的电极。然后,用电镀方法沉积或生长一层n-掺杂硅层906,覆盖着电极903,直至硅层906的高度908达到支撑102层顶部,并和电极902接触。此生长过程可通过起动上下金属电极902,903之间的电流而加以控制。
外露的金属电极902可用湿化学方法或干化学方法加以去除。这就形成了中间结构层411’,和上述411结构相似。但具有一个埋入的电极903,作为硅生长过程的结果。
结构411’然后经氧化形成位于硅的外露部分的牺牲层304,如上所述。例如,牺牲层304可生长至厚度为10nm。
图10显示形成第一中间结构层302的另一方法,将一个硅基片1002用作起始材料,其上有一个二氧化硅层1004,而在层1004上有第二硅(n-掺杂的)层1006。在层1006上有经光刻图案化的掩模1008。
使用氮化技术,使n-掺杂硅层1006的外露部分1010化学转化为氮化硅支撑层102。1006层的未转化部分形成轨线104。
将掩模1008除去形成一个如上所述的结构411。
硅表面外露的部分1012经氧化形成二氧化硅牺牲层304。
图11显示生成第一中间结构层302的又一个方法。在此方法中,覆盖有Si3N4薄膜1104的硅基片1102作为起始材料,在氮化硅层1104的顶部,施加上n-掺杂硅,用RIE法光刻图案化,形成轨线104。
轨线104的表面经氧化以形成二氧化硅层1106,作为牺牲层304’的另一种形式。
在此结构的的上面再生长氮化硅层1108,背腐蚀以形成平面306,从而形成又一种第一中间结构结构层302。如本领域中有经验的人士所熟知的,在此方法中,当牺牲层304后来去除后,轨线104会和支撑层102分离。此技术的一些变体可用来生成轨线104另一种横截面形状。例如,轨线104可制成上部圆形的,或有三角形或梯形的横截面。另外,横截面还可以有其它形状,如带有渐缩两边的三角形。
如上所述,第一中间结构层例如302形成后,让一个毡合的纳米管层312生成在层302的平表面306上。在优选的实施方式中,此非织造织物层312生长在此结构上,此时使用催化剂308并通过生长环境的控制。其它实施方式可另行先提供毡合的纳米管层312,然后直接施加在结构302之上。虽然结构302,运用此方法优选地包括牺牲层来提供一个平表面,用来接受先行生长的织物,但在此方法中,牺牲层可以是非必需的。
因为此生长过程使这种纳米管的下面与中间结构层302的平表面306接触,所以显示出一种“自组装”的特点,如图12所示。具体是,一个个纳米管会在其生长的表面上附着,只要在能量上是有利的,这样它们就基本形成一个“单层”。有些纳米管会在其它纳米管上面生长,从而此单层并不是完善的。单个的纳米管并不是和其它纳米管互相编织起来,而是靠范德华氏力相互附着。图12大致显示了一种实际的纳米管非织造织物。因为纳米管的特征尺寸很小,即使现代的扫描电镜SEM也不能将真实的织物拍摄下来而不损失精度;纳米管的特征尺寸为1-2nm,小于SEM的精度。例如,在图12中,显示了织物的毡合特性;图中并不清晰的是,织物中可能有间断的小区域,其中不存在纳米管。每个纳米管的直径典型的是1-2nm(这样就确定了织物的厚度也是1-2nm),但长度是几个纳米,有些甚至是200nm。纳米管可以是弯曲的,偶而也会互相叉。纳米管之间通过范德华氏力相互附着。
在某些实施方式中,纳米管在X-轴和Y-轴方向上基本上不受限制地生长,但在Z-轴方向上(垂直于图12的纸面)生长受到限制,这是因为有自组装的特性。其它实施方式可以对上述方法进行补充,用场取向或流取向的生长技术来生长毡合物312。这样的补充可用来对生长人为设定,如阻止沿一个方向(如X-轴)的生长。这样能以可控的密度形成一层平坦单层的相互交织的纳米管层,更均匀地覆盖所需要的表面。
图13显示了毡合的纳米管层312和其下面的硅轨线104。
如上所解释的,在表面306上有了毡合的纳米管层312以后,将层312图案化和腐蚀,形成纳米管织物带子101,它跨越在支撑层102之上。然后除去牺牲层(如用酸),形成阵列322,如上面图3所示。因为纳米管毡合层312形成的非织造的织物是不连续的,所以腐蚀剂或其它化学试剂可能渗透至纳米管“织物”之间,并很容易地达到下面的部分,如牺牲层。
接着的金属化可用来形成寻址电极,如图1中所示的112。其它实施方式使用纳米管技术来实现存储单元的寻址,而不使用金属化电极112和寻址线(未显示)。
更具体的,在上述某些实施方式中,纳米管可用来形成NTRCM阵列。某些实施方式使用纳米管技术,不管是单根的导线还是带子的形式,用来执行寻址逻辑,从而选择存储单元进行读写操作。此方法还将纳米管技术整合在系统设计中,有利于更高级别的系统设计。例如,在此方法中,存储器结构不仅能以非易失性的方式存储记忆内容,还能存储过去的记忆地址。
基于纳米管的存储单元是双稳态的,其特点是“0”和“1”状态的阻比很高。这两个状态的转换是将特定电压加到纳米管导线或带子和下面的轨线上,其中至少一个存储单元是纳米管或纳米管带子。在一个方法中,加上一“读出电流”并用一个“读出放大器”测出此结上的电压。读出是非破坏性的,意思是存储单元仍保持其状态,不必象DRAM那样需要回写操作。
图14显示分支对分选择系统或解码器1400。下面还将说明,解码器1400可由纳米管或纳米管带子技术形成。还有,解码器可以建立在与作为一个纳米管存储单元阵列如NTRCM或NTWCM相同的电路元件上。
两根线1404和1406的垂直相交点1402,表示两根纳米管或纳米管带子的结。在此方面,其相互作用和CMOS和其它技术中发现的“通过晶体管”相似,其中,此交叉可以是敞开或封闭的。
如1420的那些位点,在该处一个纳米管或纳米管带子和别的纳米管或纳米管带子相交但不拟生成一个交叉结,可以用元件之间光刻图案化的绝缘体来互相绝缘。
为清晰起见,图中所示的解码器是用于一个3位的二进制地址,承载在寻址线1408上。根据编码的值,交叉(点)会进行转换,来产生仅仅一条通路,传感电流可以通过该通路来选择线1418。
使用这个技术,两进制地址的每个位的一个“双轨”表示1408均在外部形成。这样地址位1410的每一个均以真实和补充的形式表示。这样,线1406可以是地址线1408a的逻辑上真实的形式,而线1407可以是地址线1408a的逻辑补充。表示1408的电压值与上述将交叉结转换到“1”或“0”状态所必需的电压是一致的。
这样,一个地址1408可以用来对一个阵列中的位或一排位例如纳米管或纳米管带子提供传感电流I。相似地,同样的方法也能用来感受一给定的轨线,例如,结合选择一个排选择由其读取感受的特定纵列。因此这样的方法可用于X和/或Y解码,用于读或写的操作。
本发明的某些实施方式提供一种混合技术电路1500,如图15所示。用NTWCM或NTRCM构建核心存储单元阵列,该核心被半导体电路包围,形成X和Y地址解码器1504和1506;X和Y缓冲器1508和1510;逻辑控制1512和输出缓冲器1514。包围NTWCM或NTRCM核心的电路可用于常规的接口功能,包括提供读取电流和读取传感输出电压。
在其他实施方式中,X和Y地址解码器可被上述的纳米管导线或带子寻址技术所替代。在这些实施方式中,核心会包括存储单元和寻址逻辑。
在某些实施方式中,可用一个纳米管核心(只具有存储单元或具有存储单元和寻址逻辑)和用一个场可编程门阵列实现周围电路来形成混合电路1500。核心和门阵列电路如果需要,可在一个物理包装内,也可分别包装。例如,一个密闭包装的纳米管电路(具有存储器或存储器和寻址逻辑)可以与一个PLD/FPGA/ASIC组合,其中有I/O接口逻辑。所得的完整的芯片组对于产品的用户而言,可以获得纳米管存储器带来了好处,同时能最大限度地使用现有的技术,该技术可被制造厂家以基于需求的方式使用。
图16显示混合技术的一个可能的执行方式。一个含有缓冲和控制逻辑(如上所述)的FPGA芯片1602,通过在一个(也许是多层)印刷线路板(PCB)1604上的导电轨线连接到一个含有存储单元和寻址逻辑的纳米管芯片(NT)1606上。
这个具体的实施方式提出,能符合当今个人电脑通用的PCI总线标准。其它无源线路,如电容、电阻、变压器等(未示出)也需要符合PCI标准。一个为200MHz-400MHz正面总线速度已作了标示,表明这样的芯片组可以这样的外部时钟速度运行。此速度受到PCB内部连线和FPGA/PLD/ASIC的速度以及芯片包装的限制,而不是受纳米管存储单元速度的限制。
其它实施方式
除了碳纳米管以外,其它电子和机械性能适于做机电式开关的材料也是可用的。这些材料应有和纳米管相似的性能,但是有不同可能和更小的拉伸强度。材料的拉伸应变和附着能量必需在一个范围内,能使得结的二稳态性和机电式开关性能是可以接受的。
为了整合CMOS逻辑用来寻址,可以使用两种方法。在第一种方法中,纳米管阵列在在金属化以前,但在CMOS逻辑装置的离子注入和平面化之后进行整合。第二种方法是在CMOS装置制造(涉及离子注入和高温退火)之前生长纳米管阵列。一旦这些步骤完成后,纳米管带子和CMOS装置的金属化就用广泛使用的标准方法进行。
在某种金属或半导体线上放置含n-空穴硅的电极也是可以设想的。这样会在开的状态时产生整流结,以致不存在多重的电流通路。
除整流结以外,还有其它广泛接受和采用的方法,来防止在交叉阵列中电串话现象的发生(也就是多重电流通路的缘故)。在静态的,光刻制成的电极顶部的隧道垫垒能防止形成电阻性“开”的状态。在零偏电压时无漏电流发生,但是需施加一个小的偏电压,使载流子能克服这个垫垒和在交叉线之间的隧道效应。
可以设想采用离子的,共价的或其它力来提高附着能量的方法,改变与电极表面的相互作用。这些方法可用来扩展这些结二稳态性的范围。
纳米管可通过平面共轭的碳氢化合物如芘进行功能化,从而提高带子内纳米管之间的内部附着力。
上述的某些方面,如用于寻址的混合电路和纳米管技术,可用于单根的纳米管(如使用直接生长技术等)或纳米管带子。
本发明的范围并不被上述实施方式所限制,而由所附的权利要求所限定,这些权利要求可以包括对所描述的进行修正和改进。

