CN1624465B - 磁共振成像装置和该装置中的图像生成方法 - Google Patents

磁共振成像装置和该装置中的图像生成方法 Download PDF

Info

Publication number
CN1624465B
CN1624465B CN2004100959490A CN200410095949A CN1624465B CN 1624465 B CN1624465 B CN 1624465B CN 2004100959490 A CN2004100959490 A CN 2004100959490A CN 200410095949 A CN200410095949 A CN 200410095949A CN 1624465 B CN1624465 B CN 1624465B
Authority
CN
China
Prior art keywords
mentioned
measured body
magnetic field
radio
imaging apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004100959490A
Other languages
English (en)
Other versions
CN1624465A (zh
Inventor
安原康毅
冈本和也
山中正昭
石井学
五十岚勉
久原重英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Publication of CN1624465A publication Critical patent/CN1624465A/zh
Application granted granted Critical
Publication of CN1624465B publication Critical patent/CN1624465B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils

Abstract

提供一种磁共振成像装置和该装置中的图像生成方法。该磁共振成像装置具有:静态磁场生成单元,在机架内产生静态磁场;倾斜磁场生成单元,对配置在上述静态磁场内的被测体施加倾斜磁场;高频线圈,从被施加了上述倾斜磁场的被测体接收磁共振信号;外形检测单元,检测上述被测体的外形;线圈移动单元,基于上述检测到的外形,使上述高频线圈相对于上述被测体在远近方向上移动;图像生成单元,基于上述接收到的磁共振信号,生成磁共振图像。

