CN1608099A - 硬度和尺寸稳定性都高的离子传导膜 - Google Patents

硬度和尺寸稳定性都高的离子传导膜 Download PDF

Info

Publication number
CN1608099A
CN1608099A CNA028204441A CN02820444A CN1608099A CN 1608099 A CN1608099 A CN 1608099A CN A028204441 A CNA028204441 A CN A028204441A CN 02820444 A CN02820444 A CN 02820444A CN 1608099 A CN1608099 A CN 1608099A
Authority
CN
China
Prior art keywords
composite membrane
film
membrane
ion
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028204441A
Other languages
English (en)
Other versions
CN100372883C (zh
Inventor
A·R·赫布森
S·J·麦肯齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
Gore Enterprise Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gore Enterprise Holdings Inc filed Critical Gore Enterprise Holdings Inc
Publication of CN1608099A publication Critical patent/CN1608099A/zh
Application granted granted Critical
Publication of CN100372883C publication Critical patent/CN100372883C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • Y10T428/249964Fibers of defined composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components

Abstract

整体复合膜,由膨胀聚四氟乙烯构成,具有一定形貌结构,是由原纤维交织而成的很长结节,该微结构被离子聚合物所浸渍。该复合膜有很高的硬度,因而减少短路的可能,改善了燃料电池的性能和寿命。