Claims (34)

1.一种制造机电式电路元件的方法,其特征在于,所述方法包括
提供具有电导轨线和支持的结构,所述支持从基质表面开始延伸;
在支持上提供一层纳米管;
选择性除去纳米管层的某些部分以形成穿过电导轨线的纳米管带子,其中每个带子包括一个或多个纳米管。
2.如权利要求1所述的方法,其特征在于,所述提供一种结构的步骤是提供一种结构,该结构中电导轨线是掺杂的硅轨线。
3.如权利要求1所述的方法,其特征在于,所述提供一种结构的步骤是提供一种结构,该结构中电导轨线是纳米管。
4.如权利要求1所述的方法,其特征在于,所述提供一种结构的步骤是提供一种结构,该结构中电导轨线是纳米管带子。
5.如权利要求1所述的方法,其特征在于,所述提供一种结构的步骤是提供一种结构,该结构中的支持结构的形式是材料的排,且其中的电导轨线基本与排平行。
6.如权利要求5所述的方法,其特征在于,所述轨线与支持是分隔的。
7.如权利要求5所述的方法,其特征在于,所述轨线与支持接触。
8.如权利要求1所述的方法,其特征在于,所述轨线与支持是分隔的。
9.如权利要求1所述的方法,其特征在于,所述轨线与支持接触。
10.如权利要求1所述的方法,其特征在于,所述提供一种结构的步骤是是提供一种结构,该结构中的支持由氮化硅制成。
11.如权利要求1所述的方法,其特征在于,所述提供一种结构的步骤是提供一种结构,该结构中的电导轨线位于绝缘材料层上,使轨线之间相互电绝缘。
12.如权利要求1所述的方法,其特征在于,所述提供一种结构的步骤是提供一种结构,该结构中的电导轨线分别位于绝缘材料上使轨线电绝缘。
13.如权利要求1所述的方法,其特征在于,所述提供纳米管层的步骤是提供纳米管的非织造织物。
14.如权利要求13所述的方法,其特征在于,所述织物生长在结构上。
15.如权利要求13所述的方法,其特征在于,所述结构包括位于轨线上的材料的牺牲层,其中的织物生长在牺牲层上。
16.如权利要求14所述的方法,其特征在于,所述结构用一种催化剂处理,以促进织物生长。
17.如权利要求15所述的方法,其特征在于,牺牲层的上表面用催化剂处理,以促进织物生长。
18.如权利要求1所述的方法,其特征在于,所述选择性除去的步骤包括图案化并腐蚀纳米管层形成带子。
19.如权利要求13所述的方法,其特征在于,所述选择性除去的步骤包括图案化并腐蚀纳米管织物形成带子。
20.如权利要求14所述的方法,其特征在于,所述纳米管的生长在结构表面基本是不受限制的。
21.如权利要求18所述的方法,其特征在于,所述图案化和腐蚀采用能在织物中扩散的腐蚀剂。
22.如权利要求1所述的方法,其特征在于,所述纳米管层基本是单层的。
23.一种机电式电路,其特征在于,所述电路包括:
具有电导轨线和支持的结构,所述支持从基质表面开始延伸;
由穿过电导轨线的支持悬置的纳米管带子,其中各个带子包括一个或多个纳米管。
24.如权利要求23所述的电路,其特征在于,所述电导轨线是掺杂的硅轨线。
25.如权利要求23所述的电路,其特征在于,所述电导轨线是纳米管。
26.如权利要求23所述的方法,其特征在于,所述电导轨线是纳米管带子。
27.如权利要求23所述的方法,其特征在于,所述支持是材料的排,且其中的电导轨线基本与排平行。
28.如权利要求27所述的方法,其特征在于,所述轨线与支持是分隔的。
29.如权利要求27所述的方法,其特征在于,所述轨线与支持接触。
30.如权利要求23所述的方法,其特征在于,所述支持由氮化硅制成。
31.如权利要求23所述的方法,其特征在于,所述电导轨线位于绝缘材料层上,使轨线之间相互电绝缘。
32.如权利要求23所述的方法,其特征在于,所述电导轨线分别位于绝缘材料上,使轨线电绝缘。
33.如权利要求23所述的方法,其特征在于,所述层是纳米管的非织造织物。
34.如权利要求23所述的方法,其特征在于,所述层基本是纳米管单层。
CNB02818498XA 2001-07-25 2002-07-25 使用纳米管带子的机电式存储阵列及其制法 Expired - Fee Related CN100466181C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/915,093 2001-07-25
US09/915,093 US6919592B2 (en) 2001-07-25 2001-07-25 Electromechanical memory array using nanotube ribbons and method for making same

Publications (2)

Publication Number Publication Date
CN1557016A true CN1557016A (zh) 2004-12-22
CN100466181C CN100466181C (zh) 2009-03-04

Family

ID=25435205

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02818498XA Expired - Fee Related CN100466181C (zh) 2001-07-25 2002-07-25 使用纳米管带子的机电式存储阵列及其制法

Country Status (9)

Country Link
US (7) US6919592B2 (zh)
EP (1) EP1410429A4 (zh)
JP (1) JP4505683B2 (zh)
KR (2) KR100838206B1 (zh)
CN (1) CN100466181C (zh)
AU (1) AU2002353770A1 (zh)
CA (1) CA2454834A1 (zh)
TW (1) TWI246788B (zh)
WO (1) WO2003021613A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484997B (zh) * 2005-05-09 2011-05-18 南泰若股份有限公司 使用具有可重新编程电阻的纳米管制品的存储器阵列
CN102027598B (zh) * 2008-05-16 2012-12-26 桑迪士克3D有限责任公司 碳纳米膜可逆电阻可切换元件及其形成方法

