CN1651737A - 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 - Google Patents

用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 Download PDF

Info

Publication number
CN1651737A
CN1651737A CNA2004100978627A CN200410097862A CN1651737A CN 1651737 A CN1651737 A CN 1651737A CN A2004100978627 A CNA2004100978627 A CN A2004100978627A CN 200410097862 A CN200410097862 A CN 200410097862A CN 1651737 A CN1651737 A CN 1651737A
Authority
CN
China
Prior art keywords
gas
methane
mole fraction
component
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100978627A
Other languages
English (en)
Other versions
CN1304741C (zh
Inventor
F·F·密特利克
D·J·维克多利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1651737A publication Critical patent/CN1651737A/zh
Application granted granted Critical
Publication of CN1304741C publication Critical patent/CN1304741C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明涉及一种用甲烷体积浓度为百分之40至百分之80的天然气储气中的甲烷气体向燃气轮机供给燃料的方法,该方法包括:由天然气储气提供天然气气流;将天然气气流中的惰性气体与甲烷气体分离,从而提供分离的甲烷气体和分离的惰性气体/甲烷气体混合物,分离应使得:当该惰性气体甲烷气体混合气用作燃气轮机的燃料时,在混合气中的惰性气体的量将使得燃气轮机的输出比以管道质量的天然气作为燃料的燃气轮机增加至少大百分之5。