Description

磁共振成像装置和该装置中的图像生成方法
(本申请基于并以2003年12月4日提交的在先日本专利申请No.2003-405779和2004年2月19日提交的No.2004-42863为优先权,其全部内容在此引作参考。)
技术领域
本发明涉及利用磁共振现象生成磁共振图像的磁共振成像(MRI)装置和该装置中的图像生成方法。
背景技术
磁共振成像装置,是在将具有固有磁矩的核的集团放置在均匀的静态磁场中时,利用共振地吸收按特定频率旋转的高频磁场的能量,把物质的化学和物理上的微观信息图像化,或者观测化学变换频谱的装置。
例如,如下进行利用了该磁共振成像装置的诊断图像的摄影。即,在由由磁铁形成的静态磁场和由倾斜磁场线圈形成的倾斜磁场构成的合成磁场中,配置被测体。对这样定位后的被测体施加用于发生磁共振现象的规定频率的高频。利用施加的高频,在被测体中产生磁共振信号,由接收用高频线圈接收它后图像化。
在这样的MRI装置中,作为扩大摄像范围的技术,已知有美国专利第5928148号说明书(以下称作第一文献)和美国专利第5808468号说明书(以下称作第二文献)。
第一文献中公开的MRI装置将上下分割的线圈预先固定在机架内摄像区域中,能一边在该上下线圈间移动被检者,一边摄像宽的区域。
第二文献中公开的MRI装置,作为用于上下固定线圈的装置,在已有的台床上放置一个用于保持线圈的台子。将可动式的第二台床放置在该台子上,将被检者送入到机架内躺在该第二台床上。
但是,在第一文献和第二文献的技术中,由于每个线圈都固定,因此,线圈与被检者的距离变大,不能有效地提高灵敏度。
在日本专利申请特愿昭64-37939号公报(以下称作第三文献)中公开了具有全身用高频线圈和可移动的平面线圈的MRI装置。
但是,在第三文献中,在使摄像部位与平面线圈接近后进行摄像,一度摄像范围变窄。
发明内容
鉴于以上情况,本发明的目的在于谋求能利用局部用高频线圈进行高画质的摄像,谋求不将检测器装在被测体上,而能进行宽范围的摄像。
根据本发明的第一观点,提供一种磁共振成像装置,具有:静态磁场生成单元,在机架内产生静态磁场;倾斜磁场生成单元,对配置在上述静态磁场内的被测体施加倾斜磁场;高频线圈,从被施加了上述倾斜磁场的被测体接收磁共振信号;外形检测单元,检测上述被测体的外形;线圈移动单元,基于上述检测到的外形,使上述高频线圈相对于上述被测体在远近方向上移动;图像生成单元,基于上述接收到的磁共振信号,生成磁共振图像。
根据本发明的第二观点,提供一种磁共振成像装置,具有:静态磁场生成单元,在机架内产生静态磁场;倾斜磁场生成单元,对配置在上述静态磁场内的被测体施加倾斜磁场;高频线圈,从被施加了上述倾斜磁场的被测体接收磁共振信号;外形检测单元,基于由上述高频线圈接收到的上述磁共振信号,检测上述被测体的外形;线圈移动单元,基于上述检测到的外形,使上述高频线圈相对于上述被测体在远近方向上移动;图像生成单元,基于由上述线圈移动单元移动的上述高频线圈接收到的上述磁共振信号,生成磁共振图像。
根据本发明的第三观点,提供一种磁共振成像装置,具有:静态磁场生成单元,在机架内产生静态磁场;倾斜磁场生成单元,对配置在上述静态磁场内的被测体施加倾斜磁场;高频线圈,从被施加了上述倾斜磁场的被测体接收磁共振信号;被测体移动单元,使上述被测体移动;线圈移动单元,按照上述被测体的移动,使上述高频线圈相对于上述被测体在远近方向上移动;图像生成单元,基于上述接收到的磁共振信号,生成磁共振图像。
根据本发明的第四观点,提供一种图像生成方法,是磁共振成像装置中的图像生成方法,所述磁共振成像装置具有:静态磁场生成单元,在机架内产生静态磁场;倾斜磁场生成单元,对配置在上述静态磁场内的被测体施加倾斜磁场;高频线圈,从被施加了上述倾斜磁场的被测体接收磁共振信号,所述方法在于,检测上述被测体的外形,基于上述检测到的外形,使上述高频线圈相对于上述被测体在远近方向上移动,基于上述接收到的磁共振信号,生成磁共振图像。
根据本发明的第五观点,提供一种图像生成方法,是磁共振成像装置中的图像生成方法,所述磁共振成像装置具有:静态磁场生成单元,在机架内产生静态磁场;倾斜磁场生成单元,对配置在上述静态磁场内的被测体施加倾斜磁场;高频线圈,从被施加了上述倾斜磁场的被测体接收磁共振信号,所述方法在于,基于由上述高频线圈接收到的上述磁共振信号,检测上述被测体的外形,基于上述检测到的外形,使上述高频线圈相对于上述被测体在远近方向上移动,基于由上述线圈移动单元移动的上述高频线圈接收到的上述磁共振信号,生成磁共振图像。
根据本发明的第六观点,提供一种图像生成方法,是磁共振成像装置中的图像生成方法,所述磁共振成像装置具有:静态磁场生成单元,在机架内产生静态磁场;倾斜磁场生成单元,对配置在上述静态磁场内的被测体施加倾斜磁场;高频线圈,从被施加了上述倾斜磁场的被测体接收磁共振信号,所述方法在于,使上述被测体移动,按照上述被测体的移动,使上述高频线圈相对于上述被测体在远近方向上移动,基于上述接收到的磁共振信号,生成磁共振图像。
在接下来的描述中给出本发明其它的目的和优点,其中一部分根据这些描述将是很明显的,或者可以通过对本发明的实践而了解。通过下文中具体指出的手段和组合可以实现并得到本发明的目的和优点。
附图说明
包含在说明书中并构成说明书的一部分的附图,用来说明本发明的实施例以及上面给出的概述。
图1是示出本发明的第一实施方式涉及的磁共振成像装置的结构的图。
图2是示出从图1的左侧看图1中的高频线圈4和其内侧的情况的图。
图3是示出控制部10g的处理过程的流程图。
图4A、4B、4C是示出在位置控制下的局部用探针6的位置变化的一例的图。
图5是示出局部用探针和位置调整机构的配置的变形例的图。
图6是示出本发明的第二实施方式涉及的MRI装置的结构的图。
图7是示出图6中的接收线圈的移动机构的结构的图。
图8A、8B、8C是示出图6中的接收线圈的移动机构的图。
图9是示出接收线圈的移动机构的变形结构例的图。
图10是示出本发明的第三实施方式涉及的MRI装置的结构的图。
图11是示出图10中的控制部60的详细结构的图。
图12是示出图10中的控制部60的其它结构的图。
图13A、13B是示出图10中的控制部60的其它结构的图。
图14是示出图10中的控制部60的其它结构的图。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
(第一实施方式)
图1是示出第一实施方式涉及的MRI装置的结构的图。图1中示出的MRI装置具有:静态磁场磁铁1、倾斜磁场线圈2、倾斜磁场电源3、高频线圈4、发送部5、局部用探针6、位置调整机构7、接收部8、台床控制部9和计算机系统10。
静态磁场磁铁1构成中空的圆筒形,在内部空间中产生均匀的静态磁场。作为该静态磁场磁铁1,例如使用永久磁铁、超传导磁铁等。
倾斜磁场线圈2构成中空的圆筒形,配置在静态磁场磁铁1的内侧。倾斜磁场线圈2组合了与相互正交的X、Y、Z的各轴相对应的3个线圈。倾斜磁场线圈2的上述3个线圈分别从倾斜磁场电源3接受电流供给,产生磁场强度沿着X、Y、Z各轴倾斜的倾斜磁场。再有,Z轴方向与静态磁场同方向。X、Y、Z各轴的倾斜磁场分别与分层选择用倾斜磁场Gs、相位编码用倾斜磁场Ge和读出用倾斜磁场Gr相对应。分层选择用倾斜磁场Gs用于任意地决定摄影断面。相位编码用倾斜磁场Ge用于根据空间位置编码磁共振信号的相位。读出用倾斜磁场Gr用于根据空间位置编码磁共振信号的频率。
高频线圈4构成中空的圆筒形,配置在倾斜磁场线圈2的内侧。向该高频线圈4的内侧插入在台床B上载置的被测体P。高频线圈4从发送部5接受高频脉冲的供给,产生高频磁场。此外高频线圈4接受由于上述高频磁场的影响而从被测体放射的磁共振信号。高频线圈4具有被测体P能够容易地通过的内径,因此,具有全身用RF检测器的功能。
发送部5具有振荡部、相位选择部、频率变换部、振幅调制部和高频功率放大部。振荡部产生静态磁场中的对象原子核固有的共振频率的高频信号。相位选择部选择上述高频信号的相位。频率调制部调制从相位选择部输出的高频信号的频率。振幅调制部按照例如同步函数,调制从频率调制部输出的高频信号的振幅。高频功率放大部放大从振幅调制部输出的高频信号。然后,作为这些各部的工作结果,发送部5将与拉莫尔频率相对应的高频脉冲发送给高频线圈4。