Families Citing this family (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090112078A1 (en) * 2007-10-24 2009-04-30 Joseph Akwo Tabe Embeded advanced force responsive detection platform for monitoring onfield logistics to physiological change
US6593666B1 (en) 2001-06-20 2003-07-15 Ambient Systems, Inc. Energy conversion systems using nanometer scale assemblies and methods for using same
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US7566478B2 (en) * 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US7563711B1 (en) * 2001-07-25 2009-07-21 Nantero, Inc. Method of forming a carbon nanotube-based contact to semiconductor
US7259410B2 (en) * 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US7075162B2 (en) * 2001-08-30 2006-07-11 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
US7319057B2 (en) * 2001-10-30 2008-01-15 Ovonyx, Inc. Phase change material memory device
US7176505B2 (en) * 2001-12-28 2007-02-13 Nantero, Inc. Electromechanical three-trace junction devices
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
SE0200868D0 (sv) * 2002-03-20 2002-03-20 Chalmers Technology Licensing Theoretical model för a nanorelay and same relay
US7335395B2 (en) * 2002-04-23 2008-02-26 Nantero, Inc. Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7304128B2 (en) * 2002-06-04 2007-12-04 E.I. Du Pont De Nemours And Company Carbon nanotube binding peptides
US6995430B2 (en) 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US20030227057A1 (en) 2002-06-07 2003-12-11 Lochtefeld Anthony J. Strained-semiconductor-on-insulator device structures
JP4186727B2 (ja) * 2002-07-26 2008-11-26 松下電器産業株式会社 スイッチ
DE60212118T2 (de) * 2002-08-08 2007-01-04 Sony Deutschland Gmbh Verfahren zur Herstellung einer Kreuzschienenstruktur von Nanodrähten
AU2003304248A1 (en) * 2002-10-29 2005-01-13 President And Fellows Of Harvard College Carbon nanotube device fabrication
US7253434B2 (en) * 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
US9574290B2 (en) 2003-01-13 2017-02-21 Nantero Inc. Methods for arranging nanotube elements within nanotube fabrics and films
EP1583853A4 (en) 2003-01-13 2006-12-20 Nantero Inc CARBON NANOTUBES CONTAINING FILMS, LAYERS, TEXTILE SURFACES, BANDS, ELEMENTS AND ARTICLES
EP1590498A4 (en) * 2003-01-13 2008-01-16 Nantero Inc METHODS OF MANUFACTURING FILMS, LAYERS, FABRICS, RIBBONS, ELEMENTS AND ARTICLES OF CARBON NANOTUBES
WO2004065655A1 (en) * 2003-01-13 2004-08-05 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US8937575B2 (en) 2009-07-31 2015-01-20 Nantero Inc. Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices
US7858185B2 (en) * 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
WO2004072335A2 (en) * 2003-02-12 2004-08-26 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US7149999B2 (en) * 2003-02-25 2006-12-12 The Regents Of The University Of California Method for correcting a mask design layout
US7198974B2 (en) * 2003-03-05 2007-04-03 Micron Technology, Inc. Micro-mechanically strained semiconductor film
US7113426B2 (en) * 2003-03-28 2006-09-26 Nantero, Inc. Non-volatile RAM cell and array using nanotube switch position for information state
US7294877B2 (en) * 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
EP1609188A4 (en) 2003-03-28 2007-11-07 Nantero Inc NANOTUBE ON GRID TEC STRUCTURES AND CORRESPONDING APPLICATIONS
US7075141B2 (en) * 2003-03-28 2006-07-11 Nantero, Inc. Four terminal non-volatile transistor device
US6944054B2 (en) * 2003-03-28 2005-09-13 Nantero, Inc. NRAM bit selectable two-device nanotube array
US6995046B2 (en) 2003-04-22 2006-02-07 Nantero, Inc. Process for making byte erasable devices having elements made with nanotubes
US7045421B2 (en) * 2003-04-22 2006-05-16 Nantero, Inc. Process for making bit selectable devices having elements made with nanotubes
US7220656B2 (en) 2003-04-29 2007-05-22 Micron Technology, Inc. Strained semiconductor by wafer bonding with misorientation
US7041575B2 (en) * 2003-04-29 2006-05-09 Micron Technology, Inc. Localized strained semiconductor on insulator
US7115480B2 (en) * 2003-05-07 2006-10-03 Micron Technology, Inc. Micromechanical strained semiconductor by wafer bonding
WO2005019793A2 (en) * 2003-05-14 2005-03-03 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
US20040238907A1 (en) * 2003-06-02 2004-12-02 Pinkerton Joseph F. Nanoelectromechanical transistors and switch systems
US7199498B2 (en) 2003-06-02 2007-04-03 Ambient Systems, Inc. Electrical assemblies using molecular-scale electrically conductive and mechanically flexible beams and methods for application of same
US7148579B2 (en) 2003-06-02 2006-12-12 Ambient Systems, Inc. Energy conversion systems utilizing parallel array of automatic switches and generators
US7095645B2 (en) 2003-06-02 2006-08-22 Ambient Systems, Inc. Nanoelectromechanical memory cells and data storage devices
US7161218B2 (en) * 2003-06-09 2007-01-09 Nantero, Inc. One-time programmable, non-volatile field effect devices and methods of making same
US7274064B2 (en) * 2003-06-09 2007-09-25 Nanatero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US7466523B1 (en) * 2003-07-10 2008-12-16 Yingjian Chen Nanotube spin valve and method of producing the same
JP3731589B2 (ja) * 2003-07-18 2006-01-05 ソニー株式会社 撮像装置と同期信号発生装置
US7439158B2 (en) 2003-07-21 2008-10-21 Micron Technology, Inc. Strained semiconductor by full wafer bonding
WO2005017967A2 (en) * 2003-08-13 2005-02-24 Nantero, Inc. Nanotube device structure and methods of fabrication
WO2005084164A2 (en) * 2003-08-13 2005-09-15 Nantero, Inc. Nanotube-based switching elements and logic circuits
US7115960B2 (en) * 2003-08-13 2006-10-03 Nantero, Inc. Nanotube-based switching elements
US7289357B2 (en) * 2003-08-13 2007-10-30 Nantero, Inc. Isolation structure for deflectable nanotube elements
US7583526B2 (en) * 2003-08-13 2009-09-01 Nantero, Inc. Random access memory including nanotube switching elements
JP2007502545A (ja) * 2003-08-13 2007-02-08 ナンテロ,インク. 複数の制御装置を有するナノチューブを基礎とする交換エレメントと上記エレメントから製造される回路
US7375369B2 (en) * 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US7504051B2 (en) * 2003-09-08 2009-03-17 Nantero, Inc. Applicator liquid for use in electronic manufacturing processes
US7416993B2 (en) * 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
US7528437B2 (en) * 2004-02-11 2009-05-05 Nantero, Inc. EEPROMS using carbon nanotubes for cell storage
US7312155B2 (en) * 2004-04-07 2007-12-25 Intel Corporation Forming self-aligned nano-electrodes
US7352608B2 (en) * 2004-05-24 2008-04-01 Trustees Of Boston University Controllable nanomechanical memory element
US7556746B2 (en) * 2004-06-03 2009-07-07 Nantero, Inc. Method of making an applicator liquid for electronics fabrication process
US7658869B2 (en) * 2004-06-03 2010-02-09 Nantero, Inc. Applicator liquid containing ethyl lactate for preparation of nanotube films
US7709880B2 (en) * 2004-06-09 2010-05-04 Nantero, Inc. Field effect devices having a gate controlled via a nanotube switching element
WO2005124751A1 (en) * 2004-06-15 2005-12-29 Koninklijke Philips Electronics N.V. Optical multi-layer information medium
US7330709B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
US7167026B2 (en) * 2004-06-18 2007-01-23 Nantero, Inc. Tri-state circuit using nanotube switching elements
US7652342B2 (en) * 2004-06-18 2010-01-26 Nantero, Inc. Nanotube-based transfer devices and related circuits
US7161403B2 (en) * 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
US7288970B2 (en) * 2004-06-18 2007-10-30 Nantero, Inc. Integrated nanotube and field effect switching device
US7329931B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and transistors
US7164744B2 (en) * 2004-06-18 2007-01-16 Nantero, Inc. Nanotube-based logic driver circuits
US6955937B1 (en) * 2004-08-12 2005-10-18 Lsi Logic Corporation Carbon nanotube memory cell for integrated circuit structure with removable side spacers to permit access to memory cell and process for forming such memory cell
TWI399864B (zh) * 2004-09-16 2013-06-21 Nantero Inc 使用奈米管之發光體及其製造方法
CA2581058C (en) * 2004-09-21 2012-06-26 Nantero, Inc. Resistive elements using carbon nanotubes
CA2581248A1 (en) * 2004-09-22 2006-12-28 Nantero, Inc. Random access memory including nanotube switching elements
WO2006137926A2 (en) * 2004-11-02 2006-12-28 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
US20100147657A1 (en) * 2004-11-02 2010-06-17 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
WO2006065937A2 (en) * 2004-12-16 2006-06-22 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
KR100635546B1 (ko) * 2004-12-24 2006-10-17 학교법인 포항공과대학교 전계 효과 트랜지스터 채널 구조를 갖는 스캐닝 프로브마이크로 스코프의 탐침 및 그 제조 방법
US7937198B2 (en) * 2004-12-29 2011-05-03 Snap-On Incorporated Vehicle or engine diagnostic systems supporting fast boot and reprogramming
US7634337B2 (en) * 2004-12-29 2009-12-15 Snap-On Incorporated Vehicle or engine diagnostic systems with advanced non-volatile memory
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7598544B2 (en) * 2005-01-14 2009-10-06 Nanotero, Inc. Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same
US8941094B2 (en) 2010-09-02 2015-01-27 Nantero Inc. Methods for adjusting the conductivity range of a nanotube fabric layer
US9390790B2 (en) 2005-04-05 2016-07-12 Nantero Inc. Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications
US8000127B2 (en) 2009-08-12 2011-08-16 Nantero, Inc. Method for resetting a resistive change memory element
US9287356B2 (en) 2005-05-09 2016-03-15 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
AU2006336262B2 (en) * 2005-04-06 2011-10-13 President And Fellows Of Harvard College Molecular characterization with carbon nanotube control
US7479654B2 (en) * 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US8513768B2 (en) * 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8217490B2 (en) * 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8183665B2 (en) * 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7782650B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8102018B2 (en) * 2005-05-09 2012-01-24 Nantero Inc. Nonvolatile resistive memories having scalable two-terminal nanotube switches
TWI324773B (en) * 2005-05-09 2010-05-11 Nantero Inc Non-volatile shadow latch using a nanotube switch
US8008745B2 (en) * 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US9911743B2 (en) 2005-05-09 2018-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US7394687B2 (en) 2005-05-09 2008-07-01 Nantero, Inc. Non-volatile-shadow latch using a nanotube switch
US7835170B2 (en) * 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US8013363B2 (en) * 2005-05-09 2011-09-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US9196615B2 (en) * 2005-05-09 2015-11-24 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7598127B2 (en) * 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
TWI264271B (en) * 2005-05-13 2006-10-11 Delta Electronics Inc Heat sink
US7575693B2 (en) 2005-05-23 2009-08-18 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US7928521B1 (en) 2005-05-31 2011-04-19 Nantero, Inc. Non-tensioned carbon nanotube switch design and process for making same
US7915122B2 (en) * 2005-06-08 2011-03-29 Nantero, Inc. Self-aligned cell integration scheme
US7541216B2 (en) * 2005-06-09 2009-06-02 Nantero, Inc. Method of aligning deposited nanotubes onto an etched feature using a spacer
JP5054936B2 (ja) * 2005-06-22 2012-10-24 パナソニック株式会社 電気機械メモリ、それを用いた電気回路及び電気機械メモリの駆動方法
US7538040B2 (en) * 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
US7612424B1 (en) 2005-07-22 2009-11-03 Northwestern University Nanoelectromechanical bistable cantilever device