Description

用低甲烷浓度和高惰性气体浓度的储气向 燃气轮机供给燃料的方法
技术领域
本发明涉及低甲烷浓度和高惰性气体浓度天然气的燃烧过程。更具体地说,本发明涉及通过提高惰性气体的相对浓度来利用所含甲烷的体积浓度为约从百分之40到百分之80的天然气储气并将所生产的甲烷用语生产管道质量天然气的方法。一方面可掺混氢气,以便提供惰性气体和氢气增强型甲烷气体混合物,该气体混合物中甲烷气体体积浓度不超过气体总体积的约百分之40。该气体混合物用于向燃气轮机供给燃料。
背景技术
目前,大部分甲烷储气具有相对较低的甲烷气体浓度。多数这些储气中甲烷气体的体积浓度约从百分之40到百分之80。目前,是通过从天然气中除去杂质,从而形成甲烷体积浓度通常从约百分之95+至约百分之99+的管道质量天然气。从经济上考虑,将甲烷体积浓度约从百分之40到百分之80的天然气转变成管道质量的天然气,向燃气轮机供给燃料来发电是不实际的,因为该转变过程的成本非常高。而且,甲烷体积浓度约从百分之40到百分之80的天然气不能作为燃气轮机的可靠燃料源来产生高输出功率的电力,尤其是在该范围的低端值处,因为在没有特殊设备、催化剂和没有特殊的氧与其他可燃物补偿的情况下,这么低的甲烷浓度不能提供用于燃料燃烧的稳定火焰。并且,甲烷体积浓度为百分之40至80的气流还有由于燃气轮机中的较高火焰温度而产生高NOx排出的问题。
与通过制成管道质量天然气向燃气轮机供给燃料的方法相比,用甲烷体积浓度为百分之40至80且含有大量惰性气体的天然气储气并将该气流或该气流的一部分进行提纯,来向燃气轮机供给燃料的方法使成本大大降低,在经济上更为有利。
发明内容
本发明涉及一种用甲烷体积浓度约为百分之40至80的低甲烷浓度和高惰性气体浓度的天然气储气向燃气轮机供给燃料的方法。本发明能够利用这些比通过制成管道质量天然气向燃气轮机供给燃料的方法所需成本显著降低的储气来向燃气轮机供给燃料用以发电。如上所述,目前,这些储气只能用于在除去杂质之后生成合适的燃气轮机燃料。还如前所述,现在的方法成本非常高,根据当前的天然气价格,这在经济上没有吸引力。本发明的方法能够根据环保需要除去来自天然气储气的气体中的杂质,并按能使燃气轮机产生的电力输出增加约5至20%的量将惰性气体留在燃料中。本发明方法的一个方式是试图将惰性气体留在燃料中,使流过燃气轮机的质量流量最大并提高电力输出,不需要花费生产管道质量甲烷气体和向燃料中掺混额外的惰性气体以增加流过燃气轮机的质量流量及降低火焰温度来减小NOx的排出的成本。
在本发明的一个方式中,采用天然气气流和用于生产管道质量天然气的方法。在此方式中,提纯处理过程中将所含甲烷体积浓度从约百分之40至百分之80的天然气储气中的惰性气体与甲烷气体分离。可以仅对一定量的甲烷进行分离,以便提供惰性气体增强的甲烷气体混合物,与以管道质量的天然气向燃气轮机供给燃料的方法相比,能够有效使燃气轮机的能量输出增加约5至约20%。然后,将经分离过程产生的提纯甲烷气流送去进一步提纯,生产管道质量天然气。或者,可以使惰性气体与甲烷气体整体分离,然后将与甲烷分离的该惰性气体与没有除去惰性气体的天然气气流混合(或其它含百分之40至百分之80体积浓度甲烷的气流),混合量为应使燃气轮机的输出比利用管道质量的天然气向燃气轮机供给燃料的方法增加约5至约20%。
在本发明的一个方式中,氮气是主要的惰性气体,可用膜将惰性氮气与天然气和其中的甲烷进行初级分离。市场上可购得的、适于该分离过程的膜有Air Liquide公司(Houston Texas)的Medal。此分离过程可以只按如上所述能使燃气轮机输出增加的量进行,或者将与天然气分离的氮气与天然气储气混合,以便提供惰性气体增强的天然气,使燃气轮机的输出比利用管道质量的天然气向燃气轮机供给燃料的方法增加约5至约20%。
当二氧化碳的体积浓度在约百分之45以内时,可以用膜来分离二氧化碳。在另一方式中,当二氧化碳是主要的惰性气体,其体积浓度超过约百分之45时,二氧化碳在低温下与甲烷体积浓度为约百分之40至约百分之80的天然气储气分离。在本发明的一个方式中,当天然气的压力较高,例如大于约2500psig时,该高压进料气体闪蒸到低压,例如约500psig。膨胀时的Joule Thomson效应有效提供了一定量的冷却,以便进行低温分离。当天然气储气的压力较低,如低于约1100psig时,可以通过天然气储气的外部制冷为二氧化碳与天然气储气及其中的甲烷进行分离提供有效冷却而达到分离的目的。
在一个非常重要的方式中,将惰性气体与天然气储气及其中的甲烷分离,从而提供甲烷体积浓度为约百分之40的甲烷气体。从天然气储气中分离的甲烷可以送去进行进一步处理,以便制成管道质量的天然气。从天然气气流中分离出来的惰性气体再送回到从油井中出来的天然气气流中,按能有效提供甲烷体积浓度为小于约百分之40的甲烷/惰性气体混合物的量进行混合,以便提供惰性气体增强的甲烷气体混合物。将惰性气体增强的甲烷气体混合物与氢气混合,或者在一个重要方式中,将恰好足够的甲烷转变成氢气,以便生成氢气/惰性气体/甲烷气体的燃料气混合物,该气体燃料混合物不仅可作为一种可接受的燃气轮机的燃料,而且该混合物能有效提供火焰稳定性(例如提供至少为110BTU/标准立方英尺气体热量的气体),且产生的能量比甲烷含量在约百分之95+至约百分之99+体积的的标准天然气更高。若需要的话,将氢气/惰性气体/甲烷气体混合气进行脱水,以便除去足够量的水,从而提供具有火焰稳定性的氢气/惰性气体/甲烷气体混合气。在一个重要方式中,该混合气含有至少约百分之6体积的氢气。然后再将具有火焰稳定性的氢气增强型脱水氢气/惰性气体/甲烷气体混合气用于向燃气轮发电机供给燃料。按此方式,本发明的方法比使用甲烷含量在约百分之95至约百分之99+体积的标准天然气的燃气轮机的方法能使燃气轮机电力输出有效增加至少约百分之10。在大多数情况下,输出能够增加至少约百分之20并能达到百分之30,而后一界限值是由于受燃气轮机的机械设计限制。
在本发明的一个方式中,天然气中的一部分甲烷通过催化转变或重构成氢气,然后再形成氢气增强型氢气/惰性气体/甲烷混合气。实现该转变的反应式包括:
在另一重要方式中,尤其是其中甲烷转变成氢气时,在转变反应之前,利用物理溶剂从天然气中除去硫化氢和其它酸性成分例如COS、RSH和RSSR,从而生成脱硫天然气,物理溶剂有选择地除去硫化氢和其他酸性气体,但是很少除去二氧化碳和其他惰性气体例如氦气、氩气和氮气。在此方式中,物理溶剂从以下组中选择,该组包括甲醇、聚乙二醇二甲醚混合物(分子量为约280)、碳酸丙二酯(b.p.240℃)、N-甲基-2-吡咯烷酮(b.p.202℃)、低聚乙二醇甲基异丙基醚的混合物(b.p.320℃)、膦酸三正丁酯(在30mmHg时b.p.180℃)和氰基乙酸甲酯(b.p.202℃)。该脱硫天然气与足量水混合,以便能从甲烷足量产生氢气,从而获得火焰稳定性或是BTU/Scf值至少为约110。在该方式中,重要的是在将一部分甲烷变换成氢气步骤之前要除去硫化氢和其他酸性气体,因为该重构过程是一个催化反应,硫化氢气体和其他酸性气体可能会使催化剂中毒。对酸性条件敏感且可在本发明该方式中使用的催化剂包括United Catalyst有限公司的C11系列催化剂、Haldor Topsoe公司的R67和BASF公司的G1-25。用于脱硫天然气的高温“重构催化剂”通常为铁、铬和铜,用于脱硫天然气的低温“重构催化剂”通常由铜、锌和铝制成。
在另一重要方式中,重构反应在酸性条件下利用催化剂进行,该催化剂例如United Catalyst有限公司的C25系列催化剂、BASF公司的K8-11催化剂和Haldor Topsoe公司的SSK催化剂。通常,这些催化剂是铬钼催化剂。在本发明的这一方式中,将酸性天然气与水混合,水的量应足以形成能够形成或重构成氢气含量足以使富含氢气的氢气/惰性气体/甲烷混合气具有火焰稳定性的甲烷气体/水混合物,该氢气/惰性气体/甲烷混合气含有不超过百分之40体积的甲烷。
在惰性气体与天然气储气混合之后,该惰性气体增强的甲烷气体混合物可以含有低至百分之35、百分之25或者甚至低于百分之20体积的甲烷,且仍然比以用氢气提供火焰稳定性的管道质量甲烷作为燃气轮机燃料提供更多的能量。在本发明的实际操作中,应将足量的甲烷转变成氢气,以生成氢气体积含量为至少百分之6,优选是从约百分之6至约百分之10的氢气增强型氢气/惰性气体/甲烷混合气。这将生成具有火焰稳定性的氢气增强型氢气/惰性气体/甲烷混合气,该氢气增强型氢气/惰性气体/甲烷混合气能非常有效地向燃气轮机供给燃料,以便发电。
附图的简要说明
图1是例示说明本发明方法的一个流程图,在该方法中,一些甲烷转变成氢气,从而形成氢气/惰性气体/甲烷气体混合物,以便向燃气轮机供给燃料。
图2是例示说明本发明方法的一个流程图,在该方法中,高压进料天然气闪蒸成低压,将同在该高压进料天然气中的甲烷气体与二氧化碳气体分离。
图3是例示说明本发明方法的一个流程图,在该方法中,低压进料天然气利用外部制冷设备冷冻,将同在该低压进料天然气中的甲烷气体与二氧化碳气体分离。
具体实施方式
将甲烷体积浓度从约百分之40至约百分之80和较高浓度惰性气体如氮气、二氧化碳、氦气和氩气的天然气储气传送给分离单元,以便使天然气储气中的惰性气体与甲烷气体分离。这样形成相对较纯的甲烷气流和惰性气体/甲烷气流。若储气氮气含量较高时,可用膜来使氮气与甲烷气体分离,该膜例如Medal膜。当惰性气体是二氧化碳时,可以利用如图2和3所示的低温分离过程使惰性气体与甲烷气体分离。当甲烷气体与惰性气体分离后,分离出来的相对较纯甲烷气体可以传送给如熟知的生产管道质量天然气所用的进一步提纯装置。若惰性气体与甲烷气体分离后,惰性气体/甲烷气流并没有足够的惰性气体用来增大所述燃气轮机的能量输出,那么还可以在惰性气体/甲烷气流中加入惰性气体,以使能量输出比以管道质量天然气作为燃料的燃气轮机增加从约5至约20%。或者,未将惰性气体成分分离的部分天然气气流再与从储气气流中分离出的惰性气体,按所提供的惰性气体增强天然气能使燃气轮机的输出比以管道质量的天然气作为燃料的燃气轮机的增加约5至约20%的量进一步混合。
在一个重要方式中,可以将足量的惰性气体与惰性气体/甲烷气流混合或与天然气储气混合,从而使气体混合物中甲烷含量降低到小于百分之40的体积浓度。参考图1可以看到,在此方式中,将甲烷体积浓度不多于百分之40的惰性气体增强甲烷气体混合物利用物理溶剂处理,在不除去惰性气体的情况下除去硫化氢气体或其他酸性气体成分,从而提供甲烷体积浓度不超过百分之40的脱硫天然气,该物理溶剂例如为甲醇、聚乙二醇二甲醚混合物、碳酸丙二酯、N-甲基-2-吡咯烷酮、低聚乙二醇甲基异丙基醚的混合物、膦酸三正丁酯和氰基乙酸甲酯。物理溶剂处理步骤可以在天然气进料中的惰性气体与甲烷气体分离步骤之前或之后进行。然后,将脱硫天然气通过管道1传送给氧化锌保护床2,以避免硫化氢气体溢出。脱硫天然气从氧化锌保护床2送出,并在管道3中与水混合,从而提供甲烷气体/水混合物。该气体/水混合物在管道3中在约70°F和约355psig下传送至进料排出物换热器4,在该进料排出物换热器4处,脱硫天然气/水混合物的温度升高至约800°F。必须将足量的水与天然气混合,以便能足够转变成氢气,从而使该氢气增强的脱硫氢气/惰性气体/甲烷混合气在传送给燃气轮机发电时具有火焰稳定性。当脱硫天然气与水混合并在进料排出物换热器中加热后,加热的脱硫天然气/水混合物通过管道5在约345psig和约800°F下传送给余热蒸汽发生器盘管(HRSG盘管),以便使脱硫天然气/水混合物的温度进一步升高,并在管道3中提供温度为约950°F的高热脱硫气体/水混合物。然后,该高热脱硫气体/水混合物在约340psig下通过管道7传送给重构反应室8,以便将该脱硫气体/水中的一部分甲烷转变成氢气增强的甲烷/氢气/水混合物。脱硫气体/水混合物中的甲烷在至少约700°F,优选从约900°F至约950°F和约340psig下进行催化反应,使甲烷和水反应生成氢气。更高温度有利于该转变,但是更高压力对该转变有不利影响。压力不应当超过1500psig。在将足量甲烷转变成氢气,使脱水(下文中将介绍)后的气体中含有至少约百分之6体积的氢气之后,该氢气增强的甲烷/氢气/水混合物通过管道9在约855°F和335psig条件下传送回进料排出物换热器,以便将热量转移给进入该进料排出物换热器的水和甲烷气体。在该氢气增强的甲烷/氢气/水混合物的温度降低后,它通过管道10传送到脱水分离罐(KO罐)12,以减少氢气增强型氢气/惰性气体/甲烷混合气中的含水量。在KO罐中降温到露点,使水能够冷凝并与气体分离。足量的水被除去,使其具有火焰稳定性,且提供热量至少约110BTU/标准立方英尺气体的气体。通常,约百分之97至约百分之99重量的水从该气体中除去。将氢气增强甲烷/氢气/水混合物脱水而生成的水利用冷凝水泵并通过管道14从KO罐12中排出,并在约100°F和500psig下通过管道18送回进料排出物换热器4。现在,脱水的含有至少百分之6体积的氢气或含足以提供火焰稳定性氢气的氢气增强型氢气/惰性气体/甲烷混合气从KO罐通过管道20在约100°F和约psig下供给燃气轮发电机。这些气体的热量至少为约110BTU/标准立方英尺气体,并能为燃气轮发电机提供稳定的火焰。
同样的方法也可以用于所采用的催化剂对天然气中酸性气体不敏感或不受该酸性气体毒化的酸性天然气的应用过程中。不过,为了使该方法适应环保要求,可以至少部分除去至少某些酸性气体,例如H2S。
本发明可通过下面的实例说明。
实施例I
                                                                    燃气轮机性能
现场条件   Units     No Aug     Power Aug
环境温度   °F     60     60
环境压力   Psia     11.57     11.57