局部用探针6内装比高频线圈4小的高频线圈。局部用探针6配置在高频线圈4的内侧,利用位置调整机构7支承。内装在局部用探针6中的高频线圈接收从被测体P放射的磁共振信号。
图2是示出从图1的左侧看高频线圈4和其内侧的情况的图。如图1和图2所示,位置调整机构7配置在高频线圈4的内侧,固定在高频线圈4的顶板面上。位置调整机构7也可以不直接固定在高频线圈4上,而利用各种方法支承在高频线圈4的内侧。如图2中的箭头所示,位置调整机构7使局部用探针6上下移动。
接收部8具有选择器、前段放大器、相位检波器和模拟数字变换器。选择器选择性地输入从高频线圈4和局部用探针6输出的磁共振信号。接收部8放大从选择器输出的磁共振信号。相位检波器检波从前置放大器输出的磁共振信号的相位。模拟数字变换器将从相位检波器输出的信号变换成数字信号。
台床控制部9具有移动机构部和移动控制部。移动机构部使台床B在高频线圈4的轴向即图6中的左右方向上往复移动。移动控制部控制移动机构部进行后述的正向移动和反向移动。
计算机系统10具有接口部10a、数据收集部10b、重构部10c、存储部10d、显示部10e、输入部10f和控制部10g。
倾斜磁场电源3、发送部5、位置调整机构7、接收部8和台床控制部9与接口部10a连接。接口部10a进行在这些连接的各部与计算机系统10之间授受的信号的输入输出。
数据收集部10b通过接口部10a,收集从接收部8输出的数字信号。数据收集部10b将收集到的数字信号即磁共振信号数据存储在存储部10d中。
重构部10c对存储在存储部10d中的磁共振信号数据执行后处理,即执行傅立叶变换等的重构,求出被测体P内的期望核自旋的频谱数据或图像数据。
存储部10d对每一个患者存储磁共振信号数据和频谱数据或图像数据。
显示部10e在控制部10g的控制下,显示频谱数据或图像数据等各种信息。作为显示部10e,可利用液晶显示器等显示设备。
输入部10f受理来自操作人员的各种指令和信息输入。作为输入部10f,可适当地利用鼠标和跟踪球等指向设备、模式转换开关等选择设备、或键盘等输入设备。
控制部10g具有CPU和存储器等,汇总控制上述各部。此外,控制部10g基于根据从高频线圈4输出的磁共振信号重构的图像数据,检测被测体P的外形。此外,控制部10g补偿因使被测体P移动而产生的被测体P的表面与局部用探针6之间的间隔的变化,控制位置调整机构7,使得维持局部用探针6与被测体7的表面接近的状态。
下面,对如上所述构成的MRI装置的工作进行说明。
在摄像被测体P全身时,处于已将被测体P载置在了从高频线圈4的中间引出的台床B上的状态。这时,操作人员操作输入部10f,指令开始全身摄影。
将该指令从输入部10f传给控制部10g。接受上述指令后,控制部10g就开始图3的流程图中示出的处理。
在步骤Sa1中,控制部10g对接收部8指定“全身”。接受该指定后,接收部8就能输入从高频线圈4输出的磁共振信号。接着,在步骤Sa2中,控制部10g向台床控制部9指示开始台床B的正向移动。接受该指示后,台床控制部9使台床B向正向(例如向着图1中的左侧的方向)移动。台床控制部9可以使台床B按一定速度移动,也可以使其每一段距离断续地移动。然后,在步骤Sa3中,控制部10g开始外形检测。
该外形检测是检测被测体的外形的处理。具体地说,基于从接收部8输出的磁共振信号数据,即接收部8根据由高频线圈4接收的磁共振信号而生成的磁共振信号数据,求出被测体的断面形状,检测其外形。对台床B的每个规定位置进行外形的检测。在步骤Sa4中,在进行该外形检测的同时,控制部10g等待正向移动的结束。
若台床B移动到了预先设定的移动范围的终端,台床控制部9就停止正向移动,向控制部10g通知正向移动已结束。接受该通知后,控制部10g从步骤Sa4向步骤Sa5前进。然后,在步骤Sa5中,控制部10g结束外形检测。
接着,在步骤Sa6中,控制部10g对接收部9指定“局部”。接受该指定后,接收部8就能输入从局部用探针6输出的磁共振信号。接着,在步骤Sa7中,控制部10g向台床控制部9指示开始台床B的反向移动。接受该指示后,台床控制部9使台床B向反向(例如向着图1中的右侧的方向)移动。然后,在步骤Sa8中,控制部10g开始局部用探针6的位置控制。
位置控制是调整局部用探针6的位置的处理,使得维持不干扰被测体P和局部用探针6而接近的状态。即,由于随着被测体P的移动,与局部用探针6对置的被测体P的部位变化,故被测体P与局部用探针6之间的间隔变化,因此,调整局部用探针6的位置,使得补偿该间隔的变化。具体地说,控制部10g与台床B的移动同步,一边参照由上述外形检测检测出的被测体P的外形,一边驱动位置调整机构7。
图4A、4B、4C是示出在位置控制下的局部用探针6的位置变化的一例的图。如图4A、4B、4C所示,按照与局部用探针6对置的部位的高度,将从位置调整机构7的基部到局部用探针6的间隔分别设为不同的L1、L2、L3。
这样地,在台床B的反向移动和开始了局部用探针6的位置控制后,在步骤Sa9中,控制部10g开始主摄像处理。该主摄像处理是求与被测体全体有关的频谱数据或图像数据的处理。具体地说,基于从接收部8输出的磁共振信号数据,即接收部8根据由高频线圈4接收的磁共振信号而生成的磁共振信号数据,进行该主摄像处理。基于该磁共振信号数据,与台床B的移动同步,周期地进行求关于被测体P的局部频谱数据或图像数据的处理。然后,通过累积这些的局部频谱数据或图像数据,来求与被测体整体有关的频谱数据或图像数据。
在步骤Sa10中在进行这样的主摄像处理的同时,控制部10g等待被测体P全体的摄像的结束。然后,若被测体P全体的摄像结束,控制部10g就从步骤Sa10向步骤Sa11前进。在步骤Sa11中,控制部10g在停止主摄像处理的同时,停止局部用探针6的控制。然后,基于此,控制部10g结束图3中的处理。
如上所述,根据第一实施方式,首先,使用全身用检测器即高频线圈4,检测被测体P的外形。然后,参照该检测出的外形,一边维持使局部用探针6与被测体P接近的状态,一边使用局部用探针6摄像被测体P的全身。其结果,就能充分利用局部用探针6的特征,高品质地进行摄像。此外,由于不将局部用探针6装在被测体P上,因此,对被测体P不产生多余的负担。此外,由于在使台床B往复移动间进行外形检测和本摄像这两者,因此,能短时间内高效地结束摄像。
该第一实施方式可以进行如下的变形来实施。
其结构也可以采用将高频线圈4作为接收专用,另行设置发送用的高频线圈的交叉线圈方式。
如图5所示,也可以取代局部用探针6,设置局部用探针6a、6b,同时,取代位置调整机构7,具有位置调整机构7a、7b,个别地调整局部用探针6a、6b的位置。
以上以全身摄影为例进行了说明,但也能够将本发明适用于不是全身而是随被测体P的移动的宽范围的摄影。或者,也能够将本发明适用于在被测体无移动中摄像不能摄像的被测体离开后的多个部位的情况。
(第二实施方式)
图6是示出第二实施方式涉及的MRI装置的结构的图。此外,图7和图8A、8B、8C是示出图6中的接收线圈的移动机构的结构的图。再有,为了方便说明,如图所示定义X、Y、Z的各轴方向。
如图6所示,第二实施方式的MRI装置具有机架21、台床22、静态磁场磁铁23、倾斜磁场线圈24、高频线圈25、接收线圈26a、26b、26c、26d、第一移动机构27、第二移动机构28、测距传感器29、传感器控制部30、倾斜磁场驱动部31、发送部32、移动机构控制部33、接收部34、数据收集部35、计算机36、控制台37、显示器38和顺序控制器39。
机架21在图6中示出由YZ面切断后的断面。在机架21上设置了静态磁场磁铁23、倾斜磁场线圈24、高频线圈25、接收线圈26a、26b、26c、26d、第一移动机构27、第二移动机构28和测距传感器29。
台床22将被测体P搬送到机架21内。
静态磁场磁铁23设置在机架21内,对被测体P施加均匀的静态磁场。倾斜磁场线圈24对被测体P施加倾斜磁场。高频线圈25对被测体P施加高频磁场。接收线圈26a~26d接收从被测体P放射的磁共振信号。
第一移动机构27使接收线圈26a向Y方向移动。第二移动机构28使接收线圈26a向X方向移动。测距传感器29进行被测体P的体厚测定。