US7352607B2 (en) * 2005-07-26 2008-04-01 International Business Machines Corporation Non-volatile switching and memory devices using vertical nanotubes
US7799196B2 (en) 2005-09-01 2010-09-21 Micron Technology, Inc. Methods and apparatus for sorting and/or depositing nanotubes
EP1922551A2 (en) 2005-09-06 2008-05-21 Nantero, Inc. Carbon nanotube resonators
ATE518131T1 (de) * 2005-09-06 2011-08-15 Nantero Inc Sensorsystem auf nanoröhrchenbasis und verfahren zur anwedung davon
US7744793B2 (en) 2005-09-06 2010-06-29 Lemaire Alexander B Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
WO2007030483A2 (en) * 2005-09-06 2007-03-15 Nantero, Inc. Method and system of using nanotube fabrics as joule heating elements for memories and other applications
WO2008054364A2 (en) 2005-09-06 2008-05-08 Nantero, Inc. Carbon nanotubes for the selective transfer of heat from electronics
US7850778B2 (en) * 2005-09-06 2010-12-14 Lemaire Charles A Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
US7446044B2 (en) * 2005-09-19 2008-11-04 California Institute Of Technology Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same
JP4919146B2 (ja) * 2005-09-27 2012-04-18 独立行政法人産業技術総合研究所 スイッチング素子
US7511532B2 (en) * 2005-11-03 2009-03-31 Cswitch Corp. Reconfigurable logic structures
WO2008048313A2 (en) * 2005-12-19 2008-04-24 Advanced Technology Materials, Inc. Production of carbon nanotubes
JP4843760B2 (ja) * 2005-12-26 2011-12-21 株式会社発明屋 カーボンナノチューブを用いた記憶素子
US8264137B2 (en) 2006-01-03 2012-09-11 Samsung Electronics Co., Ltd. Curing binder material for carbon nanotube electron emission cathodes
DE102006004218B3 (de) * 2006-01-30 2007-08-16 Infineon Technologies Ag Elektromechanische Speicher-Einrichtung und Verfahren zum Herstellen einer elektromechanischen Speicher-Einrichtung
JP2007212006A (ja) * 2006-02-07 2007-08-23 Nissan Motor Co Ltd 触媒燃焼器の燃焼状態検知装置
US7544584B2 (en) 2006-02-16 2009-06-09 Micron Technology, Inc. Localized compressive strained semiconductor
KR100707212B1 (ko) * 2006-03-08 2007-04-13 삼성전자주식회사 나노 와이어 메모리 소자 및 그 제조 방법
US20070260615A1 (en) * 2006-05-08 2007-11-08 Eran Shen Media with Pluggable Codec
US9680686B2 (en) * 2006-05-08 2017-06-13 Sandisk Technologies Llc Media with pluggable codec methods
US7781267B2 (en) * 2006-05-19 2010-08-24 International Business Machines Corporation Enclosed nanotube structure and method for forming
EP2057633B1 (en) * 2006-08-08 2013-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
KR100803690B1 (ko) * 2006-08-10 2008-02-20 삼성전자주식회사 전기적- 기계적 비휘발성 메모리 장치 및 그 제조 방법.
KR100781972B1 (ko) * 2006-09-18 2007-12-06 삼성전자주식회사 메모리 소자 및 그의 제조방법
US8945970B2 (en) * 2006-09-22 2015-02-03 Carnegie Mellon University Assembling and applying nano-electro-mechanical systems
KR100802182B1 (ko) * 2006-09-27 2008-02-12 한국전자통신연구원 나노선 필터, 그 제조방법 및 흡착물 제거방법, 이를구비한 필터링 장치
KR100834829B1 (ko) * 2006-12-19 2008-06-03 삼성전자주식회사 멀티 비트 전기 기계적 메모리 소자 및 그의 제조방법
FR2910706B1 (fr) * 2006-12-21 2009-03-20 Commissariat Energie Atomique Element d'interconnexion a base de nanotubes de carbone
KR100842730B1 (ko) * 2007-01-16 2008-07-01 삼성전자주식회사 멀티 비트 전기 기계적 메모리 소자 및 그의 제조방법
WO2008127780A2 (en) * 2007-02-21 2008-10-23 Nantero, Inc. Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
WO2008112764A1 (en) 2007-03-12 2008-09-18 Nantero, Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
US8031514B2 (en) * 2007-04-09 2011-10-04 Northeastern University Bistable nanoswitch
TWI461350B (zh) * 2007-05-22 2014-11-21 Nantero Inc 使用奈米結構物之三極管及其製造方法
US7871851B2 (en) * 2007-05-25 2011-01-18 RF Nano Method for integrating nanotube devices with CMOS for RF/analog SoC applications
WO2009002748A1 (en) * 2007-06-22 2008-12-31 Nantero, Inc. Two-terminal nanotube devices including a nanotube bridge and methods of making same
US7701013B2 (en) * 2007-07-10 2010-04-20 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
US7550354B2 (en) * 2007-07-11 2009-06-23 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
EA020950B1 (ru) * 2007-09-17 2015-03-31 Баррик Гольд Корпорейшн Способ усовершенствования восстановления золота из двойных тугоплавких золотосодержащих руд
WO2009037594A2 (en) * 2007-09-18 2009-03-26 Barrick Gold Corporation Process for recovering gold and silver from refractory ores
US8262770B2 (en) 2007-09-18 2012-09-11 Barrick Gold Corporation Process for controlling acid in sulfide pressure oxidation processes
CA2700862C (en) * 2007-10-02 2016-11-15 President And Fellows Of Harvard College Carbon nanotube synthesis for nanopore devices
US20090113116A1 (en) * 2007-10-30 2009-04-30 Thompson E Earle Digital content kiosk and methods for use therewith
US8009461B2 (en) * 2008-01-07 2011-08-30 International Business Machines Corporation SRAM device, and SRAM device design structure, with adaptable access transistors
KR100978031B1 (ko) * 2008-02-04 2010-08-26 연세대학교 산학협력단 단결정 규소 나노리본 및 그 제조방법
US8158965B2 (en) * 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
KR100972913B1 (ko) * 2008-03-31 2010-07-28 주식회사 하이닉스반도체 반도체 소자의 제조 방법
US7612270B1 (en) * 2008-04-09 2009-11-03 International Business Machines Corporation Nanoelectromechanical digital inverter
WO2009155359A1 (en) * 2008-06-20 2009-12-23 Nantero, Inc. Nram arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same
US8039380B2 (en) * 2008-06-27 2011-10-18 Commissariat A L'energie Atomique Procedure for obtaining nanotube layers of carbon with conductor or semiconductor substrate
US8569730B2 (en) * 2008-07-08 2013-10-29 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
US8557685B2 (en) * 2008-08-07 2013-10-15 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US9263126B1 (en) 2010-09-01 2016-02-16 Nantero Inc. Method for dynamically accessing and programming resistive change element arrays
US8319205B2 (en) * 2008-08-14 2012-11-27 Nantero Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
WO2010033231A2 (en) * 2008-09-19 2010-03-25 Nexeon Medsystems, Inc. Interventional devices including dilute nanotube-polymer compositions, and methods of making and using same
US7897954B2 (en) * 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US20100108976A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon-based films, and methods of forming such devices
US8421050B2 (en) * 2008-10-30 2013-04-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US8835892B2 (en) * 2008-10-30 2014-09-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
US7915637B2 (en) 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
US8304274B2 (en) * 2009-02-13 2012-11-06 Texas Instruments Incorporated Micro-electro-mechanical system having movable element integrated into substrate-based package
US8183121B2 (en) * 2009-03-31 2012-05-22 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
KR101603774B1 (ko) * 2009-05-14 2016-03-15 삼성전자주식회사 탄소나노튜브 소자 어레이의 제조방법
EP2270813B1 (en) * 2009-06-29 2016-01-06 Taiwan Semiconductor Manufacturing Co., Ltd. Non-volatile memory
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) * 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
WO2011014446A1 (en) * 2009-07-31 2011-02-03 Nantero, Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110034008A1 (en) * 2009-08-07 2011-02-10 Nantero, Inc. Method for forming a textured surface on a semiconductor substrate using a nanofabric layer
US8428675B2 (en) * 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8253171B1 (en) 2009-08-27 2012-08-28 Lockheed Martin Corporation Two terminal nanotube switch, memory array incorporating the same and method of making
US8350360B1 (en) 2009-08-28 2013-01-08 Lockheed Martin Corporation Four-terminal carbon nanotube capacitors
US20110056812A1 (en) * 2009-09-08 2011-03-10 Kaul Anupama B Nano-electro-mechanical switches using three-dimensional sidewall-conductive carbon nanofibers and method for making the same
US8351239B2 (en) * 2009-10-23 2013-01-08 Nantero Inc. Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array
US8895950B2 (en) 2009-10-23 2014-11-25 Nantero Inc. Methods for passivating a carbonic nanolayer
US8551806B2 (en) 2009-10-23 2013-10-08 Nantero Inc. Methods for passivating a carbonic nanolayer
US8222704B2 (en) * 2009-12-31 2012-07-17 Nantero, Inc. Compact electrical switching devices with nanotube elements, and methods of making same
US8435798B2 (en) * 2010-01-13 2013-05-07 California Institute Of Technology Applications and methods of operating a three-dimensional nano-electro-mechanical resonator and related devices
US8405189B1 (en) 2010-02-08 2013-03-26 Lockheed Martin Corporation Carbon nanotube (CNT) capacitors and devices integrated with CNT capacitors
CN102834418B (zh) 2010-02-12 2016-09-28 南泰若股份有限公司 用于控制纳米管织物层和膜中的密度、孔隙率和/或间隙大小的方法
US20110203632A1 (en) * 2010-02-22 2011-08-25 Rahul Sen Photovoltaic devices using semiconducting nanotube layers
US9362390B2 (en) 2010-02-22 2016-06-07 Nantero, Inc. Logic elements comprising carbon nanotube field effect transistor (CNTFET) devices and methods of making same
US20110227043A1 (en) 2010-03-19 2011-09-22 International Business Machines Corporation Graphene sensor
US10661304B2 (en) 2010-03-30 2020-05-26 Nantero, Inc. Microfluidic control surfaces using ordered nanotube fabrics
WO2011123560A1 (en) 2010-03-30 2011-10-06 Nantero, Inc. Methods for arranging nanoscopic elements within networks, fabrics, and films
US8125824B1 (en) 2010-09-02 2012-02-28 Lockheed Martin Corporation Nanotube random access memory (NRAM) and transistor integration
IT1402406B1 (it) * 2010-10-22 2013-09-04 St Microelectronics Srl Metodo di fabbricazione di un dispositivo sensore di una sostanza gassosa di interesse.
EP2557567A1 (en) 2011-08-09 2013-02-13 Thomson Licensing Programmable read-only memory device and method of writing the same
US8633634B2 (en) * 2011-11-18 2014-01-21 The Board Of Regents Of The University Of Texas System MEMs-based cantilever energy harvester
JP5969253B2 (ja) * 2012-02-10 2016-08-17 東京応化工業株式会社 表面処理剤及び表面処理方法
US8552824B1 (en) 2012-04-03 2013-10-08 Hamilton Sundstrand Corporation Integrated planar electromechanical contactors
US9196766B1 (en) 2012-04-25 2015-11-24 Magnolia Optical Technologies, Inc. Thermal detectors using graphene and oxides of graphene and methods of making the same
US9650732B2 (en) 2013-05-01 2017-05-16 Nantero Inc. Low defect nanotube application solutions and fabrics and methods for making same
US10654718B2 (en) 2013-09-20 2020-05-19 Nantero, Inc. Scalable nanotube fabrics and methods for making same
US9299430B1 (en) 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
KR101772071B1 (ko) * 2015-06-23 2017-08-28 한국과학기술원 공중부유형 나노와이어 어레이 및 이의 제조 방법
US9627330B2 (en) * 2015-07-13 2017-04-18 International Business Machines Corporation Support for long channel length nanowire transistors
US10920085B2 (en) 2016-01-20 2021-02-16 Honda Motor Co., Ltd. Alteration of carbon fiber surface properties via growing of carbon nanotubes
US9934848B2 (en) 2016-06-07 2018-04-03 Nantero, Inc. Methods for determining the resistive states of resistive change elements
US9941001B2 (en) 2016-06-07 2018-04-10 Nantero, Inc. Circuits for determining the resistive states of resistive change elements
WO2019232013A1 (en) * 2018-05-29 2019-12-05 The Florida State University Research Foundation, Inc. Carbon nanotube sensors, articles, and methods
US11158788B2 (en) * 2018-10-30 2021-10-26 International Business Machines Corporation Atomic layer deposition and physical vapor deposition bilayer for additive patterning
KR102144097B1 (ko) * 2018-12-14 2020-08-13 서울대학교산학협력단 단일벽 탄소 나노튜브 섬유 집합체 및 이의 제조방법
KR102406954B1 (ko) * 2021-01-11 2022-06-08 한국교통대학교산학협력단 나노리본의 교차 영역에 삽입된 나노플레이크를 포함하는 전자 소자