环境相对温度   %     60     60
进口压降   InH2O     3.0     3.0
性能
总发动机输出   KW     156,100     157,100
热消耗(LHV)   Btu/h×10-8     1,477.1     1,486.9
热速率(LHV)   Btu/kWh     9,461     9,462
Misc.     1.8     1.8
LHV   Btu/Lb     2,424.0     2,424.0
  Btu/Scf     212.5     212.5
燃气流速   Ib/s     169.3     170.4
压力   Psia     325     325
温度   °F     80     80
Power Aug Inj Conditions
组成   %Vol
二氧化碳     100.0     100.0
流速   Ib/s     0.0     4.0
压力   Psia     285     285
温度   °F     300     300
排出气条件   Units     No Aug     Power Aug
排出气流量   Ib/s     925.3     930.4
排出气温度   °F     1,093.1     1,095.1
排出气组成   %Vol
二氧化碳     13.79     14.12
氩气     1.07     1.07
氮气     65.78     65.53
氧气     9.83     9.74
    9.53     9.55
排气压降   In H2O     15.0     15.0
NOx(热)   ppmvd@15%O2     <10     <10
下面是有关图2方法的数据,例示说明本发明的方法,其中高压进料天然气闪蒸成低压,以便使同在该高压供给的天然气中的甲烷气体与二氧化碳气体分离。
下面是有关图3方法的数据,例示说明本发明的方法,其中低压进料天然气利用外部制冷设备冷冻,以便使同在该低压供给的天然气中的甲烷气体与二氧化碳气体分离。
回流2570 FWHP 1378 Mscfd
                  组分                 热含量.BTU/SCF     HHVBTU/SCF   过热回收   产物回收
    进料       出售/燃料          燃料           损耗    进料         出售        燃料       损耗
瞬时        Mscfd平均        Mscfd瞬时        GBTU/D平均        GBTU/DHC损失(%)  GBTU/D      2500         1378.0           36.9         1122.01925.0         1061.1           28.4          863.9 734.1565.2 656.9505.8 17.6113.62.38% 66.851.59.02% 11.39%
N2CO2H2SC1C2C3iC4nC4iC5nC5C6+H2O  0.004108       0.007412       0.007412       0.0000500.712909       0.523522       0.523522       0.9455070.005659       0.003471       0.003471       0.0083460.268371       0.458954       0.458954       0.0343040.005106       0.005190       0.005190       0.0050030.001599       0.000980       0.000980       0.0023590.000399       0.000164       0.000164       0.0006880.000398       0.000131       0.000131       0.0007260.000198       0.000042       0.000042        0.000390.000492       0.000087       0.000087       0.0009890.000756       0.000000       0.000000              00.000005       0.000047       0.000047              0         0           0          0           00           0          0           00           0          0           0271         464        464          359           9          9           94           2          2           61           1          1           21           0          0           21           0          0           22           0          0           44           0          0           00           0          0           0        0.00.00.01010.01769.62516.13251.93262.34000.94008.95502.50.0   99%40%34%94%56%34%23%18%12%10%0%      1%60%66%6%44%66%77%82%88%90%100%
总计  1.000000 1.000000  1.000000  0.998362       294       477       477          60
利用率=77%
功率,MW     总计     GT1     GT2   Elec LM6000
制冷R404a/C0     0.00     0.00 44,500HP@90F33,184kW@90F6,644热耗,BTU/hP7,096 GBTU/D@总功率
SG1    58.85     58.85
SG2     0.00      0.00
CO2注入泵    23.50   23.50
Condy新鲜气体     0.00    0.00
功率MW    82.35     0.00     58.85   23.50
No.of LM6000s        2        0         1       1
燃料GBTU/D    17.61        -     12.58    5.03
总马力    110,431        HP
HC出售        624        Mscfd HC
              177        HP/Mscfd
                                     2500psl 1200M,45%C1.HSC
                                           情况(主体)
                                             气流
名称 1001   1002     1003     2001     2002
蒸汽分数 0.0000   1.0000     1.0000     0.9736     0.0000
温度(F) 712.9   300.0*     300.0*     257.3     80.00*
压力(psia) 5746.*   5746.*     5746.*     2570.*     2550.
摩尔流量(MMSCFD) 142.0*   2168.*     2310.     2310.     2310.
质量流量(lb/hr) 2.809e+05   8.681e+06     8.982e+06     8.962e+06     8.962e+06
液体体积流量(桶/天) 1.927e+04   8.751e+05     8.944e+05     8.944e+05     8.944e+05
热流量(kW) -4.965e+05   -9.053e+06     -9.550e+06     -9.550e+06     -9.842e+06
组分摩尔分数(氮) 0.00008   0.0041*     0.0038     0.0038     0.0036
组分摩尔分数(CO2) 0.00008   0.7121*     0.6683     0.6683     0.6683
组分摩尔分数(H2S) 0.0000*   0.0053*     0.0050     0.0050     0.0050
组分摩尔分数(甲烷) 0.00008   0.2678*     0.2513     0.2513     0.2513
组分摩尔分数(乙烷) 0.0000*   0.0051*     0.0048     0.0048     0.0048
组分摩尔分数(丙烷) 0.0000*   0.0016*     0.0015     0.0015     0.0015
组分摩尔分数(H2O) 1.0000*   0.0007*     0.0622     0.0622     0.0622
名称 3000   4001     4050     4100     4101
蒸汽分数 1.0000   1.0000     0.3125     1.0000     1.0000
温度(F) 80.85   80.00     9.808     11.65     30.27
压力(psia) 900.7   2550.     900.0*     900.0     890.00
摩尔流量(MMSCFD) 1199.   0.0000     1800.     1199.     1199.
质量流量(lb/hr) 4.080e+06   0.0000     7.210e+06     4.060e+06     4.080e+06
液体体积流量(桶/天) 4.822e+05   0.0000     7.271e+05     4.822e+05     4.822e+05
热流量(kW) -4.039e+06   0.0000     -7.759e+06     -4.080e+06     -4.066e+08
组分摩尔分数(氮) 0.0074   0.0041     0.0041     0.0074     0.0074
组分摩尔分数(CO2) 0.5249   0.7083     0.7123     0.5249     0.5249
组分摩尔分数(H2S) 0.0035   0.0053     0.0053     0.0035     0.0035
组分摩尔分数(甲烷) 0.4576   0.2668     0.2683     0.4576     0.4576
组分摩尔分数(乙烷) 0.0052   0.0051     0.0051     0.0052     0.0052
组分摩尔分数(丙烷) 0.0010   0.0016     0.0016     0.0010     0.0010
组分摩尔分数(H2O) 0.0000   0.0056     0.0000     0.0000     0.0000
名称 4110   4111     4210     4215     5001
蒸汽分数 1.0000   1.0000     0.0000     0.0000     0.0000
温度(F) 219.6   120.0*     65.00     127.9     80.00
压力(psia) 3000.*   2980.     900.0     3800.*     2550.
摩尔流量(MMSCFD) 1199.   1199.     965.0     965.0     2176.
质量流量(lb/hr) 4.080e+06   4.080e+06     4.585e+06     4.585e+06     8.689e+06
液体体积流量(桶/天) 4.822e+05   4.822e+05     3.917e+05     3.917e+05     8.755e+05
热流量(kW) -4.015e+06   -4.077e+06     -5.165e+06     -5.145e+06     -9.310e+06
组分摩尔分数(氮) 0.0074   0.0074     0.0000     0.0000     0.0041
组分摩尔分数(CO2) 0.5249   0.5249     0.9451     0.9451     0.7083
组分摩尔分数(H2S) 0.0035   0.0035     0.0075     0.0075     0.0053
组分摩尔分数(甲烷) 0.4576   0.4576     0.0332     0.0332     0.2668