Description

硬度和尺寸稳定性都高的离子传导膜
发明领域
本发明涉及离子传导膜(ICM),具体地说是涉及在聚合物电解质膜(PEM)燃料电池中使用的ICM。
发明背景
在PEM燃料电池应用中,质子传导膜置于两个电极即阴极与阳极之间,且在有些场合下,该两个电极与传导膜直接相接。质子通过离子传导膜由阳极传导到阴极。该膜的电导会影响燃料电池的性能与功率密度。为了改善燃料电池的性能,离子传导膜的电阻必须降下来。降低电阻的方法之一就是减小ICM的膜厚。然而,对于离子键聚合物挤压或浇注的膜,这层膜的强度随厚度变薄而降低,使得该膜的尺寸稳定性较差,且更难于处理。
授权给Asahi玻璃公司的日本专利JP11067246描述了一种增强型离子交换膜。该发明的ICM是采用碳氟聚合物纤维编织成10-100支经纬织物而得以增强。这种结构可以提高复合膜的强度。
授权给Bahar等人的美国US Pat.No.5,547,551描述了一种ICM复合膜的基质材料以及离子交换树脂。该基质材料是一种厚度小于1密耳(0.025mm),有原纤维交织而成的节结的微结构,或没有结点的原纤维构成的微结构的薄膜。该离子交换树脂浸透薄膜,使该膜基本上不透空气。在整个复合膜中,它的强度由微孔膜而得以增强,薄膜厚度还可以进而降低,使得传导质子的阻力也减小。因此,这种整体复合膜的电阻较小,还能维持高的强度。
然而,PEM燃料电池系统对任何一种膜都是有侵蚀性的环境。为了减小部件之间的接触电阻,电池通常被压缩到约50-400psi的压力。在如此高压力下,薄膜极易引发电极短路。此外,高压下电池的长期机械稳定性对ICM显得越发重要。尽管ICM微孔增强结构能提高薄膜强度,也即降低溶胀性和破损,但现有的强度还不足以抵挡穿过平面引起的穿孔。本专利采用膜面上“(in-plane)”意指平行于材料的平面,而“穿过膜面(through-plane)”意指垂直穿过材料的平面。
ICM的两侧通常有碳粒子,离子键聚合物,以及催化剂组成的电极。电极层的外侧通常为碳纤维组成的扩散层,碳纤维的形式或为编织物或为非织造织物。在有些场合下,有个微结构层被加在气体扩散介质上,它由碳或石墨颗粒、离子聚合物和含氟聚合物构成。大多数气体扩散介质相对于ICM层很显粗糙。此外,气体扩散介质厚度的差异会很大,特别是编织型气体扩散介质。对于编织型气体扩散介质,厚度的差异通常为0.002-0.004”。气体扩散介质厚度的不均匀性可导致系统内高压区域的形成。这些高压区域可造成ICM膜变薄。有时候会引起阳极与阴极的短路。而且,气体扩散介质的硬质碳纤维会刺穿ICM,导致燃料电池组装时或稍后由于纤维持续不断穿透ICM而造成短路。燃料电池正常运行时温度很高,会加速离子键聚合物的机械变形。这种蠕变会使ICM变薄,增加了纤维从气体扩散介质到ICM层的穿透。
ICM薄膜的另一种问题是电极周围厚度不均匀加压缩变形造成的电极周围厚度不均匀。在电极层厚度不均匀情况下,作用在ICM膜上的压力会变化极大。在较厚电极区域,压力较高,很容易出现变形,还会导致ICM膜变薄。实际上,ICM膜的压缩变形会造成阳极与阴极的接触,发生薄膜的电子短路。
ICM膜的电极短路会降低燃料电池的工作效率。薄膜电子短路的电压差应与电池工作电压相同。因此,相应的电流从燃料电池分流,且经过电子短路而流走。短路的电阻值越低,相关的电流值越高。
因此,ICM薄膜必须保持低离子电阻,而有更强的抗击穿能力,以及随之的抗短路能力。此外,还必须减小由于水合作用引起的膜面上尺寸的变化。然而,穿过膜面的水合溶胀是符合理想要求的性质,因为它会进一步降低燃料电池内各部件之间的接触电阻。
                          发明综述
本发明相对于过去已知的离子传导膜的性能有明显的改善,例如提高了其硬度与尺寸稳定性。在本发明的一个实施方式中,整个复合膜是由具有形貌结构的扩展聚四氟乙烯组成,该形貌结构是由原纤维交织而成的异常拉长结节的微结构,此复合膜然后用离子键聚合物浸渍。这种复合膜显示出超强硬度,因而能降低电短路,改善燃料电池的性能与使用寿命。
更具体地说,本发明提供的复合膜是由(a)原纤维交织成结结而形成内部微结构的聚四氟乙烯膜,结节基本上呈平行排列,异常拉长,并且其径宽比大于25∶1;(b)薄膜整体为离子交换材料所浸透,浸渍的扩展聚四氟乙烯膜具有的Gurley数大于10,000秒,其中离子交换材料浸透该薄膜,造成该薄膜的内孔基本上闭塞。
在另一方面,本发明提供的复合膜由具有含有节结微结构的基质材料构成,且由原纤维交织而成通道,其硬度大于1,000MPa,并且离子交换材料浸透整个基质材料。复合膜的Gurley数大于10,000秒,其中离子交换材料浸透该基膜,造成其中通道基本上闭塞。
                         附图简要说明
图1是根据本发明一个示例性实施方式的复合ICM膜的截面面。
图2是根据本发明一个示例性实施方式的基质材料表面的扫描电镜照片。
图3是根据本发明另一个示例性实施方式的基质材料表面的扫描电镜照片。
本发明详细说明
正如图1所示,复合膜10包括基质材料11和离子交换材料12,离子交换材料最好为离子交换树脂。基质材料11是一个具有形貌结构的膜,是由有原纤维交织而成空穴或孔隙的网状结构的异常拉长的结点的微结构形态。薄膜整体基本上浸渍有离子交换材料12,造成其内部空穴和孔隙基本上闭塞。如图1所示,基材的单面或双面都可含有离子交换材料12。
本发明的复合膜在膜面方向上具有极好的尺寸稳定性,硬度高并且厚度均匀。这里采用“极好尺寸稳定性”意指根据下面所述的试验方法,计算出该复合膜干燥状态和完全水合状态之间的尺寸变化不超过2%。
“高硬度”即指硬度超过1,000MPa,“产品均匀”是指该复合膜结构内无针眼或断续结构。“基本上闭塞”意指该复合膜内部填满了离子交换材料,使最终形成的复合膜的Gurley数大于10,000秒。为达到本发明的目的,应填满了90%以上膜内部的空穴体积。
根据美国专利US Pat.No.5,814,405所述,基质材料是一种膨胀的聚四氟乙烯(ePTFE),其中节结异常长,其径宽比大于25∶1。其空气渗透性与强度合起来表明该ICM膜的性能有所提高。高强度保证了其尺寸稳定性,高透气性要求其内部有相当多空穴体积,浸渍后具有高离子传导率。该美国专利5,814,405参考引用。
合适的离子交换材料包括(但不限于)全氟硫酸树脂,全氟羧酸树脂,聚乙烯醇,二乙烯基苯、苯乙烯类聚合物,以及含聚合物或不含聚合物的金属盐类。适用于离子交换材料的溶剂包括醇,碳酸盐,四氢呋喃(THF),水,以及它们的混合物。
为了在该基质材料上施加,制备一种溶液,该溶液的溶剂中含有离子交换材料。该溶液通过常规涂覆技术施涂在基质材料上,括前辊涂,逆辊涂,凹面涂或刮辊涂,以及浸涂,刷涂,喷涂等手段,只要该溶液能渗入基质材料的间隙和内部空穴即可。去除膜面上的多余溶液。然后,将处理过的薄膜置于烘箱内干燥。烘箱温度置于60-200℃之间,但较佳在160-180℃之间。可以进行重复施涂及随后的干燥,直至薄膜完全透明,使ICM膜的Gurley数大于10,000秒。通常要求2-6次处理,但实际处理次数取决于膜基的浓度与厚度。如果薄膜无支撑结构,则该膜的两面可以同时处理,进而减少处理次数。