Family Cites Families (294)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058A (en) * 1845-05-21 Benjamin haywood
US112814A (en) * 1871-03-21 Improvement in curtain-fixtures
US21966A (en) * 1858-11-02 Josee johnson
US3448302A (en) 1966-06-16 1969-06-03 Itt Operating circuit for phase change memory devices
FR2115034B1 (zh) 1970-11-24 1973-11-23 Sescosem
US3892890A (en) 1972-05-12 1975-07-01 Hitachi Ltd Process for forming carbon coatings
US3970887A (en) 1974-06-19 1976-07-20 Micro-Bit Corporation Micro-structure field emission electron source
US4378629A (en) 1979-08-10 1983-04-05 Massachusetts Institute Of Technology Semiconductor embedded layer technology including permeable base transistor, fabrication method
US5032538A (en) 1979-08-10 1991-07-16 Massachusetts Institute Of Technology Semiconductor embedded layer technology utilizing selective epitaxial growth methods
US4324814A (en) 1981-03-19 1982-04-13 Rca Corporation Method for forming a narrow thin film line
US4524431A (en) 1982-02-01 1985-06-18 Texas Instruments Incorporated High-speed nonvolatile memory array
US4495511A (en) 1982-08-23 1985-01-22 The United States Of America As Represented By The Secretary Of The Navy Permeable base transistor structure
US4510016A (en) 1982-12-09 1985-04-09 Gte Laboratories Method of fabricating submicron silicon structures such as permeable base transistors
US4707197A (en) 1984-08-02 1987-11-17 American Telephone And Telegraph Company, At&T Bell Laboratories Method of producing a silicide/Si heteroepitaxial structure, and articles produced by the method
JPS6177199A (ja) 1984-09-21 1986-04-19 Toshiba Corp 半導体記憶装置
JPS6194042A (ja) 1984-10-16 1986-05-12 Matsushita Electric Ind Co Ltd 分子構築体およびその製造方法
JPS61121369A (ja) 1984-11-19 1986-06-09 Fujitsu Ltd 半導体装置
US4901121A (en) 1985-03-29 1990-02-13 American Telephone & Telegraph Co., At&T Bell Labs. Semiconductor device comprising a perforated metal silicide layer
US4701842A (en) 1985-10-04 1987-10-20 International Business Machines Corporation Method and apparatus for avoiding excessive delay in a pipelined processor during the execution of a microbranch instruction
US4758534A (en) 1985-11-13 1988-07-19 Bell Communications Research, Inc. Process for producing porous refractory metal layers embedded in semiconductor devices
US4819212A (en) 1986-05-31 1989-04-04 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device with readout test circuitry
US4939556A (en) 1986-07-10 1990-07-03 Canon Kabushiki Kaisha Conductor device
US4845533A (en) 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
CH670914A5 (zh) 1986-09-10 1989-07-14 Landis & Gyr Ag
US4876667A (en) 1987-06-22 1989-10-24 Energy Conversion Devices, Inc. Data storage device having a phase change memory medium reversible by direct overwrite
US4853893A (en) 1987-07-02 1989-08-01 Ramtron Corporation Data storage device and method of using a ferroelectric capacitance divider
US4947226A (en) 1987-12-08 1990-08-07 Hoenywell, Inc. Bilateral switching device
US5155561A (en) 1988-01-05 1992-10-13 Massachusetts Institute Of Technology Permeable base transistor having an electrode configuration for heat dissipation
US5184320A (en) 1988-02-12 1993-02-02 Texas Instruments Incorporated Cached random access memory device and system
US4888630A (en) 1988-03-21 1989-12-19 Texas Instruments Incorporated Floating-gate transistor with a non-linear intergate dielectric
GB8807225D0 (en) 1988-03-25 1988-04-27 Hughes Microelectronics Ltd Nonvolatile ram cell
US5198994A (en) 1988-08-31 1993-03-30 Kabushiki Kaisha Toshiba Ferroelectric memory device
US5010037A (en) 1988-10-14 1991-04-23 California Institute Of Technology Pinhole-free growth of epitaxial CoSi2 film on Si(111)
US5592643A (en) 1988-12-22 1997-01-07 Framdrive Ferroelectric storage device emulating a rotating disk drive unit in acomputer system and having a parallel data interface
US5592642A (en) 1988-12-22 1997-01-07 Framdrive Ferroelectric storage device emulating a rotating disk drive unit in a computer system and having an optical and parallel data interface
US5592644A (en) 1988-12-22 1997-01-07 Framdrive Ferroelectric storage device emulating a rotating disk drive unit in a computer system and having an optical data interface
US5089545A (en) 1989-02-12 1992-02-18 Biotech International, Inc. Switching and memory elements from polyamino acids and the method of their assembly
GB8907045D0 (en) 1989-03-29 1989-05-10 Hughes Microelectronics Ltd Sense amplifier
JPH02296372A (ja) 1989-05-10 1990-12-06 Mitsubishi Electric Corp 透過ベーストランジスタ
US6346413B1 (en) * 1989-06-07 2002-02-12 Affymetrix, Inc. Polymer arrays
US4985871A (en) 1989-11-13 1991-01-15 Chips And Technologies, Inc. Memory controller for using reserved dram addresses for expanded memory space
US5161218A (en) 1989-11-13 1992-11-03 Chips And Technologies, Inc. Memory controller for using reserved DRAM addresses for EMS
DE4025269A1 (de) 1990-02-07 1991-08-08 Forschungszentrum Juelich Gmbh Elektronisches bauelement und verfahren zu dessen herstellung
US5412785A (en) 1990-04-09 1995-05-02 Motorola, Inc. Microprogrammed data processor which includes a microsequencer in which a next microaddress output of a microROM is connected to the or-plane of an entry PLA
FR2663466A1 (fr) 1990-06-15 1991-12-20 Thomson Csf Composant semiconducteur a jonction schottky pour amplification hyperfrequence et circuits logiques rapides, et procede de realisation d'un tel composant.
US5216631A (en) 1990-11-02 1993-06-01 Sliwa Jr John W Microvibratory memory device
CA2062200A1 (en) 1991-03-15 1992-09-16 Stephen C. Purcell Decompression processor for video applications
US5271862A (en) 1991-07-12 1993-12-21 Betz Laboratories, Inc. Inhibition of silica and silicate deposition in cooling water systems
US5196396A (en) 1991-07-16 1993-03-23 The President And Fellows Of Harvard College Method of making a superconducting fullerene composition by reacting a fullerene with an alloy containing alkali metal
US5444651A (en) 1991-10-30 1995-08-22 Sharp Kabushiki Kaisha Non-volatile memory device
US5290715A (en) 1991-12-31 1994-03-01 U.S. Philips Corporation Method of making dielectrically isolated metal base transistors and permeable base transistors
US5198390A (en) 1992-01-16 1993-03-30 Cornell Research Foundation, Inc. RIE process for fabricating submicron, silicon electromechanical structures
EP0895162A3 (en) 1992-01-22 1999-11-10 Enhanced Memory Systems, Inc. Enhanced dram with embedded registers
US5850089A (en) 1992-03-13 1998-12-15 American Research Corporation Of Virginia Modulated-structure of PZT/PT ferroelectric thin films for non-volatile random access memories
US5475341A (en) 1992-06-01 1995-12-12 Yale University Sub-nanoscale electronic systems and devices
US5651126A (en) 1992-06-26 1997-07-22 Apple Computer, Inc. Method and apparatus for reducing transitions on computer signal lines
US5252835A (en) 1992-07-17 1993-10-12 President And Trustees Of Harvard College Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale
DE69333551T2 (de) 1993-02-04 2005-06-23 Cornell Research Foundation, Inc. Einzelmaskenprozess zum Herstellen von Mikrostrukturen, Einkristallherstellungsverfahren
JP2541091B2 (ja) 1993-02-26 1996-10-09 日本電気株式会社 炭素材料とその製造方法
CA2118662C (en) 1993-03-22 1999-07-13 Paul A. Santeler Memory controller having all dram address and control signals provided synchronously from a single device
US5346683A (en) 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
JPH06302179A (ja) 1993-04-13 1994-10-28 Casio Comput Co Ltd 電子機器
JPH0799189A (ja) 1993-04-28 1995-04-11 Mitsubishi Electric Corp 半導体装置の製造方法
US5424054A (en) 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
US5426070A (en) 1993-05-26 1995-06-20 Cornell Research Foundation, Inc. Microstructures and high temperature isolation process for fabrication thereof
US5456986A (en) 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
US5453970A (en) 1993-07-13 1995-09-26 Rust; Thomas F. Molecular memory medium and molecular memory disk drive for storing information using a tunnelling probe
WO1995002709A2 (en) 1993-07-15 1995-01-26 President And Fellows Of Harvard College EXTENDED NITRIDE MATERIAL COMPRISING β-C3N¿4?
US5547748A (en) 1994-01-14 1996-08-20 Sri International Carbon nanoencapsulates
JP2526408B2 (ja) 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
US5521602A (en) 1994-02-10 1996-05-28 Racom Systems, Inc. Communications system utilizing FSK/PSK modulation techniques
US5517194A (en) 1994-02-10 1996-05-14 Racom Systems, Inc. Passive RF transponder and method
US5608246A (en) 1994-02-10 1997-03-04 Ramtron International Corporation Integration of high value capacitor with ferroelectric memory
US5479172A (en) 1994-02-10 1995-12-26 Racom Systems, Inc. Power supply and power enable circuit for an RF/ID transponder
US5444421A (en) 1994-02-10 1995-08-22 Racom Systems, Inc. Low power consumption oscillator using multiple transconductance amplifiers
US5553099A (en) 1994-02-10 1996-09-03 Racom Systems, Inc. FSK detector for determining an increasing time period between adjacent pulses of an FSK modulated square wave pulse train
US5533061A (en) 1994-02-10 1996-07-02 Racom Systems, Inc. Method and apparatus for detecting an FSK encoded carrier signal
US5563424A (en) 1994-03-24 1996-10-08 Uniax Corporation Polymer grid triodes
US6226722B1 (en) * 1994-05-19 2001-05-01 International Business Machines Corporation Integrated level two cache and controller with multiple ports, L1 bypass and concurrent accessing
US5626670A (en) 1994-10-03 1997-05-06 American Research Corporation Of Virginia Method for producing low thermal budget ferroelectric thin films for integrated device structures using laser-crystallization of spin-on sol-gel films
US5590078A (en) 1994-10-07 1996-12-31 Mukesh Chatter Method of and apparatus for improved dynamic random access memory (DRAM) providing increased data bandwidth and addressing range for current DRAM devices and/or equivalent bandwidth and addressing range for smaller DRAM devices
US6100109A (en) * 1994-11-02 2000-08-08 Siemens Aktiengesellschaft Method for producing a memory device
US5623638A (en) 1994-11-22 1997-04-22 Advanced Micro Devices, Inc. Memory control unit with programmable edge generator to minimize delay periods for critical DRAM timing parameters
US6203814B1 (en) * 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
US5716708A (en) 1995-01-17 1998-02-10 Lagow; Richard J. Acetylenic carbon allotrope
US6231980B1 (en) * 1995-02-14 2001-05-15 The Regents Of The University Of California BX CY NZ nanotubes and nanoparticles
US6063243A (en) * 1995-02-14 2000-05-16 The Regents Of The Univeristy Of California Method for making nanotubes and nanoparticles
US5780101A (en) 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5747180A (en) 1995-05-19 1998-05-05 University Of Notre Dame Du Lac Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays
US5751156A (en) 1995-06-07 1998-05-12 Yale University Mechanically controllable break transducer
US6190634B1 (en) * 1995-06-07 2001-02-20 President And Fellows Of Harvard College Carbide nanomaterials