传感器控制部30控制测距传感器29,使得与向机架21内搬送被测体P同步地进行体厚测定。倾斜磁场驱动部31驱动倾斜磁场线圈24。发送部32对高频线圈25施加高频脉冲。移动机构控制部33控制第一移动机构27和第二移动机构28的工作。接收部34放大和检波由接收线圈26a~26d接收到的磁共振信号。数据收集部35对从接收部34输出的磁共振信号A/D变换并进行收集。计算机36进行基于从数据收集部35输出的磁共振信号的图像重构处理。控制台37取入操作者对计算机36输入的信息。显示器38在计算机36的控制下进行各种信息的显示。顺序控制器39控制倾斜磁场驱动部31、发送部32、移动机构控制部33、接收部34、数据收集部35和计算机36。
接收线圈26a构成上侧的线圈,接收线圈26b~26d构成下侧的线圈。在第二实施方式中,在设置了多个接收线圈的情况下,象接收线圈26a这样地,将至少一个接收线圈放置在上侧,剩余的放置在下侧。然后,上侧的线圈和下侧的线圈成为一对,通过检测信号,就能够得到宽的摄像区域。放置在下侧的线圈数量最好根据需要的摄像区域的宽度来决定。摄像时,接收线圈26a被配置在摄像区域的中央。接收线圈26a在移动机构控制部33的控制下,按照被测体P的体厚进行上下移动。若由后述的摄像区域指定法指定Z方向的摄像范围,接收线圈26b~26d就按照它在接收线圈26a的后面依次移动。
机架21的内部空间称作洞腔。在机架21上设置着开口21a,用于将载置了被测体P的台床22的顶板22a取放到洞腔中。在洞腔的内壁上面部设置着第二移动机构28。
此外,与接收线圈26a的接收面(与被测体P对置的面)的里侧连接的后述的保持装置,与第一移动机构27的一端连接。第一移动机构27的另一端安装在第二移动机构28上。
如图7所示,第一移动机构27包括伸缩软管机构27a。第一移动机构27也包括压缩机。压缩机通过配置在机架21内的流入管27b,将空气送入伸缩软管机构27a中,或者从伸缩软管机构27a吸引空气,使伸缩软管机构27a伸缩。伸缩软管机构27a向着Y方向配置其伸缩方向。再有,将示出第一移动机构27的Y方向的移动位移与伸缩软管机构27a内的压力值的相关关系的数据,存储在数据收集部35中。然后,顺序控制器39参照该数据,按照必要的位移,判定伸缩软管机构27a内的气压。
第二移动机构28具有导轨28a。导轨28a上,在Z方向上形成着沟28b。由于形成为矩形的保持部件40与沟28b结合,接收线圈26a就能被导轨28a引导在Z方向上移动。这是用于变更洞腔内的摄像位置的结构。再有,保持部件40具有在由第一移动机构27使接收线圈26a在Y方向上移动时解除与沟28b的结合的结构。
第二移动机构28也具有用于使接收线圈26a如上所述地在Z方向上移动的动力。作为该动力,可以在第一移动机构27侧设置电动机,也可以由从第一移动机构27离开配置的电动机通过牵引带移动接收线圈26a的机构。
测距传感器29配置在开口21a的上部。测距传感器29最好适用例如使用测距用的激光或超声波,利用使其在顶板22a和被测体P的体表上反射来进行测距的传感器。
下面,对如上所述构成的第二实施方式的MRI装置的工作进行说明。
为了摄像,首先,将载置在台床22上的被测体P送入到机架21内。该工作利用台床22按规定的速度在Z方向上移动顶板22a来进行。这时,在被测体P的摄像区域位于测距传感器29的正下方时,操作者按下设置在控制台37上的测距开始按钮,向顺序控制器39发送开始信号。接着,在被测体P的摄像区域完全通过了测距传感器29的正下方时,操作者按下设置在控制台37上的测距结束按钮,向顺序控制器39发送结束信号。因此,测距开始按钮和测距结束按钮最好安装在机架21的侧面。
以向顺序控制器39发送了开始信号为契机,顺序控制器39对传感器控制部30指示开始体厚测定。之后,以向顺序控制器39发送了结束信号为契机,顺序控制器39对传感器控制部30指示结束体厚测定。在如上所述地指示了开始后,传感器控制部30在直到如上所述地指示结束期间,让测距传感器29计测被测体P的体厚。测距传感器29通过传感器控制部30,将由测定得到的信息发送给顺序控制器39。
然后,利用静态磁场磁铁23,对已搬送到洞腔内的被测体P施加均匀的静态磁场。这时,将施加的静态磁场的方向设为Z方向。
接着,移动机构控制部33利用第二移动机构28,如图8B所示,使接收线圈26a从图8A中示出的位置向静态磁场磁铁23的中央移动。之后,使台床22移动,使得载置着相当于摄像区域的开始点的被测体P的部位的接收线圈位于接收线圈23的下方。在此,设摄像区域的开始点是接收线圈26b的头侧端,结束点是接收线圈26d的脚侧端进行说明。即,首先,使台床22移动,使得接收线圈26b位于接收线圈26a的下面。
之后,移动机构控制部33解除保持部件40与沟28b的结合。移动机构控制部33进一步基于与从顺序控制器39发送的Y方向的移动位移有关的信息,将空气取放到伸缩软管机构27a内,如图8所示,调整接收线圈26a的Y方向位置,使接收线圈26a的接收面与被测体P的体表接近。
之后,在顺序控制器39的控制下,由倾斜磁场驱动部31驱动倾斜磁场线圈24,对被测体P施加倾斜磁场Gx、Gy、Gz,所述倾斜磁场Gx、Gy、Gz的磁场强度与X、Y、Z方向有关,分别直线性地变化。此外,高频线圈8在顺序控制器39的控制下,通过从发送部施加高频脉冲,对被测体P施加高频磁场。然后,利用接收线圈26a和接收线圈26b,接收磁共振信号。
之后,顺序控制器39对移动机构控制部33发送与第一移动机构27的移动位移有关的信息,指示接收线圈26a的移动。
接着,利用台床22的移动,使接收线圈26c位于接收线圈26a的下方。在该状态下,与上述同样地,利用接收线圈26a和接收线圈26c接收磁共振信号。另外,使接收线圈26d位于接收线圈26a的下方。在该状态下,与上述同样地,利用接收线圈26a和接收线圈26d接收磁共振信号。这样,就能够取得涉及到接收线圈26b~26d的位置的宽区域的磁共振信号。然后,按照接收线圈26b~26d的各自位置中的被测体P的体厚,接收线圈26a上下移动,因此,接收线圈26a就与被测体P接近,在哪个位置中都能够得到良好的磁共振信号。
在接收部34中对分别由接收线圈26a~26d接收到的磁共振信号放大和检波了之后,进行A/D变换,在顺序控制器39的控制下,向数据收集部35发送。然后,在数据收集部35中,在顺序控制器39的控制下收集磁共振信号并进行存储。数据收集部35在顺序控制器39的控制下,将存储的磁共振信号送给计算机36。计算机36在顺序控制器39的控制下,进行基于从数据收集部35送来的磁共振信号的图像重构。由显示器38显示由计算机36重构的图像。
该第二实施方式可以进行如下的各种各样的变形来实施。
在以上说明的具体例中,想摄像的区域的端部与接收线圈26b~26d的线圈端部一致,但也能有不一致的情况。在这样的情况下,例如,在对接收线圈26a进行跨接收线圈26b和接收线圈26c两者的接收线圈的摄像的情况下,可以利用接收线圈26a、26b、26c接收磁共振信号。若接收线圈26b~26d已预先固定在台床22上,就可以在指定了摄像开始点和摄像结束点的时候,组合接收线圈26b~26d,分几次适当地计划是否应该收集图像数据。
也可以省略第二移动机构28。该情况下,接收线圈26a对于Z方向固定。因此,以已向测距传感器29发送了开始信号为契机,特殊指定台床22上的被测体P的摄像部位。然后,控制台床22的Z方向的位移,使得该摄像部位来到接收线圈26a的正下方。
也可以将该第二实施方式变形,构成图9中示出的结构。即,将使接收线圈26a在机架21内移动的机构,变更为使用了L字型的支承件41的结构。在支承件41的一端上安装接收线圈26a。将支承件41的另一端安装在机架21的外侧。然后,利用设置在机架21的一侧的动力,使支承件41移动,使接收线圈26a移动。
也可以将接收线圈26a设置为可拆卸,检查者能够在象检测器这样的状态中使用。此外,也可以将接收线圈26a、26b、26c、26d分别设为在一个单元中具有多个线圈的阵列线圈。
也可以在台床22上具有使预板22a上下移动的第三移动机构。在被测体P小或体厚少的情况下,需要使接收线圈26a对被测体P很大地移动。这就从磁场磁铁的最佳摄像区域即磁铁中心过低地降下摄像区域,灵敏度就降低。但是,若利用如上所述的第三移动机构,就能够较小地抑制接收线圈26a的移动量,能够消除如上所述的不妥。
不利用接收线圈26b~26d,也能仅由接收线圈26a进行磁共振信号的接收。