本发明人发现根据授权给Branca等人的美国专利US.Pat.No.5,814,405(下简称“405”)所述制备的薄膜,具有意想不到令人称奇的ICM增强效果。Branca描述的微孔膜为具有原纤维交织而成空穴或孔隙的网状结构,其中有很长的结节。Branca认为,其优点为这种微结构提供了强度与高空气透过率的独特组合。
本领域技术人员并不认为“405”专利所述的ICM薄膜具有可以接受的增强效果,其理由如下:首先,可以认为该高定向结构会导致膜面方向上的强度差异很大。这种差异不宜于ICM的增强,因为它会导致ICM膜水平方向上的非均匀性,会导致沿膜面上的两个方向有性质差异。例如可能导致燃料电池中ICM在热循环期间的不同收缩,而影响薄膜的寿命。
理由之二,采用这些薄膜达不到增强膜的效果,因为存在又长、径宽比很大的节结。这会是有缺点的,因为这样会难以用离子键聚合物填满节结周围的孔隙。长节结可能会阻碍浸渍工艺,导致薄膜中的孔隙不会充分闭塞。Bahar认为薄膜中孔隙的充分闭塞是较佳的。长而径宽比比大的节结的另一后果是因为它们遮盖相对较大的一片面积,会发现这样会降低薄膜浸渍过后质子传递的有效面积。这样就提高电阻,进而降低ICM膜的性能要求。
令人惊奇的是本发明发现,如用“405”专利所述的膜基制成的ICM膜寿命较长,膜面尺寸稳定性好,硬度高,均匀性好。
下述测试步骤用于根据本发明制备的样品。
测试步骤
基材的拉伸测试
测试采用Instron型号5567的拉伸试验机(Instron公司IX系列自动材料测试系统1.00)。样品宽1”,长为6”。计量长度(夹具之间距离)2”。样品以十字头速率为20”/分钟,温度为20℃,相对湿度为50%下进行拉伸。记录断裂时的伸长与最大负荷。基材拉伸强度的计算是最大负荷被样品的原来横截面积所除,然后被测得的孔隙率所除。孔隙率的获得是先计算样品的密度,即样品重量除以样品的长宽度,然后除以样品的真密度。聚四氟乙烯(PTFE)的真密度取2.19g/cm2(cm3?)。
厚度
基材厚度采用卡规测量,卡规为Mitutoyo No.2804F-10型。每个样品取至少四个部位测量,然后再取平均值。采用上述卡规和扫描电子显微镜测量干燥后复合膜的厚度。
尺寸稳定性与穿过膜面水合膨胀率
按如下方式测量样品在纵向,横向和Z方向上的水合膨胀率。取3”×3”样品,在室温和相对湿度在40-60%下至少保存一天,然后置于80℃去离子水中长达5分钟,保证该离子传导膜充分进行水合作用。然后取出样品,置于一橡皮垫上。样品呈直角排列,且平铺。用直尺沿样品纵向与横向测量其膨胀,测量精度达0.016”(1/64”)。采用上述厚度测量方法测定厚度方向上的膨胀。尺寸稳定性以每个方向上的变化百分率计,穿过膜面水合膨胀率以厚度增加的百分率计。
硬度
ICM样品的硬度由Micro Photonics Inc.,加州的Irvine采用CSEM仪器公司(瑞士)的微硬度测试仪进行。直径为1mm的碳化钨压头以10牛/分速率压在ICM样品上,最大穿透深度设定为15,000nm,硬度计算单位为MPa。选择这个深度可以消除来自放置样品的基片的影响。在所有测试中采用小于原来样品厚度60%的深度。
当达到予置的最大值时,减小标称负载直至发生部分或全部的松弛。重复进行该过程。在实验的每个阶段,压头相对于样品表面的位置采用微分电容传感器精确测量。
采用下列一组测量条件:
最大施力:无
最大深度:15000nm
负载速率:10牛/分钟
卸载速率:10牛/分钟
停顿时间:15秒
标定与    20%/0.010
选择:30牛/100μm
泊松系数:0.50
计算方法:Oliver和Pharr
压头类型:碳化钨,直径1mm
温度:室温
相对湿度:与周围环境同
空气流动数据
Gurley空气流动测试法测量100cm3的空气在4.88”高水压下流过截面1吋2样品所需的时间,单位为秒。样品在GurleyDeusometer(ASTM 0726-58)中测量。样品置于两个夹板之间。然后柱塞缓缓下降。自动计时器(或秒表)用于记录100cm3空气被柱塞取代所需的时间(秒)。该时间就是Gurley数。
单位面积质量
单位面积质量数按测量已知尺寸的样品重量,该重量除以样品的长与宽即得。
引发短路的压力
测量引发短路的压力是测定迫使气体扩散介质纤维穿透ICM样品直至出现短路的电阻为<200Ω时所需的力(psi)。本发明的ICM膜样品置于两层CarbelTM气体扩散介质CL(GDM)(日本Gore-Tex公司有售)之间,电极界面层面朝ICM膜。一个手工驱动机械压机上的一块1吋2(5.6cm2)钢质顶板降下来,与置于钢质底板上样品接触。该底板与顶板互相电绝缘。以50psi/分的速率提高压力。用一数字万用表测量顶板与底板之间的电阻。当该电阻降至200Ω以下时,记录当时的压力。
径宽比
按照Branca的“405”专利中第八栏的第30-36行所述的测试方法测量。
燃料电池寿命
按如下方式测量燃料电池的寿命。采用本发明ICM复合膜制成一MEA此ICM复合膜用作电解质,置于两个PRIMEATM5510电极(由日本Gore-Tex公司制作)之间。阳极与阴极的含铂量0.4mg Pt/cm2。阳极与阴极两侧为CarbelTM气体扩散介质CL(日本Gore-Tex公司有售)。电池尺寸在各种场合下均为25cm2。按如下操作组装电池:
a)将所述薄膜置于两个PRIMEATM 5510电极(日本Gore-Tex公司有售)之间,压在两个平板之间,顶板加热至180。每个平板与电极之间放置一块厚为0.25”的GR片(马里兰州Elkton的W.L.Gore关联公司有售)。本系统采用15吨压力长达3分钟,将两电极结合到膜上。
b)将25cm2三螺旋通道流场(新墨西哥州Albuquerque的燃料电池技术公司提供)置于工作台上。
c)取一窗形CHR(Furon)粘合弹性的(cohrelastic)硅烷涂覆的织物垫圈(由马里兰州巴尔的摩的Tate工程系统公司提供),其尺寸使得25cm2的GDM能安在里面,将此垫圈置于流场的顶部。
d)将一块Carbel CLGDM置于垫圈内。
e)取另一只窗形聚萘二甲酸乙二醇酯膜垫圈(北卡罗来纳州夏洛特的Tekra公司有售),其尺寸刚好盖过GDM的所有边,将此垫圈置于GDM之上。
f)将a)中制作的阳极/膜/阴极系统置于垫圈之上。
g)按b)-e)步骤反过来的次序制作阴极室。
h)将电池置于台钳上,以45吋-磅的力拧紧八只紧固螺拴。
在燃料电池内测试电池,温度为60℃,阳极阴极上入口气体相对湿度为100%。进入阳极气体为实验室级氢气,流量为维持电池中氢气转换速率(决定于电池中的电流)所需的1.2倍(即化学计量的1.2倍)。进入阴极的压缩空气经过滤,流量二倍于化学计量。
将电池调适14小时,调适过程是将电池在60℃,二极之间电位为600mV循环30分钟,再在300mV循环30分钟,再在950mV循环0.5分钟,总共5小时。然后作极化曲线,控制好施加的电位,从600mV起始,然后每步递减50mV直至400mV,其后再每步递增50mV直至900mV,记录每步的稳态电流值。电位在600mV-650mV之间的记下开路电压。调适结束后,将阴极气体切换成氮气,流通二个小时,并且在0.1V-1.2V区间,以100mV/S速率扫描三次,在扫描期间测量动态电流,绘制出伏安特性曲线。在10mV和600mV之间以2mV/S速率扫描得到在400mV氢气转换值(crossover value)。计算氢气转换曲线的斜率得到电路短路的测量。电阻值(Ω)为该斜率的倒数。