组分摩尔分数(乙烷) 0.0052   0.0052     0.0050     0.0050     0.0051
组分摩尔分数(丙烷) 0.0010   0.0010     0.0024     0.0024     0.0016
组分摩尔分数(H2O) 0.0000   0.0000     0.0000     0.0000     0.0056
                                    2500psi 1200M,45%C1.HSC
                                          情况(主体)
                                             气流
名称          5002        5003        5004            5005          5006
蒸汽分数        1.0000      0.0000      0.0000          0.0000        0.3721
温度(F)         97.50      69.00*       53.00           53.00         14.30
压力(psia)        2500.*       2490.       2480.           2480.        900.0*
摩尔流量(MMSCFD)         2164.       2164.       1800.           363.6         363.5
质量流量(lb/hr)     8.665e+06   8.665a+06   7.210e+06       1.456e+06     1.456e+06
液体体体积流量(桶/天)     8.739e+05   8.739e+05   7.271e+05       1.468e+05     1.468e+05
热流量(kW)    -9.231e+06  -9.281e+06  -7.745e+06      -1.564e+06    -1.564e+06
组分摩尔分数(氮气)        0.0041      0.0041      0.0041          0.0041        0.0041
组分摩尔分数(CO2)        0.7123      0.7123      0.7123          0.7123        0.7123
组分摩尔分数(H2S)        0.0053      0.0053      0.0053          0.0053        0.0053
组分摩尔分数(甲烷)        0.2683      0.2683      0.2683          0.2683        0.2683
组分摩尔分数(乙烷)        0.0051      0.0051      0.0051          0.0051        0.0051
组分摩尔分数(丙烷)        0.0016      0.0016      0.0016          0.0016        0.0016
组分摩尔分数(H2O)        0.0000      0.0000      0.0000          0.0000        0.0000
名称          5090        6001        9901            9902      kW(输出)
蒸汽分数             -      0.0000      0.0000          0.0000             -
温度(F)             -       80.00      53.00*          43.00*             -
压力(psia)        15.00*       2550.       2480.           2470.             -
摩尔流量(MMSCFD)         12.10       134.1       2164.           1800.             -
质量流量(lb/hr)     2.394e+04   2.726e+05   8.665e+06       7.210e+06             -
液体体积流量(桶/天)         1642.   1.888e+04   8.739e+05       7.271e+05             -
热流量(kW)             -  -5.325e+05  -9.309e+06      -7.759e+06     5.119e+04
组分摩尔分数(氮气)        0.0000      0.0000      0.0041          0.0041             -
组分摩尔分数(CO2)        0.0000      0.0190      0.7123          0.7123             -
组分摩尔分数(H2S)        0.0000      0.0003      0.0053          0.0053             -
组分摩尔分数(甲烷)        0.0000      0.0000      0.2683          0.2683             -
组分摩尔分数(乙烷)        0.0000      0.0000      0.0051          0.0051             -
组分摩尔分数(丙烷)        0.0000      0.0000      0.0016          0.0016             -
组分摩尔分数(H2O)        1.0000      0.9807      0.0000          0.0000             -
名称    kW(注入泵)     Q(排料) Q(dummy 3B)     Q(dummy-01)     Q(再沸器A)
蒸汽分数             -           -           -               -             -
温度(F)             -           -           -               -             -
压力(psia)             -           -           -               -             -
摩尔流量(MMSCFD)             -           -           -               -             -
质量流量(lb/hr)             -           -           -               -             -
液体体体积流量(桶/天)             -           -           -               -             -
热流量(kW)     2.034e+04   6.221e+04   2.747e+04               -     5.053e+04
组分摩尔分数(氮气)             -           -           -               -             -
组分摩尔分数(CO2)             -           -           -               -             -
组分摩尔分数(H2S)             -           -           -               -             -
组分摩尔分数(甲烷)             -           -           -               -             -
组分摩尔分数(乙烷)             -           -           -               -             -
组分摩尔分数(丙烷)             -           -           -               -             -
组分摩尔分数(H2O)             -           -           -               -             -
回流850 PSIA @ 2070 FWHP
                       组分     热含量,BTU/SCF     HHVBTU/SCF   过热回收    产物回收
      进料        出售/燃料       燃料         损耗  进料            出售         燃料        损耗
瞬时      Mscfd平均      Mscfd瞬时      GBTU/D平均      GBTU/DHC损失(%)GBTU/D       1081         614.8          17.1          46621027.0         584.1          16.3         442.9 317.4301.5 285.9271.6 7.977.82.48% 27.025.78.42% 0.90%
N2CO2H2SC1C2C3iC4nC4iC5nC5C6+H2O   0.004108      0.007207      0.007207      0.0000210.712909      0.535264      0.535264      0.9471780.005659      0.003558      0.003558      0.0084300.268371      0.447200      0.447200      0.0325410.005106      0.005267      0.005267      0.0048940.001599      0.001010      0.001010      0.0023760.000399      0.000168      0.000168      0.0007040.000398      0.000134      0.000134      0.0007460.000198      0.000043      0.000043      0.0004020.000492      0.000087      0.000087      0.0010260.000756      0.000000      0.000000             00.000005      0.000062      0.000062             0     0               0          0              00               0          0              00               0          0              0271             452        452             339               9          9              94               3          3              61               1          1              21               0          0              21               0          0              22               0          0              44               0          0              00               0          0              0     0.00.00.01010.01769.62516.13251.93262.34000.94008.95502.50.0    100%43%36%95%59%36%24%19%12%10%0%      0%57%64%5%41%64%76%81%88%90%100%
总计   1.000000  1.000000  1.000000 0.998317   294      465       465            58
利用率=95%
功率,MW     总计      GT1    GT2     Elec      LM6000
制冷R404a/C0     0.00     0.00  44,500HP@90F33,184kW@90F6,644热耗,BTU/hp7,096GBTU/D @总功率
SG1     27.56    27.56
SG2     0.00     0.00
CO2注入泵     9.69     9.69
Condy新鲜气体     0.00     0.00
总计MW    37.25     0.00    27.56     9.69