US5640133A (en) 1995-06-23 1997-06-17 Cornell Research Foundation, Inc. Capacitance based tunable micromechanical resonators
US6183714B1 (en) * 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
US6380434B1 (en) * 1995-10-26 2002-04-30 Long Y. Chiang Fullerene derivatives
US5757038A (en) 1995-11-06 1998-05-26 International Business Machines Corporation Self-aligned dual gate MOSFET with an ultranarrow channel
CA2233655C (en) * 1995-11-27 2005-05-17 The Dow Chemical Company Supported catalyst containing tethered cation forming activator
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
US6445006B1 (en) 1995-12-20 2002-09-03 Advanced Technology Materials, Inc. Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same
US5799209A (en) * 1995-12-29 1998-08-25 Chatter; Mukesh Multi-port internally cached DRAM system utilizing independent serial interfaces and buffers arbitratively connected under a dynamic configuration
US5697827A (en) * 1996-01-11 1997-12-16 Rabinowitz; Mario Emissive flat panel display with improved regenerative cathode
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US5875451A (en) 1996-03-14 1999-02-23 Enhanced Memory Systems, Inc. Computer hybrid memory including DRAM and EDRAM memory components, with secondary cache in EDRAM for DRAM
US5650958A (en) 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5939785A (en) * 1996-04-12 1999-08-17 Texas Instruments Incorporated Micromechanical device including time-release passivant
BR9710812A (pt) * 1996-05-15 1999-08-17 Hyperion Catalysis Int Manofibras graf¡ticas em capacitores eletroqu¡micos
US5838165A (en) 1996-08-21 1998-11-17 Chatter; Mukesh High performance self modifying on-the-fly alterable logic FPGA, architecture and method
US6057637A (en) 1996-09-13 2000-05-02 The Regents Of The University Of California Field emission electron source
US5781717A (en) 1996-09-19 1998-07-14 I-Cube, Inc. Dynamic spare column replacement memory system
JPH10106960A (ja) 1996-09-25 1998-04-24 Sony Corp 量子細線の製造方法
US5802583A (en) 1996-10-30 1998-09-01 Ramtron International Corporation Sysyem and method providing selective write protection for individual blocks of memory in a non-volatile memory device
JP3447492B2 (ja) * 1996-11-12 2003-09-16 日本電気株式会社 炭素材料とその製造方法
US6025618A (en) * 1996-11-12 2000-02-15 Chen; Zhi Quan Two-parts ferroelectric RAM
US5836799A (en) * 1996-12-06 1998-11-17 Texas Instruments Incorporated Self-aligned method of micro-machining field emission display microtips
US6038060A (en) * 1997-01-16 2000-03-14 Crowley; Robert Joseph Optical antenna array for harmonic generation, mixing and signal amplification
EP0892942B1 (en) * 1997-02-06 2002-06-19 International Business Machines Corporation layered medium and method for creating a pattern
US6809462B2 (en) 2000-04-05 2004-10-26 Sri International Electroactive polymer sensors
US5753088A (en) 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
TW419828B (en) * 1997-02-26 2001-01-21 Toshiba Corp Semiconductor integrated circuit
CA2283502C (en) 1997-03-07 2005-06-14 William Marsh Rice University Carbon fibers formed from singlewall carbon nanotubes
US6088760A (en) * 1997-03-07 2000-07-11 Mitsubishi Semiconductor America, Inc. Addressing system in a multi-port RAM having main and cache memories
US6159620A (en) 1997-03-31 2000-12-12 The Regents Of The University Of California Single-electron solid state electronic device
US5847565A (en) 1997-03-31 1998-12-08 Council Of Scientific And Industrial Research Logic device
US6359288B1 (en) * 1997-04-24 2002-03-19 Massachusetts Institute Of Technology Nanowire arrays
US5878840A (en) 1997-05-06 1999-03-09 Tessum; Mark Reed Apparatus and method for stabilizing a scaffold assembly
US6049856A (en) * 1997-05-27 2000-04-11 Unisys Corporation System for simultaneously accessing two portions of a shared memory
US6233665B1 (en) * 1997-05-27 2001-05-15 Unisys Corporation Mapping shared DRAM address bits by accessing data memory in page mode cache status memory in word mode
US5993281A (en) * 1997-06-10 1999-11-30 The Regents Of The University Of California Sharpening of field emitter tips using high-energy ions
GB9712347D0 (en) * 1997-06-14 1997-08-13 Smithkline Beecham Biolog Vaccine
US5914553A (en) * 1997-06-16 1999-06-22 Cornell Research Foundation, Inc. Multistable tunable micromechanical resonators
KR100276569B1 (ko) 1997-06-20 2000-12-15 김영환 강유전메모리장치
US6069380A (en) * 1997-07-25 2000-05-30 Regents Of The University Of Minnesota Single-electron floating-gate MOS memory
US6212597B1 (en) * 1997-07-28 2001-04-03 Neonet Lllc Apparatus for and method of architecturally enhancing the performance of a multi-port internally cached (AMPIC) DRAM array and like
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
DE69834673T2 (de) * 1997-09-30 2006-10-26 Noritake Co., Ltd., Nagoya Verfahren zur Herstellung einer Elektronenemittierenden Quelle
US5903010A (en) * 1997-10-29 1999-05-11 Hewlett-Packard Company Quantum wire switch and switching method
US6038637A (en) * 1997-11-25 2000-03-14 Nortel Networks Corporation Universal DRAM address multiplexer
US6409567B1 (en) 1997-12-15 2002-06-25 E.I. Du Pont De Nemours And Company Past-deposited carbon electron emitters
US5928450A (en) * 1998-02-05 1999-07-27 Russell; Daniel Nelson Process of making fractal tubes
TW392357B (en) * 1998-02-10 2000-06-01 United Microelectronics Corp Manufacturing method for semiconductor device and structure manufactured by the same
US6072718A (en) * 1998-02-10 2000-06-06 International Business Machines Corporation Magnetic memory devices having multiple magnetic tunnel junctions therein
US5946228A (en) * 1998-02-10 1999-08-31 International Business Machines Corporation Limiting magnetic writing fields to a preferred portion of a changeable magnetic region in magnetic devices
US6104633A (en) * 1998-02-10 2000-08-15 International Business Machines Corporation Intentional asymmetry imposed during fabrication and/or access of magnetic tunnel junction devices
US5930164A (en) * 1998-02-26 1999-07-27 Motorola, Inc. Magnetic memory unit having four states and operating method thereof
US6262469B1 (en) * 1998-03-25 2001-07-17 Advanced Micro Devices, Inc. Capacitor for use in a capacitor divider that has a floating gate transistor as a corresponding capacitor
US6703163B2 (en) * 1998-03-31 2004-03-09 Celanese Ventures Gmbh Lithium battery and electrode
US6110590A (en) * 1998-04-15 2000-08-29 The University Of Akron Synthetically spun silk nanofibers and a process for making the same
US6203864B1 (en) * 1998-06-08 2001-03-20 Nec Corporation Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
CA2335449A1 (en) 1998-06-19 1999-12-23 The Research Foundation Of The State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US6426134B1 (en) * 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
US6259277B1 (en) * 1998-07-27 2001-07-10 University Of South Carolina Use of molecular electrostatic potential to process electronic signals
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US7416699B2 (en) * 1998-08-14 2008-08-26 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US6052263A (en) * 1998-08-21 2000-04-18 International Business Machines Corporation Low moment/high coercivity pinned layer for magnetic tunnel junction sensors
US6219212B1 (en) * 1998-09-08 2001-04-17 International Business Machines Corporation Magnetic tunnel junction head structure with insulating antiferromagnetic layer
US6630772B1 (en) 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
US6187823B1 (en) * 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
JP2000123711A (ja) * 1998-10-12 2000-04-28 Toshiba Corp 電界放出型冷陰極及びその製造方法
US6348700B1 (en) * 1998-10-27 2002-02-19 The Mitre Corporation Monomolecular rectifying wire and logic based thereupon
US6237130B1 (en) * 1998-10-29 2001-05-22 Nexabit Networks, Inc. Chip layout for implementing arbitrated high speed switching access of pluralities of I/O data ports to internally cached DRAM banks and the like
CN100340476C (zh) * 1998-11-03 2007-10-03 威廉马歇莱思大学 由高压co气相成核和生长单壁碳质毫微管
US6048740A (en) * 1998-11-05 2000-04-11 Sharp Laboratories Of America, Inc. Ferroelectric nonvolatile transistor and method of making same
US6705152B2 (en) * 2000-10-24 2004-03-16 Nanoproducts Corporation Nanostructured ceramic platform for micromachined devices and device arrays
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6046107A (en) * 1998-12-17 2000-04-04 Industrial Technology Research Institute Electroless copper employing hypophosphite as a reducing agent
JP3943272B2 (ja) 1999-01-18 2007-07-11 双葉電子工業株式会社 カーボンナノチューブのフイルム化方法
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
ES2264928T3 (es) 1999-02-12 2007-02-01 Board Of Trustees Operating Michigan State University Nanocapsulas que contienen particulas cargadas, sus usos y procedimientos de preparacion de las mismas.
US6280697B1 (en) * 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
US6348295B1 (en) * 1999-03-26 2002-02-19 Massachusetts Institute Of Technology Methods for manufacturing electronic and electromechanical elements and devices by thin-film deposition and imaging
US6256767B1 (en) * 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
US6314019B1 (en) 1999-03-29 2001-11-06 Hewlett-Packard Company Molecular-wire crossbar interconnect (MWCI) for signal routing and communications
US6518156B1 (en) * 1999-03-29 2003-02-11 Hewlett-Packard Company Configurable nanoscale crossbar electronic circuits made by electrochemical reaction
US6128214A (en) 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6105381A (en) * 1999-03-31 2000-08-22 International Business Machines Corporation Method and apparatus for cooling GMR heads for magnetic hard disks
AUPP976499A0 (en) 1999-04-16 1999-05-06 Commonwealth Scientific And Industrial Research Organisation Multilayer carbon nanotube films
KR20000074609A (ko) * 1999-05-24 2000-12-15 김순택 카본 나노 튜브를 이용한 전계 방출 어레이 및 그 제조방법
US6177703B1 (en) * 1999-05-28 2001-01-23 Vlsi Technology, Inc. Method and apparatus for producing a single polysilicon flash EEPROM having a select transistor and a floating gate transistor
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
AU782000B2 (en) * 1999-07-02 2005-06-23 President And Fellows Of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
US6322713B1 (en) * 1999-07-15 2001-11-27 Agere Systems Guardian Corp. Nanoscale conductive connectors and method for making same
JP4063451B2 (ja) 1999-07-26 2008-03-19 双葉電子工業株式会社 カーボンナノチューブのパターン形成方法
US6277318B1 (en) * 1999-08-18 2001-08-21 Agere Systems Guardian Corp. Method for fabrication of patterned carbon nanotube films
US6062931A (en) * 1999-09-01 2000-05-16 Industrial Technology Research Institute Carbon nanotube emitter with triode structure
WO2001039292A2 (en) * 1999-11-29 2001-05-31 Trustees Of The University Of Pennsylvania Fabrication of nanometer size gaps on an electrode
US6198655B1 (en) * 1999-12-10 2001-03-06 The Regents Of The University Of California Electrically addressable volatile non-volatile molecular-based switching devices