最后,阴极气体切换回到空气,流通10-15分钟,如前所述,得到极化曲线。
将电流设定为0.8A/cm2,电池在90℃,阳极与阴极上的露点为83,阳极与阴极的背压为15psi下工作。每隔168小时(1周)照前所述测量电流与电压值,以及氢转换值mA/cm2。当氢转换值达到或超过10mA/cm2时,进行机械性针眼试验,即在阴极上施压2psi以上,然后在阳极一侧进行气泡计数。如果内径为1/8吋管内气泡数超过10气泡/分钟,该时间(小时)即为燃料电池的寿命。
                            实施例
正如本领域技术人员所熟知,本发明提供的聚合物树脂复合膜具有的硬度明显高于普通膜,且有横向与纵向上很高的尺寸稳定性。因此,本发明提供的薄膜具有较高的抗剌穿阻力,膜的寿命也较长。
如前所述,本发明聚合物树脂复合膜在燃料电池系统中使用很有益。本发明薄膜在给定条件下,由于高的抗剌穿阻力与水合期间能维持其原来尺寸,且工作寿命更长。例如,本发明薄膜硬度大于2,000MPa,纵向尺寸稳定性小于1%。在本发明燃料电池寿命测量操作所述工作条件下,本发明ICM膜可使膜电极组合件工作时间达2,000小时,2.3倍于本发明比较例1中膜制成的膜电极组合件的寿命,而后者的硬度仅为958MPa,纵向尺寸稳定性达7.3%。
并不愿对本发明的范围加以限制,本发明的制造方法及其使用设备可通过下面一些实施例更好地理解。下面实施例中所有ePTFE样品均按US Pat.No.5,814,405所述方法制造。
更具体地说,制造了两类ePTFE材料,具有下列材料性质:
                                             类型1                          类型2
厚度(密耳) 1.2-1.4 0.7-0.9
Gurley数(秒) 5.66 3.7
质量/面积(g/m2) 9.9 7.0
纵向最大负载(磅) 7.53 5.297
横向最大负载(磅) 5.66 3.67
基材纵向拉伸强度(psi) 42114 24960
基材横向拉伸强度(psi) 31361 30910
径宽比 118∶1 70∶1
如本领域技术人员所熟知,ePTFE膜厚度<1.5密耳时,它的物理性能范围很宽。物理性能范围远远超出上述两实施例给出的值。图2是1型膜表面的扫描电镜照片,1型膜的径宽比由此照片测得。图3是2型膜的扫描电镜照片,它的径宽比由此照片测得。
实施例1
1型ePTFE膜的标称厚度为1.38密耳,装在一10”木质装饰环上,制备离子交换材料溶液,它含有100体积%的全氟磺酸/四氟乙烯共聚树脂溶液(以H+形式,其本身由10%全氟磺酸/四氟乙烯共聚树脂,10%水和80%的低分子量市售醇的混合物组成,Asahi玻璃与化学品公司有售,品名为Flemion F950型(950 EW),下文简称“F950”)用4”宽海棉刷将该溶液刷涂到膜的两面上,让其向内浸透。然后将样品用电吹风吹干2分钟,再在180℃烘箱内干燥3分钟。该过程重复二次以上,使膜内空隙充分闭塞。干燥后复合膜的厚度经测量约为原来基材的50%。硬度列于表1,此样品的尺寸稳定性列于表2,强度与基材拉伸强度列于表5。
实施例2
2型ePTFE膜的标称厚度为0.78密耳,装在一10”木质装饰环上,制备离子交换材料溶液,它含有100体积%的全氟磺酸/四氟乙烯共聚树脂溶液(以H+形式,其本身由10%全氟磺酸/四氟乙烯共聚树脂,10%水和80%的低分子量市售醇的混合物组成,Asahi玻璃与化学品公司有售,品名为Flemion F950型(950EW),下文简称“F950”)用4”宽海棉刷将该溶液刷涂到薄膜的两面上,让其向内浸透。然后将样品用电吹风吹干2分钟,再在180烘箱内干燥3分钟。该过程重复三次以上,使膜内空隙充分闭塞。干燥后复合膜的厚度经测量约为原来基材的18%(18μm)。硬度列于表1,此样品的尺寸稳定性列于表2。
实施例3
采用与实施例2相同方法制备样品。测量短路时压力,测量结果列于表3。
实施例4
采用与实施例1相同方法制备样品。按照上述方法测量此样品用于燃料电池的寿命。该值列于表4内为1000小时。
实施例5
采用与实施例2相同方法制备样品。按照上述方法测量此样品用于燃料电池的寿命。上述薄膜的使用寿命达2000小时。
比较例1
FORE-SELECT膜,一种全氟磺酸/四氟乙烯(TFE)共聚阳离子交换膜,经ePTFE增强,其标称厚度为25μm。该样品按授权给Bahar等人的USPat.No.5,814,405所述方法制作。该样品经过如前所述的尺寸稳定性试验,硬度试验,和燃料电池寿命试验,以及强度测试。测试结果列于表1-5。
比较例2
Nafion 101(N101),一种1000EW重量的未增强的全氟磺酸/四氟乙烯(TFE)/共聚阳离子交换膜,德拉韦州格拉斯哥的Ion Power公司有售。其标称厚度为1密耳(0.025mm)。如前所述,该样品经过硬度,尺寸稳定性和燃料电池寿命试验。实验结果分别列于表1,2和4。
不愿对本发明的范围加以限制,离子交换膜的测试数据是根据前面实施例方法采集,并列于各表之中。正如本领域技术人员所知,表内这些数据揭示了本发明离子交换膜在水合作用下能维持原有尺寸,与已知的增强膜和未增强的ePTFE离子交换膜相比,硬度高得多。而且,将本发明膜用于燃料电池中,其寿命获得提高。
表1
硬度
   样品编号    硬度(MPa)    厚度(μm)
   实施例1      2125      27
   实施例2      2308      25
   比较例1      958      25
   比较例2      722      25
表2
尺寸稳定性和穿透膜面水合膨胀率(尺寸变化百分率%)
   样品编号    纵向%    横向%  穿透膜同方向,%
   实施例1     0.0     0.0         51
   实施例2     2.4     0.0         34
   比较例1     7.3     12.5         30
   比较例2     25     10.4         20
表3
引发短路的压力
   样品编号    引发短路的压力(psi)
   实施例3          418
   比较例1          175
表4
燃料电池寿命
    样品编号     寿命(小时)
    实施例4     1000
    实施例5     2000
    比较例1     870
    比较例2     350
表5
强度
    基材拉伸强度(psi)           强度(psi)
  样品编号     纵向     横向     纵向     横向
  实施例1     10,547     10,316     9,775     9,350
  比较例1     4,985     4,820     4,675     4,467