测距传感器29也可以安装在接收线圈26a上。该情况下,首先,使顶板22a移动,使得被测体P的摄影部位与接收线圈26a对置。之后,用测距传感器29测定从接收线圈26a到被测体P的距离。然后,基于该测定结果,使接收线圈26a上下移动。再有,该情况下,应该充分考虑不使接收线圈26a的接收灵敏度降低,来决定测距传感器29的安装位置。此外,最好由铝等电波屏蔽材料把测距传感器29屏蔽起来。此外,由测距传感器29测距的定时,最好设为还没执行用于摄像的脉冲顺序序列期间,或者是信号接收的期间外。
(第三实施方式)
图10是示出第三实施方式涉及的MRI装置的结构的图。再有,为了方便说明,如图所示定义X、Y、Z的各轴方向。
如图10所示,第三实施方式的MRI装置具有机架51、台床52、接收线圈53、54、金属丝55、滑轮56、57、提升装置58、传感器59和控制部60。
机架51在图10中示出了用YZ面切断后的断面。在机架21上设置静态磁场磁铁、倾斜磁场线圈和高频线圈等,但省略了这些图示。第三实施方式涉及的MRI装置除此以外具有用于进行摄像的周知的各种要素,但在图10中仅示出特征的要素,其他要素省略了图示。
台床52具有由上顶板52a和下顶板52b构成的双重式的顶板。通过使上顶板52a在Z方向上移动,台床52就将载置在上顶板52a上的被测体P搬送到机架51的内部空间中。在上顶板52a与下顶板52b之间具有空隙,在该空隙内配置着RF线圈53。在全身扫描时,上顶板52a移动,下顶板52b不移动。即,在RF线圈53、54之间搬送载置在上顶板52a上的被测体P。
RF线圈53是多类型的接收用线圈。RF线圈53接收从被测体P放射的磁共振信号。
RF线圈54是多类型的接收用线圈。RF线圈54配置在机架51的内部空间中。与RF线圈54连接金属丝55的一端。金属丝55的另一端由滑轮56、57导向机架51的外部,与提升装置58连接。然后,RF线圈54成为由金属丝55悬吊的状态。再有,滑轮56、57利用支承部件安装在机架51上。
提升装置58通过缠绕或抽出金属丝55,来使RF线圈54向Y方向移动。
传感器59固定在RF线圈54上,与RF线圈54共同移动。传感器59检测RF线圈54与被测体P的接近状态。
控制部60一边参照传感器59的输出,一边控制提升装置58,使得RF线圈54与被测体P接近。
图11是示出图10中的控制部60的详细结构的图。
控制部60具有超声波驱动部60a、多路转换器60b、接收部60c和提升驱动部60d。该结构是使用超声波振子59a作为传感器59的情况。
超声波驱动部60a输出用于让超声波振子59a发送超声波的发送信号。多路转换器60b向超声波振子59a输出超声波驱动部60a输出的发送信号。多路转换器60b向接收部60c输出超声波振子59a输出的信号。接收部60c基于通过多路转换器60b输入的超声波振子59a的输出信号,判定RF线圈54与被测体P的距离是否在预定距离以下,在变为上述预定距离以下时,向提升驱动部60d输出检测信号。提升驱动部60d基于上述检测信号和从计算机系统送来的控制信号,驱动提升装置58。
下面,对如上所述构成的MRI装置的工作进行说明。再有,由于最好用于得到重构图像的工作与第一实施方式和第二实施方式相同,因此,省略其说明。然后,在此,对RF线圈54的位置控制进行说明。
每次进行相当于RF线圈53、54的接收范围的部位的摄像,都反复利用上顶板52a使被测体P移动。
另外,在使上顶板52a移动之前,利用控制信号对提升驱动部60d给予提升指示。提升驱动部60d由此驱动提升装置58缠绕金属丝55,以使RF线圈54充分上升。这样地,从被测体P拉远了RF线圈54之后,移动上顶板52a。
若上顶板52a的移动结束了,就利用控制信号对提升驱动部60d给予接近指示。提升驱动部60d由此就驱动提升装置58,使得送出金属丝55。
另外,提升装置58一送出金属丝55,RF线圈54就降下,与被测体P接近。这时,超声波驱动部60a间歇地输出发送信号,使超声波从超声波振子59a发送。然后,在接收部60c中接收由被测体P反射的超声波振子59a接收的信号。接收部60c从超声波振子59a发送超声波后,判定直到接收其反射信号的延迟时间是否在与预定距离相当的预定时间以下。再有,预定时间可以预先由计算来设定,也可以例如用仿真等测定后制定标准。若上述延迟时间成为规定时间以下,接收部60c就输出检测信号。从接收部60c一输出检测信号,提升驱动部60d就使提升装置58停止。
即,若RF线圈54接近被测体P到预定距离,控制部60就使RF线圈54的移动停止。然后,之后,由RF线圈53、54接收磁共振信号。
如上所述,根据第三实施方式,一边使被测体P移动变更摄像部位,一边移动RF线圈54,使得距各个摄像部位的距离成为预定距离。然后,通过由RF线圈53、54接收磁共振信号,来进行摄像。其结果,能充分利用RF线圈54的特征,高品质地进行摄像。此外,由于不将RF线圈54装在被测体P上,因此,对被测体P不产生多余的负担。
再有,超声波振子59a的安装位置最好配置成不影响RF线圈54的性能,且不来到各元件内。此外,最好由铝等电波屏蔽材料把超声波振子59a屏蔽起来。用于超声波的收发频率,使用在空气中衰减少的比较低的频率。超声波的收发定时设置为还没执行MRI的脉冲顺序序列的期间,或者即使在脉冲顺序序列执行中也避开信号接收的期间。
该第三实施方式可以进行如下的各种各样的变形来实施。
图12是示出图10中的控制部60的其它结构的图。再有,在与图11相同的部分上标记相同符号,省略其详细说明。
图12中示出的控制部60具有提升驱动部60d、激光驱动部60e和接收部60f。该结构是由激光振荡器59b和受光器59c构成的情况。
激光驱动部60e输出用于使激光振荡器59b振荡激光的发送信号。接收部60f基于受光器59c的输出信号,判定RF线圈54与被测体P的距离是否是预定距离以下,在成为上述预定距离以下时,向提升驱动部60d输出检测信号。
在该图12示出的结构中,基于在向被测体P照射了激光时从被测体P反射的光的强度,检测RF线圈54是否已接近了被测体P。
再有,也可以在被测体P上贴合提高激光反射效率的板,或涂覆涂料等。也可以取代激光,利用红外光等其他光。此外,激光也可以不连续,在不妨碍MRI的数据收集的时期断续地收发。
图13A是示出图10中的控制部60的其它结构的图。再有,在与图11相同的部分上标记相同符号,省略其详细说明。
图13A中示出的控制部60具有提升驱动部60d和接收部60g。该结构是由压力传感器59d和压力检测针59e构成传感器59的情况。压力检测针59e与被测体P接触,将压力传给压力传感器59d。
接收部60g基于压力传感器59d的输出信号,判定RF线圈54与被测体P的距离是否是预定距离以下,在成为上述预定距离以下时,向提升驱动部60d输出检测信号。
在该图13A示出的结构中,基于压力检测针59e接触到被测体P时传给压力传感器59d的压力,检测RF线圈54是否已接近了被测体P。然后,在由压力传感器59d感知了一定值以上的压力时,接收部60g输出检测信号。
压力传感器59d如图13B所示,安装在安装RF线圈54上的支承部件59f的尖端,也可以将压力传感器59d与被测体P接触。再有,压力检测针59e设为平面状,也可以使用多个针。此外,也可以将压力传感器59d设置在多个地方上。压力传感器59d设为平面状(薄片状),也可以设为避开RF线圈54的元件部的网格状等。
图14是示出图10中的控制部60的其它结构的图。再有,在与图11相同的部分上标记相同符号,省略其详细说明。
图14中示出的控制部60具有提升驱动部60d和判定部60h。该结构是由微型开关59g和检测针59h构成传感器59的结构。检测针59h在与被测体P接触时位移,使微型开关59g打开。
判定部60h基于微型开关59g的输出信号,判定RF线圈54与被测体P的距离是否是预定距离以下,在成为上述预定距离以下时,向提升驱动部60d输出检测信号。
在该图14示出的结构中,基于检测针59h与被测体P接触后将微型开关59g打开了,来检测RF线圈54已经接近了被测体P。
对于本领域的技术人员将很容易地得到其它的优点和变形。因此,在更广的方面本发明并不局限于本文中示出并描述的特定细节和有代表性的实施例。因而,在不脱离如由所附的权利要求和其等效内容所限定的本发明的精神或范围的情况下可以做出各种变形。