No.of LM6000s        2        0        1        1
燃料GBTU/D     7.97        -     5.89     2.07
总马力    49,952        HP
HC出售       271        Mscfd HC
             184        HP/Mscfd
                            Dehy & Reflux塔2070 FWHP.hsc
                                 主体:气流
                                    气流
名称     1001     1002     1003     2001     2002
蒸汽分数     0.0000     1.0000     1.0000     0.9681     0.9408
温度(F)     712.9     300.0*     300.0*     244.0     80.00*
压力(psia)     5746.*     5746.*     5746.     2070.*     2050.
摩尔流量(MMSCFD)     71.00*     1084.*     1155.     1155.     1155.
质量流量(lb/hr)     1.404e+05     4.340e+06     4.481e+06     4.481e+06     4.481e+06
液体体积流量(桶/天)     9636.     4.376e+05     4.472e+05     4.472e+05     4.472e+05
热流量(kW)     -2.483e+05     -4.527e+06     -4.775e+06     -4.775e+06     -4.911e+06
组分摩尔分数(氮气)     0.0000*     0.0041*     0.0038     0.0038     0.0038
组分摩尔分数(CO2)     0.0000*     0.7121*     0.6683     0.6683     0.6683
组分摩尔分数(H2S)     0.0000*     0.0053*     0.0050     0.0050     0.0050
组分摩尔分数(甲烷)     0.0000*     0.2678*     0.2513     0.2513     0.2513
组分摩尔分数(乙烷)     0.0000*     0.0051*     0.0048     0.0048     0.0048
组分摩尔分数(丙烷)     0.0000*     0.0016*     0.0015     0.0015     0.0015
组分摩尔分数(H2O)     1.0000*     0.0007*     0.0622     0.0622     0.0622
名称     3000     4001     4050     4100     .4101
蒸汽分数     -     1.0000     0.3738     1.0000     1.0000
温度(F)     -     80.00     9.978     10.99     26.03
压力(psia)     -     2050.     850.0*     850.0     840.00
摩尔流量(MMSCFD)     -     1087.     900.0     614.7     614.7
质量流量(lb/hr)     -     4.342e+06     3.604e+06     2.112e+08     2.112e+06
液体体积流量(桶/天)     -     4.376e+05     3.635e+05     2.472e+05     2.472e+05
热流量(kW)     -     -4.639e+06     -3.874e+06     -2.118e+06     -2.113e+06
组分摩尔分数(氮气)     -     0.0041     0.0041     0.0072     0.0072
组分摩尔分数(CO2)     -     0.7092     0.7123     0.5352     0.5352
组分摩尔分数(H2S)     -     0.0053     0.0053     0.0036     0.0036
组分摩尔分数(甲烷)     -     0.2672     0.2683     0.4473     0.4473
组分摩尔分数(乙烷)     -     0.0051     0.0051     0.0053     0.0053
组分摩尔分数(丙烷)     -     0.0016     0.0016     0.0010     0.0010
组分摩尔分数(H2O)     -     0.0043     0.0000     0.0000     0.0000
名称     4110     4210     4215     5001     5002
蒸汽分数     1.0000     0.0000     0.0000     0.0000     1.0000
温度(F)     2252     60.01     118.6     80.00     82.33
压力(psia)     3000.*     850.0     3800.*     2050.     2000.*
摩尔流量(MMSCFD)     614.7     467.2     467.2     0.0000     1082.
质量流量(lb/hr)     2.112e+06     2.221e+06     2.221e+06     0.0000     4.333e+06
液体体积流量(桶/天)     2.472e+05     1.897e+05     1.897e+05     0.0000     4.369e+05
热流量(kW)     -2.085e+06     -2.504e+06     -2.495e+06     0.0000     -4.617e+06
组分摩尔分数(氮气)     0.0072     0.0000     0.0000     0.0041*     0.0041
组分摩尔分数(CO2)     0.5352     0.9453     0.9453     0.7092*     0.7123
组分摩尔分数(H2S)     0.0036     0.0076     0.0076     0.0053*     0.0053
组分摩尔分数(甲烷)     0.4473     0.0328     0.0328     0.2672*     0.2683
组分摩尔分数(乙烷)     0.0053     0.0049     0.0049     0.0051*     0.0051
组分摩尔分数(丙烷)     0.0010     0.0024     0.0024     0.0016*     0.0016
组分摩尔分数(H2O)     0.0000     0.0000     0.0000     0.0043*     0.0000
                                 Dehy & Reflux塔2070 FWHP.hsc
                                          主体:气流
                                             气流
名称     5003     5004     5005     5006     5090
蒸汽分数     1.0000     0.0000     0.0000     0.4201     -
温度(F)     62.00*     50.00     50.00     13.33     -
压力(psia)     1990.     1980.     1980.     850.0*     15.00*
摩尔流量(MMSCFD)     1082.     900.0*     181.9     181.9     4.671
质量流量(lb/hr)     4.333e+06     3.604e+06     7.285e+05     7.285e+05     9239.
液体体积流量(桶/天)     4.369e+05     3.635e+05     7.348e+04     7.346e+04     633.9
热流量(kW)     -4.639e+06     -3.869e+06     -7.819e+05     -7.819e+05     -2.193e+04
组分摩尔分数(氮气)     0.0041     0.0041     0.0041     0.0041     0.0000
组分摩尔分数(CO2)     0.7123     0.7123     0.7123     0.7123     0.0000
组分摩尔分数(H2S)     0.0053     0.0053     0.0053     0.0053     0.0000
组分摩尔分数(甲烷)     0.2683     0.2883     0.2683     0.2683     0.0000
组分摩尔分数(乙烷)     0.0051     0.0051     0.0051     0.0061     0.0000
组分摩尔分数(丙烷)     0.0016     0.0016     0.0016     0.0016     0.0000
组分摩尔分数(H2O)     0.0000     0.0000     0.0000     0.0000     1.0000
名称     6001     9901     9902     Kw(输出)     kW(注入泵)
蒸汽分数     0.0000     0.0000     0.0000     -     -
温度(F)     80.00     50.00*     43.00*     -     -
压力(psia)     2050.     1980.     1970.     -     -
摩尔流量(MMSCFD)     68.43     1082.     900.0     -     -
质量流量(lb/hr)     1.390e+05     4.333e+06     3.604e+06     -     -
液体体积流量(桶/天)     9630     4.369e+05     3.835e+05     -     -
热流量(kW)     -2.718e+05     -4.651e+06     -3.874e+06     2.756e+04     9694.
组分摩尔分数(氮气)     0.0000     0.0041     0.0041     -     -
组分摩尔分数(CO2)     0.0187     0.7123     0.7123     -     -
组分摩尔分数(H2S)     0.0003     0.0053     0.0053     -     -
组分摩尔分数(甲烷)     0.0000     0.2683     0.2683     -     -
组分摩尔分数(乙烷)     0.0000     0.0051     0.0051     -     -
组分摩尔分数(丙烷)     0.0000     0.0016     0.0016     -     -
组分摩尔分数(H2O)     0.9810     0.0000     0.0000     -     -
名称     Q(dummy 3B)     Q(再沸器A)     Q(再沸器-A)     Q(Sea 1)     Q(SW冷却器)
蒸汽分数     -     -     -     -     -
温度(F)     -     -     -     -     -
压力(psia)     -     -     -     -     -
摩尔流量(MMSCFD)     -     -     -     -     -
质量流量(lb/hr)     -     -     -     -     -
液体体积流量(桶/天)     -     -     -     -     -
热流量(kW)     1.206e+04     2.142e+04     2.141e+04     -     1.360e+05
组分摩尔分数(氮气)     -     -     -     -     -
组分摩尔分数(CO2)     -     -     -     -     -
组分摩尔分数(H2S)     -     -     -     -     -
组分摩尔分数(甲烷)     -     -     -     -     -
组分摩尔分数(乙烷)     -     -     -     -     -
组分摩尔分数(丙烷)     -     -     -     -     -
组分摩尔分数(H2O)     -     -     -     -     -