Claims (21)

1.一种复合膜,包括:(a)膨胀聚四氟乙烯膜,它的内部微结构基本上由原纤维交织的结节组成,所述结节基本上平行排列,结节高度拉伸,其径宽比等于或大于25∶1;(b)浸透该薄膜的离子交换树脂,此浸渍过的膨胀聚四氟乙烯膜的Gurley数大于10,000秒,其中离子交换材料基本上浸透该膜,使膜内空穴基本上闭塞。
2.如权利要求1所述的复合膜,其硬度大于1000MPa。
3.如权利要求1所述的复合膜,其硬度大于1500MPa。
4.如权利要求1所述的复合膜,其硬度大于2000MPa。
5.如权利要求1所述的复合膜,其纵向尺寸稳定性小于6%。
6.如权利要求1所述的复合膜,其纵向尺寸稳定性小于4%。
7.如权利要求1所述的复合膜,其纵向尺寸稳定性小于2%。
8.如权利要求1所述的复合膜,其横向尺寸稳定性小于10%。
9.如权利要求1所述的复合膜,其横向尺寸稳定性小于8%。
10.如权利要求1所述的复合膜,其横向尺寸稳定性小于6%。
11.如权利要求1所述的复合膜,其横向尺寸稳定性小于4%。
12.如权利要求1所述的复合膜,其引发短路时压力大于400psi。
13.如权利要求1所述的复合膜,其引发短路时压力大于200psi。
14.膜电极组合件,包括权利要求1所述的复合膜以及阳极和阴极。
15.燃料电池,含括权利要求12所述的膜电极组合件。
16.电解质电池,包括权利要求1所述的复合膜和至少一个阳极与阴极。
17.权利要求1所述的复合膜,其强度在纵向上大于8,500psi。
18.权利要求1所述的复合膜,其强度在横向上大于8,500psi。
19.权利要求1所述的复合膜,其穿透膜面的水合膨胀率大于30%。
20.权利要求1所述的复合膜,其穿透膜面的水合膨胀率大于40%。
21.复合膜,包含结节和原纤维交织而成的通道的微结构的基质材料,其硬度大于1000MPa,离子交换材料浸透此基质材料,复合膜的Gurley数大于10,000秒,其中离子交换材料完全浸透基膜使所属通道基本上闭塞。
CNB028204441A 2001-09-10 2002-08-27 硬度和尺寸稳定性都高的离子传导膜 Expired - Lifetime CN100372883C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/950,839 2001-09-10
US09/950,839 US6613203B1 (en) 2001-09-10 2001-09-10 Ion conducting membrane having high hardness and dimensional stability