KR20010055501A (ko) 1999-12-10 2001-07-04 김순택 전계 방출 표시 소자의 음극 형성 방법
KR20010056153A (ko) * 1999-12-14 2001-07-04 구자홍 카본나노 튜브막을 갖는 전계방출형 디스플레이 소자 및그의 제조방법
KR20010063852A (ko) * 1999-12-24 2001-07-09 박종섭 반도체소자의 자기정렬적인 콘택 형성방법
KR100477739B1 (ko) * 1999-12-30 2005-03-18 삼성에스디아이 주식회사 전계 방출 소자 및 그 구동 방법
DE10006964C2 (de) 2000-02-16 2002-01-31 Infineon Technologies Ag Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements
US6364409B1 (en) * 2000-02-18 2002-04-02 The Coleman Company, Inc. Folding chair
US6294450B1 (en) * 2000-03-01 2001-09-25 Hewlett-Packard Company Nanoscale patterning for the formation of extensive wires
JP3730476B2 (ja) * 2000-03-31 2006-01-05 株式会社東芝 電界放出型冷陰極及びその製造方法
US6495116B1 (en) * 2000-04-10 2002-12-17 Lockheed Martin Corporation Net shape manufacturing using carbon nanotubes
EP1739484B1 (en) * 2000-04-19 2011-08-24 AGFA Graphics NV Photosensitive lithographic printing plate and method for making a prinitng plate.
KR100343205B1 (ko) * 2000-04-26 2002-07-10 김순택 카본나노튜브를 이용한 삼극 전계 방출 어레이 및 그 제작방법
US6413487B1 (en) * 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6443901B1 (en) * 2000-06-15 2002-09-03 Koninklijke Philips Electronics N.V. Capacitive micromachined ultrasonic transducers
EP1170799A3 (de) 2000-07-04 2009-04-01 Infineon Technologies AG Elektronisches Bauelement und Verfahren zum Herstellen eines elektronischen Bauelements
GB2364933B (en) 2000-07-18 2002-12-31 Lg Electronics Inc Method of horizontally growing carbon nanotubes
DE10041378C1 (de) * 2000-08-23 2002-05-16 Infineon Technologies Ag MRAM-Anordnung
KR100376768B1 (ko) 2000-08-23 2003-03-19 한국과학기술연구원 전자, 스핀 및 광소자 응용을 위한 탄소나노튜브의 선택적 수평성장 방법
US6566983B2 (en) * 2000-09-02 2003-05-20 Lg Electronics Inc. Saw filter using a carbon nanotube and method for manufacturing the same
WO2002022499A1 (en) * 2000-09-18 2002-03-21 President And Fellows Of Harvard College Fabrication of nanotube microscopy tips
US6495258B1 (en) 2000-09-20 2002-12-17 Auburn University Structures with high number density of carbon nanotubes and 3-dimensional distribution
US6354133B1 (en) * 2000-10-25 2002-03-12 Advanced Micro Devices, Inc. Use of carbon nanotubes to calibrate conventional tips used in AFM
US6548841B2 (en) * 2000-11-09 2003-04-15 Texas Instruments Incorporated Nanomechanical switches and circuits
US6400088B1 (en) * 2000-11-15 2002-06-04 Trw Inc. Infrared carbon nanotube detector
WO2002045113A1 (fr) 2000-11-29 2002-06-06 Nec Corporation Procede de formation de motif destine a un nanotube de carbone, cathode froide a emission de champ, et procede de fabrication de cette cathode
EP1342075B1 (en) 2000-12-11 2008-09-10 President And Fellows Of Harvard College Device contaning nanosensors for detecting an analyte and its method of manufacture
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US6358756B1 (en) * 2001-02-07 2002-03-19 Micron Technology, Inc. Self-aligned, magnetoresistive random-access memory (MRAM) structure utilizing a spacer containment scheme
US6448701B1 (en) * 2001-03-09 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Self-aligned integrally gated nanofilament field emitter cell and array
US6541309B2 (en) * 2001-03-21 2003-04-01 Hewlett-Packard Development Company Lp Fabricating a molecular electronic device having a protective barrier layer
CN1543399B (zh) 2001-03-26 2011-02-23 艾考斯公司 含碳纳米管的涂层
WO2002080360A1 (en) 2001-03-30 2002-10-10 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
AU2002307129A1 (en) * 2001-04-03 2002-10-21 Carnegie Mellon University Electronic circuit device, system and method
US6611033B2 (en) * 2001-04-12 2003-08-26 Ibm Corporation Micromachined electromechanical (MEM) random access memory array and method of making same
US20020160111A1 (en) * 2001-04-25 2002-10-31 Yi Sun Method for fabrication of field emission devices using carbon nanotube film as a cathode
KR100434369B1 (ko) * 2001-05-04 2004-06-04 엘지전자 주식회사 탄소 나노튜브를 이용한 비휘발성 메모리 소자
WO2002095097A1 (en) * 2001-05-21 2002-11-28 Trustees Of Boston College, The Varied morphology carbon nanotubes and methods for their manufacture
JP4207398B2 (ja) * 2001-05-21 2009-01-14 富士ゼロックス株式会社 カーボンナノチューブ構造体の配線の製造方法、並びに、カーボンナノチューブ構造体の配線およびそれを用いたカーボンナノチューブデバイス
US6426687B1 (en) 2001-05-22 2002-07-30 The Aerospace Corporation RF MEMS switch
US6858455B2 (en) * 2001-05-25 2005-02-22 Ut-Battelle, Llc Gated fabrication of nanostructure field emission cathode material within a device
US20040023253A1 (en) 2001-06-11 2004-02-05 Sandeep Kunwar Device structure for closely spaced electrodes
US6432740B1 (en) * 2001-06-28 2002-08-13 Hewlett-Packard Company Fabrication of molecular electronic circuit by imprinting
DE10134665C1 (de) 2001-07-20 2002-09-05 Infineon Technologies Ag Betriebsverfahren für ein Halbleiterbauelement, geeignet für ESD-Schutz
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US7259410B2 (en) 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US7566478B2 (en) 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US8715790B2 (en) 2001-07-27 2014-05-06 University Of Surrey Production of carbon nanotubes
AU2002332422C1 (en) 2001-07-27 2008-03-13 Eikos, Inc. Conformal coatings comprising carbon nanotubes
KR100455284B1 (ko) 2001-08-14 2004-11-12 삼성전자주식회사 탄소나노튜브를 이용한 고용량의 바이오분자 검출센서
JP4306990B2 (ja) 2001-10-18 2009-08-05 独立行政法人産業技術総合研究所 非線形光学素子
US6586965B2 (en) * 2001-10-29 2003-07-01 Hewlett Packard Development Company Lp Molecular crossbar latch
US6645628B2 (en) 2001-11-13 2003-11-11 The United States Of America As Represented By The Secretary Of The Air Force Carbon nanotube coated anode
US6784028B2 (en) * 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US6894359B2 (en) 2002-09-04 2005-05-17 Nanomix, Inc. Sensitivity control for nanotube sensors
US20040132070A1 (en) 2002-01-16 2004-07-08 Nanomix, Inc. Nonotube-based electronic detection of biological molecules
EP1468423A2 (en) 2002-01-18 2004-10-20 California Institute Of Technology Array-based architecture for molecular electronics
EP1341184B1 (en) 2002-02-09 2005-09-14 Samsung Electronics Co., Ltd. Memory device utilizing carbon nanotubes and method of fabricating the memory device
US6889216B2 (en) 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US6858197B1 (en) 2002-03-13 2005-02-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled patterning and growth of single wall and multi-wall carbon nanotubes
US7049625B2 (en) 2002-03-18 2006-05-23 Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell
US6919730B2 (en) 2002-03-18 2005-07-19 Honeywell International, Inc. Carbon nanotube sensor
US6899945B2 (en) 2002-03-19 2005-05-31 William Marsh Rice University Entangled single-wall carbon nanotube solid material and methods for making same
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US6946410B2 (en) 2002-04-05 2005-09-20 E. I. Du Pont De Nemours And Company Method for providing nano-structures of uniform length
JP2006513557A (ja) 2002-05-21 2006-04-20 エイコス・インコーポレーテッド カーボンナノチューブ被覆物をパターン化する方法およびカーボンナノチューブ配線
US6759693B2 (en) 2002-06-19 2004-07-06 Nantero, Inc. Nanotube permeable base transistor
US20040007528A1 (en) 2002-07-03 2004-01-15 The Regents Of The University Of California Intertwined, free-standing carbon nanotube mesh for use as separation, concentration, and/or filtration medium
US20040007258A1 (en) * 2002-07-10 2004-01-15 Lasker Diane R. Simple non-electric produce washer
JP4547852B2 (ja) * 2002-09-04 2010-09-22 富士ゼロックス株式会社 電気部品の製造方法
US7051945B2 (en) 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
AU2003298716A1 (en) * 2002-11-27 2004-06-23 Molecular Nanosystems, Inc. Nanotube chemical sensor based on work function of electrodes
JP4124635B2 (ja) 2002-12-05 2008-07-23 シャープ株式会社 半導体記憶装置及びメモリセルアレイの消去方法
US20040265550A1 (en) 2002-12-06 2004-12-30 Glatkowski Paul J. Optically transparent nanostructured electrical conductors
US6919740B2 (en) 2003-01-31 2005-07-19 Hewlett-Packard Development Company, Lp. Molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits, and more complex circuits composed, in part, from molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits
US6918284B2 (en) * 2003-03-24 2005-07-19 The United States Of America As Represented By The Secretary Of The Navy Interconnected networks of single-walled carbon nanotubes
US7294877B2 (en) 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
WO2005019793A2 (en) 2003-05-14 2005-03-03 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
US20040238907A1 (en) 2003-06-02 2004-12-02 Pinkerton Joseph F. Nanoelectromechanical transistors and switch systems
US7161218B2 (en) 2003-06-09 2007-01-09 Nantero, Inc. One-time programmable, non-volatile field effect devices and methods of making same
US6882256B1 (en) 2003-06-20 2005-04-19 Northrop Grumman Corporation Anchorless electrostatically activated micro electromechanical system switch
KR100568425B1 (ko) 2003-06-30 2006-04-05 주식회사 하이닉스반도체 플래시 소자의 비트라인 형성 방법
JP2007502545A (ja) 2003-08-13 2007-02-08 ナンテロ,インク. 複数の制御装置を有するナノチューブを基礎とする交換エレメントと上記エレメントから製造される回路
US7115960B2 (en) 2003-08-13 2006-10-03 Nantero, Inc. Nanotube-based switching elements
US6890780B2 (en) 2003-10-10 2005-05-10 General Electric Company Method for forming an electrostatically-doped carbon nanotube device
US7354877B2 (en) 2003-10-29 2008-04-08 Lockheed Martin Corporation Carbon nanotube fabrics
US6969651B1 (en) 2004-03-26 2005-11-29 Lsi Logic Corporation Layout design and process to form nanotube cell for nanotube memory applications
JP2005285822A (ja) 2004-03-26 2005-10-13 Fujitsu Ltd 半導体装置および半導体センサ
US7161403B2 (en) 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
US6955937B1 (en) 2004-08-12 2005-10-18 Lsi Logic Corporation Carbon nanotube memory cell for integrated circuit structure with removable side spacers to permit access to memory cell and process for forming such memory cell
US20060237799A1 (en) 2005-04-21 2006-10-26 Lsi Logic Corporation Carbon nanotube memory cells having flat bottom electrode contact surface
US8008745B2 (en) 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US8513768B2 (en) 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US7394687B2 (en) 2005-05-09 2008-07-01 Nantero, Inc. Non-volatile-shadow latch using a nanotube switch
US7835170B2 (en) 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US7598127B2 (en) 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
US7575693B2 (en) 2005-05-23 2009-08-18 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US7915122B2 (en) 2005-06-08 2011-03-29 Nantero, Inc. Self-aligned cell integration scheme
US7541216B2 (en) 2005-06-09 2009-06-02 Nantero, Inc. Method of aligning deposited nanotubes onto an etched feature using a spacer
US7402770B2 (en) 2005-06-10 2008-07-22 Lsi Logic Corporation Nano structure electrode design
US20060292716A1 (en) 2005-06-27 2006-12-28 Lsi Logic Corporation Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes
US7538040B2 (en) 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484997B (zh) * 2005-05-09 2011-05-18 南泰若股份有限公司 使用具有可重新编程电阻的纳米管制品的存储器阵列
CN102027598B (zh) * 2008-05-16 2012-12-26 桑迪士克3D有限责任公司 碳纳米膜可逆电阻可切换元件及其形成方法