Claims (1)

1.一种用甲烷体积浓度为百分之40至百分之80的天然气储气中的甲烷气体向燃气轮机供给燃料的方法,该方法包括:
由天然气储气提供天然气气流;
将天然气气流中的惰性气体与甲烷气体分离,从而提供分离的甲烷气体和分离的惰性气体/甲烷气体混合物,分离应使得:当该惰性气体甲烷气体混合气用作燃气轮机的燃料时,在混合气中的惰性气体的量将使得燃气轮机的输出比以管道质量的天然气作为燃料的燃气轮机增加至少大百分之5。
CNB2004100978627A 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 Expired - Fee Related CN1304741C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/460,149 1999-12-13
US09/460,149 US6298652B1 (en) 1999-12-13 1999-12-13 Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB008178178A Division CN1239818C (zh) 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法

Publications (2)

Publication Number Publication Date
CN1651737A true CN1651737A (zh) 2005-08-10
CN1304741C CN1304741C (zh) 2007-03-14

Family

ID=23827563

Family Applications (4)

Application Number Title Priority Date Filing Date
CNB2004100978646A Expired - Fee Related CN100338344C (zh) 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法
CNB008178178A Expired - Fee Related CN1239818C (zh) 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法
CNB2004100978631A Expired - Fee Related CN1304742C (zh) 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法
CNB2004100978627A Expired - Fee Related CN1304741C (zh) 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CNB2004100978646A Expired - Fee Related CN100338344C (zh) 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法
CNB008178178A Expired - Fee Related CN1239818C (zh) 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法
CNB2004100978631A Expired - Fee Related CN1304742C (zh) 1999-12-13 2000-12-13 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法

Country Status (10)