Publications (2)

Publication Number Publication Date
CN1608099A true CN1608099A (zh) 2005-04-20
CN100372883C CN100372883C (zh) 2008-03-05

Family

ID=25490910

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028204441A Expired - Lifetime CN100372883C (zh) 2001-09-10 2002-08-27 硬度和尺寸稳定性都高的离子传导膜

Country Status (10)

Country Link
US (1) US6613203B1 (zh)
EP (1) EP1490426B1 (zh)
JP (1) JP4975951B2 (zh)
KR (1) KR20040033038A (zh)
CN (1) CN100372883C (zh)
AU (1) AU2002323440B2 (zh)
CA (1) CA2459984C (zh)
DE (1) DE60215554T2 (zh)
HK (1) HK1072441A1 (zh)
WO (1) WO2003022912A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960658A (zh) * 2008-02-26 2011-01-26 丰田自动车株式会社 燃料电池用增强型电解质膜、燃料电池用膜-电极接合体以及具备该膜-电极接合体的固体高分子型燃料电池
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
CN108232261A (zh) * 2016-12-21 2018-06-29 东丽先端材料研究开发(中国)有限公司 一种聚合物复合电解质膜及其制备方法
CN108428917A (zh) * 2018-01-13 2018-08-21 素水能源科技(上海)有限公司 磺化聚酰亚胺-Nafion复合膜及其制备方法
CN114023978A (zh) * 2021-10-28 2022-02-08 中汽创智科技有限公司 一种气体扩散层基材的制备方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018176A1 (en) * 1997-09-22 2000-07-12 W.L. GORE & ASSOCIATES GmbH An electrochemical energy storage means
US7473485B2 (en) 2002-09-04 2009-01-06 Utc Power Corporation Extended electrodes for PEM fuel cell applications
US20040081886A1 (en) * 2002-10-25 2004-04-29 David Zuckerbrod Separator for electrochemical devices
US7632587B2 (en) 2004-05-04 2009-12-15 Angstrom Power Incorporated Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
US7378176B2 (en) 2004-05-04 2008-05-27 Angstrom Power Inc. Membranes and electrochemical cells incorporating such membranes
JP2005332672A (ja) * 2004-05-19 2005-12-02 Aisin Seiki Co Ltd 膜電極接合体、高分子電解質型燃料電池
US7882842B2 (en) * 2004-09-21 2011-02-08 Pavad Medical, Inc. Airway implant sensors and methods of making and using the same
US7836888B2 (en) * 2004-09-21 2010-11-23 Pavad Medical, Incorporated Airway implant and methods of making and using
WO2006071234A1 (en) 2004-12-28 2006-07-06 Utc Fuel Cells, Llc Mea seal structure containing catalyzed layer
US7419732B2 (en) 2005-02-11 2008-09-02 Gore Enterprise Holdings, Inc. Method for reducing degradation in a fuel cell
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
WO2007109106A1 (en) * 2006-03-16 2007-09-27 Bdf Ip Holdings Ltd. Fluorination of a porous hydrocarbon-based polymer for use as composite membrane
KR101451634B1 (ko) * 2006-08-09 2014-10-16 스미토모덴코파인폴리머 가부시키가이샤 불소 수지 박막, 불소 수지 복합체 및 다공질 불소 수지 복합체, 그리고 이들의 제조 방법, 불소 수지 디스퍼젼 및 분리막 엘리먼트
US7709120B2 (en) * 2007-06-28 2010-05-04 Gm Global Technology Operations, Inc. Method to maximize fuel cell stack shorting resistance
WO2009039656A1 (en) 2007-09-25 2009-04-02 Angstrom Power Incorporated Fuel cell systems including space-saving fluid plenum and related methods
KR101540041B1 (ko) * 2007-09-25 2015-07-28 소시에떼 비아이씨 연료전지용 커버
US7989115B2 (en) * 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
KR20100107012A (ko) 2008-01-03 2010-10-04 유티씨 파워 코포레이션 Pem 연료 전지를 위한 보호 및 침전 층
KR101462133B1 (ko) * 2008-02-29 2014-11-14 소시에떼 비아이씨 전기화학 전지 및 관련 멤브레인
US8158301B2 (en) * 2008-05-29 2012-04-17 General Electric Company Polyelectrolyte membranes and methods for making
WO2010126063A1 (ja) 2009-05-01 2010-11-04 日産自動車株式会社 燃料電池用ガス拡散層
CN103329326A (zh) 2011-01-28 2013-09-25 Utc电力公司 燃料电池密封件
US9379398B2 (en) * 2011-12-20 2016-06-28 Nissan North America, Inc. Apparatus and method of in situ catalyst degradation detection during fuel cell operation
JP5830782B2 (ja) 2012-01-27 2015-12-09 住友電工ファインポリマー株式会社 変性ポリテトラフルオロエチレン製微細孔径膜の製造方法、及び変性ポリテトラフルオロエチレン製多孔質樹脂膜複合体の製造方法
CN105793300B (zh) 2013-11-29 2018-01-05 大金工业株式会社 改性聚四氟乙烯细粉和单向拉伸多孔质体
TWI631144B (zh) 2013-11-29 2018-08-01 大金工業股份有限公司 多孔質體、高分子電解質膜、過濾器用濾材及過濾器單元
KR102112648B1 (ko) 2013-11-29 2020-05-19 아사히 가세이 가부시키가이샤 고분자 전해질막
US10944121B2 (en) 2013-11-29 2021-03-09 Asahi Kasei Kabushiki Kaisha Polymer electrolyte film
CN107406994A (zh) 2015-03-10 2017-11-28 通用电气公司 具有多层支撑基材的离子交换膜
WO2017156293A1 (en) 2016-03-11 2017-09-14 W. L. Gore & Associates, Inc. Reflective laminates
JP7386705B2 (ja) 2017-03-20 2023-11-27 ビーエル テクノロジーズ、インコーポレイテッド インプリントされた不織布基材を有するイオン交換膜
WO2018231232A1 (en) 2017-06-15 2018-12-20 W. L. Gore & Associates, Inc. Highly reinforced ionomer membranes for high selectivity and high strength
CN110120485B (zh) 2018-02-06 2021-06-18 比亚迪股份有限公司 聚合物隔膜及其制备方法和应用以及锂离子电池及其制备方法
JP6721762B2 (ja) * 2018-06-15 2020-07-15 日本碍子株式会社 電気化学セル
CA3105184C (en) 2018-07-27 2023-09-26 W. L. Gore & Associates, Inc. Integral composite membrane with a continuous ionomer phase