Also Published As

Publication number Publication date
US7298016B2 (en) 2007-11-20
US20100012927A1 (en) 2010-01-21
CA2454834A1 (en) 2003-03-13
US8058089B2 (en) 2011-11-15
US20080067553A1 (en) 2008-03-20
US20030021966A1 (en) 2003-01-30
CN100466181C (zh) 2009-03-04
US20090283803A1 (en) 2009-11-19
US8400053B2 (en) 2013-03-19
JP4505683B2 (ja) 2010-07-21
KR20040035691A (ko) 2004-04-29
WO2003021613A2 (en) 2003-03-13
WO2003021613A3 (en) 2003-08-28
KR100838206B1 (ko) 2008-06-13
US20040214366A1 (en) 2004-10-28
JP2005502201A (ja) 2005-01-20
US7719067B2 (en) 2010-05-18
US6919592B2 (en) 2005-07-19
EP1410429A4 (en) 2007-06-06
TW200412685A (en) 2004-07-16
TWI246788B (en) 2006-01-01
AU2002353770A1 (en) 2003-03-18
US20040214367A1 (en) 2004-10-28
US20090087630A1 (en) 2009-04-02
KR100945403B1 (ko) 2010-03-04
US7056758B2 (en) 2006-06-06
EP1410429A2 (en) 2004-04-21
US7511318B2 (en) 2009-03-31
KR20080007682A (ko) 2008-01-22

Similar Documents

Publication Publication Date Title
CN1557016A (zh) 使用纳米管带子的机电式存储阵列及其制法
US6574130B2 (en) Hybrid circuit having nanotube electromechanical memory
US7120047B2 (en) Device selection circuitry constructed with nanotube technology
CN1556996B (zh) 导电制品、组合件和导电轨线
Wada et al. Prospects and problems of single molecule information devices
US7161218B2 (en) One-time programmable, non-volatile field effect devices and methods of making same
US7272511B2 (en) Molecular memory obtained using DNA strand molecular switches and carbon nanotubes, and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090304

Termination date: 20140725

EXPY Termination of patent right or utility model