Country Link
US (5) US6298652B1 (zh)
EP (1) EP1240279B1 (zh)
CN (4) CN100338344C (zh)
AT (1) ATE310068T1 (zh)
AU (2) AU779291C (zh)
DE (1) DE60024135T2 (zh)
EA (1) EA006494B1 (zh)
HK (4) HK1053667A1 (zh)
MY (1) MY125079A (zh)
WO (1) WO2001042400A1 (zh)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298652B1 (en) * 1999-12-13 2001-10-09 Exxon Mobil Chemical Patents Inc. Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines
DE10047262B4 (de) * 2000-09-23 2005-12-01 G.A.S. Energietechnologie Gmbh Verfahren zur Nutzung methanhaltiger Gase
AU2003264182B2 (en) * 2002-09-27 2009-05-14 Commonwealth Scientific And Industrial Research Organisation A system for catalytic combustion
AU2002951703A0 (en) * 2002-09-27 2002-10-17 Commonwealth Scientific And Industrial Research Organisation A method and system for a combustion of methane
DE10252085A1 (de) * 2002-11-08 2004-05-27 Linde Ag Verfahren zum Erhöhen des Wirkungsgrades von Erdgas
US6820427B2 (en) * 2002-12-13 2004-11-23 General Electric Company Method and apparatus for operating a turbine engine
US6874323B2 (en) * 2003-03-03 2005-04-05 Power System Mfg., Llc Low emissions hydrogen blended pilot
US20040226299A1 (en) * 2003-05-12 2004-11-18 Drnevich Raymond Francis Method of reducing NOX emissions of a gas turbine
US7631691B2 (en) * 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US7429287B2 (en) * 2004-08-31 2008-09-30 Bp Corporation North America Inc. High efficiency gas sweetening system and method
EP1669572A1 (en) * 2004-12-08 2006-06-14 Vrije Universiteit Brussel Process and installation for producing electric power
US20090260362A1 (en) * 2006-04-14 2009-10-22 Mitsui Engineering & Shipbuilding Co., Ltd. Method of Decomposing Gas Hydrate, and Apparatus Therefor, in Gas Turbine Combined Power Generation System
US7644993B2 (en) * 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US20080016768A1 (en) 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
CA2858464A1 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Improved method of developing a subsurface freeze zone using formation fractures
JO2771B1 (en) 2006-10-13 2014-03-15 ايكسون موبيل ابستريم ريسيرتش كومباني Joint development of shale oil through in situ heating using deeper hydrocarbon sources
CA2663823C (en) 2006-10-13 2014-09-30 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
CA2666296A1 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
CA2663824C (en) * 2006-10-13 2014-08-26 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US20090223229A1 (en) * 2006-12-19 2009-09-10 Hua Wang Method and System for Using Low BTU Fuel Gas in a Gas Turbine
AU2008227164B2 (en) 2007-03-22 2014-07-17 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
CN101641495B (zh) * 2007-03-22 2013-10-30 埃克森美孚上游研究公司 用于原位地层加热的颗粒电连接
AU2008253749B2 (en) * 2007-05-15 2014-03-20 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
AU2008253753B2 (en) * 2007-05-15 2013-10-17 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
CN101680293B (zh) * 2007-05-25 2014-06-18 埃克森美孚上游研究公司 结合原位加热、动力装置和天然气处理装置产生烃流体的方法
US8146664B2 (en) * 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8082995B2 (en) * 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
EP2098683A1 (en) 2008-03-04 2009-09-09 ExxonMobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
CN101981162B (zh) 2008-03-28 2014-07-02 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
CN101981272B (zh) 2008-03-28 2014-06-11 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
US20090272096A1 (en) * 2008-05-05 2009-11-05 General Electric Company Single Manifold Dual Gas Turbine Fuel System
US8438830B2 (en) * 2008-05-05 2013-05-14 General Electric Company Primary manifold dual gas turbine fuel system
US8375696B2 (en) * 2008-05-05 2013-02-19 General Electric Company Independent manifold dual gas turbine fuel system
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
PL2344738T3 (pl) 2008-10-14 2019-09-30 Exxonmobil Upstream Research Company Sposób i układ do sterowania produktami spalania
BRPI0919650A2 (pt) * 2008-10-29 2015-12-08 Exxonmobil Upstream Res Co método e sistema para aquecer uma formação de subsuperfície
WO2010096210A1 (en) * 2009-02-23 2010-08-26 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
CA2757483C (en) 2009-05-05 2015-03-17 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
AU2010256517B2 (en) 2009-06-05 2016-03-10 Exxonmobil Upstream Research Company Combustor systems and methods for using same
JP5920727B2 (ja) 2009-11-12 2016-05-18 エクソンモービル アップストリーム リサーチ カンパニー 低排出発電並びに炭化水素回収システム及び方法
US8863839B2 (en) * 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
CN102221630A (zh) * 2010-04-16 2011-10-19 上海森太克汽车电子有限公司 自适应车速传感器及信号占空比校正方法
WO2012003078A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
EP2588728B1 (en) 2010-07-02 2020-04-08 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
CN107575308A (zh) 2010-07-02 2018-01-12 埃克森美孚上游研究公司 低排放三循环动力产生系统和方法
WO2012003080A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Low emission power generation systems and methods
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
EP2601393B1 (en) 2010-08-06 2020-01-15 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
WO2012018458A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company System and method for exhaust gas extraction
CA2806174C (en) 2010-08-30 2017-01-31 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
BR112013000931A2 (pt) 2010-08-30 2016-05-17 Exxonmobil Upstream Res Co integridade mecânica de poço para a pirólise in situ
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
BR122020025369B1 (pt) 2011-04-07 2023-12-12 Typhon Technology Solutions, Llc Método de entrega de um fluido de fratura a um furo de poço,método de fornecimento de energia elétrica para pelo menos um sistema de fraturamento em um furo de poço e sistema para uso na entrega do fluido pressurizado para um furo de poço
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US9140110B2 (en) 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
WO2013165711A1 (en) 2012-05-04 2013-11-07 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
WO2014137648A1 (en) 2013-03-08 2014-09-12 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9377202B2 (en) 2013-03-15 2016-06-28 General Electric Company System and method for fuel blending and control in gas turbines
US9382850B2 (en) 2013-03-21 2016-07-05 General Electric Company System and method for controlled fuel blending in gas turbines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
WO2015060919A1 (en) 2013-10-22 2015-04-30 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
CA2966977A1 (en) 2014-11-21 2016-05-26 Exxonmobil Upstream Research Comapny Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US9534473B2 (en) 2014-12-19 2017-01-03 Evolution Well Services, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN105733718B (zh) * 2016-04-14 2018-08-21 中石化南京工程有限公司 一种合成气甲烷化多联产方法及装置
US10214702B2 (en) 2016-12-02 2019-02-26 Mustang Sampling Llc Biogas blending and verification systems and methods
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11607654B2 (en) 2019-12-30 2023-03-21 Marathon Petroleum Company Lp Methods and systems for in-line mixing of hydrocarbon liquids
CA3109675A1 (en) 2020-02-19 2021-08-19 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
CN112630263B (zh) * 2020-11-12 2023-04-07 南京理工大学 用于在对冲扩散火焰中实现掺混组分化学作用分离的方法
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11578638B2 (en) 2021-03-16 2023-02-14 Marathon Petroleum Company Lp Scalable greenhouse gas capture systems and methods
US11655940B2 (en) 2021-03-16 2023-05-23 Marathon Petroleum Company Lp Systems and methods for transporting fuel and carbon dioxide in a dual fluid vessel
US11447877B1 (en) 2021-08-26 2022-09-20 Marathon Petroleum Company Lp Assemblies and methods for monitoring cathodic protection of structures
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US11725582B1 (en) 2022-04-28 2023-08-15 Typhon Technology Solutions (U.S.), Llc Mobile electric power generation system
US11686070B1 (en) 2022-05-04 2023-06-27 Marathon Petroleum Company Lp Systems, methods, and controllers to enhance heavy equipment warning
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6511884A (zh) 1965-09-13 1967-03-14
US3653183A (en) 1970-02-12 1972-04-04 Northern Petro Chem Co Methyl ethers of polyalkoxylated polyols for removing acidic gases from gases
US3739581A (en) * 1972-01-19 1973-06-19 E Talmor Method and apparatus for providing jet propelled vehicles with a heat sink
US3868817A (en) 1973-12-27 1975-03-04 Texaco Inc Gas turbine process utilizing purified fuel gas
US4098339A (en) * 1976-06-21 1978-07-04 Mobil Oil Corporation Utilization of low BTU natural gas
US4132065A (en) 1977-03-28 1979-01-02 Texaco Inc. Production of H2 and co-containing gas stream and power
US4299086A (en) 1978-12-07 1981-11-10 Gulf Research & Development Company Utilization of energy obtained by substoichiometric combustion of low heating value gases
DE2909335A1 (de) * 1979-03-09 1980-09-18 Linde Ag Verfahren und vorrichtung zur zerlegung von erdgas
DE2912761A1 (de) * 1979-03-30 1980-10-09 Linde Ag Verfahren zum zerlegen eines gasgemisches
CA1139581A (en) * 1979-08-31 1983-01-18 Geoffrey R. Bennett Mountings for keys
US4383837A (en) 1979-12-28 1983-05-17 Atlantic Richfield Company Efficient methane production with metal hydrides
GB2085314B (en) 1980-10-07 1984-09-12 Ici Plc Hydrocarbon cracking process and catalyst
US4423155A (en) 1981-02-20 1983-12-27 Mobil Oil Corporation Dimethyl ether synthesis catalyst
US4366668A (en) * 1981-02-25 1983-01-04 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4363361A (en) 1981-03-19 1982-12-14 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
GB2109532B (en) * 1981-11-07 1985-01-03 Rolls Royce Gas fuel injector
US4623371A (en) 1984-08-03 1986-11-18 El Paso Hydrocarbons Company Utilizing the Mehra process for processing and BTU upgrading of nitrogen-rich natural gas streams
US4421535A (en) 1982-05-03 1983-12-20 El Paso Hydrocarbons Company Process for recovery of natural gas liquids from a sweetened natural gas stream
US4483943A (en) 1983-04-07 1984-11-20 Uop Inc. Gas conversion catalysts
US4496371A (en) 1983-09-21 1985-01-29 Uop Inc. Process for removal of hydrogen sulfide and carbon dioxide from gas streams
US4733528A (en) * 1984-03-02 1988-03-29 Imperial Chemical Industries Plc Energy recovery
DE3415224A1 (de) 1984-04-21 1985-10-24 Kraftwerk Union AG, 4330 Mülheim Gasturbinen- und dampfkraftwerk mit einer integrierten kohlevergasungsanlage
US4595396A (en) 1984-05-14 1986-06-17 Phillips Petroleum Company Composition comprising 1,3,5-trioxane
DE3446715A1 (de) * 1984-12-21 1986-06-26 Krupp Koppers GmbH, 4300 Essen Verfahren zur kuehlung von staubfoermige verunreinigungen enthaltendem partialoxidationsgas, das zur verwendung in einem kombinierten gas-dampfturbinenkraftwerk bestimmt ist
US5048284A (en) * 1986-05-27 1991-09-17 Imperial Chemical Industries Plc Method of operating gas turbines with reformed fuel
EP0351094B1 (en) 1988-04-05 1994-03-23 Imperial Chemical Industries Plc Gas turbines
US4861745A (en) 1988-08-03 1989-08-29 United Catalyst Inc. High temperature shift catalyst and process for its manufacture
US5048285A (en) * 1990-03-26 1991-09-17 Untied Technologies Corporation Control system for gas turbine engines providing extended engine life
GB9105095D0 (en) * 1991-03-11 1991-04-24 H & G Process Contracting Improved clean power generation
US5725616A (en) 1991-12-12 1998-03-10 Kvaerner Engineering A.S. Method for combustion of hydrocarbons
AU3429093A (en) * 1991-12-31 1993-07-28 Robert D. Harvey Process for producing electric energy using sour natural gas
US5435836A (en) * 1993-12-23 1995-07-25 Air Products And Chemicals, Inc. Hydrogen recovery by adsorbent membranes
US5741440A (en) 1994-02-28 1998-04-21 Eastman Chemical Company Production of hydrogen and carbon monoxide
US6293979B1 (en) 1994-12-19 2001-09-25 Council Of Scientific & Industrial Research Process for the catalytic conversion of methane or natural gas to syngas or a mixture of carbon monoxide and hydrogen
DK171830B1 (da) * 1995-01-20 1997-06-23 Topsoe Haldor As Fremgangsmåde til generering af elektrisk energi
US5516967A (en) 1995-01-30 1996-05-14 Chemisar Laboratories Inc. Direct conversion of methane to hythane
US5740673A (en) * 1995-11-07 1998-04-21 Air Products And Chemicals, Inc. Operation of integrated gasification combined cycle power generation systems at part load
US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
US5861441A (en) * 1996-02-13 1999-01-19 Marathon Oil Company Combusting a hydrocarbon gas to produce a reformed gas
JP3533895B2 (ja) * 1997-03-13 2004-05-31 セイコーエプソン株式会社 シリアルプリンタ及びシリアルプリンタにおけるイメージバッファアクセス方法
EP1051587A4 (en) * 1998-01-08 2002-08-21 Satish Reddy SEPARATION OF CARBON DIOXIDE BY SELF-COOLING
EP0987495B1 (de) * 1998-09-16 2003-10-29 ALSTOM (Switzerland) Ltd Verfahren zum Minimieren thermoakustischer Schwingungen in Gasturbinenbrennkammern
US6499083B1 (en) * 1999-09-15 2002-12-24 Western Digital Ventures, Inc. Disk-based storage system responsive to a direction-selection signal for autonomously controlling seeks in a sequence determined by the direction-selection signal and a locally-stored doubly linked list
US6298652B1 (en) * 1999-12-13 2001-10-09 Exxon Mobil Chemical Patents Inc. Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines
US6585784B1 (en) * 1999-12-13 2003-07-01 Exxonmobil Chemical Patents Inc. Method for utilizing gas reserves with low methane concentrations for fueling gas turbines
KR100442439B1 (ko) * 2002-10-07 2004-07-30 엘지전자 주식회사 제어국의 멀티링크에서 링크별 큐 할당 장치 및 방법