Claims (37)

1.一种磁共振成像装置,其特征在于具有:
在机架内产生静态磁场的静态磁场生成单元;
对配置在上述静态磁场内的被测体施加倾斜磁场的倾斜磁场生成单元;
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈;
检测上述被测体的外形的控制部;
基于上述检测到的外形,使上述高频线圈在相对于上述被测体的远近方向上移动的线圈移动单元;以及
基于上述接收到的磁共振信号,生成磁共振图像的图像生成单元。
2.如权利要求1所述的磁共振成像装置,其特征在于,还具有使上述被测体移动的被测体移动单元,
上述线圈移动单元根据上述被测体的移动,使上述高频线圈移动。
3.如权利要求2所述的磁共振成像装置,其特征在于,
在上述被测体利用上述被测体移动单元向第一方向移动时,上述控制部基于接收到的磁共振信号,检测上述被测体的外形,
上述线圈移动单元在上述被测体利用上述被测体移动单元向与上述第一方向相反的第二方向移动时,使上述高频线圈移动。
4.如权利要求3所述的磁共振成像装置,其特征在于,还具有从被测体接收磁共振信号的整体线圈,
上述控制部基于由上述整体线圈接收到的磁共振信号,检测上述被测体的外形。
5.如权利要求4所述的磁共振成像装置,其特征在于,
上述图像生成单元基于由上述整体线圈接收到的磁共振信号,生成上述被测体的预扫描图像,
上述控制部基于该预扫描图像,检测上述被测体的外形。
6.如权利要求3所述的磁共振成像装置,其特征在于,还具有,在上述被测体利用上述被测体移动单元向上述第一方向移动时,检测上述被测体利用上述被测体移动单元向第二方向移动时的摄影条件的条件检测单元,
上述高频线圈在上述检测到的摄影条件下,接收上述磁共振信号。
7.如权利要求6所述的磁共振成像装置,其特征在于,上述条件检测单元检测上述磁共振信号的发送功率数据。
8.如权利要求6所述的磁共振成像装置,其特征在于,上述条件检测单元检测灵敏度分布数据。
9.如权利要求2所述的磁共振成像装置,其特征在于,
在上述被测体利用上述被测体移动单元向第一方向移动时,上述控制部基于接收到的磁共振信号,检测上述被测体的外形,
上述线圈移动单元在上述被测体向与上述第一方向相同的方向移动时,使上述高频线圈移动。
10.如权利要求1所述的磁共振成像装置,其特征在于,上述高频线圈是局部摄影用的高频线圈。
11.一种磁共振成像装置,其特征在于具有:
在机架内产生静态磁场的静态磁场生成单元;
对配置在上述静态磁场内的被测体施加倾斜磁场的倾斜磁场生成单元;
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈;
基于由上述高频线圈接收到的上述磁共振信号,检测上述被测体的外形的控制部;
基于上述检测到的外形,使上述高频线圈在相对于上述被测体的远近方向上移动的线圈移动单元;以及
基于由上述线圈移动单元移动的上述高频线圈接收到的上述磁共振信号,生成磁共振图像的图像生成单元。
12.如权利要求11所述的磁共振成像装置,其特征在于,还具有使上述被测体移动的被测体移动单元,
上述线圈移动单元根据上述被测体的移动,使上述高频线圈移动。
13.如权利要求12所述的磁共振成像装置,其特征在于,
在上述被测体利用上述被测体移动单元向第一方向移动时,上述控制部基于接收到的磁共振信号,检测上述被测体的外形,
上述线圈移动单元在上述被测体向与上述第一方向相同的方向移动时,使上述高频线圈移动。
14.如权利要求11所述的磁共振成像装置,其特征在于,上述高频线圈是局部摄影用的高频线圈。
15.一种磁共振成像装置,其特征在于具有:
在机架内产生静态磁场的静态磁场生成单元;
对配置在上述静态磁场内的被测体施加倾斜磁场的倾斜磁场生成单元;
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈;
测量上述被测体的厚度的传感器;
基于上述测量的厚度,使上述高频线圈在上述厚度方向上移动的线圈移动单元;以及
基于上述接收到的磁共振信号,生成磁共振图像的图像生成单元。
16.如权利要求15所述的磁共振成像装置,其特征在于,上述传感器是对上述被测体收发超声波的超声波传感器。
17.如权利要求15所述的磁共振成像装置,其特征在于,上述传感器是对上述被测体收发光的光传感器。
18.如权利要求15所述的磁共振成像装置,其特征在于,上述传感器设置在上述机架上。
19.如权利要求15所述的磁共振成像装置,其特征在于,上述传感器设置在上述机架的侧面。
20.如权利要求15所述的磁共振成像装置,其特征在于,还具有使上述高频线圈移动到上述静态磁场中的摄影区域的第二线圈移动单元。
21.如权利要求15所述的磁共振成像装置,其特征在于,上述高频线圈可拆卸。
22.如权利要求20所述的磁共振成像装置,其特征在于,使上述高频线圈在上述厚度方向上移动的线圈移动单元,与上述第二线圈移动单元结合安装。
23.如权利要求15所述的磁共振成像装置,其特征在于,还具有根据上述被测体的厚度,使设置上述被测体的台床在上述厚度方向上移动的台床移动单元。
24.一种磁共振成像装置,其特征在于具有:
在机架内产生静态磁场的静态磁场生成单元;
对配置在上述静态磁场内的被测体施加倾斜磁场的倾斜磁场生成单元;
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈;
检测上述高频线圈与上述被测体的接近状态的传感器;
基于上述检测到的接近状态,使上述高频线圈移动的线圈移动单元;以及
基于上述接收到的磁共振信号,生成磁共振图像的图像生成单元。
25.如权利要求24所述的磁共振成像装置,其特征在于,上述传感器设置在上述高频线圈上。
26.如权利要求24所述的磁共振成像装置,其特征在于,上述高频线圈是多线圈。
27.如权利要求24所述的磁共振成像装置,其特征在于,还具有台床,该台床具有:直接支持上述被测体的第一顶板;和设置在上述第一顶板的下部、可移动地支持上述第一顶板的第二顶板。
28.如权利要求24所述的磁共振成像装置,其特征在于,还具有设置在上述第一顶板与上述第二顶板之间的第二高频线圈。
29.如权利要求24所述的磁共振成像装置,其特征在于,上述传感器是对上述被测体收发超声波的超声波传感器。
30.如权利要求24所述的磁共振成像装置,其特征在于,上述传感器是对上述被测体收发光的光传感器。
31.如权利要求24所述的磁共振成像装置,其特征在于,上述传感器是与上述被测体接触,检测其压力的压力传感器。
32.一种磁共振成像装置,其特征在于,具有:
在机架内产生静态磁场的静态磁场生成单元;
对配置在上述静态磁场内的被测体施加倾斜磁场的倾斜磁场生成单元;
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈;
载置上述被测体的顶板;
基于上述顶板的位置,使上述高频线圈在相对于上述被测体的远近方向上移动的线圈移动单元;以及
基于上述被测体的接收到的磁共振信号,生成磁共振图像的图像生成单元。
33.一种磁共振成像装置中的图像生成方法,该磁共振成像装置具有:
在机架内产生静态磁场的静态磁场生成单元;
提供倾斜的磁场给静态磁场内的被测体的倾斜磁场生成单元;以及
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈,
其特征在于,该图像生成方法包括以下步骤:
检测被测体的外形;
基于检测到的外形,移动高频线圈,使高频线圈相对于被测体远近而置;以及
基于接收到的磁共振信号生成磁共振图像。
34.一种磁共振成像装置中的图像生成方法,该磁共振成像装置具有:
在机架内产生静态磁场的静态磁场生成单元;
提供倾斜的磁场给静态磁场内的被测体的倾斜磁场生成单元;以及
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈,
其特征在于,该图像生成方法包括:
基于由高频线圈接收到的磁共振信号,检测被测体的外形;
基于检测到的外形,使上述高频线圈在相对于上述被测体的远近方向上移动;以及
基于由已移动的高频线圈接收到的磁共振信号,生成磁共振图像。
35.一种磁共振成像装置中的图像生成方法,该磁共振成像装置具有:
在机架内产生静态磁场的静态磁场生成单元;
提供倾斜的磁场给静态磁场内的被测体的倾斜磁场生成单元;以及
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈,
其特征在于,该图像生成方法包括以下步骤:
测量被测体的厚度;
基于测量到的厚度,在厚度方向上移动高频线圈;以及
基于接收到的磁共振信号,生成磁共振图像。
36.一种磁共振成像装置中的图像生成方法,该磁共振成像装置具有:
在机架内产生静态磁场的静态磁场生成单元;
提供倾斜的磁场给静态磁场内的被测体的倾斜磁场生成单元;以及
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈,
其特征在于,该图像生成方法包括以下步骤:
检测高频线圈与被测体之间的接近状态;
基于检测到的接近状态,移动高频线圈;以及
基于接收到的磁共振信号,生成磁共振图像。
37.一种磁共振成像装置中的图像生成方法,该磁共振成像装置具有:
在机架内产生静态磁场的静态磁场生成单元;
提供倾斜的磁场给静态磁场内的被测体的倾斜磁场生成单元;
从被施加了上述倾斜磁场的被测体接收磁共振信号的高频线圈;以及
其上载置有该被测体的顶板,
该图像生成方法包括以下步骤:
基于上述顶板的位置,使上述高频线圈在相对于上述被测体的远近方向上移动;以及
基于检测到的磁共振信号,生成磁共振图像。
CN2004100959490A 2003-12-04 2004-09-29 磁共振成像装置和该装置中的图像生成方法 Expired - Fee Related CN1624465B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003405779 2003-12-04
JP405779/2003 2003-12-04
JP2004042863 2004-02-19
JP042863/2004 2004-02-19