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681319A (en) 1951-01-10 1954-06-15 Rohm & Haas Permselective films of anionexchange resins
US2827426A (en) 1954-02-12 1958-03-18 Rohm & Haas Cationic permselective membranes and their use in electrolysis
US2951818A (en) 1955-02-10 1960-09-06 Bayer Ag Ion exchanger membranes from polyvinylidene chloride and phenolic resin reactants
US2965697A (en) 1956-11-05 1960-12-20 Electric Storage Battery Co Battery diaphragm
US3692569A (en) 1970-02-12 1972-09-19 Du Pont Surface-activated fluorocarbon objects
SE392582B (sv) 1970-05-21 1977-04-04 Gore & Ass Forfarande vid framstellning av ett porost material, genom expandering och streckning av en tetrafluoretenpolymer framstelld i ett pastabildande strengsprutningsforfarande
JPS5171888A (en) 1974-12-19 1976-06-22 Sumitomo Electric Industries Sekisokozokaranaru fuirumu oyobi sonoseizohoho
US4012303A (en) 1974-12-23 1977-03-15 Hooker Chemicals & Plastics Corporation Trifluorostyrene sulfonic acid membranes
US4104394A (en) 1975-12-15 1978-08-01 Sumitomo Electric Industries, Ltd. Method for diametrically expanding thermally contractive ptfe resin tube
US4082893A (en) 1975-12-24 1978-04-04 Sumitomo Electric Industries, Ltd. Porous polytetrafluoroethylene tubings and process of producing them
US4065534A (en) 1976-04-20 1977-12-27 Ppg Industries, Inc. Method of providing a resin reinforced asbestos diaphragm
US4110392A (en) 1976-12-17 1978-08-29 W. L. Gore & Associates, Inc. Production of porous sintered PTFE products
JPS53149881A (en) 1977-06-03 1978-12-27 Asahi Glass Co Ltd Strengthened cation exchange resin membrane and production thereof
US4207163A (en) 1977-09-26 1980-06-10 Olin Corporation Diaphragms for use in the electrolysis of alkali metal chlorides
US4207164A (en) 1977-10-03 1980-06-10 Olin Corporation Diaphragms for use in the electrolysis of alkali metal chlorides
US4224121A (en) 1978-07-06 1980-09-23 General Electric Company Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US4262041A (en) 1978-02-02 1981-04-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing a composite amphoteric ion exchange membrane
IT1110461B (it) 1978-03-01 1985-12-23 Oronzio De Nora Impianti Membrane anioniche costituite da copolimeri di (2) o (4)-vinilpiridina con divinilbenzene o con monomeri vinilici alogenati
GB2025835B (en) 1978-05-31 1982-10-27 Nitto Electric Ind Co Producing a porous polytetrafluorethylene article
JPS55145540A (en) 1979-04-28 1980-11-13 Kanegafuchi Chem Ind Co Ltd Joining method of cation exchange membrane
US4210510A (en) 1979-07-25 1980-07-01 Bendix Autolite Corporation Gas sensor with closely wound termination springs
EP0033262B1 (fr) 1980-01-29 1986-12-30 Elf Atochem S.A. Diaphragme pour électrolyse et son procédé de préparation
US4774039A (en) 1980-03-14 1988-09-27 Brunswick Corporation Dispersing casting of integral skinned highly asymmetric polymer membranes
US4629563B1 (en) 1980-03-14 1997-06-03 Memtec North America Asymmetric membranes
US4313832A (en) 1980-06-12 1982-02-02 Rohm And Haas Company Method for treatment of aqueous solutions with ion exchange fibers
US4518650A (en) 1980-07-11 1985-05-21 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
US4469744A (en) 1980-07-11 1984-09-04 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
US4311567A (en) 1980-11-17 1982-01-19 Ppg Industries, Inc. Treatment of permionic membrane
FR2498197A1 (fr) 1981-01-16 1982-07-23 Du Pont Membrane echangeuse d'ions, cellule electrochimique et procede d'electrolyse mettant en oeuvre cette membrane
JPS5847471B2 (ja) 1981-02-13 1983-10-22 工業技術院長 電解用接合体の製造法
NZ200204A (en) 1981-04-03 1985-05-31 Lilly Co Eli Benzothiophene derivatives and process for preparation
US4453991A (en) 1981-05-01 1984-06-12 E. I. Du Pont De Nemours And Company Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
US4433082A (en) 1981-05-01 1984-02-21 E. I. Du Pont De Nemours And Company Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof
US4596837A (en) 1982-02-22 1986-06-24 Daikin Industries Ltd. Semisintered polytetrafluoroethylene article and production thereof
US4598011A (en) 1982-09-10 1986-07-01 Bowman Jeffery B High strength porous polytetrafluoroethylene product having a coarse microstructure
JPS59109534A (ja) 1982-12-14 1984-06-25 Nitto Electric Ind Co Ltd ポリテトラフルオロエチレン多孔質体
JPS59109506A (ja) 1982-12-14 1984-06-25 Daikin Ind Ltd 新規なポリテトラフルオロエチレン・フアインパウダ−
US4528083A (en) 1983-04-15 1985-07-09 United Technologies Corporation Device for evolution of oxygen with ternary electrocatalysts containing valve metals
JPS6084590A (ja) 1983-10-17 1985-05-13 キヤノン株式会社 画像処理システム
US4664801A (en) 1983-10-27 1987-05-12 Brunswick Corporation Filter cartridge sealing composition and process therefor
US4671754A (en) 1984-03-28 1987-06-09 Sumitomo Electric Industries, Ltd. Apparatus for manufacturing porous polytetrafluoroethylene material
IL72506A (en) 1984-07-25 1987-08-31 Univ Ben Gurion Ion-exchange membranes and processes for the preparation thereof
JPS61130347A (ja) 1984-11-30 1986-06-18 Asahi Glass Co Ltd 新規な電解用複層隔膜
JPS61276987A (ja) 1985-06-03 1986-12-06 Agency Of Ind Science & Technol ガス及び液透過性電極用材料
US4822605A (en) 1986-02-18 1989-04-18 Exovir, Inc. Compositions and methods employing the same for the treatment of viral and cancerous skin lesions and the like
EP0241432B1 (en) 1986-03-07 1993-08-11 Tanaka Kikinzoku Kogyo K.K. Gas permeable electrode
US4816431A (en) 1986-04-03 1989-03-28 Nagakazu Furuya Process for preparing materials for reaction layer of gas permeable electrode
US5256503A (en) 1986-04-07 1993-10-26 Scimat Limited Process for making a composite membrane
US4698243A (en) 1986-06-20 1987-10-06 The Dow Chemical Company Method for sizing and hydrolyzing polytetrafluoroethylene fabrics, fibers, yarns, or threads
US4849311A (en) 1986-09-24 1989-07-18 Toa Nenryo Kogyo Kabushiki Kaisha Immobilized electrolyte membrane
US4743480A (en) 1986-11-13 1988-05-10 W. L. Gore & Associates, Inc. Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby
JPS63191041A (ja) 1987-02-03 1988-08-08 Komori Printing Mach Co Ltd 濃度測定位置合わせ方法
US4863604A (en) 1987-02-05 1989-09-05 Parker-Hannifin Corporation Microporous asymmetric polyfluorocarbon membranes
US4804592A (en) 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
DE3879613T2 (de) 1987-10-19 1993-10-07 Gore & Ass Schnellrückstellbares PTFE und Verfahren zu dessen Herstellung.
US4865925A (en) 1987-12-14 1989-09-12 Hughes Aircraft Company Gas permeable electrode for electrochemical system
US4902308A (en) 1988-06-15 1990-02-20 Mallouk Robert S Composite membrane
US4865930A (en) 1988-10-27 1989-09-12 Hughes Aircraft Company Method for forming a gas-permeable and ion-permeable membrane
US5133842A (en) 1988-11-17 1992-07-28 Physical Sciences, Inc. Electrochemical cell having electrode comprising gold containing electrocatalyst
US5041195A (en) 1988-11-17 1991-08-20 Physical Sciences Inc. Gold electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods of using them
US4954388A (en) 1988-11-30 1990-09-04 Mallouk Robert S Fabric reinforced composite membrane
US4902423A (en) 1989-02-02 1990-02-20 W. L. Gore & Associates, Inc. Highly air permeable expanded polytetrafluoroethylene membranes and process for making them
US4990228A (en) 1989-02-28 1991-02-05 E. I. Du Pont De Nemours And Company Cation exchange membrane and use
US5098625A (en) 1989-03-14 1992-03-24 Yeu Ming Tai Chemical Industrial Co., Ltd. Process for forming an expanded porous tetrafluoroethylene polymer
US4985296A (en) 1989-03-16 1991-01-15 W. L. Gore & Associates, Inc. Polytetrafluoroethylene film
AT391473B (de) 1989-04-06 1990-10-10 Chemiefaser Lenzing Ag Monoaxial verstreckter formkoerper aus polytetrafluoraethylen und verfahren zu seiner herstellung
US5094895A (en) 1989-04-28 1992-03-10 Branca Phillip A Composite, porous diaphragm
US5183545A (en) 1989-04-28 1993-02-02 Branca Phillip A Electrolytic cell with composite, porous diaphragm
US5075006A (en) 1989-08-09 1991-12-24 Exxon Research And Engineering Company Isocyanurate crosslinked polyurethane membranes and their use for the separation of aromatics from non-aromatics
US5234751A (en) 1989-09-12 1993-08-10 Sumitomo Electric Industries, Ltd. Porous material of polytetrafluoroethylene and process for producing the same
US5225131A (en) 1989-12-07 1993-07-06 Daikin Industries, Ltd. Process for producing multilayer polytetrafluoroethylene porous membrane and semisintered polytetrafluoroethylene multilayer structure
US5154827A (en) 1990-01-22 1992-10-13 Parker-Nannifin Corporation Laminated microporous fluorocarbon membrane and fluorocarbon filter cartridge using same
US5066403A (en) 1990-07-12 1991-11-19 The United States Of America As Represented By The Secretary Of Commerce Process for separating azeotropic or close-boiling mixtures by use of a composite membrane, the membrane, and its process of manufacture
US5521023A (en) 1990-08-16 1996-05-28 Kejha; Joseph B. Composite electrolytes for electrochemical devices
JPH04162365A (ja) 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk 燃料電池用電極の作製法
US5082472A (en) 1990-11-05 1992-01-21 Mallouk Robert S Composite membrane for facilitated transport processes
US5275725A (en) 1990-11-30 1994-01-04 Daicel Chemical Industries, Ltd. Flat separation membrane leaf and rotary separation apparatus containing flat membranes
US5234777A (en) 1991-02-19 1993-08-10 The Regents Of The University Of California Membrane catalyst layer for fuel cells
JP3077113B2 (ja) 1991-03-15 2000-08-14 ジャパンゴアテックス株式会社 白金族または白金族合金をめっきした微細多孔質フッ素樹脂材およびその製造法
US5217666A (en) 1991-05-29 1993-06-08 Daikin Industries Ltd. Process for producing porous polytetrafluoroethylene film
CA2074349C (en) 1991-07-23 2004-04-20 Shinji Tamaru Polytetrafluoroethylene porous film and preparation and use thereof
EP0545068A3 (en) 1991-11-08 1993-12-22 Du Pont Wetting of diaphragms
US5336384A (en) 1991-11-14 1994-08-09 The Dow Chemical Company Membrane-electrode structure for electrochemical cells
ES2133393T3 (es) 1992-03-13 1999-09-16 Atrium Medical Corp Productos de fluoropolimeros (por ejemplo, politetrafluoroetileno) expandidos de porosidad controlada y su fabricacion.
US5350643A (en) 1992-06-02 1994-09-27 Hitachi, Ltd. Solid polymer electrolyte type fuel cell
US5209850A (en) 1992-06-19 1993-05-11 W. L. Gore & Associates, Inc. Hydrophilic membranes
US5273694A (en) 1992-08-28 1993-12-28 E. I. Du Pont De Nemours And Company Process for making ion exchange membranes and films
US5228994A (en) 1992-10-13 1993-07-20 Millipore Corporation Composite microporous membranes
US5415888A (en) 1993-04-26 1995-05-16 E. I. Du Pont De Nemours And Company Method of imprinting catalytically active particles on membrane
US5447636A (en) 1993-12-14 1995-09-05 E. I. Du Pont De Nemours And Company Method for making reinforced ion exchange membranes
JP3003500B2 (ja) 1994-04-28 2000-01-31 ダイキン工業株式会社 ポリテトラフルオロエチレン複合多孔膜
US5545475A (en) 1994-09-20 1996-08-13 W. L. Gore & Associates Microfiber-reinforced porous polymer film and a method for manufacturing the same and composites made thereof
USRE37307E1 (en) 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6254978B1 (en) * 1994-11-14 2001-07-03 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
JP3221541B2 (ja) 1995-01-26 2001-10-22 日本電信電話株式会社 光導波路と光ファイバとの接続構造および接続方法
US5552100A (en) 1995-05-02 1996-09-03 Baxter International Inc. Method for manufacturing porous fluoropolymer films
US5814405A (en) * 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
DE19544912A1 (de) * 1995-12-01 1997-06-05 Gore W L & Ass Gmbh PTFE-Körper aus mikroporösem Polytetrafluorethylen mit Füllstoff und Verfahren zu dessen Herstellung
US5672438A (en) 1995-10-10 1997-09-30 E. I. Du Pont De Nemours And Company Membrane and electrode assembly employing exclusion membrane for direct methanol fuel cell
AU3116397A (en) * 1996-04-30 1997-11-19 W.L. Gore & Associates, Inc. Integral ion-exchange composite membranes
DE19625389A1 (de) * 1996-06-25 1998-01-02 Gore W L & Ass Gmbh Flexibler Verbundstoff
JPH1092444A (ja) * 1996-09-13 1998-04-10 Japan Gore Tex Inc 電気化学反応装置用固体高分子電解質複合体及びそれを用いた電気化学反応装置
US6130175A (en) * 1997-04-29 2000-10-10 Gore Enterprise Holdings, Inc. Integral multi-layered ion-exchange composite membranes
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
US6042959A (en) * 1997-10-10 2000-03-28 3M Innovative Properties Company Membrane electrode assembly and method of its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
CN101960658A (zh) * 2008-02-26 2011-01-26 丰田自动车株式会社 燃料电池用增强型电解质膜、燃料电池用膜-电极接合体以及具备该膜-电极接合体的固体高分子型燃料电池
CN101960658B (zh) * 2008-02-26 2014-07-16 丰田自动车株式会社 燃料电池用增强型电解质膜、燃料电池用膜-电极接合体以及具备该膜-电极接合体的固体高分子型燃料电池
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
CN108232261A (zh) * 2016-12-21 2018-06-29 东丽先端材料研究开发(中国)有限公司 一种聚合物复合电解质膜及其制备方法
CN108232261B (zh) * 2016-12-21 2022-03-22 东丽先端材料研究开发(中国)有限公司 一种聚合物复合电解质膜及其制备方法
CN108428917A (zh) * 2018-01-13 2018-08-21 素水能源科技(上海)有限公司 磺化聚酰亚胺-Nafion复合膜及其制备方法
CN114023978A (zh) * 2021-10-28 2022-02-08 中汽创智科技有限公司 一种气体扩散层基材的制备方法
CN114023978B (zh) * 2021-10-28 2024-02-02 中汽创智科技有限公司 一种气体扩散层基材的制备方法