Also Published As

Publication number Publication date
US6684644B2 (en) 2004-02-03
DE60024135D1 (de) 2005-12-22
EA006494B1 (ru) 2005-12-29
HK1082785A1 (en) 2006-06-16
DE60024135T2 (de) 2006-07-27
EP1240279A1 (en) 2002-09-18
US7350359B2 (en) 2008-04-01
US6298652B1 (en) 2001-10-09
MY125079A (en) 2006-07-31
CN100338344C (zh) 2007-09-19
AU2005200532B2 (en) 2006-11-02
US20020014068A1 (en) 2002-02-07
EP1240279B1 (en) 2005-11-16
CN1651738A (zh) 2005-08-10
HK1082784A1 (en) 2006-06-16
CN1239818C (zh) 2006-02-01
AU779291C (en) 2007-12-13
EA200200638A1 (ru) 2003-06-26
AU2005200532A1 (en) 2005-03-03
US20050182283A1 (en) 2005-08-18
CN1304741C (zh) 2007-03-14
WO2001042400A1 (en) 2001-06-14
US20030084668A1 (en) 2003-05-08
US6523351B2 (en) 2003-02-25
AU779291B2 (en) 2005-01-13
HK1053667A1 (en) 2003-10-31
AU2259501A (en) 2001-06-18
CN1304742C (zh) 2007-03-14
US20040206065A1 (en) 2004-10-21
CN1651739A (zh) 2005-08-10
HK1082783A1 (en) 2006-06-16
WO2001042400A9 (en) 2002-08-15
ATE310068T1 (de) 2005-12-15
CN1414999A (zh) 2003-04-30
US6907737B2 (en) 2005-06-21

Similar Documents

Publication Publication Date Title
CN1651737A (zh) 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法
AU776117B2 (en) Method for utilizing gas reserves with low methane concentrations for fueling gas turbines
US7429287B2 (en) High efficiency gas sweetening system and method
CN103026031B (zh) 低排放三循环动力产生系统和方法
TWI579507B (zh) 利用廢氣再循環對富集之空氣進行化學計量燃燒之系統和方法
US11067335B1 (en) Devices, systems, facilities, and processes for liquefied natural gas production
CN102985665A (zh) 低排放三循环动力产生系统和方法
KR20190080354A (ko) 부유식 발전 플랜트 및 부유식 발전 플랜트의 운용 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1082783

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070314

Termination date: 20161213