Publications (2)

Publication Number Publication Date
CN1624465A CN1624465A (zh) 2005-06-08
CN1624465B true CN1624465B (zh) 2010-06-16

Family

ID=34635648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004100959490A Expired - Fee Related CN1624465B (zh) 2003-12-04 2004-09-29 磁共振成像装置和该装置中的图像生成方法

Country Status (3)

Country Link
US (1) US7218106B2 (zh)
JP (1) JP2011152438A (zh)
CN (1) CN1624465B (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10114013B4 (de) * 2001-03-22 2005-06-23 Siemens Ag Magnetresonanzanlage
WO2005076027A1 (en) * 2004-02-09 2005-08-18 Koninklijke Philips Electronics N.V. An rf coil system for an mri system with a fixed and a moving part
DE102004006550B4 (de) * 2004-02-10 2013-08-29 Siemens Aktiengesellschaft Verfahren zur Kontrolle eines Hochfrequenz-Leistungsverstärkers, Hochfrequenzeinrichtung, Hochfrequenz-Kontrolleinrichtung und Magnetresonanztomographiesystem
CN101229061B (zh) * 2004-11-02 2012-11-21 株式会社东芝 磁共振成像装置和磁共振成像方法
US8721344B2 (en) * 2005-07-29 2014-05-13 Koninklijke Philips N.V. Imaging system simulator
US7330030B2 (en) * 2005-11-02 2008-02-12 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
DE102005052564B4 (de) * 2005-11-02 2008-11-27 Siemens Ag Verfahren und Steuereinrichtung zur Bestimmung der Position einer Lokalspule sowie Magnetresonanzsystem mit der Steuereinrichtung und Computerprogrammprodukt
US9335006B2 (en) * 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
JP5091542B2 (ja) * 2006-06-08 2012-12-05 株式会社東芝 磁気共鳴イメージング装置
JP4854448B2 (ja) * 2006-09-28 2012-01-18 株式会社東芝 Mri装置及びmri装置用rfコイルユニット
DE102006046044B4 (de) * 2006-09-28 2010-04-08 Siemens Ag Hochfrequenzsendeanordnung einer Magnetresonanzanlage
US7525311B2 (en) * 2007-03-02 2009-04-28 Hitachi Medical Systems America, Inc. Configurable radiofrequency receive coil system for a magnetic resonance imaging system
JP2008220861A (ja) * 2007-03-15 2008-09-25 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置および磁気共鳴イメージング方法
CN201150537Y (zh) * 2008-01-29 2008-11-19 西门子(中国)有限公司 应用于磁共振系统中的病床装置
WO2009152586A1 (en) * 2008-06-20 2009-12-23 The University Of Queensland Mri apparatus and method with moving field component
EP2138806A1 (de) * 2008-06-27 2009-12-30 SICK STEGMANN GmbH Positionsmessvorrichtung
JP5459669B2 (ja) * 2010-03-16 2014-04-02 株式会社東芝 磁気共鳴イメージング装置
CN103054579B (zh) * 2011-10-24 2016-01-20 上海联影医疗科技有限公司 磁共振成像系统
WO2013153493A1 (en) * 2012-04-10 2013-10-17 Koninklijke Philips N.V. Patient examination table system for use with a magnetic resonance (mr) scanner system
CN104055517B (zh) * 2013-03-22 2019-04-26 深圳联影医疗科技有限公司 一种磁共振成像设备和磁共振扫描方法
US10292618B2 (en) 2013-12-10 2019-05-21 Koninklijke Philips N.V. MR-coil housing with spacer shaped to maintain an anatomy receiving space from the MRI bore wall
CN104905788A (zh) * 2014-03-12 2015-09-16 苏州众志医疗科技有限公司 磁共振系统及该磁共振系统中射频线圈的超声波定位方法
CN106535758B (zh) * 2014-04-04 2020-06-19 皮耶尔弗朗切斯科·帕沃尼 用于治疗或成像的包括天线组件的出入门或台架
RU2700468C2 (ru) * 2014-06-04 2019-09-17 Конинклейке Филипс Н.В. Удельная скорость поглощения, модулируемая пространственной близостью к пациенту
JP6445051B2 (ja) 2014-06-27 2018-12-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 均一場区域内の磁気共鳴撮像アンテナの位置決め
KR20160064399A (ko) * 2014-11-28 2016-06-08 삼성전자주식회사 자기공명영상장치
EP3261534B1 (en) * 2015-02-27 2022-01-19 Koninklijke Philips N.V. Magnetic resonance examination system with a moveable patient carrier
KR101806290B1 (ko) 2016-01-18 2017-12-07 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 장치의 이상을 검출하기 위한 방법
KR101812661B1 (ko) * 2016-03-09 2017-12-27 삼성전자주식회사 Mri 장치
KR101734999B1 (ko) 2016-08-08 2017-05-12 삼성전자주식회사 자기공명영상장치
CN108020797B (zh) * 2016-11-03 2020-11-10 上海东软医疗科技有限公司 磁共振发射线圈及核磁共振成像设备
EP3424420A1 (de) * 2017-07-07 2019-01-09 Siemens Healthcare GmbH Verfahren zu einem unterstützen eines benutzers bei einem positionieren einer zubehöreinheit für eine magnetresonanzuntersuchung an einem untersuchungsobjekt und eine magnetresonanzvorrichtung
GB2573533B (en) * 2018-05-08 2021-01-06 Elekta ltd Medical apparatus
EP3620808A1 (en) 2018-09-06 2020-03-11 Koninklijke Philips N.V. Coil arrangement for magnetic resonance imaging system
JP7123767B2 (ja) * 2018-11-20 2022-08-23 キヤノンメディカルシステムズ株式会社 磁気共鳴撮像装置
DE102019207492B3 (de) * 2019-05-22 2020-09-03 Siemens Healthcare Gmbh Spuleneinrichtung für eine Magnetresonanzanlage und Magnetresonanzanlage
EP3964851A1 (en) 2020-09-08 2022-03-09 Koninklijke Philips N.V. Method for adapting a coil of an mr imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352981A (en) * 1991-11-27 1994-10-04 Kabushiki Kaisha Toshiba High-resolution image reconstruction method for MRI
US5757189A (en) * 1996-11-27 1998-05-26 Picker International, Inc. Arbitrary placement multimode coil system for MR imaging
US6385480B1 (en) * 1999-01-15 2002-05-07 Siemens Aktiengesellschaft Angio-MR system
CN1371000A (zh) * 2001-07-25 2002-09-25 北京泰杰燕园医学工程技术有限公司 全开放磁共振成像仪
CN1388369A (zh) * 2001-05-30 2003-01-01 西门子公司 具有可移动梯度线圈单元的磁共振装置