Also Published As

Publication number Publication date
DE60215554D1 (de) 2006-11-30
EP1490426A2 (en) 2004-12-29
WO2003022912A2 (en) 2003-03-20
JP2005520002A (ja) 2005-07-07
AU2002323440B2 (en) 2006-05-25
US6613203B1 (en) 2003-09-02
EP1490426B1 (en) 2006-10-18
KR20040033038A (ko) 2004-04-17
CN100372883C (zh) 2008-03-05
WO2003022912A3 (en) 2004-09-30
CA2459984A1 (en) 2003-03-20
HK1072441A1 (en) 2005-08-26
CA2459984C (en) 2008-08-05
DE60215554T2 (de) 2007-07-05
JP4975951B2 (ja) 2012-07-11

Similar Documents

Publication Publication Date Title
CN100372883C (zh) 硬度和尺寸稳定性都高的离子传导膜
AU2002323440A1 (en) Ion conducting membrane having high hardness and dimensional stability
CN1134288C (zh) 复合膜
CN101186139B (zh) 多层电解质强化复合膜的制造方法
KR20070047210A (ko) 가스 확산 전극, 막-전극 접합체, 고체 고분자형 연료 전지및 이들의 제조 방법
KR101403734B1 (ko) 고분자 전해질 연료전지의 장기성능 향상을 위한 다공성지지체의 코팅방법, 그 방법에 의해 제조된 다공성지지체 및 이를 포함하는 수소이온전도성 복합막
JP2005514747A (ja) 燃料電池用のガス拡散支持体
KR20040106523A (ko) 시일링 면을 갖는 연료 전지 멤브레인 전극 조립체
CN100338807C (zh) 一种燃料电池用复合质子交换膜及制备方法
ATE235110T1 (de) Membranelektrodenanordnung und herstellungsverfahren
EP3521325B1 (en) Polymer, polymer electrolyte membrane and membrane/electrode assembly
US20100233571A1 (en) Reinforced electrolyte membrane for fuel cell, method for producing the membrane, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the assembly
CN1765992A (zh) 燃料电池用电解质、膜电极组件、燃料电池组、燃料电池系统和燃料电池用电解质的制法
KR20040106564A (ko) 압축 제어 가스켓을 구비한 멤브레인 전극 조립체
CN101764232B (zh) 具有交联网络结构的含氟质子交换膜及其制备
US20090068528A1 (en) Heat treatment of perfluorinated ionomeric membranes
US10396384B2 (en) Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
KR20180076949A (ko) 연료전지용 고분자 전해질막 및 그 제조방법
JP5109502B2 (ja) 触媒層付電解質膜
KR102008400B1 (ko) 고분자 전해질 막
JP2023003697A (ja) ガス拡散層及びその製造方法、並びに、固体高分子形燃料電池
KR102586433B1 (ko) 연료전지용 전해질막의 제조방법 및 이로 제조된 전해질막
JP4931540B2 (ja) プロトン交換膜
KR100544890B1 (ko) 연료전지용 복합 고분자 전해질막 및 이의 제조방법
CN102013498B (zh) 一种具有离子交换功能的含氟离聚物复合材料及其制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150914

Address after: Delaware

Patentee after: W.L. GORE & ASSOCIATES, Inc.

Address before: Delaware

Patentee before: Gore Enterprise Holdings, Inc.

CX01 Expiry of patent term

Granted publication date: 20080305

CX01 Expiry of patent term