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI65365C (fi) * 1982-07-07 1984-05-10 Instrumentarium Oy Spolanordning
JPS62117541A (ja) * 1985-11-18 1987-05-29 株式会社東芝 磁気共鳴イメ−ジング装置
US4830012A (en) * 1987-08-14 1989-05-16 Duke University High speed NMR imaging method and apparatus
JP2514849Y2 (ja) 1987-09-02 1996-10-23 アイワ株式会社 カセットローディング装置
US5085219A (en) * 1987-10-30 1992-02-04 The Regents Of The University Of California Adjustable holders for magnetic reasonance imaging rf surface coil
JPH02246929A (ja) * 1989-03-22 1990-10-02 Toshiba Corp Mri装置の表面コイル保持具
JPH0420327A (ja) * 1990-05-15 1992-01-23 Toshiba Corp Mri装置用サーフェスコイル部
FI86687C (fi) * 1990-06-14 1992-10-12 Instrumentarium Oy Patientbaedd foer magnetavbildningsanordning
JPH04279149A (ja) * 1991-03-07 1992-10-05 Toshiba Corp 磁気共鳴イメージング装置用プローブ
JP3168675B2 (ja) * 1992-03-19 2001-05-21 株式会社日立製作所 核磁気共鳴検査装置
JP3350142B2 (ja) 1993-05-07 2002-11-25 株式会社東芝 核医学診断装置
US5461314A (en) * 1993-10-21 1995-10-24 The Regents Of The University Of California MRI front end apparatus and method of operation
JPH07143974A (ja) * 1993-11-22 1995-06-06 Shimadzu Corp 磁気共鳴断層撮影装置
US5551430A (en) * 1994-08-05 1996-09-03 Picker International, Inc. RF coil identification and testing interface for NMR systems
US5510711A (en) * 1994-08-05 1996-04-23 Picker International, Inc. Digital combination and correction of quadrature magnetic resonance receiver coils
US5585724A (en) * 1995-06-12 1996-12-17 Picker International, Inc. Magnetic resonance gradient coils with interstitial gap
US5909119A (en) * 1995-08-18 1999-06-01 Toshiba America Mri, Inc. Method and apparatus for providing separate fat and water MRI images in a single acquisition scan
US5539316A (en) * 1995-08-25 1996-07-23 Bruker Instruments, Inc. Shimming method for NMR magnet having large magnetic field inhomogeneities
US5713358A (en) * 1996-03-26 1998-02-03 Wisconsin Alumni Research Foundation Method for producing a time-resolved series of 3D magnetic resonance angiograms during the first passage of contrast agent
JPH10127594A (ja) * 1996-10-29 1998-05-19 Shimadzu Corp 磁気共鳴断層撮像装置
US5928148A (en) * 1997-06-02 1999-07-27 Cornell Research Foundation, Inc. Method for performing magnetic resonance angiography over a large field of view using table stepping
US5924987A (en) * 1997-10-06 1999-07-20 Meaney; James F. M. Method and apparatus for magnetic resonance arteriography using contrast agents
US6289232B1 (en) * 1998-03-30 2001-09-11 Beth Israel Deaconess Medical Center, Inc. Coil array autocalibration MR imaging
US6263228B1 (en) * 1998-08-27 2001-07-17 Toshiba America, Mri, Inc. Method and apparatus for providing separate water-dominant and fat-dominant images from single scan single point dixon MRI sequences
JP4024947B2 (ja) * 1998-10-01 2007-12-19 株式会社東芝 磁気共鳴イメージング装置のrfコイル
US6147492A (en) * 1998-10-28 2000-11-14 Toshiba America Mri, Inc. Quantitative MR imaging of water and fat using a quadruple-echo sequence
US6459922B1 (en) * 1999-03-30 2002-10-01 Toshiba America Mri, Inc. Post data-acquisition method for generating water/fat separated MR images having adjustable relaxation contrast
GB2350682A (en) 1999-06-04 2000-12-06 Marconi Electronic Syst Ltd Laterally moveable RF coil for MRI
US6275722B1 (en) * 1999-07-29 2001-08-14 Philips Electronics North America Corporation Methods and apparatus for magnetic resonance imaging with RF coil sweeping
US6317619B1 (en) * 1999-07-29 2001-11-13 U.S. Philips Corporation Apparatus, methods, and devices for magnetic resonance imaging controlled by the position of a moveable RF coil
GB9926923D0 (en) * 1999-11-15 2000-01-12 Marconi Electronic Syst Ltd Magnetic resonance imaging
GB9926918D0 (en) * 1999-11-15 2000-01-12 Marconi Electronic Syst Ltd Magnetic resonance imaging
US6262576B1 (en) * 1999-11-16 2001-07-17 Picker International, Inc. Phased array planar gradient coil set for MRI systems
US6278276B1 (en) 1999-11-16 2001-08-21 Picker International, Inc. Phased array gradient coil set with an off center gradient field sweet spot
US6356780B1 (en) * 1999-12-22 2002-03-12 General Electric Company Method and apparatus for managing peripheral devices in a medical imaging system
JP2001198100A (ja) 2000-01-20 2001-07-24 Ge Medical Systems Global Technology Co Llc Mrデータ収集方法、mr画像表示方法およびmri装置
US6717406B2 (en) * 2000-03-14 2004-04-06 Beth Israel Deaconess Medical Center, Inc. Parallel magnetic resonance imaging techniques using radiofrequency coil arrays
JP4718714B2 (ja) 2000-04-25 2011-07-06 株式会社東芝 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
US6946836B2 (en) * 2000-04-25 2005-09-20 Kabushiki Kaisha Toshiba Magnetic resonance imaging involving movement of patient's couch
WO2002029429A2 (en) * 2000-10-02 2002-04-11 Koninklijke Philips Electronics N.V. Magnetic resonance method, apparatus and computer program product
US6445181B1 (en) * 2000-11-09 2002-09-03 The Board Of Trustees Of The Leland Stanford Junior University MRI method apparatus for imaging a field of view which is larger than a magnetic field
US6556009B2 (en) * 2000-12-11 2003-04-29 The United States Of America As Represented By The Department Of Health And Human Services Accelerated magnetic resonance imaging using a parallel spatial filter
DE10114013B4 (de) * 2001-03-22 2005-06-23 Siemens Ag Magnetresonanzanlage
DE10150138B4 (de) * 2001-10-11 2009-10-08 Siemens Ag Verfahren zur Magnetresonanz-Bildgebung
DE10150137B4 (de) * 2001-10-11 2006-08-17 Siemens Ag Verfahren und Vorrichtung zur Magnetresonanz-Bildgebung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352981A (en) * 1991-11-27 1994-10-04 Kabushiki Kaisha Toshiba High-resolution image reconstruction method for MRI
US5757189A (en) * 1996-11-27 1998-05-26 Picker International, Inc. Arbitrary placement multimode coil system for MR imaging
US6385480B1 (en) * 1999-01-15 2002-05-07 Siemens Aktiengesellschaft Angio-MR system
CN1388369A (zh) * 2001-05-30 2003-01-01 西门子公司 具有可移动梯度线圈单元的磁共振装置
CN1371000A (zh) * 2001-07-25 2002-09-25 北京泰杰燕园医学工程技术有限公司 全开放磁共振成像仪

Also Published As

Publication number Publication date
US20050122108A1 (en) 2005-06-09
JP2011152438A (ja) 2011-08-11
CN1624465A (zh) 2005-06-08
US7218106B2 (en) 2007-05-15

Similar Documents

Publication Publication Date Title
CN1624465B (zh) 磁共振成像装置和该装置中的图像生成方法
US6317619B1 (en) Apparatus, methods, and devices for magnetic resonance imaging controlled by the position of a moveable RF coil
US7768263B2 (en) Magnetic resonance imaging apparatus and method
US7463031B2 (en) MRI apparatus and RF coil assembly utilized therein
JP2002530172A (ja) Mrジオメトリー規定制御を備えたmrイメージング・システム
EP0510144A1 (en) Method and apparatus for obtaining in-vivo nmr data from a moving subject
EP1178327A2 (en) Compensation method and apparatus for magnetic resonance imaging
JP6584767B2 (ja) 磁気共鳴イメージング装置
US6445181B1 (en) MRI method apparatus for imaging a field of view which is larger than a magnetic field
US20090012385A1 (en) Magnetic Resonance Imaging Device and Method
JP2005261924A (ja) 磁気共鳴イメージング装置およびこの装置での画像生成方法
US7474096B2 (en) Magnetic resonance imaging apparatus
JPS5841340A (ja) 核磁気共鳴を用いた検査装置
JP3474653B2 (ja) 磁気共鳴イメージング装置
US7436178B2 (en) Fast continuous moving bed magnetic resonance imaging with multiple stationary receive coils for sense reconstruction
JP5184899B2 (ja) 磁気共鳴イメージング装置
JP4201089B2 (ja) 磁気共鳴イメージング装置及びマルチステーションce−mra方法
JPS62246356A (ja) 核磁気共鳴を用いる検査装置
JP4734031B2 (ja) Mri装置
EP1658510A1 (en) Automated positioning of mri surface coils
CN105806928B (zh) 一种静磁场核磁效应分析方法
JPH04208132A (ja) 磁気共鳴映像装置
JP4233699B2 (ja) 磁場形成装置および磁気共鳴撮像装置
JP4125134B2 (ja) 磁気共鳴アコーストグラフィ
CN217278902U (zh) 雷达指向性自动化检测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160713

Address after: Japan Tochigi

Patentee after: TOSHIBA MEDICAL SYSTEMS Corp.

Address before: Tokyo, Japan

Patentee before: Toshiba Corp.

Patentee before: TOSHIBA MEDICAL SYSTEMS Corp.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100616

CF01 Termination of patent right due to non-payment of annual fee